
Forming Connected Topologies in Bluetooth Ad-hoc Networks - An
Algorithmic Perspective

R. Guérin, J. Rank, S. Sarkar and E. Vergetis

{guerin@ee, jrank@seas, swati@ee, vergetis@seas}.upenn.edu

Department of Electrical and Systems Engineering, University of Pennsylvania,
200 South 33rd Street, Philadelphia, PA 19104-6390, USA

This paper represents a first step in exploring the formation of connected topologies
in ad-hoc networks built on the Bluetooth technology. Connectivity is the most basic
requirement for any system aimed at allowing devices to communicate with each other and
in this paper we illustrate that this seemingly innocuous goal gives rise to many significant
challenges in the context of the Bluetooth technology. We start with a brief overview of
Bluetooth and its operation and then identify some of the major problems the technology
faces when used to build ad-hoc networks. The paper’s contributions are in introducing
basic algorithmic problems associated with building connected Bluetooth networks and in
developing several possible solutions capable of generating “good” connected topologies.

1. INTRODUCTION

Bluetooth is a recently proposed standard for short range, low power wireless communi-
cation [15] that was initially envisioned as a wire replacement technology. However, Blue-
tooth holds the promise of becoming a key enabling technology in allowing the widespread
deployment of ad-hoc networks. This is in part because its low power consumption, rel-
atively high bandwidth, and potential low cost make it attractive for the typical mobile
devices used in ad-hoc networks.

That being said, there are many significant technical hurdles to cross before Bluetooth
can fulfill its potential of becoming more than a wire replacement solution. The most
basic challenge that the technology faces, and the one that is the focus of this paper, is
how to organize nodes into an operational network while satisfying the many constraints
introduced by Bluetooth. There are obviously multiple possible interpretations of what
operational means; in this paper we concern ourselves primarily with connectivity.

The paper’s contributions are primarily in investigating the problem from an algorith-
mic perspective. This is a prerequisite to developing a realistic, Bluetooth specific solution.
In other words, before forging ahead with the development and implementation of a spe-
cific solution, it is critical to first obtain a thorough understanding of the problem space
and of the range of possible solutions. We show that the seemingly innocuous problem of

This work was supported in part by NSF grants ANI-9902943, ANI-9906855, ITR-0085930 and ANI-
0106984.



deciding whether there exists at least one connected topology that is consistent with the
degree constraint of Bluetooth is actually NP-hard in the most general case. However,
when node locations are restricted to a two-dimensional plane, we find, under certain sim-
plifying assumptions, that end-to-end connectivity, when feasible, can be achieved with a
polynomial complexity algorithm. For general three-dimensional networks we are able to
identify algorithms that, when feasible, generate connected topologies most of the time.
One of those algorithms actually affords greater control over the topology than mere con-
nectivity. Specifically, it allows independent control of the degree of masters and slaves,
respectively. This is important, as bridge connectivity, while not a hard constraint in
Bluetooth, can have a major impact on overall network throughput. Another algorithm
that we investigate (suggested by Murali Kodialam) is distributed in nature and able to
adapt to a dynamically changing topology. These are important properties in practice,
even if the resulting topology is not “optimal,” or even if the algorithm occasionally fails
to construct a connected topology when one exists.

The rest of the paper is organized as follows. We review briefly the salient features of
the Bluetooth technology in Section 2. Section 3 is a brief summary of recent research
on the topic. Section 4 is devoted to our problem formulation and to showing that the
problem of attaining end-to-end connectivity is NP-hard in the general case. Section 5
presents a polynomial complexity topology formation algorithm that, under some simpli-
fying assumptions, results in a connected topology whenever one such exists. In Section 6
we remove those assumptions and present several heuristics that produce good results in
this more general setting. Finally, Section 7 investigates the issue of distributed operation
and presents a fully distributed and dynamic algorithm.

2. CHALLENGES AND OBJECTIVES IN BLUETOOTH TOPOLOGY FOR-
MATION

We first describe the basic features of the Bluetooth technology that are relevant
to topology formation. Bluetooth nodes are organized in small groups called piconets.
Within every piconet there is a leading node called “master,” and all other nodes are
referred to as “slaves.” A node may belong to multiple piconets, and we refer to such a
node as a “bridge.” A piconet can have at most 8 active members. Slaves do not directly
communicate with each other but instead rely on the master as a transit node. Commu-
nication between nodes in different piconets relies on bridge nodes. A bridge node cannot
be simultaneously active in multiple piconets. Bluetooth allows different activity states
for nodes: active, sniffing, idle and parked. Data exchange takes place between two nodes
only when both are active. Nodes periodically change their activity state.

Except for limiting the number of slaves in a piconet to 7, no other constraints exist
regarding the assignment of roles to nodes. This flexibility, however, raises a number of
questions. We briefly list below those that are most relevant to topology formation.

1. How should nodes select their role (master or slave)?

2. Which piconet(s) should a (slave) node join?

3. How many slaves should a master accept (below the specified maximum of seven)?



4. How many piconets should a bridge node belong to?

5. Should masters be allowed to be bridge nodes (slaves in other piconets)?

Specifically, consider questions 4 and 5. Because a bridge node can only be active
in one piconet at a time, the greater the number of piconets to which a node belongs,
the poorer the connectivity it can provide between them. This problem is compounded
when the bridge node is a master in one piconet. This is because periods during which
a master acts as a slave in another piconet correspond to a complete communication
blackout for all the slaves of its own piconet. Thus, it is undesirable for a master to
be a slave in other piconets, provided that such a slave/master role limitation does not
introduce significant constraints when forming and modifying topologies. Note that this
requirement was also considered in [19]. For the same reasons, we also assume that it is
desirable for a bridge node to be involved in as small a number of piconets as possible,
while preserving connectivity. This criterion is incorporated in some of the algorithms
presented in the paper.

3. RELATED RESEARCH

In this section we mention very briefly a number of previous works that have also been
motivated by the need to extend the standard Bluetooth specifications, if the technology
is to be used for building ad-hoc networks. Those works span three major areas associ-
ated with ad-hoc networks: routing, resource management or scheduling, and topology
formation. The latter being clearly the area of most relevance to this paper.

In [3] Bhagwat et al. present a source routing mechanism for Bluetooth scatternets,
i.e., networks formed from the interconnection of piconets. Johansson et al. [12] present
a distributed scheduling policy for Bluetooth networks. The topology formation prob-
lem was first investigated in [19] by Salonidis et al. who presented a distributed topology
construction scheme in Bluetooth networks. A basic assumption in the paper is that all
nodes are within transmission range of each other, which does not often hold in many
scenarios. The paper makes the very interesting observation that the average delay in-
volved in synchronizing two nodes (the time spent in the inquiry and the page sequences
before the nodes are able to exchange their clock information) is infinite if the nodes
rely on a deterministic pattern of alternating between paging and paged modes. In [2],
Zaruba et al. present “Bluetrees,” a scatternet formation algorithm for cases in which
the full reachability assumption does not hold. However, the Bluetree algorithm reduces
the degree of the nodes by a series of rearrangements. There is no guarantee that these
rearrangements actually terminate and, thus, the resulting topology may not satisfy the
degree constraints. In [1] and [17], Basagni and Petrioli present two more algorithms,
“Bluestars” and “BlueMesh”. In [21], Tan et al. present “Tree Scatternet Formation,” an
online algorithm to build scatternets. However, it is unclear how the degree constraints
and connectivity are satisfied, since only the root nodes of each fragment are allowed
to merge different fragments. An interesting part of the paper is the model it proposes
to evaluate the efficiency of a scatternet by approximating the average communication
latency. In [13], Law and Siu also present a scatternet formation algorithm. The problem
of topology formation was also the topic of [8], where we investigated the performance



of a few simplistic topology formation algorithms from the standpoint of connectivity
and convergence time. Finally, in [14], Marsan et al. address the problem of determining
an optimal Bluetooth topology, based on an integer linear programming formulation de-
rived from the Bluetooth-specific constraints. However, the complexity of the proposed
algorithm is fairly high. Furthermore, their approach leads to a centralized optimization
algorithm which raises the question of practical distributed implementation.

4. NETWORK MODEL AND PROBLEM COMPLEXITY

As a first step towards a systematic investigation of the connectivity issue, we formulate
a mathematical model for the system objectives and constraints. Observe that there
can be two types of communication links between any two nodes. One is a physical
link, existing between any pair of nodes that are in communication range of each other.
The other is a logical Bluetooth link, existing if the Bluetooth topology establishes a
communication link between the two nodes. The physical topology graph is given (based
on the positions and the transmission radii of the Bluetooth devices), while the logical
topology graph is the output of the topology formation algorithm.

The logical topology graph must have certain properties. According to the Bluetooth
specification, vertices assigned the role of a master can have a maximum degree2 of 7.
For vertices that will serve as slaves, it is desirable that their degree be kept as small as
possible. Because a bridge node with a degree of 7 would represent a major bottleneck
in the system, we assume that the degree constraint of 7 applies to the bridge (slave)
nodes as well. Also, although not necessarily required, it is desirable that the graph be
bipartite3 with one set of vertices corresponding to masters and the other to slaves. Note
that this ensures that no master assumes the role of bridge connecting two piconets.

Connectivity is then deemed feasible if there exists a connected4 subgraph of the physical
topology graph which satisfies the degree constraint (maximum degree of 7). The objective
is to first detect whether connectivity is feasible. If so, then the aim is to construct a
connected logical topology graph which satisfies the desired constraints. If connectivity is
not feasible, then any logical topology graph will consist of “islands” or components5. In
this case the objective is to minimize the number of components in the logical topology
graph.

Note that a connected logical subgraph exists if and only if the physical topology graph
has a spanning tree6 that satisfies the degree constraints of a logical topology graph. This
is because a spanning tree of any graph is connected. Also note that it is bipartite [10].
Let the degree of a spanning tree be the maximum degree of its vertices. The challenge
is then to construct a spanning tree with degree less than or equal to 7, if one exists;
deciding this is an NP-hard problem [7]. It follows that deciding whether connectivity
is feasible and constructing a connected logical topology graph which satisfies the desired

2The degree of a vertex is the number of edges originating from the vertex.
3A bipartite graph is one where the vertex set can be partitioned in two sets such that there is no edge
connecting the vertices in the same set.
4A graph is connected if there is a path between any two nodes.
5A component of a graph is a connected sub-graph which can not be expanded any further while retaining
connectivity, i.e., addition of a node in a component removes the connectivity.
6A spanning tree is a connected subgraph which does not have a cycle and spans all vertices in the graph.



constraints is an NP-hard problem for a general physical topology.

5. TOPOLOGY FORMATION ALGORITHMS FOR NODES WITH IDEN-
TICAL POWER LEVELS IN A 2−DIMENSIONAL PLANE

In this section we approach the connectivity problem under two simplifying assump-
tions: All nodes lie on a two-dimensional plane and all nodes have the same transmission
range. Under these assumptions, the time complexity of the connectivity problem be-
comes polynomial. The following lemma provides the cornerstone for designing a polyno-
mial complexity, distributed, and dynamic algorithm which generates a connected logical
topology whenever connectivity is feasible.

Lemma 1 Connectivity is feasible if and only if the physical topology graph is connected.
A minimum weighted spanning tree (MST) in the physical topology graph, with the weight
of an edge equaling the Euclidean distance between the nodes, is a connected logical topology
graph which satisfies all the desired constraints.

We first present the following result obtained by Monma et al. [16] which we will use in
proving this lemma.

Proposition 1 Consider a complete7 graph with nodes corresponding to points in a two-
dimensional plane and the weight of the edges being the Euclidean distance between the
corresponding vertices. Any minimum weighted spanning tree in such a graph has degree
less than or equal to 6.

Proof of Lemma 1: See [9].
Next, we consider the case when connectivity is not feasible, i.e., when the physical

topology graph is disconnected. The objective in this case is to construct a logical topology
graph with the minimum number of components. The following lemma gives the basis for
the procedure we will follow.

Lemma 2 The subgraph of the physical topology graph, consisting of the minimum weight
spanning trees in each component, is a logical topology graph with the minimum number
of components.

Proof of Lemma 2: See [9].
It follows from Lemmas 1 and 2 that constructing a minimum weighted spanning tree

in the physical topology graph will provide a logical topology graph which (a) is connected
if connectivity is feasible and (b) consists of the minimum number of components if con-
nectivity is not feasible. It is interesting to observe that a centralized minimum weight
spanning tree algorithm has a complexity of only O(ElogV ) if the physical topology
graph has E links and V nodes, whereas the construction of the logical topology graph is
NP-hard in the general case, (i.e. without the assumptions made in this section).

If all nodes have low degrees, then the end-to-end path between certain nodes may be
long and this may not be desirable for delay considerations. Thus, one may wish to have

7A graph is complete if it has edges between any pair of vertices.



somewhat larger piconets (desired piconet size can be a design parameter). This calls
for algorithms which can tune the degree of masters to a desired value and the degree of
bridges to a different, possibly lower value. In the next two sections we propose algorithms
which can accommodate such a discriminatory treatment and, more importantly, are
capable of generating connected topologies in cases in which the assumptions of this
section do not hold, i.e., higher dimensionality and relaxed power level assumptions.

6. TOPOLOGY FORMATION ALGORITHMS FOR NETWORKS WITH
NODES IN 3−DIMENSIONAL SPACE

We focus on designing a topology where a node’s degree does not exceed 7. Robins et
al. [18] showed that the degree of a minimum weighted spanning tree can be as large as 13.
Thus, unlike the 2−dimensional case, a MST-based algorithm is not guaranteed to satisfy
the degree constraint of the masters. The problem needs, therefore, to be investigated in
the framework of a minimum degree spanning tree, but, as discussed in Section 4, this
is an instance of an NP-complete problem. We investigate heuristics and approximation
algorithms for this purpose.

The MST algorithm does not give any analytical guarantee on the degrees of the nodes
in the 3−dimensional case. In addition, it does not have the potential for separately
controlling the degrees of the masters and the bridges (not even in the 2−dimensional
case). We present next a topology design procedure based on an approximation algorithm
guaranteed to generate a spanning tree with degree at most one more than the minimum
possible value in any arbitrary graph [11]. More formally, let the degree of the spanning
tree generated by this algorithm be d. Then any other spanning tree will have a maximum
degree of d − 1 or more. In the Bluetooth context this means that if d ≥ 9, then any
connected logical topology will have at least one node with degree greater than 7 and,
therefore, connectivity will not be feasible. If d ≤ 7, then connectivity is feasible and
the spanning tree generated by this algorithm is a valid logical topology. If d = 8, then
connectivity may or may not be feasible and any connected logical topology will have
at least one piconet with 7 slaves. Thus, the “gray area” where this algorithm may fail
and yet connectivity be feasible, is only for d = 8. We denote this algorithm as the
“MDST” algorithm. The basic approach is to start with any spanning tree and replace
edges from vertices of high degree with those from vertices of low degree. See[11] for a
detailed description of the algorithm. MDST runs in polynomial time [11], O (V ElogV )8,
it “almost” always identifies whether connectivity is feasible, and if it is, MDST generates
a connected logical topology.

Next, we discuss how to extend MDST to separately control the degrees of the masters
and bridges. This algorithm reduces the maximum degree of nodes as much as possible,
while our objective is now somewhat different. The goal is to first satisfy a degree con-
straint of, say, p for all vertices (where p is the desired maximum number of slaves in a
piconet), and subsequently preferentially reduce the maximum degree of the bridges down
to a desired value (k). Reducing the degree of all nodes uniformly need not attain this,
since in most cases it results in both masters and bridges having degrees close to 2.

8More precisely, the run time is O (V Eα(V, E)logV ) , where α is the inverse of Ackermann’s function,
and grows slowly. For all practical purposes, α(V,E) can be treated as a constant.



N 25 50 100
Ma Mm Ba Bm Ma Mm Ba Bm Ma Mm Ba Bm

MST 2.2 3 2.3 3 2.3 3 2.1 3 2.4 4 2.3 3
MDST 1.9 2 2 2 2 2 2.1 3 2 2 2.1 3

E-MDST 5.9 7 2.7 3 6.1 7 2.4 3 6.1 7 2.7 3

Table 1
Evaluation of the algorithms in a 3-D clustered topology. N stands for the number of
nodes, Ma for the average degree of the masters, Mm for the max. degree of the masters,
Ba for the average degree of the bridges and Bm for the max. degree of the bridges.

Our modification of MDST proceeds as follows. We start MDST with a spanning tree
generated by BFS, which generates spanning trees of large degrees. MDST is then allowed
to terminate when the maximum degree is reduced to p (the desired piconet size). We
denote this first minor modification of MDST as “M-MDST.” It ensures that we do not
end-up with “long” trees, but still does not allow for the separate tuning of the degree
of master and bridge nodes. This is done through a second extension, which we call E-
MDST. The algorithm starts with the spanning tree generated by M-MDST and proceeds
to reduce the degrees of the bridges without increasing that of the masters beyond the
degree constraint of p. The basic difference between MDST and E-MDST is that in E-
MDST the edge replacement is used to decrease the degrees of bridges only, once the
overall degree constraint of p is satisfied by the M-MDST algorithm.

In order to evaluate the performance of the different algorithms we test their ability to
generate connected topologies in two environments. The first consists of nodes uniformly
distributed in a square of size 1 unit; the second consists of a “clustered topology” made
of three square clusters of size 0.4. Next, a z-coordinate, uniformly distributed between 0
and 0.3 units, is assigned to each node. For each of these two types of node distributions,
we evaluate the performance of the algorithms for different numbers of nodes (25, 50, 100)
and two different transmission radii (0.4 and 0.6 units), averaging the results over 100
runs. As our experiments have shown (Table 1), in all scenarios, node degrees remain
well below the limit of 7. The average master’s degree (Ma) indicates that E-MDST
achieves its objective of generating a “bushier” topology, while at the same time attaining
a small average bridge degree (around 2.7). These numbers seem to be the same in the
2-dimensional scenario, suggesting that dimensionality has no impact on these algorithms.
See [9] for more detailed results on both the 2- and the 3-dimensional cases.

7. TOWARDS DISTRIBUTED AND DYNAMIC ALGORITHMS

In this section, we first illustrate how an MST based algorithm can be extended to
operate in a distributed and dynamic setting. Because such an extension is not without
complexity, we then introduce an algorithm that is distributed in nature, although it does
not enjoy the same analytical performance guarantees as an MST algorithm.



7.1. Distributing an MST based algorithm
A minimum weighted spanning tree can be constructed by distributed computation at

the nodes, e.g., Prim’s algorithm [5] for constructing minimum weight spanning trees can
be distributized [6]. A node only needs to know an ordering of the weights of its incident
edges. In the Bluetooth setting, a node acquires this knowledge while synchronizing
with its neighbors. During this time, a node can measure the signal strength of the
synchronization messages sent by its neighbors. If all nodes transmit these messages at
the same power level, the signal will be stronger for a neighbor which is closer.

The same observation holds for addressing a dynamic scenario. For example, new nodes
may join and existing nodes may leave the system. Nodes may be continuously on the
move, and thus the neighbor set and the Euclidean distances between neighbors change.
Thus the spanning tree needs to be updated in response to these topology alterations.
There are efficient algorithms for dynamic update of spanning trees [4,20]).

However, the complexity of a distributed and dynamic version of the MST algorithm
can be fairly high9 (see [4,6] for details). This motivates the consideration of simpler
distributed algorithms that rely on heuristics. In the next sub-section, we investigate a
solution that is not guaranteed to generate a MST, and therefore enjoy any analytical
guarantees, but may offer a favorable trade-off between performance and complexity.

7.2. A fully distributed and dynamic algorithm
The algorithm we investigate is based on the following local information based heuristic

for selection of edges. Start with an empty logical topology. Consider two nodes A and
B and the edge AB joining them. Draw a circle with A as its center and radius AB,
and draw another circle with B as its center and radius BA. If there is no other node
in the intersection of the two circles, then add the edge AB. If some node C lies in the
intersection of the circles, then edge AB is not added

Note that a node C is in the intersection of the two circles if and only if its Euclidean
distances to both A and B are smaller than AB. This can be determined from power
measurements and information exchange during node synchronization. If such a node
C is discovered after the edge AB has been added to the graph, then this edge can be
dropped. Observe that this doesn’t affect any other edge additions or deletions in the
rest of the graph. Therefore, the decision of whether to add an edge or not is based solely
on local information. Hence, there is no need to broadcast any information throughout
the graph and there is no need to maintain edge or node states. This clearly reduces the
number of exchanged messages as well as the complexity of this algorithm when compared
to the distributed MST algorithm. This algorithm tries to approximate the MST, and in
that context it is worth noting that the resulting graph will be a superset of the MST.

Lemma 3 The aforementioned heuristic generates a topology that is a superset of the
Minimum Weight Spanning Tree (i.e., the topology generated by the MST algorithm).

Proof of Lemma 3: See [9].
Since this heuristic may result in including more edges than in the MST, the resulting

graph need not have a degree of 7 or less. But as we will see later, it typically contains

9The time complexity of a distributed MST algorithm is O(V logV ) and the communication cost is
O(V logV + E) messages [6].



N E D1 D2 D3 D4 D5 Ma Ba M/S DM/S

100 117.3 9.1 50.2 37.8 2.9 0.002 2.4 2.5 16.9 2.6
500 616.4 24.8 236.5 219.7 18.9 0.02 2.5 2.6 93.7 2.7
1000 1246.9 41.2 464.1 454.4 40.2 0.05 2.5 2.6 192.2 2.7

Table 2
Evaluation of the distributed and dynamic algorithm in a 3-D clustered topology. N
stands for the number of nodes and E for the number of edges in the resulting topology.
Di for the average number of nodes with degree equal to i, Ma for the average degree of
the masters, Ba for the average degree of the bridges, M/S for the number of nodes with
a dual role and DM/S for their average degree.

only a few more edges than the MST and the resulting maximum node degree will most
often not exceed 5. A more important issue is that because the resulting graph need not
be bipartite, the algorithm might also lead to nodes having to assume the roles of both a
master and of a slave. As discussed earlier, this is a situation that should be avoided if
possible, even if nothing in the Bluetooth standard precludes it.

Again, we evaluated the algorithm in the same topologies we generated for MST, MDST
and E-MDST (see Section 6). As our experiments have shown (see Table 2), in all scenar-
ios, the degrees of the nodes are much below the limit of 7. The percentage of nodes that
have to play a dual role (i.e. as both a master and a slave) is approximately between 17
and 19 percent of the total number of nodes, but their average degree is still low (around
2.7). Again, see [9] for more detailed results.

8. CONCLUSION

To summarize, this paper has presented a number of algorithmic results aimed at the
problem of topology formation in Bluetooth ad-hoc networks. We have shown that the
MST algorithm is the only one that is guaranteed to always satisfy Bluetooth degree
constraints in a 2-D scenario. However, from a delay/throughput point of view it need
not always be the case that minimal degrees for both masters and slaves is desirable.
This motivated the introduction of the E-MDST algorithm, which allows for independent
tuning of the degrees of masters and bridges, and therefore affords greater control on the
resulting topology. Given the potentially high complexity of implementing distributed
versions of those algorithms, we finally investigated a heuristic-based distributed algorithm
that appears to satisfy the constraints of the Bluetooth technology.

The results of the work presented in this paper have provided the foundation for an
actual design and implementation effort that we are currently pursuing. This effort is
aimed at better assessing the implementation complexity of solutions based on a dis-
tributed MST algorithm and on the distributed algorithm of Section 7.2. It is being
carried out by leveraging a detailed emulation of the Bluetooth stack, which allows us to
precisely quantify the operation overhead of each algorithm in an operational Bluetooth
environment. In addition we plan on exploring further the performance trade-off offered
by the different algorithms studied in this paper.



REFERENCES

1. S. Basagni and C. Petrioli. A scatternet formation protocol for ad-hoc networks of
Bluetooth devices. In IEEE Vehicular Technology Conference, 2002.

2. S. Basagni, G. Zaruba, and I. Chlamtac. Bluetrees-scatternet formation to enable
Bluetooth-based ad hoc networks. ICC, 2001.

3. P. Bhagwat and R. Seigal. A routing vector method (RVM) for routing in Bluetooth
scatternets. In MoMuC’99, San Diego, CA, November 1999.

4. C. Cheng, I.A. Cimet, and S.P.R. Kumar. A protocol to maintain a minimum spanning
tree in a dynamic topology. In Proceedings of the ACM Symposium on Communica-
tions Architectures and Protocols, Stanford, CA, 1988.

5. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

6. R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Trans. on Programming Languages and Systems, 5, 1983.

7. M. R. Gary and D. S. Johnson. Computers and Intractability. Freeman, 1979.
8. R. Guérin, E. Kim, and S. Sarkar. Bluetooth technology: Key challenges and initial

research. Conference on Network and Distributed Simulations, 2002.
9. R. Guérin, S. Sarkar, and E. Vergetis. Forming connected topologies in Blue-

tooth adhoc networks. University of Pennsylvania, Technical Report, Available at
http://m306pc7.seas.upenn.edu/mnlab/publications.html, 2002.

10. F. Harary. Graph Theory. Addison-Wesley, 1969.
11. D. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS, 1995.
12. N. Johansson, U. Korner, and L. Tassiulas. A distributed scheduling algorithm for a

Bluetooth scatternet. In Proceedings of ITC’2001, Salvador, Brazil, December 2001.
13. C. Law, A. K. Mehta, and K.-Y. Siu. Performance of a new Bluetooth scatternet

formation protocol. In Proceedings of MobiHoc’01, Long Beach, CA, October 2001.
14. M.A. Marsan, C.F. Chiasserini, A. Nucci, G. Carello, and L. De Giovanni. Opti-

mizing the topology of Bluetooth wireless personal area networks. In Proceedings of
INFOCOM’2002, New York, NY, July 2002.

15. B. Miller and C. Bisdikian. Bluetooth Revealed: The Insider’s Guide to an Open
Specification for Global Wireless Communications. Prentice-Hall, 2000.

16. C. Monma and S. Suri. Transitions in geometric minimum spanning trees. Discrete
and Computational Geometry, 8(3), 1992.

17. C. Petrioli and S. Basagni. Degree-constrained multihop scatternet formation for
Bluetooth networks. In IEEE Globecom’02, Taipei, Taiwan, November 2002.

18. G. Robins and J. Salowe. On the maximum degree of minimum spanning trees.
Proceedings of ACM Symposium on Computational Geometry, 1994.

19. T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed topology con-
struction of Bluetooth personal area networks. In Proceedings of INFOCOM’01, 2001.

20. K. Siu, P. Narvaez, and H. Tzeng. New dynamic algorithms for shortest path tree
computation. IEEE/ACM Transactions on Networking, 8(6), 2000.

21. G. Tan, A. Miu, J. Guttag, and H. Balakrishnan. Forming scatternets from Bluetooth
personal area networks. MIT Technical Report, MIT-LCS-TR-826, October 2001.


