
Solutions for Homework 4

Problem 1: 8 pts Design an algorithm for deletion in an AVL tree (lazy
deletion not allowed). You have to maintain the AVL property after deletion.

Deletion in AVL trees while maintaining the AVL property is somewhat
more complicated than insertion. The basic algorithm for rebalancing after
deletion works similarly to the rebalancing after insertion. Whereas inser-
tion requires at most a double rotation, deletion may require one (single or
double) rotation at each level of the tree, requiring O(log n) rotations.

There are 2 cases illustrating the rebalancing (and 2 symmetric ones).
Case 1: Consider a tree with k1 as the root. Its left child is k2 and its

right child is a subtree Z of height h (after removing a node in subtree Z
which caused a decrease in the height). Node k2 has a left subtree X with
height h+1 and right subtree Y with height h+1 or h. Node k1 is considered
the lowest node in the tree where the AVL property is violated. Node k1
has height h + 3. The rebalancing requires a right rotation, where k2 will
become the root and k1 its right child. The subtree at k2 will have height
h+ 2 or h + 3 depending on the height of Y . If the height of k2 is h+ 2, a
new rebalancing may be required higher in the tree since the height of the
root of this subtree has changed.

Case 2: Consider a tree with k1 as the root. Its left child is k2 and its
right child is a subtree Z of height h (after removing a node in subtree Z
which caused a decrease in the height). Node k2 has a left subtree X with
height h and right subtree with root k3 with height h + 1. Node k3 has as
left child a subtree Y 0 with height h � 1 or h and a right subtree Y with
height h � 1 or h. Node k1 is considered the lowest node in the tree where
the AVL property is violated. Node k1 has height h + 3. The rebalancing
requires a left-right double rotation, where k3 will become the root and k1
its left child. The subtree at k3 will have height h + 2. A new rebalancing
may be required higher in the tree since the height of the root of this subtree
has changed.

1



Problem 2: 8 + 10 pts Consider strings of 0s and 1s, (e.g., 0010, 101).
A string s1 is less than string s2 if the �rst elements in s1 is less than that
in s2, or if the �rst elements are equal in both, but the second element in s1
is less than that in s2; or if the �rst two elements are equal n both, but the
third element in s1 is less than that in s2 and so on. In general, s1 is less
than s2 if the �rst k elements are equal in both, but the k + 1th element
of s1 is less than that of s2 for any k = 1; 2; ::: For example, 0101011 is less
than 01011: Also, if s1 has length k and s2 has length l; k < l and the �rst
k elements of s1 and s2 are equal, then s1 < s2: For example, 0110 is less
than 01100: You have k strings. Total length of all strings is n: Give an
algorithm to sort the strings in O(n): For example, if you have s1; s2; : : : s4;
and s1 < s3 < s2 < s4; then your algorithm should output the strings in the
following sequence, s1; s3; s2; s4: Implement your algorithm in C. You may
assume distinct strings.

Solution: We need to consider a binary-like tree data structure that
will store the bitstrings ( strings of 0s and 1s). See the next �gure for more
clari�cation. This tree stores the bit strings 0; 1; 001; 101. When you search
for a key a = a0a1 : : : ap, you go left at a node of depth i if ai = 0 and right
if ai = 1. So, each node's key can be determined by traversing the path
from the root to that node.

0 1

0

1

0

1

0

001 101

1

The sorting algorithm is the following: First you have to build the tree
that will contain the k bitstrings. In order to store one bitstring you will
need to traverse the tree from the root. The length of the string gives directly
the depth of the speci�c bitstring in the tree. So, if the bitstring has length
4, you will need to store the value in a node of depth 4. You will have to
build the intermediate nodes, if they do not appear in the tree yet. The
building of the tree requires O(n), where n is the total length of all strings.

After the tree buiding, you can sort the bitstring following a preorder
tree traversal. Again this operation costs O(n) since there are at most n
nodes in the tree. We already know that if the tree consists of n nodes, then
the preorder traversal takes O(n).

We conclude that the sorting algorithm takes O(n).

2



Problem 3: 8 pts Every element in a linked list consists of 2 �elds, one
is a string, and another is a hash value of the string. There are n elements.
The size of each string is O(log n). The size of the hash value is a small
constant. Design an algorithm to �nd an element in the list using the hash
values. You may assume that at most a constant k (k > 1) number of
elements hash into the same value. Analyze the complexity if you are not
allowed to use the hash value in any way. What would your answer be for
both cases if the size of a string is O(n2)?

Solution: First case: using the hash values. The algorithm searches
into the list sequentially for �nding the appropriate hash value of the string.
If there exists that hash value in the list, we have to verify that the string
which corresponds to this hash value is the desired one. The reason to do
this, is that there may be collisions (i.e more than 2 strings hash to the
same value). Checking whether the string is the desired one takes O(log n)
since thhe size of the string is O(log n) characters. There can be at most
k collisions according to the problem de�nition. So, in the worst case the
algorithm spends O(k log n)=O(logn) since k is constant. Total complexity
is n+O(logn) in the worst case since the algorithm must search all elements
if the string is the last element in the list, or if it is not in the list. The
above complexity is O(n).

If you are not allowed to use hash values, then the algorithm searches
every element in the list and it compares the string �eld with the desired one.
The comparison requires O(logn) since the size of each string is O(log n)
characters. In the worst case this has to be done for every element in the
list. So, it requires O(n log n).

We conclude that using the hash values gives more e�cient algorithm.
If the size of the string is O(n2), then using similar logic as before we

have: if we use the hash values it takes n+O(n2), that is O(n2).
Using just the strings and not the hash values, it takes O(nn2), that is

accessing each one of the n elements with O(n2) for character comparisons.
Total is O(n3).

Problem 4: 6 pts Consider a hash function, h(k) = kmodm; where
m = 2p� 1: The inputs are the strings. We convert a string to an integer as
follows. Let the string be ak�1ak�2 : : : a0; then the corresponding integer isPk�1

i=0 2
ipASCII(ai): The claim is that any 2 strings which are permutation

of each other hash into the same position. Do you agree or disagree? Justify
your answer.

Solution: The claim is correct.

3



Proof: Consider a string ak�1ak�2 : : : a0. For simplicity, instead of ASCII(ai)
we will write Ai. The corresponding integer is

K =
k�1X

i=0

2ipASCII(ai)

) K = A0 +A12
p + : : :+Ak�12

(k�1)p

) h(K) = [A0 +A12
p + : : :+Ak�12

(k�1)p]modm

) h(K) = [A0modm+ (A12
p)modm+ : : :+ (Ak�12

(k�1)p)modm]modm

) h(K) = [A0modm+(A1modm 2pmodm)modm+: : :+(Ak�1modm 2(k�1)pmodm)modm]modm (1)

At this point we will prove by induction that for all k � 1, 2kpmodm = 1.
Base case: For k = 1 we have

2pmodm = 2pmod(2p � 1)

) 2pmodm = (2p � 1 + 1)mod(2p � 1)

) 2pmodm = 1

Let it hold for k.
We will prove it holds for k + 1:

2(k+1)pmodm = 2kp+pmodm

) 2(k+1)pmodm = (2kpmodm2pmodm)modm

) 2(k+1)pmodm = (1 1)modm

) 2(k+1)pmodm = 1modm

) 2(k+1)pmodm = 1

Using this fact,

(1)) h(K) = [A0modm+(A1modm 1)modm+: : :+(Ak�1modm 1)modm]modm

4



) h(K) = (A0modm+A1mod+ : : :+Ak�1modm)modm

) h(K) = (A0 +A1 + : : : +Ak�1)modm

From this we conclude that any 2 strings which are permutation of each
other hash into the same position.

5


