f(n)	$\log^k n$	n^k	\sqrt{n}	$\log(n!)$
g(n)	n^{ϵ}	c^n	n^{sinn}	$\log(n^n)$
Is $f(n) O(g(n))$?				
	Yes	Yes	No	Yes
Is $f(n) \ \Omega(g(n))$?				
	No	No	No	Yes
Is $f(n) \Theta(g(n))$?				
	No	No	No	Yes
Is $f(n) \ o(g(n))$?				
	Yes	Yes	No	No

Solutions for Homework 1

Problem 1: (Grade 16 pts): In Table 1, $k \ge 1, \epsilon > 0, c > 1$. Please answer yes or no, and also justify your answer in each case.

Column1:

We will prove that $\log^k n = o(n^{\epsilon})$.

We want to show that for any constant c > 0, there exists a constant $n_0 > 0$:

 $\log^k n < cn^{\epsilon}.$

Take the log of both sides

 $\log \log^k n < \log cn^{\epsilon}$

$$k \log \log n < \log c + \epsilon \log n$$

This is true for large enough n (it can be proven using L'Hopital's rule). So, $\log^k n = o(n^{\epsilon})$. (1) From (1), we conclude that:

$$\log^{k} n = O(n^{\epsilon}). (2)$$
$$\log^{k} n \neq \Theta(n^{\epsilon}). (3)$$
$$\log^{k} n \neq \Omega(n^{\epsilon}). (4)$$

Column2:

We will prove that $n^k = o(c^n)$.

We want to show that for any constant a > 0, there exists a constant $n_0 > 0$:

 $n^k < ac^n$

 $\log n^k < \log a c^n$

$$k\log n < \log a + \log cn$$

This is true for large enough n (it can be proven using L'Hopital's rule). So, $n^k = o(c^n)$. (5) From (5), we conclude that:

$$n^{k} = O(c^{n}). (6)$$
$$n^{k} \neq \Theta(c^{n}). (7)$$
$$n^{k} \neq \Omega(c^{n}). (8)$$

Column3:

Observe the function n^{sinn} :

The value of the exponent is oscillating between 1 and -1, taking all values in between. So, the function oscillates between $\frac{1}{n}$ and n. \sqrt{n} and n^{sinn} cannot be compared using asymptotic notation. The limit $\frac{\sqrt{n}}{n^{sinn}}$ oscillates.

Column4:

$$n! \le n^n$$
$$\Rightarrow \log n! \le \log n^n$$

So, picking up $c = 1, n_0 = 1$ we prove that $\log n! = O(\log n^n)$ (9)

The following bound holds for all n:

$$n! \ge \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
$$\Rightarrow n! \ge \left(\frac{n}{e}\right)^n$$
$$\Rightarrow \log n! \ge \log\left(\frac{n}{e}\right)^n$$
$$\Rightarrow \log n! \ge n \log\frac{n}{e}$$
$$\Rightarrow \log n! \ge n(\log n - \log e)$$
$$\Rightarrow \log n! \ge \frac{n\log n}{2}$$
$$\Rightarrow \log n! \ge \Omega(\log n^n) (10)$$

From (9),(10) we conclude:

$$\log n! = \Theta(\log n^n)$$
$$\log n! \neq o(\log n^n)$$

Problem 2: (Grade 6 pts) State true or false. Justify your answer (Give reasons if your answer is true, give a counter-example if your answer is false). Assume throughout that $f(n) \ge 0$ and $g(n) \ge 0$ for all n.

1. If f(n) is O(g(n)) then $\log f(n)$ is $O(\log g(n))$. Assume that $\log (g(n)) > 0$ and $f(n) \ge 1 \forall n$. It's TRUE. Proof: We have that f(n) is O(g(n)):

$$f(n) \le cg(n)$$

$$\Rightarrow \log f(n) \le \log c + \log g(n)$$
$$\Rightarrow \log f(n) \le c' \log g(n)$$
$$\Rightarrow \log f(n) = O(\log g(n))$$

Here, we made the assumption that $g(n) \to \infty$ as $n \to \infty$. For the other cases, if you are interested contact the instructor or the TA.

2. f(n) + o(f(n)) is $\Theta(f(n))$.

TRUE Proof: Let g(n) = o(f(n)). For every c, there exists n_0 :

$$g(n) < cf(n) \text{ for every } n \ge n_0$$

$$\Rightarrow g(n) + f(n) < (c+1)f(n)$$

$$\Rightarrow f(n) \le g(n) + f(n) < (c+1)f(n)$$

$$\Rightarrow f(n) \le o(f(n)) + f(n) \le (c+1)f(n)$$

$$\Rightarrow f(n) + o(f(n)) = \Theta(f(n))$$

3. f(n) is $O\left((f(n))^2\right)$. TRUE

If $f(n) \ge 1$ the statement holds, since $f(n) \le f(n)^2$ under that assumption. So, picking up c = 1 and $n_0 > 0$ we are done.

For the other case, if you are interested contact the instructor or the TA.

Problem 3: (Grade 3) Prove that $F_N \ge 2^{N/2}$ for all $N \ge 2$. Here, F_0, F_1, F_2, \ldots are the Fibonacci numbers.

- (a) Base case: It holds for N = 2: $F_2 = 2 \ge 2^{2/2} = 2$.
- (b) Induction hypothesis: Suppose it holds for N = 2, ..., k.
- (c) Inductive step: Prove that it holds for n = k + 1.

$$F_{k+1} = F_k + F_{k-1} \ge 2^{k/2} + 2^{(k-1)/2}$$

$$\Rightarrow F_{k+1} \ge 2^{(k-1)/2} + 2^{(k-1)/2}$$

$$\Rightarrow F_{k+1} \ge 2^{((k-1)/2)+1}$$

$$\Rightarrow F_{k+1} \ge 2^{(k+1)/2}$$

Problem 4: (Grade 8 pts) You have a list of n real numbers, and another number x. You need to find out whether the sum of any two consecutive numbers in the list equals x or not. Give an algorithm to solve the problem. Analyze its complexity. For full grade you need to give a $O(n \log n)$ algorithm.

The idea is the following:

Add element 1 and element 2. Compare the sum with number x.

If you found it STOP, else continue like this adding element i with element i + 1 till i = n - 1. This requires O(n) operations.

Now give an algorithm which finds out whether there are p consecutive elements whose sum equals x, where p is an input number. Analyze its complexity.

Follow similar logic as before:

Add elements 1 to p. If you found it STOP, else subtract element 1 and add element p + 1 into the previous sum.

In general, subtract element i and add element i + p to the previous sum. Again, this requires O(n) operations because of the efficient method of keeping the intermediate result so that not to have redundancy.

Problem 5: (Grade 7) You have a real number x, and a sequence of real numbers a_0, \ldots, a_{n-1} . Give an algorithm to find out the value of the polynomial $\sum_{i=0}^{n-1} a_i x^i$. Analyze the complexity of your algorithm. For full grade you need to give a O(n) algorithm. Please note that the basic operations are addition, multiplication, subtraction, division, memory access, read and write operations. In particular, i multiplications need i basic steps.

The logic is the following:

An efficient way can be constructed if you notice that x^i can be computed like this:

$$x^i = x^{i-1}x$$

So, store the result x^{i-1} so that in the next step you can compute x^i by multiplying the previous power by x.

The algorithm is like this:

$$poly = 0;$$

 $power = 1;$
 $for(i = 0; i \le n - 1; i + +)\{$
 $poly = poly + a_i * power;$
 $power = power * x; \}$

This requires O(n) operations.