Homework 10 Solutions

Note: The correctness of the algorithms has not been analyzed exten-
sively, for brevity purposes. If you have any question, please contact the
instructor or the TA.

Problem 1 Solution: Initially, the algorithm topologically sorts the DAG
and produces a linear ordering on the vertices. This is performed in ©(V +E)
time. Then, we make one pass over the vertices in the topologically sorted
order. As each vertex is processed, all the edges that leave the vertex are
relaxed. Here is the pseudocode.

run topological_sort(G)
/* Init() */

for each vertex v in V
d[v]l=-o00; /* oo denotes infinity */

d[s]=0; /* s is the source */

/* Update */
for each vertex u in topologically sorted order
for each vertex v in Adj[ul]
if d[v]l<d[ul+w(u,v)
dlv]l=d[ul+w(u,v);

This takes time O(V + E).

Correctness: We must show that at the termination of the algoritm, the
maximum weighted path is computed from s to every destination v. Let
p(v,u) be the maximum path weight from v to u. If v is not reachable
from s, then d[v] = p(s,v) = —oo. If v is reachable from the source s,
there is a maximum weighted path ¢ =< ug, u1,-..,ux >, where vy = s and
v = v. Because of the topological sort, the edges on the path are relaxed
in the order (ug,u1), (u1,u2),. .., (ug_1,u;). Using induction as in the proof
of correctness for Bellman-Ford (taught in the class) it can be proved that
d[v;] = p(s,v;) at termination for s = 0,1,...,k.



Problem 2 Solution: The Bellman-Ford algoritm will be used for the
detection of negative weight cycle. It will return a boolean value which
will indicate whether there is a negative weight cycle or not in the strongly
connected graph.

The algorithm uses the same basic pseudo-code taught in class for Bellman-
Ford. It actually enhances this code, by adding the following step in the
previous code:

/* t here equals to V */
for every vertex v in V
for every vertex u in Adj[v]

if d_{t}[vl>d_{t-1}[ul+w(u,v)
return false

return true

The existing code of Bellman-Ford costs O(V E). This step costs O(E),
so total complexity is O(V E).

Correctness: We have to prove that if the graph contains a negative-
weight cycle, then the algorithm will return false.

Let ¢ =< wvg,v1,...,v¢ > where vg = v, be a negative weight cycle.
This means,

k
Z w(vi—1,v;) <0
i=1

Assume that the algorithm does not return true, so that d[v;] < d[v;—1]+
w(vj—1,v;) fori =1,... k.
Using the above inequality,
k

k k
Zd[vz] < Zd[vi—l] + Zw('ui_l, v;) (1)
i=1 i=1 i=1
Since the graph is strongly-connected, d[v;] is finite. Also, ¥-F_ d[v;] =
>k dv; 1] (2). So, (1),(2) conclude

k
0< Y wlvie1,v)
i=1

which is a contradiction. QED



Problem 3 Solution: Consider the following counter-example. The graph
has 3 vertices s, a, b and edges (s,a), (s,b), (b,a) with weights 1, 2, —3
respectively. Dijkstra will conclude that the shortest path weight from s
to a is 1. But the actual shortest path weight is —1, following the edges
(s,0), (b,a). QED

Problem 4 Solution: A modification of Bellman-Ford is proposed. Ini-
tially, set all d[v]=0. Then, the relaxation is modified as follows:

di(v) = min( dio], min (dis () +w(u,v)) )
uwinAdj(u)

The algorithm has the same complexity as Bellman-Ford, that is O(VE).

Its correctness depends on the correctness of Bellman-Ford. In case that

all edges of the graph have positive weight, then the initialization d[v] = 0

will remain unchanged during the algorithm: the minimum shortest path for

every vertex is the one from itself. In case that there exist negative weight

edges which make a shortest path to be negative, then the update will take
place.



