
Homework 7

Problem 1: How many bits do you need to store the size and height of the trees in the Union
Find data structure? Give your answer for di�erent implementations (e.g., arbitrary unions, unions
by size, union by height, path compression etc.).

The size for every implementation is upper bounded by N , the total number of elements in the
set. This corresponds to the tree which includes all the elements. This requires O(logN) bits for
storing the size.

In case of arbitrary union, N � 1 unions may cause a tree as a chain of N nodes. So, the height
of a tree is N in worst case. Thus, O(logN) bits are required for storing the height.

In case of union-by-size, the depth of any node is never more than logN (proved in lecture 9).
Thus, the height of the tree is upper bounded by logN . O(log logN) bits are required for storing
the height.

Using union-by-height, the height of any tree is also O(logN). O(log logN) bits are required for
storing the height.

Problem 2: 6 pts Let A be the adjacency matrix of a directed graph. Consider the matrix A2:
Is there any relation between the entry A2[i; j] to the number of paths between vertices i; j in the
original graphs? Justify your answer. Answer the same question about An[i; j].

Each entry A2[i; j] corresponds to the number of paths between i; j of length exactly 2. The
reason is the following:

Assume that the graph has n vertices. The matrix multiplication A2 will produce an array with
the following entries:

A2[i; j] = A[i; 1] �A[1; j] +A[i; 2] �A[2; j] + : : :+A[i; n] �A[n; j]

Each subterm A[i; k] � A[k; j] is 1 i� both A[i; k] = 1 and A[k; j] = 1. This means that there is
an edge from i to k and from k to j. So, we can derive that there is a path from i to j of length 2.
Thus, the total number of subterms which constitute a path of length 2 will be assigned to A2[i; j].

It is easy to prove by induction that An[i; j] corresponds to the number of paths between i; j of
length exactly n. We have already proved the base case for n = 2 (it also holds trivially for n = 1).
Assume that it holds for k � 1, and prove that it also holds for k, where Ak = Ak�1 �A.

Problem 3: 6 pts Consider the graph representation of a complete binary tree. How many edges
can a complete binary tree of n nodes have? How will you represent it (adjacency list or adjacency
matrix)? Give the storage complexity of your representation.

Solution:

Every tree of n nodes is a connected graph with jEj = n� 1 edges. The complete binary tree is
a special class of tree, thus it also has n � 1 edges. Since jEj = n � 1 = �(n), the complete binary
tree is a sparse graph. Thus, it should be represented as an adjacency list.

If G is an undirected graph, the sum of the lengths of all the adjacency lists is 2jEj, since if (u; v)
is an undirected edge, then u appears in v's adjacency list and vice versa.

Thus, the storage complexity for the complete binary tree is 2jEj = 2(n� 1) = �(n).

1



Problem 4: 6 pts Consider an adjacency list representation of a digraph. Give algorithms to
compute the in-degree and out-degree of a vertex using the adjacency list representation. Analyze
their complexities.

Solution:

Out-Degree(G,v)

Input: Digraph G=(V,E) and vertex v

Output: out(v)

{

out(v)=0;

for w in Adj[v] /* traverse the linked list Adj(v) */

out(v)++;

}

In-Degree(G,x)

Input: Digraph G=(V,E) and vertex x

Output: in(x)

{

in(x)=0;

for v in V

for w in Adj[v] /* traverse the linked list Adj(v) */

if (w==x)

in(v)++;

}

Since G is a directed graph, the sum of the lengths of all the adjacency lists is jEj. Thus, both
algorithms are computed in �(jEj).

Problem 5: 6 pts Let A be the adjacency matrix of a graph G: Let GT be a graph with adjacency
matrix AT : (AT is transpose of a matrix A: Transpose of a matrix A; AT is related to A as follows:
AT [i; j] = A[j; i]:) Do you see any relation between G and GT ? Answer the question for a digraph G:

Solution:

In case of an undirected graph G; (i; j) and (j; i) represent the same edge. Thus, the adjacency
matrix A of an undirected graph is its own transpose: A = AT . Consequently, G and GT represent
the same graph.

In case of a digraph G, GT is G with all its edges reversed.

2


