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Abstract

We address the problem of attaining proportionally fair rates using Aloha protocols at the medium

access layer. We consider a wireless network where all nodes need not be in transmission ranges of

each other. We show how the attempt probabilities in Aloha protocols should be set so that the achieved

rates are globally proportionally fair. For both slotted and unslotted Aloha, we argue that each node can

compute its optimal attempt probability just by knowing some minimal information about the network

topology in its two-hop radius.

I. I NTRODUCTION

Medium access control algorithms are used in wireless networks to control access to a shared

wireless medium, and thereby reduce collisions, ensure high system throughput, and distribute

the available bandwidth fairly among the competing streams of traffic. We address the issue

of designing medium access protocols for attaining proportionally fair rates [2] in wireless net-

works. The problem of designing distributed access control for attaining fair rates in wireless

networks has not been adequately addressed. Tassiulaset al. [7] have proposed a centralized al-

gorithm for attaining max-min fairness in certain classes of networks. But centralized strategies

can not be used in large, dynamic ad-hoc networks. In another line of work, Nandagopalet al.

[5] and Ozuguret al. [6] have proposed decentralized heuristic medium access strategies that

try to achieve some fairness objectives, but the authors did not prove the fairness properties of

these approaches.

The problem of fair rate control at the transport layer of wired networks has however been

extensively researched, e.g., [3], [4]. In this context, researchers have shown that globally fair

rates can be attained via distributed approaches based on convex programming. However, these

techniques can not be directly applied to wireless networks. This is because the rates attained
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by most wireless medium access control (MAC) protocols can only be indirectly controlled by

regulating the transmission probabilities or back-off window sizes. It is difficult to attain the

globally fair rates in wireless networks through a distributed approach as the feasible rate region

is a complex, non-convex and non-separable function of the attempt probabilities or back-off

window sizes. In contrast, distributed rate control algorithms have been developed for wired

networks, using the feature that the feasible rate region can be represented by a set of simple,

separable, convex constraints.

Since a wireless channel is shared by several users, distributed MAC protocols typically result

in some loss of bandwidth due to collisions. This bandwidth loss depends on the access protocol.

Thus, the feasible rate region depends on the protocol, and the feasible rate region for any

distributed protocol is a subset of that for the optimal centralized algorithm. Therefore, the fair

access control problem must be considered in the context of specific protocols. We study the fair

access control problem for Aloha protocols [1]. For both slotted and unslotted Aloha, we show

that globally proportionally fair rates can be attained if each node selects its attempt probability

appropriately. A node can compute its optimal attempt probability by knowing some minimal

information about the network topology in its two-hop neighborhood.

We consider proportional fairness as this notion has certain nice fairness properties [2]. More-

over, in Aloha networks, the optimization problem for attaining proportional fairness is convex

and separable, which allows us to develop computationally simple algorithms for attaining the

optimal rates. The extension of our results to other fairness metrics remains an open question.

The fair access control problem for more complex protocols like Carrier Sense Multiple Access

(CSMA) also remains an open question. We believe that our results for attaining proportionally

fair rates using Aloha would provide insights for designing the optimal access control strategies
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for other protocols and other fairness metrics.

We consider fair allocation of bandwidth at the MAC layer. Since the MAC layer is asso-

ciated with packet delivery over a single link (or hop), we consider the fairness issues only at

a link level. The network and transport layers are associated with end-to-end packet delivery,

and therefore, end-to-end fairness questions would involve these higher layers as well. Fair al-

location of end-to-end bandwidth will require cross-layer optimizations involving the network

and MAC layers, or the transport, network and MAC layers. To achieve this, several different

research problems must be solved: (a) optimizing the attempt rates at each hop for multihop ses-

sions, (b) appropriately deciding the routes, and (c) optimizing the parameters of the transport

layer protocols. These are beyond the scope of this paper. However, the analytical framework

we develop for MAC layer fairness provides the first step in that direction.

The paper is organized as follows. In Section II, we describe our system model. In Sections III

and IV, we show how to attain proportionally fair rates for slotted and unslotted aloha protocols

respectively. We present all proofs in the appendix.

II. SYSTEM MODEL

We consider a general wireless network, where all nodes need not be in transmission ranges of

each other. For simplicity, we assume symmetric transmission, i.e., a nodei can receive signal

from a nodej if and only if nodej can receive signal from nodei. However, our analysis can

be generalized to the case when this assumption does not hold. Now, a wireless network can

be modeled as an undirected graphG = (N, L), whereN andL respectively denote the set of

nodes and the set of undirected links, and a link exists between two nodes if and only if they

can receive each other’s signals. A directed edge(i, j) represents an active communication pair,
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andE is the set of directed edges. Note that there are2|L| possible communication pairs, but

only a few pairs may be actively communicating. Every edge(i, j) ∈ E is always backlogged,

i.e., nodei always has packets to send to nodej. Each nodei is involved in at least one active

communication, i.e., there exists somej such that either(i, j) or (j, i) is in E. Without loss of

generality, capacity of each channel is1 unit.

For any nodei, the set ofi’s neighbors, Ki = {j : (i, j) ∈ L}, represents the set of nodes that

can receivei’s signals. For any nodei, the set ofout-neighborsof i, Oi = {j : (i, j) ∈ E} ⊆ Ki,

represents the set of neighbors to whichi is sending traffic. Also, for any nodei, the set ofin-

neighborsof i, Ii = {j : (j, i) ∈ E} ⊆ Ki, represents the set of neighbors from whichi is

receiving traffic. A transmission from nodei reaches all ofi’s neighbors. Each node has a single

transceiver. Thus, a node can not transmit and receive simultaneously. We do not assume any

capture, i.e., nodej can not receive any packet successfully if more than one of its neighbors are

transmitting simultaneously. Therefore, a transmission on edge(i, j) ∈ E is successful if and

only if no node inKj ∪ {j} \ {i} transmits during the transmission on(i, j).

III. FAIR MEDIUM ACCESSCONTROL IN SLOTTED ALOHA

We first formulate the fair rate allocation problem for slotted Aloha as an optimization prob-

lem, and then provide a policy that achieves globally fair rates using only local information.

A. Problem Formulation

In slotted Aloha, time is divided into fixed-length slots, the length of a slot being equal to the

transmission time of a packet. We first derive the throughput expressions in slotted Aloha. In

each slot, each nodei transmits a packet with probabilityPi. If i does not have an outgoing edge,

i.e.,Oi = φ, thenPi = 0. Oncei decides to transmit in a slot, it selects a destinationj ∈ Oi with
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probabilityp(i,j)/Pi, where
∑

j∈Oi
p(i,j) = Pi. Therefore, in each slot, a packet is transmitted on

edge(i, j) with probabilityp(i,j). Letp = (pe, e ∈ E) be the vector of transmission probabilities

on all edges. Then, the throughput or the successful data rate on edgee = (i, j), xe, is (see [1]

(Section 4.6.2))

x(i,j)(p) = p(i,j) (1− Pj)
∏

k∈Kj\{i}
(1− Pk) . (1)

In the above expression, ifOk = φ for anyk ∈ N , then the termPk should be interpreted as

zero. In (1), the term(1− Pj)
∏

k∈Kj\{i}(1− Pk) is the probability that a packet transmitted on

edge(i, j) is successfully received atj. The attempt probability vector,p∗ = (p∗e, e ∈ E), that

attains proportionally fair rates is given by

p∗ = arg max
0≤pe≤1,e∈E

∑

e∈E

log(xe(p)) , (2)

where thexe(p) are given by (1). As in the rest of the paper, thelog function in the above

expression is a natural logarithm.

B. Optimal Attempt Probabilities

Theorem 1:The optimal attempt probability on any edge(i, j) ∈ E, p∗(i,j), as defined by (2),

is given by
p∗(i,j) =

1

|Ii|+ ∑
k∈Ki

|Ik| . (3)

Clearly,p∗(i,j) ≥ 0, ∀(i, j) ∈ E. Note thatOi ⊆ Ki. Thus,
∑

k∈Ki
|Ik| ≥ ∑

k∈Oi
|Ik| ≥ |Oi|.

Since(i, j) ∈ E, Oi 6= φ. Thus, |Oi| ≥ 1. Therefore,
∑

k∈Ki
|Ik| ≥ 1, implying p∗(i,j) ≤ 1,

∀(i, j) ∈ E. Also, the optimum transmission probability for each nodei, P ∗
i =

∑
j:(i,j)∈E p∗(i,j) =

|Oi|
|Ii|+

∑
k∈Ki

|Ik| . Clearly,P ∗
i ≥ 0 for each nodei. Since

∑
k∈Ki

|Ik| ≥ |Oi|, P ∗
i ≤ 1. Thus,P ∗

i and

p∗(i,j) are valid probability measures.
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A node can decide its optimal attempt probability only if it knows the number of its in-

neighbors and the number of its neighbors’ in-neighbors. A node can determine the latter as

follows. When the network is formed, or when the network topology changes due to the joining,

leaving or movement of nodes, each node broadcasts the number of its in-neighbors to all nodes

in its transmission range. This incurs a small additional information exchange.

Now consider the special case in which all nodes are in each other’s transmission range, and

therefore, at most one node can send data successfully at any time. Letn nodes send packets

to a single destination node. From Theorem 1, the optimal attempt probabilities in each of the

n edges is1
n
, and from (1), the system throughput for proportionally fair rates is(1 − 1

n
)(n−1).

As n approaches∞, the system throughput for proportionally fair rates becomes1
e
≈ 37%,

which equals the maximum system throughput attained for any choice of attempt probabilities

in slotted Aloha in this network [1].

IV. FAIR MEDIUM ACCESSCONTROL IN UNSLOTTED ALOHA

We first state the assumptions and derive the throughput expressions. We then show how the

optimal attempt rates can be computed using local information.

A. Problem Formulation

In unslotted Aloha, there are no slots, and a node can transmit a packet at any time. We

assume that each packet has a fixed transmission time,T . We assume that transmission attempts

by a node are carried out independently of the transmissions of all other nodes.

We classify the nodes in two setsN ′ andN \ N ′, whereN ′ = {i :
∑

k∈Ki∪{i} |Ik| = |Oi|}.

Consider a nodei ∈ N ′. Refer to Figure 1. SinceOi ⊆ ∪k∈Ki
Ik, it follows that: i) |Ii| = 0,

i.e., i does not have any in-neighbor, and ii)
∑

k∈Ki
|Ik| = |Oi|, i.e., none ofi’s neighbors have
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Fig. 1. An example network. (Nodes 1 and 7 belong toN ′, and all other nodes belong toN \N ′. The bold lines represent the

(directed) edges, and the other lines represent the (undirected) links where there are no edges.)

any in-neighbor other thani. Therefore, nodei’s transmission does not reach the receiver of

any other transmitting node. Moreover, by our assumption,i’s transmission does not affect the

transmission attempts by any other node. Therefore, nodei’s transmission can not reduce the

throughput of any other node. Moreover, note that the throughput of nodei can not decrease

as the transmission rate of nodei increases. Since the global fairness objective is an increasing

(more specifically, logarithmic, as explained below) function of the throughputs, it follows that

to achieve the desired fairness objective, nodei must transmit all the time. In other words,

as soon as nodei finishes transmitting a packet, it begins transmitting the next packet. Since

nodei must be involved in at least one active communication (by assumption), andIi = φ, it

follows thatOi 6= φ. Before transmitting each packet, nodei selects a destinationj ∈ Oi with

probability q(i,j), where
∑

j∈Oi
q(i,j) = 1. Let q =

(
q(i,j), i ∈ N ′, (i, j) ∈ E

)
denote the vector

of attempt probabilities on edges originating from the nodes inN ′.

Consider a nodei ∈ N \ N ′. Refer to Figure 1. Nodei’s transmissions interfere with trans-

missions to nodei or to any of nodei’s neighbors. Note that either nodei has some in-neighbor,

or at least one of nodei’s neighbors has some in-neighbor. Therefore, for fair allocation of

rates,i should not always transmit packets. Ifi has any out-neighbor, i.e.,Oi 6= φ, we as-
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sume thati attempts to transmit as per a Poisson process with rateλi. If Oi = φ, i never

transmits. Oncei attempts to transmit a packet, it selects a destinationj ∈ Oi with proba-

bility
λ(i,j)

λi
, where

∑
j∈Oi

λ(i,j) = λi. Therefore, transmission attempts on(i, j) are generated

according to a Poisson process with rateλ(i,j). Thus,λ(i,j) can be viewed as the attempt rate in

edge(i, j), i ∈ N \ N ′. If i is already transmitting when the transmission attempt is generated

(according to the Poisson process), then the new transmission attempt is ignored. Otherwise,

i transmits, even if it was receiving a packet at that instant. This assumption of “transmis-

sion takes precedence over reception” has been used by previous researchers as well [8]. Let

λ =
(
λ(i,j), (i, j) ∈ E, i ∈ N \N ′

)
denote the vector of attempt rates in edges originating from

nodes inN \N ′.

The following lemma shows how the throughput or the successful data rate on an edge de-

pends on the attempt vector,(q, λ). In Lemma 2 and its proof, ifOk = φ for anyk ∈ N , then

the termλk should be interpreted as zero.

Lemma 2:The throughput on edge(i, j), x(i,j), is

x(i,j)(q, λ) =





q(i,j)

q(i,j)+1
e
−T

∑
k∈Kj∪{j}\{i} λk ∏

k∈Kj∪{j}\{i}
1

1+Tλk
, if i ∈ N ′,

Tλ(i,j) e
−T

∑
k∈Kj∪{j}\{i} λk ∏

k∈Kj∪{j}
1

1+Tλk
, otherwise.

(4)

Tobagiet al.[8] computed the throughputs for unslotted Aloha protocol when each node attempts

transmission according to a Poisson process, and the packet sizes are exponentially distributed.

The attempt vector,(q∗, λ∗), that attains the proportionally fair rates, is given by

(q∗, λ∗) = arg max
q(i,j)≥0,

∑
j∈Oi

q(i,j)=1,i∈N′

λ(i,j)≥0,i∈N\N ′,(i,j)∈E

∑

(i,j)∈E

log
(
x(i,j)

(
q, λ

))
, (5)

wherex(i,j) are given in Lemma 2.
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B. Optimal Attempt Vector

Theorem 3:The optimal attempt vector,(q∗, λ∗), as defined by (5), is given byq∗(i,j) = 1/|Oi|,

i ∈ N ′, (i, j) ∈ E, andλ∗(i,j) = λ∗i /|Oi|, i ∈ N \N ′, (i, j) ∈ E, where

λ∗i =

√
1 + |Oi|∑

k∈Ki∪{i} |Ik|−|Oi| − 1

T
, i ∈ N \N ′.

Consider a nodei ∈ N ′. Recall thatOi 6= φ. Clearly,q∗(i,j) ≥ 0, q∗(i,j) ≤ 1, and
∑

j∈Oi
q∗(i,j) = 1.

Consider a nodei ∈ N \ N ′. Since
∑

k∈Ki∪{i} |Ik| 6= |Oi|, ∑
k∈Ki∪{i} |Ik| > |Oi|, asOi ⊆

∪k∈Ki∪{i}|Ik|, for all i. Thus, the optimal attempt vector is well-defined.

Similar to the slotted Aloha case, a node can set its attempt vector optimally if it knows the

number of its in-neighbors and out-neighbors, and the number of in-neighbors of its neighbors.

It can obtain this knowledge by exchanging information with its neighbors.

Now consider the special case in which all nodes are in each other’s transmission range, and

therefore, at most one node can send data successfully at any time. Letn nodes send packets to a

single destination node. Here,N ′ = φ. From Theorem 3, the optimal attempt rates in each of the

n edges is1
T
(
√

1 + 1
n−1

−1) ≈ 1
2T (n−1)

, for largen. Now, from Lemma 2, the system throughput

is n
2
√

e(n−1)
× 1

(1+ 1
2(n−1))

n . Asn approaches∞, the system throughput for proportionally fair rates

becomes1
2e
≈ 18%, which equals the maximum system throughput attained for any choice of

attempt rates in unslotted Aloha in this network [1].
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APPENDIX

Proof of Theorem 1: Let U(p) = max0≤pe≤1
∑

e∈E log(xe(p)). Then

U(p) =
∑

(i,j)∈E


 log(p(i,j)) + log(1− Pj) +

∑

k∈Kj\{i}
log(1− Pk)


 . (6)

Note thatlog(p(i,j)) is a strictly concave function ofp(i,j). Also, for anyw ∈ N , log(1− Pw) =

log(1−∑
k∈Ow

p(w,k)) is a strictly concave function of(p(w,k), k ∈ Ow). Thus,U(p) is a strictly

concave function ofp. Therefore,U(p) has a unique global maximum, which is obtained at

p∗ = (p∗e, e ∈ E), where,∇U(p)|p∗ = 0. Using ∂U
∂p(i,j)

|p∗ = 0, Pw =
∑

k∈Ow
p(w,k) for all w ∈ N,

(6), and some algebraic manipulation, we obtain,

p∗(i,j) =
1− P ∗

i

|Ii|+ ∑
k∈Ki

|Ik| − |Oi| ∀(i, j) ∈ E , (7)

whereP ∗
i =

∑
j∈Oi

p∗(i,j). Select anyi ∈ N . From (7), it follows thatp∗(i,j) = P ∗
i /|Oi| ∀j ∈ Oi.

Now, using (7), we obtain:P ∗
i /(1 − P ∗

i ) = |Oi|/(|Ii| + ∑
k∈Ki

|Ik| − |Oi|). Thus, (3) follows.
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Proof of Lemma 2: Consider an edge(i, j) ∈ E. A transmission attempt for edge(i, j) gener-

ated at time instantt leads to a successful packet transmission if i) nodei is not already trans-

mitting at timet, ii) none of the nodesk ∈ Kj ∪ {j} \ {i} transmit during the interval[t, t + T ].

Condition i) is necessary because if nodei is already transmitting at timet, then it ignores the

newly generated transmission attempt. Since transmission takes precedence over reception,i’s

transmission is independent of any other transmission in the network; note that the success of a

transmission depends on other transmissions though.

Consider a nodei ∈ N \ N ′. We show that the probability thati is not transmitting at an

arbitrary timet, P
(1)
i , is equal to 1

λiT+1
. Recall thati attempts to transmit according to a Poisson

process with rateλi. Nodei’s packet transmissions can be modeled as a renewal process [9].

The renewal epochs are the epochs ofi’s transmission attempts that lead to packet transmissions;

the transmissions may or may not collide with other transmissions. Recall that ifi is already

transmitting at the epoch of a transmission attempt, it ignores the attempt. The time interval

between two renewal epochs is the sum of the duration of a transmission and the subsequent

wait time before a new attempt is generated. Using the memoryless property of exponential

inter-attempt times, the expected time interval between two renewal epochs isT + 1/λi. Nodei

transmits for the firstT units of time in each renewal period. From renewal-reward theorem [9],

the probability thati is transmitting at an arbitrary timet is T
T+1/λi

. Thus,P (1)
i = 1

λiT+1
.

Note that for each(i, j) ∈ E, Kj ∪ {j} \ {i} ⊆ N \ N ′. This can be inferred from the

observation that no transmission from a node inN ′ collides with a transmission from another

node, but transmission from nodes inKj ∪ {j} \ {i} collides with a transmission on(i, j).

Consider an edge(i, j) ∈ E. Let P
(2)
(i,j) = P (nodes k ∈ Kj ∪ {j} \ {i} do not transmit in

interval (t, t+T )). SinceKj∪{j} ⊆ N\N ′, each nodek ∈ Kj∪{j}\{i} attempts transmission
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as per a Poisson process. Now,

P
(2)
(i,j) = P (none of the nodes k ∈ Kj ∪ {j} \ {i} attempt to transmit during (t, t + T)|

none of the nodes k ∈ Kj ∪ {j} \ {i} are transmitting at t)

×P (none of the nodes k ∈ Kj ∪ {j} \ {i} are transmitting at t)

= e
−T

∑
k∈Kj∪{j}\{i} λk × ∏

k∈Kj∪{j}\{i}
P

(1)
k

= e
−T

∑
k∈Kj∪{j}\{i} λk × ∏

k∈Kj∪{j}\{i}

1

1 + Tλk

.

Now we compute the expression for the throughput on edge(i, j) wherei ∈ N ′. Recall

that i always transmits a packet. For each transmission,i selects destinationj with probability

q(i,j). Transmissions on(i, j) can be modelled as a renewal process [9]. The renewal epochs

are the epochs of the start of transmissions on(i, j). The time interval between two renewal

epochs is the sum of the duration of a transmission and the subsequent wait time before a new

transmission on(i, j). The first term equalsT, and the second term equalsZT, whereZ is

a geometrically distributed random variable with success probabilityq(i,j). Thus, the expected

time interval between two renewal epochs isT + T/q(i,j). Nodei transmits forT units of time

on edge(i, j) at the start of each renewal period. The transmission is successful if no node

in Kj ∪ {j} \ {i} transmits during the transmission on(i, j). Thus, i’s average duration of

successful transmission in a renewal interval isT × P
(2)
(i,j). From renewal-reward theorem [9],

the throughput on edge(i, j) is T × P
(2)
(i,j)/(T + T/q(i,j)). The expression for the throughput on

edge(i, j) follows using the expression forP (2)
(i,j).

Now, calculate the throughput on edge(i, j), wherei ∈ N \N ′. Recall that(i, j) attempts to

transmit according to a Poisson process with rateλ(i,j). Now, using PASTA, the throughput in

edge(i, j) is x(i,j) = Tλ(i,j) × P
(1)
i × P

(2)
(i,j). The expression for the throughput in edge(i, j)
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follows using the expressions forP
(1)
i andP

(2)
(i,j).

Proof of Theorem 3: Using Lemma 2, the objective function of (5),V (q, λ) can be written as

V (q, λ) = V1(q) + V2(λ), whereV1(q) andV2(λ) are defined as

V1(q) =
∑

i∈N ′

∑

j∈Oi

log
q(i,j)

1 + q(i,j)

, (8)

V2(λ) =
∑

i∈N\N ′





 ∑

j∈Oi

log
(
Tλ(i,j)

)

− Tλi





 ∑

k∈Ki∪{i}
|Ik|


− |Oi|




−

 ∑

k∈Ki∪{i}
|Ik|


 log (1 + Tλi)


 . (9)

Here,V1(q) andV2(λ) consist of the terms inV (q, λ) that depend onq andλ respectively. It is

easy to show that under the constraints
∑

j∈Oi
q(i,j) = 1, q(i,j) ≥ 0, i ∈ N ′, (i, j) ∈ E, V1(q) is

maximized whenq(i,j) = q(i,k) for eachj, k ∈ Oi and eachi ∈ N ′. Since
∑

j∈Oi
q(i,j) = 1, it

follows thatq∗(i,j) = 1/|Oi|.

Now let us considerV2(λ), and see how it can be maximized overλ(i,j) ≥ 0. Note thatV2(λ)

is not concave overλ ≥ 0. Let λ∗ be a local optimum ofV2(λ). Then,∇V2(λ)|λ∗ = 0. Consider

anyi ∈ N \N ′. Then for anyj ∈ Oi, by setting ∂V2

∂λ(i,j)
|λ∗ = 0 in (9), we obtain

Tλ∗(i,j) =
1∑

k∈Ki∪{i} |Ik|
1+Tλ∗i

+
∑

k∈Ki∪{i} |Ik| − |Oi|
, (10)

whereλ∗i =
∑

j∈Oi
λ∗(i,j). From (10), it follows thatλ∗(i,j) = λ∗i /|Oi| ∀j ∈ Oi. Now, using

(10), we obtainTλ∗i = |Oi|/
(∑

k∈Ki∪{i} |Ik|
1+Tλ∗i

+
∑

k∈Ki∪{i} |Ik| − |Oi|
)

. Solving for λ∗i in this

quadratic equation, we obtainλ∗i = 1
T

√
1 + |Oi|∑

k∈Ki∪{i} |Ik|−|Oi| − 1. Thus,V2(λ) has a unique

local optimum, given byλ∗. By computing∇2V2(λ)|λ∗, it can be verified thatλ∗ is a local

maximum. Now,V2(λ) approaches−∞ at the boundaries of the region, i.e., when anyλ(i,j)

approaches 0 or∞. Therefore, the global maximum ofV2(λ) overλ ≥ 0 is attained atλ∗. The

result follows.

DRAFT


