
Homework 4 (Posted 19th February, Due during or
before class 26th February)

Policy for Programming Assignment: Problem 2 has a programming
assignment. I would like to decouple the design from the programming part.
If you are not sure of the solution for Problem 2, you can wait till 28th
February, 11:59 pm to submit the program. The solution for the design part
will be posted 26th February. You have 3 more days for this program. You
can certainly submit your program on or before 28th, but if you want to wait
please email the T.A. indicating your intention. You must email before 26th
11:59 p.m. (email must have a subject WAIT). All other solutions including
the design part of problem 2 are due during or before class 26th February.
If your name is John Smith, then name your program as JohnSmith.c and
email it to yjkim78@gradient.cis.upenn.edu.

Problem 1: 8 pts Design an algorithm for deletion in an AVL tree (lazy
deletion not allowed). You have to maintain the AVL property after deletion.

Problem 2: 8 + 10 pts Consider strings of 0s and 1s, (e.g., 0010, 101).
A string s1 is less than string s2 if the �rst elements in s1 is less than that
in s2, or if the �rst elements are equal in both, but the second element in s1
is less than that in s2; or if the �rst two elements are equal n both, but the
third element in s1 is less than that in s2 and so on. In general, s1 is less
than s2 if the �rst k elements are equal in both, but the k + 1th element
of s1 is less than that of s2 for any k = 1; 2; ::: For example, 0101011 is less
than 01011: Also, if s1 has length k and s2 has length l; k < l and the �rst
k elements of s1 and s2 are equal, then s1 < s2: For example, 0110 is less
than 01100: You have k strings. Total length of all strings is n: Give an
algorithm to sort the strings in O(n): For example, if you have s1; s2; : : : s4;
and s1 < s3 < s2 < s4; then your algorithm should output the strings in the
following sequence, s1; s3; s2; s4: Implement your algorithm in C. You may
assume distinct strings.

1



Problem 3: 8 pts Every element in a linked list consists of 2 �elds, one
is a string, and another is a hash value of the string. There are n elements.
The size of each string is O(log n). The size of the hash value is a small
constant. Design an algorithm to �nd an element in the list using the hash
values. You may assume that at most a constant k (k > 1) number of
elements hash into the same value. Analyze the complexity if you are not
allowed to use the hash value in any way. What would your answer be for
both cases if the size of a string is O(n2)?

Problem 4: 6 pts Consider a hash function, h(k) = kmodm; where
m = 2p� 1: The inputs are the strings. We convert a string to an integer as
follows. Let the string be ak�1ak�2 : : : a0; then the corresponding integer is
Pk�1i=0 2ipASCII(ai): The claim is that any 2 strings which are permutation
of each other hash into the same position. Do you agree or disagree? Justify
your answer.

2


