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Lifetime and Coverage Guarantees Through
Distributed Coordinate-Free Sensor Activation

Gaurav S. Kasbekar, Yigal Bejerano and Saswati Sarkar

Abstract—In wireless sensor networks, a large number of
sensors perform distributed sensing of a target field. A sensor
cover is a subset of the set of all sensors that covers the target
field. The lifetime of the network is the time from the point the
network starts operation until the set of all sensors with non-zero
remaining energy does not constitute a sensor cover any more.
An important goal in sensor networks is to design a schedule,
that is, a sequence of sensor covers to activate in every time slot,
so as to maximize the lifetime of the network. In this paper, we
design a polynomial-time, distributed algorithm for maximizing
the lifetime of the network and prove that its lifetime is at most
a factor O(log n ∗ lognB) lower than the maximum possible
lifetime, where n is the number of sensors and B is an upper
bound on the initial energy of each sensor. Our algorithm does
not require knowledge of the locations of nodes or directional
information, which is difficult to obtain in sensor networks. Each
sensor only needs to know the distances between adjacent nodes
in its transmission range and their sensing radii. In every slot, the
algorithm first assigns a weight to each node that is exponential
in the fraction of its initial energy that has been used up so far.
Then, in a distributed manner, it finds an O(log n) approximate
minimum weight sensor cover, which it activates in the slot.

Index Terms—Wireless Sensor Networks, Network Lifetime,
Coverage, Approximation Algorithms, Distributed Algorithms,
Coordinate-Free

I. INTRODUCTION

Recent advances in wireless communications and elec-
tronics have enabled the development of low-cost sensor
nodes [11]. Each sensor node is capable of sensing specific
events in its vicinity and of communicating with adjacent
nodes. Thus, for event sensing applications, a large number
of sensor nodes are deployed in a distribution area and
they collaborate to form an ad-hoc network, referred to as a
wireless sensor network (WSN). WSNs have the potential to
become the dominant sensing technology in many civilian and
military applications, such as intrusion detection, environmen-
tal monitoring, object tracking, traffic control, and inventory
management. In many of these applications, WSNs need to
monitor the target field for detecting events of interest, e.g.,
entrance of an intruder in an intrusion detection application.

Wide-spread deployment of WSNs in target field monitoring
is being deterred by the energy consumed in the monitoring
process. The challenge is compounded by the fact that the
sensors are battery-powered, and owing to size limitations, the
sensors can only be deployed with low-lifetime batteries, most
of which are not rechargeable. Thus, a sensor ceases to func-
tion (e.g., monitor) once its battery expires, and oftentimes,
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sensors whose batteries have expired can not be easily replaced
owing to logistics issues such as remoteness or inaccessibility
of distribution areas. Thus, the success of the WSN technology
is contingent upon developing strategies for intelligently using
the available sensors so as to maximize the duration for which
the entire target field is monitored by sensors. This duration,
referred to as the network lifetime, is an important performance
metric for the network as the coverage of the entire target field
is essential for reliable detection of events of interest.

Owing to large scale availability of low cost sensors, sensors
are often deployed with some redundancy, that is, several
locations in the target field can be monitored by multiple
sensors. Lifetime of the WSNs can be substantially enhanced
by intelligently activating the sensors that monitor the target
field at any given time. We seek to maximize the lifetime
of sensor networks by designing algorithms that dynamically
activate sensors based on their residual energy content. The
algorithm we develop is completely distributed, does not need
to know the coordinates of any sensor, and provides provable
guarantees on the attained lifetimes.

A. Related Literature

Coverage, connectivity and lifetime maximization for WSNs
have received considerable attention in the last few years.
Comprehensive surveys can be found in [13], [14]. Most of
the existing papers focus on the coverage and connectivity
aspects [2], [3], [6], [9], [15], [16], [17], [18], [19], [20], and
typically propose computational geometry based approaches
for discovering coverage holes and ensuring connectivity. An
interesting connectivity property has been proved in [19], [20]
that shows that if the transmission radius of each node is at
least twice of its sensing radius, then coverage implies connec-
tivity of the sensor network. We make the same assumption,
and therefore seek to maximize lifetime while guaranteeing
coverage without explicitly considering connectivity.

We now summarize the papers that propose topology control
solutions that maximize the network lifetime by scheduling the
active periods of the sensors, while preserving coverage and
connectivity requirements. In [12], Cardei et al. addressed the
problem of lifetime maximization when only a given set of
targets needs to be covered. They showed that the problem is
NP-hard and provided heuristic sensor activation algorithms
based on linear programming relaxations. They also proposed
a greedy heuristic activation scheme that at each round seeks
the minimal set of sensors that covers all the targets. They
evaluated the lifetimes attained by the heuristic solutions using
simulations, but did not provide provable guarantees on the
lifetimes of these schemes. Wang et al. [20] showed that the
monitoring area is covered if all intersection points between
sensing borders of sensors and those between sensing borders
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of sensors and the monitoring area are covered. They also
provided a distributed algorithm to activate a minimum set of
sensors, while ensuring coverage and connectivity. However,
the algorithm in [20] assumes knowledge of coordinates of
nodes and does not provide provable guarantees on the net-
work lifetime. The scheme proposed by Berman et al. [10]
provides provable guarantees on the network lifetime while
ensuring coverage of the target field. They have provided a
centralized algorithm that attains a network lifetime which
is within O(logn) of the maximum possible lifetime, where
n is the number of sensors. This algorithm determines how
to activate sensors based on an approximate solution of a
linear program that requires complete knowledge of network
topology, coordinates of sensor locations and initial energy of
sensors. Such linear programs can clearly be solved only by
a central entity that knows all of the above, which is hard
to realize in practice. Also, the sensors rarely know their
precise locations since WSNs usually do not have access to
global positioning systems (GPS). Several sensor positioning
systems [23], [24] have been proposed in the literature for
learning the locations, without manual configuration or the
use of GPS receivers. However, they provide only coarse
location estimations in practical settings [25]. Note that
several coverage verification algorithms that do not assume
knowledge regarding the locations of the sensors exist [3], [9],
[15], [16], but these papers do not provide any guarantee on the
network lifetime. Our contribution is to provide a distributed,
coordinate-free sensor activation scheme that provides prov-
able guarantees on the network lifetime.

A centralized approximation algorithm similar to that in [10]
has been proposed by Zhao et al. in [21] for the connected
target coverage problem, i.e., the problem of maximizing
lifetime while ensuring coverage of a given set of target points
and connectivity of the network. Thai et al [35] have proposed
a distributed algorithm to maximize the network lifetime up
to an O(log n) factor, while ensuring coverage of a given set
of targets. However, the paper does not provide a coordinate-
free algorithm for the area coverage problem, which we focus
on. Also, the coverage and lifetime guarantees in [35] are
probabilistic, whereas we provide deterministic guarantees on
both coverage and lifetime.

Finally, Wu et al. [22] considered a different notion of
lifetime in a recent paper: the maximum time until which all
nodes in the data aggregation tree of choice remain operational
(a node in this case consumes energy only during communi-
cation). Since we focus on the energy consumed in sensing,
our notion of lifetime, the problem formulation and solution
techniques differ substantially.

B. Our Contribution

The contribution of this paper is two-fold.
First, we present the first coordinate-free distributed scheme

that provides provable approximation guarantees on network
lifetime, while providing strict coverage guarantees. This is
a surprising result since the sensors are not aware of their
coordinates in a global coordinate system, and are therefore
oblivious to their locations relative to each other and to the
target field. To overcome this challenge, we assume that the
sensor distribution area is slightly larger than the area that
needs to be monitored. The sensors are divided into periphery

nodes that are located near the boundary of the distribution
area and internal nodes that are internal to this area. The target
field that our scheme is committed to monitor is taken as the
closure of the area covered by the internal nodes. Our scheme
at each time slot selects a subset of sensors for monitoring the
target field that ensure k-coverage of the entire target field, for
a given integer k ≥ 1, and different subsets may be selected in
different slots. The selection process relies on two key steps:
(i) each sensor is assigned a weight that is an exponentially
increasing function of the energy it has consumed so far
(ii) the set of sensors that has the minimum total weight,
or an approximation thereof, among all those that cover the
entire target field is activated. This selection process balances
the monitoring load on all the sensors, and preferentially
selects in each slot, the sensors with high residual energy.
We demonstrate that the algorithm can be executed using
distributed computations that do not need to know the locations
of the sensors.

Second, we prove that the lifetime of the network when
this algorithm is used is at least 1/O((logn)(log nB)) of
the optimal solution, where n is the number of sensors and
B is a bound on the initial energy level of the nodes. We
prove this approximation ratio, by extending to this problem
the exponential-function technique, originally developed by
Aspnes et al. [26] in the context of online machine scheduling
and virtual circuit routing and later used by Awerbuch et al. [4]
in online virtual circuit routing. Thus, our algorithm attains a
provable guarantee which is only slightly worse as compared
with the best available centralized performance guarantee till
date, presented in [10]. We demonstrate via simulations that
our scheme attains a significantly higher lifetime than several
other existing schemes [10], [12], [20].

II. PRELIMINARY

A. Network Model

We consider a wireless sensor network (WSN) consisting
of a set S of n sensors that are also called nodes. Each
node u ∈ S can sense events of interest in its sensing range
and communicate with nodes in its transmission range. We
make the natural assumption that there are no two sensors at
the same location. Also, each sensor u ∈ S has a unique
identification number, denoted by ID(u). The sensors are
distributed over a large 2-dimensional area. We refer to the
region obtained by the union of the sensing ranges of all the
sensors as the distribution area and it subsumes the region
that needs to be monitored by the sensors, referred to as the
monitoring area. The latter is typically significantly larger than
the sensing range of a single sensor.

We assume that the sensing and transmission ranges of a
node u are open discs, centered at u, with radii ru and Ru

respectively, where Ru > ru. We refer to ru and Ru as the
sensing radius and transmission radius of node u respectively.
Let r̂ = maxu∈S ru, and R̂ = minu∈S Ru. The boundary of
the sensing range of any node u is a circle, which we refer to
as the sensing border of node u. Let du,v denote the Euclidean
distance between nodes u and v. Nodes u and v are termed
adjacent or neighbors if they are included in the transmission
range of each other. Let Nu be the set of neighbors of u.

We assume that nodes only have localized distance informa-
tion. Specifically, each node u knows (a) ru, (b) du,v and rv for
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each v ∈ Nu and (c) dv,w for each pair w, v ∈ Nu such that w
and v are neighbors of each other. Thus, we assume that each
node can estimate its sensing radius, and its distances from
its neighbors without learning their orientations, and com-
municates this information to its neighbors. Note that recent
studies [7], [8] have introduced accurate distance estimation
techniques that are applicable to wireless sensors.

We define periphery nodes to be those whose sensing
borders are not 1-covered at the beginning of the network
operation (when all nodes have non-zero remaining energy)
and the rest of the nodes to be internal nodes. Note that
periphery nodes are located close to the boundary 1 of the
distribution area in the sense that the minimum distance of
every periphery node from a boundary point is at most r̂ 2.
Although the sensors are not aware of their locations, every
sensor knows whether it is a periphery or an internal node, for
instance by using the mechanism in [3] or [30]. The algorithm
in [30] requires a sensor to know some additional information,
specifically, connectivity information of its two-hop neighbors.

Time is divided into time slots and we assume that the
sensors have synchronized clocks, which notify them at the
beginning of each time slot. Sensor u ∈ S has an initial
energy Bu and, as a normalization, we assume that each sensor
consumes 1 unit of energy in each time slot in which it is
active. For saving energy, a sensor may be in a sleep mode, in
which it does not communicate with its neighbors nor sense
its vicinity. A sensor in sleep mode consumes only negligible
amount of energy, which we assume to be zero.

B. The Target Field

An internal node &

its sensing range
A periphery node &

its sensing range

The distribution area

The monitoring area

The target field

Fig. 1. An example of a small WSN and its target field.

Generally speaking, the target field is the area monitored by
the system. This area is obviously subsumed in the distribution
area and it should contain the monitoring area. Since the
sensors are not aware of their locations, they are oblivious to
their locations relative to each other and to the monitoring area.

1Recall that a boundary point of a set A ⊆ R2 is a point p ∈ R2 such
that for every ϵ > 0, its ϵ-neighborhood Bϵ(p) = {x ∈ R2 : d(x, p) < ϵ}
contains a point x1 ∈ A and a point x2 /∈ A, where d(x, p) denotes the
Euclidean distance between x and p [27].

2To prove this, consider a periphery node v. By definition, there exists a
point p on v’s sensing border that is not 1-covered. It is easy to see that p is
a boundary point of the distribution area because every ϵ-neighborhood of p
contains a point in v’s sensing range and hence in the distribution area and
the point p that is not in the distribution area. Also, d(p, v) = rv ≤ r̂.

Addressing this difficulty, we next provide a precise definition
of the target field that our scheme is committed to monitor.

Definition 1 (The Target Field): The target field is the area
defined by the closure 3 of the union of the sensing ranges of
all the internal sensors.

We assume that the target field subsumes the monitoring
area. Fig. 1 illustrates a small WSN as well as its distribution
area, monitoring area and target field.

Given a set C ⊆ S of sensors and a positive integer k, we
say that a point in the target field is k-covered by C if it is in
the interior of the sensing ranges of at least k nodes in C. The
target field is considered as k-covered by C if every point in
the target field is k-covered by C.

Definition 2 (Sensor Cover): A set C of sensors that k-
covers the target field is termed a sensor cover.
If there does not exist a sensor cover C such that all the nodes
in C have non-zero energy, then the network is said to have
a coverage hole.

Since the sensing ranges are open discs, no sensor covers its
sensing border. Thus, any sensor cover must contain periphery
sensors that cover the target-field boundary (see Fig. 1). Thus,
sensor activation schemes must consider both internal and
periphery nodes.

C. Problem Statement
We proceed to define the maximum network lifetime prob-

lem. Note that in this paper, we consider only the energy
consumed in sensing, and not in other activities such as routing
the sensed data. A similar approach has been used in several
other papers on lifetime maximization e.g. [10] [12].

Definition 3 (The Network Lifetime): The network lifetime
is the time interval from the activation of the network until
the first time at which a coverage hole appears.

Definition 4: (The Maximum Network Lifetime Problem)
An activation schedule is a sequence of sensor covers that
are activated in successive slots, such that in every slot, each
sensor in the activated sensor cover has non-zero energy. The
maximum network lifetime problem seeks to find an activation
schedule that maximizes the network lifetime.

In [12], the authors prove that the closely-related target
coverage version of the maximum network lifetime problem
is NP-hard. Moreover, in [9] it has been shown that for
a given subset C ⊆ S, no coordinate-free algorithm can
provably verify whether or not C covers the target field,
if R̂ < 2r̂. So henceforth, we assume that R̂ ≥ 2r̂ and
we present a distributed coordinate-free algorithm for the
maximum network lifetime problem with guarantee on the
lifetime attained by the calculated schedule.

D. The Intersection Point Concept
We now present the intersection point concept that con-

stitutes a cornerstone in our solution. Consider two sensors
v, z ∈ S. The sensors are termed intersecting if their sensing
borders intersect (but are not tangent to each other). In such
case, we say that v intersects with z.

Property 1 (Intersection): The sensors v, z ∈ S are inter-
secting if and only if dv,z < rv + rz , dv,z + rz > rv and
dv,z + rv > rz .

3Recall that the closure of a set A is the smallest closed set that contains
A [27].
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The first condition in Property 1 states that there is overlap
between the sensing ranges of v and z and the second
(respectively, third) condition states that the sensing border
of z (respectively, v) is not subsumed in the sensing range of
v (respectively, z).

Note that the sensing borders of any pair v, z ∈ S of inter-
secting sensors have exactly two intersection points denoted
by IP (v, z, 1) and IP (v, z, 2). Moreover, by Property 1, since
the distance dv,z < rv+rz ≤ 2·r̂ and we assume that R̂ ≥ 2·r̂,
any two intersecting sensors v, z are adjacent.

We next show that for calculating a sensor cover we just
need to consider sensors that have intersection points on their
sensing borders.

Property 2: Consider a sensor cover C ⊂ S and let u ∈ C
be a sensor without any intersection point on its sensing border.
Then the set C − {u} is also a sensor cover.
We omit the proof due to space constraints.

The next corollary directly follows from Property 2.
Corollary 1: Let u ∈ S be a sensor without any inter-

section point on its sensing border and consider a schedule
{C1, C2, · · · , CL} of sensor covers with network lifetime of
L in which node u is active in some slots. Then, the schedule
{Ĉ1, Ĉ2, · · · , ĈL}, where Ĉj = Cj − {u}, also defines a
sequence of sensor covers with network lifetime of L.

From Corollary 1 it follows that the network lifetime is
not affected by ignoring sensors without intersection points
on their sensing borders. So henceforth, we will ignore such
sensors.

Let P be the set of intersection points that are in the target
field, referred to as the IP set. Recall that P contains every
intersection point IP (v, z, i), i = 1, 2, such that at least one
of the nodes v, z ∈ S is an internal node or IP (v, z, i) is in
the sensing range of an internal node.

Theorem 1: Consider a set C ⊂ S of sensors. The set C is
a sensor cover if and only if it k-covers every point in the IP
set P .
We omit the proof of Theorem 1 due to space constraints– a
similar result has been shown in [20].

Owing to Theorem 1, we henceforth consider as sensor
cover any set of sensors that k-covers all the intersection points
in P .

III. ALGORITHM OVERVIEW

We now describe the Distributed Lifetime Maximization
(DLM) algorithm that we propose. In this section, we present
a brief overview of the individual building blocks in DLM,
and provide the details in Sections IV and V.

Our algorithm consists of an initialization phase and an
activation phase. The initialization phase is executed once,
at the beginning of the network operation, and informs the
nodes of some network parameters. Every node executes the
activation phase at the beginning of each subsequent time slot,
and decides whether to activate itself in the slot based only on
the state information in its neighborhood. We now describe the
above phases, and introduce some new terminologies towards
that end.

Consider a sensor cover C, and let sensor u have weight
wu, a positive real number. The weight of the sensor cover C
is the sum of the weights of the sensors in C, i.e.,

∑
u∈C wu.

Definition 5 (A minimum weight sensor cover): A
minimum weight sensor cover is a sensor cover that

has the minimum weight among all sensor covers. An
α−approximate minimum weight sensor cover is one whose
weight is at most α times that of the minimum weight sensor
cover.

Let Pu ⊆ P be the set of intersection points covered by
sensor u, and Tu be the set of sensors v such that sensors u
and v cover a common intersection point.

A. Initialization phase

An initialization phase is executed at the beginning of the
network operation, i.e., at time t = 0. During the initialization
phase, each sensor u acquires the following local information:
(i) the set Pu of intersection points that it covers, (ii) the
identities of the sensors in Tu and (iii) the intersection points
in Pu that are covered by each sensor in Tu (i.e., the set
Pu,v = Pu ∩ Pv for each v ∈ Tu). As we elaborate in
Section V, each sensor u learns this information in a dis-
tributed manner by merely communicating with its neighbors
and using only localized distance information. In addition,
each sensor learns the following global network parameters: (i)
n, the total number of sensors, and (ii) the maximum amount
B of the initial energy of any sensor (B = maxu∈S Bu).
Using the above information, each sensor computes µ, where
µ = 4nB. The above constitutes the only global information
each sensor needs to know throughout the execution of DLM,
and can be communicated to each sensor using one network-
wide broadcast.

B. Activation phase

The activation phase is executed at the beginning of each
slot. We describe the computations in slot j.

Weight assignment: Let bu(j) be the amount of energy of
sensor u that has been consumed in slots 1, . . . j − 1. Then,
at the beginning of slot j, sensor u has already consumed
lu(j) =

bu(j)
Bu

fraction of its energy. If bu(j) > Bu − 1, i.e.,
sensor u does not have enough energy to monitor its sensing
range throughout slot j, then it assigns itself a weight of ∞
at the beginning of slot j; otherwise it assigns itself a weight
of wu(j) = µlu(j)/Bu.

Sensor activation: Sensors that have infinite weights at
the beginning of slot j do not activate themselves in slot
j. Among the rest, sensors are activated (using the DSC
algorithm described in Section IV) so that the subset of
activated sensors, S(j), constitutes an O(log n)-approximate
minimum weight sensor cover. The sensors that do not activate
themselves in slot j, sleep in slot j. Refer to Fig. 2 for a
pseudo-code of the activation phase of DLM.

Intuitively, DLM has been designed so that the sensors are
activated so as to cover the target field whenever possible, and
the sensors that have large residual energy are preferentially
selected. We will later prove that the lifetime of DLM is at
least 1

O((log n)(log nB)) times that of the maximum lifetime of
the network.

When there does not exist any more, a sensor cover such
that each sensor in the cover has non-zero energy, the network
lifetime is considered terminated. After the network lifetime
termination, we can not provide any guarantee on the target
field coverage, although the sensors with finite weights con-
tinue to execute the algorithm, and cover their sensing ranges.
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Note that each sensor can determine its weight based only
on local information. In the next section, we show how
each sensor can execute the activation phase using distributed
computations based only on local information obtained from
its neighbors.

The DLM Activation phase of sensor u in slot j

begin
At the beginning of slot j:
1: if bu(j) > Bu − 1 then
2: wu(j) = ∞.
3: Enter sleep mode.
4: else
5: Calculate cu(j) = µlu(j) and wu(j) =

cu(j)
Bu

.
6: Use DSC in Fig. 3 to determine whether to stay active or enter sleep mode.
7: end if

end

Fig. 2. The DLM Algorithm

IV. DISTRIBUTED SENSOR ACTIVATION

We now describe an algorithm, which we call the Dis-
tributed Sensor Cover (DSC) algorithm, using which sensors
can determine, using simple distributed computations, whether
to activate themselves in each slot. Clearly, we need to design
a sensor cover with guarantees on its weight using distributed
computations. Note that a sensor cover is an instance of a
set cover, and centralized algorithms that attain an O(log n)-
approximate set cover are well known [29]. We instead ac-
complish the same goal using distributed computations only,
extending the design technique developed by Subhadrabandhu
et al. [1] for the dominating set problem. We next describe
our approach.

The sensor cover in each slot j is iteratively computed in
an asynchronous manner4. At the beginning of the activation
phase in each slot, all the sensors with finite weights are
contending for staying active in the slot. At any time during
the activation phase, each contending sensor u, determines
the number of intersection points in Pu that have not yet
been k-covered by the set of activated sensors, and computes
its activation preference ratio (aru) as the ratio between its
weight in slot j, wu(j), and the above number. We denote
by activation preference (ap) of sensor u, the ordered pair
apu =< aru, ID(u) >, where ID(u) is sensor u’s ID. We
say that sensor u has lower ap than sensor v, i.e., apu < apv
if apu has lower lexicographic value than apv , that is, (i)
aru < arv or (ii) aru = arv and ID(u) < ID(v). Each
contending sensor u communicates its activation preference
to the sensors in Tu at the beginning of the activation phase
and each time that its value changes. Note that the latter occurs
only when one of u’s neighbors in Tu becomes active. A
contending sensor u activates itself once it detects that it has a
lower activation preference than all contending sensors in Tu.
Each sensor u that activates itself informs other sensors in Tu,
accordingly. Once a sensor u detects that all the intersection
points Pu in its sensing range are k-covered by the already
active sensors in Tu, it updates its neighbors and enters a sleep
mode. The activation process, in each slot, terminates after
each sensor decides whether to stay active or enter a sleep
mode. Refer to Fig. 3 for a pseudo-code.

4The sensors just need to know the beginning time of each time slot.

The Distributed Sensor Cover (DSC) algorithm of sensor u

Definitions:

• Let UCu ⊆ Pu be the set of intersection points that have not yet been k-covered
by the set of activated sensors.

• Let CTu ⊆ Tu be the set of contending neighbors of sensor u.

Begin
1: if wu(j) = ∞ or Pu = ∅ then
2: mode = sleep
3: Return mode
4: else
5: mode = contending
6: UCu = Pu

7: CTu = Tu

8: aru =
wu(j)
|UCu| ; apu =< aru, ID(u) >

9: Send My-Init-AP(apu) message to every sensor w ∈ Tu

10: Receive My-Init-AP(apw) message from every sensor w ∈ Tu

11: // If My-Init-AP message not received from a sensor w ∈ Tu

12: // within a given time period, then w is considered inactive
13: // and it is removed from CTu.
14: if (CTu == ∅ or apu < apw for every w ∈ CTu) then
15: mode = active
16: Send an I-am-Active message to every sensor w ∈ CTu.
17: end if

18: while mode == contending and upon reception of a message M from
sensor v ∈ CTu do

19: if the received message M is I-Am-Active then
20: CTu = CTu − {v}
21: // Let NCu ⊆ UCu ∩ Pu,v be the set of intersection
22: // points that are k-covered (after v’s activation).
23: UCu = UCu − NCu

24: if (UCu == ∅) then
25: mode = sleep
26: Send an I-Am-Sleeping message to every sensor w ∈ CTu.
27: else
28: old apu = apu

29: aru =
wu(j)
|UCu| ; apu =< aru, ID(u) >

30: if (CTu == ∅ or apu < apw for every w ∈ CTu) then
31: mode = active
32: Send an I-Am-Active message to each sensor w ∈ CTu.
33: else if (old apu ̸= apu) then
34: Send a New-AP(apu) message to each sensor w ∈ CTu.
35: end if
36: end if
37: else if the received message M is New-AP(apv) then
38: Update apv

39: if (apu < apw for every w ∈ CTu) then
40: mode = active
41: Send an I-am-Active message to each sensor w ∈ CTu.
42: end if
43: else if the received message M is I-Am-Sleeping then
44: CTu = CTu − {v}
45: if (CTu == ∅ or apu < apw for every w ∈ CTu) then
46: mode = active
47: Send an I-am-Active message to each sensor w ∈ CTu.
48: end if
49: end if
50: end while
51: Return mode
52: end if

End

Fig. 3. The Distributed Sensor Cover (DSC) algorithm.

Clearly, each sensor can execute the above computations
based only on locally available information, and the informa-
tion it acquires in the Initialization phase (Subsection III-A).
Recall that a sensor u enters a sleep mode only after all
the intersection points Pu in its sensing range are already k-
covered. Thus, according to Theorem 1, during the lifetime of
the network (i.e., while there is no coverage hole) the subset of
sensors activated at the end of the activation phase in each slot
j, S(j), induces a sensor cover for the network. Moreover, we
will later prove that S(j) constitutes an O(log n)-approximate
minimum weighted sensor cover.

As mentioned above, well-known centralized algorithms
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such as the one in [29] can also be used to find an O(log n)-
approximate sensor cover. We now compare our DLM al-
gorithm, which runs a distributed sensor cover selection al-
gorithm in each slot, with two natural implementations of
any given centralized sensor cover computation algorithm.
In the first implementation, at the beginning of the network
operation, a central controller such as a base station (i) collects
the required information from each sensor, (ii) computes a
complete schedule of the set of sensors to activate in each
slot and (iii) distributes this schedule to the sensors. Note
that in practice, sensors are prone to failure due to hard-
ware malfunction or damage from the environment. Since the
centralized algorithm computes a complete schedule only at
the beginning of the network operation, sensor failure during
network operation may cause coverage holes to form, which
could persist for a long time. On the other hand, the DLM
algorithm is more robust to sensor failure– it selects a sensor
cover at the beginning of every slot from among the operating
sensors at that point in time. So even if sensors fail in a slot,
the resulting coverage holes will last only until the end of that
slot.

The following alternative centralized implementation is
more robust to sensor failure than the above centralized
implementation: at the beginning of every slot, each operating
sensor sends a message to the base station to notify the latter
that it is operating. The base station then selects a sensor cover
and informs each sensor whether to be active or not in that
slot. However, in each slot, several network-wide message
exchanges are required, which taxes the network resources.
This overhead is not incurred under our DLM algorithm,
since only a single network-wide broadcast is required at
the beginning of the network operation and subsequently,
messages only need to be exchanged locally in each slot.

V. THE INITIALIZATION PHASE

During the initialization phase (Subsection III-A), each
sensor u gains the knowledge of, (i) the set Pu of intersection
points that it covers, (ii) the identities of the sensors in Tu,
which share intersection points with node u and (iii) the set
Pu,v of the intersection points in Pu that are covered by each
sensor v in Tu (i.e., Pu,v = Pu∩Pv for each v ∈ Tu). We show
that u can determine the above using localized computations
based on simple geometric properties. In these computations,
u only needs to know (a) ru (b) Nu, and their ids, (c) du,v
and rv for each v ∈ Nu and (d) dv,w for each pair v, w ∈ Nu

such that v and w are neighbors of each other. We first provide
a brief overview of the computations in Subsection V-A and
subsequently present the details in Subsection V-B.

A. Overview
We assume that during the system activation every sensor

u initially evaluates its distance to each one of its neighbors
in Nu and it broadcasts these distances du,v , v ∈ Nu, as well
as its sensing radius ru to its neighbors. Next, u detects each
neighbor v ∈ Nu that intersects with u by using Property 1
in Subsection II-D and their joint intersection points. It also
calculates the set Qu of all the intersection points of u’s
sensing border with the sensing borders of its neighbors. For
every intersection point p ∈ Qu, u finds Sp, the set of sensors
that cover p. Then, u communicates these sets Sp, p ∈ Qu to

its neighbors. This process enables every neighbor v ∈ Nu of
u to know that a given intersection point p ∈ Qu is included
in its sensing range and accordingly to add p to its set Pv

of intersection points that it covers (for calculating (i) above).
Moreover, the knowledge of each set Sp, p ∈ Pv , allows node
v to identify its neighbors w that also cover each point p ∈ Pv

and update its set Tv accordingly (for calculating (ii) above).
Node v can also calculate the sets Pv,w = Pv ∩ Pw, for each
w ∈ Tv (for calculating (iii) above). Thus, to complete our
description, we just need to present the process for detecting
the set Qu of any given sensor u ∈ S and calculating the set
Sp for every point p ∈ Qu.

A major challenge in the initialization process is deter-
mining a unique identification for each intersection point.
Since the sensors do not have any location information, the
coordinates of the intersection points are unknown and cannot
be used as identifiers. To overcome this difficulty, every
intersection point of any pair u, v of intersecting sensors is
identified by a triplet IP (u, v, i), where u is the sensor with
lower id, v is the sensor with higher id, and i ∈ {1, 2}
denotes the point index. Since every pair u, v of intersecting
sensors have two common intersection points, the node with
the lower id, say u, arbitrarily determines the index i of
each point. In addition, u also calculates the set Spi for both
points pi = IP (u, v, i), i = 1, 2 and communicates these
sets to its neighbors, including node v. This ensures that each
calculated set Sp corresponds to a single intersection point that
is uniquely defined. We describe the calculation of such sets
Sp in the next subsection.

B. Calculation of Sp

v

u

w

p
1
=IP(u,v,1)

p
2
=IP(u,v,2)

d
u,v

d
u,w

d
v,w

r
v

r
u d

w,p
1

Fig. 4. A pair of intersecting nodes and their intersection points.

Consider a pair u, v of intersecting sensors and let pi =
IP (u, v, i), i = 1, 2 denote their intersection points, as
depicted in Fig. 4. We now describe a simple method for
calculating the covering set Spi , i = 1, 2. First, note that a
simple application of the triangle law on the distance metric
and the fact that R̂ ≥ 2r̂ establishes that Spi ⊆ Nu ∩ Nv.
Now, our calculation proceeds in two steps. In Step 1, we
partition Nu ∩ Nv in three sets: nodes that cover (i) none,
(ii) only one (iii) both of p1, p2. In Step 2, we identify which
nodes among the second set in the above partition cover p1
(p2, respectively). This completes the computation of both
Sp1 , Sp2 . In absence of location information, we rely on the
Cosine Rule throughout. Let da,b, da,c and db,c denote the
distances between three points a, b and c accordingly, and let
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̸ a, b, c denote the angle 5 between the rays [b, a] and [b, c].
The Cosine Rule states that

2 · da,b · db,c · cos ̸ a, b, c = d2a,b + d2b,c − d2a,c (1)

1) Step 1: For every node w ∈ Nu ∩ Nv that intersects
with both u and v, we check if it covers one or both of
the points pi, i = 1, 2. Recall that the straight line (u, v)
that traverses through the nodes u, v, partitions the plane into
two halves, each one of which contains one of the points
pi, i = 1, 2. Without loss of generality, assume that w is
located in the same half as p1 and therefore, it is closer to
p1 than to p2. We first find the angle ̸ w, u, p1 as follows.
As shown in Figure 4, since p1 and w are in the same half-
plane, ̸ w, u, p1 = | ̸ v, u, w − ̸ v, u, p1| (note that unlike
the case presented in Figure 4, ̸ w, u, p1 may also be equal
to ̸ v, u, p1 − ̸ v, u, w). Since the distances du,v, du,w, dv,w,
du,p1 = ru and dv,p1 = rv are known, the cosine rule
applied on the triangles △u,w, v and △u, v, p1 enable us to
calculate the angles ̸ v, u, w and ̸ v, u, p1, and hence the angle
̸ w, u, p1. Now, in △u,w, p1, the distance du,w is known and
du,p1 = ru. So dw,p1 can be found using the Cosine rule.
Thus, we can check whether w covers p1 by checking whether
dw,p1 < rw.

Similarly, we check if w covers p2 by considering the trian-
gle △u,w, p2. In this case the angle ̸ p2, u, w = ̸ v, u, w +
̸ v, u, p2. From symmetry, ̸ v, u, p2 = ̸ v, u, p1. Thus, the
angle ̸ p2, u, w is known and dw,p2 can be calculated by the
cosine rule in △u,w, p2. Note that this process can also be
used to calculate the distances dw,p1 and dw,p2 if w is located
on the line (u, v). In such case, dw,p1 = dw,p2 ; thus w covers
both points or none of them.

2) Step 2: We now consider the set Z ⊆ Nu∩Nv of sensors
that cover only one of the points p1, p2 and determine which
sensors in Z cover p1. Consider an arbitrary sensor w ∈ Z and,
without loss of generality, let p1 be the point that it covers.
Now, for each sensor x ∈ Z, x ̸= w, we check, as described
next, whether x covers p1. As explained above, none of the
nodes in Z is located on the line (u, v). Thus, all the sensors
in Z that are located in the same half-plane as w cover p1,
while the others cover p2. Thus, we just need to check if x
and w are in the same half-plane. If w and x cover the same
point, (and are therefore in the same half-plane), they must be
neighbors. Thus, all the distances between every pair of nodes
in {u, v, w, x} are known and accordingly the three angles
̸ v, u, x, ̸ v, u, w, ̸ w, u, x can be calculated using the Cosine
Rule. We use Property 3 to verify if x and w are in the same
half-plane.

Property 3: Two sensors w, x ∈ Z are located in the
same half-plane, defined by the line (u, v), if and only if (1)
̸ w, u, x = |̸ v, u, w− ̸ v, u, x| and (2) ̸ w, u, x+ ̸ v, u, w+
̸ v, u, x < 360◦.
We omit the proof due to space constraints.

VI. SYNCHRONIZATION

We now discuss some synchronization related aspects of
our algorithm. At the beginning of the network operation, the
sensors synchronize their clocks using a distributed algorithm;

5Throughout, by ̸ a, b, c we mean the angle between rays [b, a] and [b, c]
that is less than or equal to 180◦.

see [33] for a survey of synchronization algorithms for wire-
less sensor networks. Then, each sensor exchanges distance
information with its neighbors and carries out the initialization
phase (see Section V). Subsequently, the sensors run the DSC
algorithm in every slot.

Note that the only synchronization requirement in the DSC
algorithm (Fig. 3) used for sensor cover computation in each
slot is that sensors need to have synchronized clocks at
the beginning of each slot. Thereafter, within the slot, the
operation can be completely asynchronous. If the clocks of
different sensors are accurately synchronized, then the DSC
algorithm in Fig. 3 works correctly; otherwise the following
problem occurs. Recall that at the beginning of the DSC
algorithm, a sensor u sends its initial ap to each neighbor
and then waits for the initial aps of its neighbors (see line 10
in Fig. 3). If u does not receive an initial-ap messsage from
a neighbor w within a given time period, then it considers w
to be inactive. Now, if the clock of a neighbor w lags behind
u’s clock, then w may send its initial ap after u decides that
w is inactive. This may lead to an incorrect decision: u may
activate itself even though w’s ap is lower than u’s.

We now describe a minor modification, with which the DSC
algorithm works correctly even in the presence of discrepan-
cies between the clocks of different sensors. Let the maximum
time difference between the clocks of any two neighboring
sensors be ∆t, and let t0 be a number slightly greater than
∆t. When a sensor u finds that a slot has started according to
its own clock, it listens to the channel for a duration t0. Then,
it sends out its initial ap and again listens to the channel for a
duration t0. If it does not receive an initial-ap message from
a neighbor w in any of the two intervals, it assumes that w
is inactive. Since t0 > ∆t, note that in the first interval, u
receives aps of all neighbors whose slot starts before u’s and
in the second interval, it receives aps of all neighbors whose
slot starts after u’s. Thus, each node receives the initial ap of
every other contending node at the end of the second interval 6.

Let the maximum time difference between the clocks of
any two sensors in the network be ∆T , and in a given slot,
let y be the sensor whose clock leads that of all other sensors.
Then it is easy to check that a sensor activates itself within an
interval ∆T + 2t0 ≈ ∆T + 2∆t after the slot has started
according to the clock of y. Now, ∆T is of the order of
a few milliseconds because several efficient synchronization
protocols, which have an accuracy of a few milliseconds, have
been developed [33]; also, ∆t is much smaller than ∆T . Also,
the lifetimes of sensors are typically of the order of at least
several days [34]; so a slot duration would be of the order of at
least several minutes 7. Hence, the increase in the convergence
time of DSC (approximately ∆T +2∆t) compared to the case
in which clocks of all sensors are accurately synchronized is
negligible compared to a slot duration. Also, note that even if
∆T is much larger than ∆t, DSC works correctly provided
the above scheme is used with t0 > ∆t.

6For simplicity, in this discussion, we have assumed that the message
propagation times between nodes are 0. The scheme can be easily generalized
to handle non-zero propagation times.

7The smaller the slot duration, the larger the overhead due to sensor cover
computations. So the slot duration must be as large as possible, while ensuring
that Assumption 1 is satisfied. However, the condition in Assumption 1 is not
stringent. For example, when n = 1000 and Bu is equal for all sensors u,
it requires that the slot duration must be at least a factor 17 lower than the
lifetime of a sensor. For smaller n, the condition is even more relaxed.
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VII. DETECTION OF LIFETIME TERMINATION

We now augment our scheme with a simple distributed
mechanism for detecting the termination of the network life-
time. By definition the network lifetime terminates when there
no longer exists a sensor cover such that every sensor in the
cover has non-zero energy. Thus, from Theorem 1, the network
lifetime ends once one of the intersection points in the IP set
P (Subsection II-D) cannot be k-covered by the sensors that
still have non-zero energy. Note that every point p ∈ P is
included in the closure of the sensing range of at least one
internal node. Thus, once an internal node u detects that u
itself and all its neighbors in Nu have already declared that
they are either active or in sleep mode, it checks if each one
of the intersection points in Pu ∪Qu is k-covered by the set
of the active nodes in Nu ∪ {u}. This is a simple test, as for
every point p ∈ (Pu∪Qu), the set Sp of sensors that cover p is
already known (Section V). Node u informs the administrators
about the coverage hole once this test fails.

VIII. SCHEME ANALYSIS

We now prove correctness and performance guarantees for
the DLM algorithm. In Subsection VIII-A, we prove the
guarantees for DSC which DLM invokes. Using the above,
in Subsection VIII-B we prove the guarantees for DLM.

A. DSC Algorithm– Analysis

We prove that DSC computes an O(logn)-approximate
minimum weight sensor cover. Note that all the proofs allow
for arbitrary, but finite transit times of status update messages
transmitted by nodes to their neighbors.

Theorem 2: At every activation phase, (i) DSC computes a
sensor cover if there is no coverage hole, (ii) DSC terminates
in at most 2nV time if V is an upper bound on the transit
delay of status update messages between the neighbors and
(iii) DSC terminates in finite time, if the transit delays are
finite but can not be upper-bounded.
We omit the proof due to space constraints.

Remark 1: Note that if, in a particular execution, DSC finds
a sensor cover with ñ sensors, then the bound in (ii) in
Theorem 2 can be improved to show that DSC terminated
in at most 2ñV time. Also, note that the bound of 2ñV is not
tight because sensors do not activate themselves serially, but
sets of sensors activate themselves in parallel. As shown by
our simulations in Section IX-C, in practice, DSC converges
in a time that is much lower than this bound.

Now, recall that finding a minimum weight sensor cover is
an instance of the minimum weight set cover problem. We now
briefly describe the well-known greedy Centralized Set Cover
(CSC) algorithm that computes an O(log n)-approximate min-
imum weight set cover [29]. At each iteration, it selects the
sensor that has the lowest activation preference (ap) among
all the sensors, where ap is defined in the same way as for
DSC, and then updates the ap’s of the unselected sensors. This
process continues until the set of selected sensors constitutes
a sensor cover.

Theorem 3: For a given setting and a set of weights to
the sensors, DSC and CSC select the same set of sensors.
Thus, DSC obtains an O(logn)-approximate minimum weight
sensor cover.

Proof: Let Y C = {v1, · · · , vmC} and Y D =
{u1, · · · , umD} be the sets of selected sensors by CSC and
DSC, respectively, sorted in increasing order according to their
ap values at the time that they were selected 8 (i.e., decided
to stay active). Let vj and uj be the j-th sensors in Y C and
Y D respectively, and let apCj and apDj be their ap values.
Moreover, let Y C

j =
∪j

i=1 vj and Y D
j =

∪j
i=1 uj be the

first j sensors in sets Y C and Y D respectively. Note that the
sensors in Y C are arranged in the order in which they were
selected by CSC. However, the order on the sensors in Y D is
not necessarily the order in which they are activated by DSC.

Our proof utilizes the following properties:
(1) During the execution of DSC, the ap of each node is an
increasing function of time.
(2) Consider any node u ∈ Y D. Every sensor w ∈ Y D ∩ Tu

with lower ap value than u was selected before u by DSC.
Similarly, any node w ∈ Y D ∩ Tu with higher ap value than
u was selected after node u by DSC.
This property follows from property (1) and from the fact that
under DSC, a sensor u becomes active only when (and if) it
has lower ap value than its unselected neighbors in Tu.
(3) The ap value of any node u during the execution of CSC
and DSC is determined only by its already selected neighbors
in Tu.
(4) Suppose u ∈ Y D becomes active at time t1 under DSC.
Then, for each w ∈ Y D ∩ Tu that became active before t1, u
received an activation message from w before time t1.
If this were not true for some w, then note that u would not
have activated itself at t1, since it would find its own ap to be
higher than that of w.

We seek to prove that Y C = Y D. Let Y C ̸= Y D instead,
and let j be the lowest index such that vj ̸= uj . Initially,
let us show by contradiction that j ≤ min(mC ,mD). First,
let mC > mD and j > mD. But then, the first mD sensors
selected by CSC constitute a sensor cover and therefore CSC
terminates after selecting at most the first mD sensors. Now,
let mC < mD and j > mC (in particular j = mC + 1)
and consider the vicinity of the node uj . From Property (2),
node uj was selected by DSC after every node in Y D

j−1 ∩
Tuj

= Y D
mC ∩ Tuj

= Y C ∩ Tuj
. However, since Y C is a

sensor cover, all intersection points in uj’s sensing range are
k-covered once DSC selects the nodes in Y C ∩ Tuj . Thus,
DSC does not select uj after it has selected the sensors in
Y D

j−1 ∩ Tuj , and thus it does not select uj at all. Thus,
j ≤ min(mC ,mD).

We now show that apDj ≥ apCj . If not, then apDj < apCj

and consider the j-th iteration of CSC. The algorithm selects
as the j-th active sensor, the unselected sensor with minimum
ap value. Recall that at this stage uj has not been selected by
CSC. Since Y C

j−1 = Y D
j−1, from properties (2), (3) and

(4) above, it follows that at the j-th iteration of CSC the ap
value of node uj is the same as apDj calculated by DSC.
This is true since the ap value of node uj depends only on its
selected neighbors in Y C

j−1∩Tuj = Y D
j−1∩Tuj , which are

the same sets 9 for both algorithms. Thus, CSC should select

8Here, by ap value of a node u ∈ Y D , we mean the latest ap value
calculated by u.

9Note that by property (4), just before uj selected itself under DSC, it had
updated its ap to account for the fact that all nodes in Y D

j−1 ∩ Tuj had
activated themselves.
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node uj rather than node vj , which contradicts the assumption
that apDj < apCj . Thus apDj ≥ apCj .

We next show that apDj ≤ apCj . If not, then apDj > apCj .
Since vj is in Y C , it holds that nodes in Y C

j−1 do not cover
all the intersection points covered by the node vj . Thus, there
are some nodes, denoted by set W , in the vicinity of vj , i.e.,
W ⊆ Tvj ∪ {vj}, that are selected by DSC and are not in
Y D

j−1. First, assume that vj is the first node in W selected
by DSC. From Property (3) above, vj’s ap value is determined
only by the selected sensors in Y D

j−1 = Y C
j−1. Thus, by

Property (4), vj’s ap value at the time it is selected by DSC,
is the same value as that at the time it is selected by CSC, i.e.,
vj’s ap value is apCj , which contradicts the assumption that
apDj > apCj . Thus, vj is not the first node in W selected
by DSC. Let x ∈ W , x ̸= vj be the first node in W selected
by DSC and let apDx denote its ap value at the time it was
selected by DSC, say time tx. From our assumption, it follows
that apDx ≥ apDj > apCj . Now, consider the ap value of
node vj as calculated by DSC just before time tx when node
x is selected. Since x ̸= vj is the first node in W selected by
DSC, just before time tx, the neighbors of vj selected by DSC
must be from the set Y D

j−1. (Note that all the neighbors of
vj in Y D

j−1 may not necessarily have been selected). From
Property (3), it holds that the ap value of vj is determined
only by its selected neighbors. Thus, the ap value of vj just
before time tx as calculated by DSC, denoted by apDvj , is at
most apCj . Thus, apDvj

≤ apCj < apDj ≤ apDx. But then,
vj should have been selected by DSC rather than node x and
its ap value should have been apDvj , which contradicts the
assumption that apDj > apCj .

Thus, apDj = apCj . Hence, ID(uj) = ID(vj). Thus,
uj = vj , which is a contradiction. The result follows.

The following lemma gives the message complexity of DSC.
Lemma 1: The number of messages transmitted in a run of

DSC is at most n(ñ+2), where ñ is the size of the sensor cover
found. Hence, the average number of messages transmitted per
sensor is at most (ñ+2), which is upper bounded by (n+2).
We omit the proof due to space constraints.

Remark 2: Our simulations reveal that the actual number
of messages per node is much lower than ñ + 2 (see Sec-
tion IX-C).

B. DLM Algorithm– Analysis

We now prove an approximation ratio for the lifetime
attained by the Distributed Lifetime Maximization (DLM)
algorithm in Fig. 2. Our analysis is similar to the ones used by
Aspnes et al. [26] for online machine scheduling and virtual
circuit routing problems, and Awerbuch et. al [4], [5] for the
online virtual circuit routing problem.

Recall from Section II-A that a sensor that is active in a
slot consumes 1 unit of energy and a sensor in sleep mode
consumes no energy. Throughout this section, all logarithms
are to the base 2. Finally, for proving the approximation ratio,
we additionally assume that the initial energy of each sensor
is large enough:

Assumption 1: Bu ≥ logµ, u ∈ S.
For simplicity, in the proof, we assume that Bu, u ∈ S are

integers. The proof can be easily extended to the case when
they are real numbers.

1) The DLM-T Algorithm: We describe in Fig. 5, DLM-T
(Truncated DLM), a modified version of DLM, that will be
used to prove an approximation ratio for DLM.

The DLM-T Algorithm

begin
1: Let cu(j) = µlu(j) and wu(j) =

cu(j)
Bu

be the weight of sensor u at the
beginning of slot j.

2: At the beginning of slot j:
3: Using DSC in Fig. 3, find an O(log n)-approximate minimum weight sensor cover

S(j) with weight:
W (j) =

∑
u∈S(j)

wu(j)

4: If W (j) ≤ 2n, then activate the sensor cover S(j) in slot j, otherwise declare the
network as dead.

end

Fig. 5. The DLM-T Algorithm

Note that DLM-T differs from DLM in the following: (i)
the criterion it uses to declare the network as dead (step 4)
(ii) it does not use a weight equal to ∞ for a sensor u with 0
remaining energy, but a weight of µ

Bu
(iii) it considers all

nodes in the sensor cover selection process whereas DLM
considers only those that have at least one unit of energy
remaining. It is therefore not clear whether DLM-T selects
nodes that have at least one unit of energy left. The next lemma
however shows that this is indeed the case.

Lemma 2: Under the DLM-T algorithm, if a sensor is
activated at the beginning of slot j, it has at least one unit
of energy remaining.

Proof: We need to show that for any j ≥ 1, for any
u ∈ S(j), lu(j) ≤ 1 − 1

Bu
. Note that W (j) ≤ 2n. Thus, for

any such u,

wu(j) ≤ W (j) ≤ 2n

Hence,

µlu(j) = Buwu(j) ≤ 2nBu ≤ 2nB =
µ

2
= µ1− 1

log µ

where the last equality follows since the logarithms are to the
base 2. So,

lu(j) ≤ 1− 1

logµ
≤ 1− 1

Bu

by Assumption 1. The result follows.
The next result establishes the relation between the lifetimes

of the DLM and DLM-T algorithms.
Lemma 3: The lifetime of the network under the DLM

algorithm is greater than or equal to that under DLM-T.
We omit the proof due to space constraints.

Note that unlike DLM, DLM-T requires not only the
determination of an O(logn)-approximate minimum weight
sensor cover, but also the calculation of its weight. The latter
requires network-wide coordination. Nevertheless, it follows
from Lemma 3 that any approximation ratio that holds for
the lifetime of DLM-T, holds for DLM as well. We therefore
prove an approximation ratio for DLM, by proving one for
DLM-T next.
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2) Approximation Ratio: Now, we prove that the lifetime
achieved by DLM-T is at most a factor O((log n)(logµ))
lower than that achieved by an optimal algorithm OPT. Al-
though DLM-T computes a sensor cover once every slot,
we allow OPT to compute sensor covers M times every
slot (M ≥ 1), and obtain the above approximation ratio
irrespective of M. Specifically, we divide each slot into M
equal parts, which we call mini-slots, where M ≥ 1 is an
arbitrary integer, and allow the OPT algorithm to compute a
sensor cover at the beginning of each mini-slot.

Let L be the network lifetime under the DLM-T algorithm
and L∗ be the network lifetime under OPT. Without loss of
generality, assume that L∗ is an integer 10. Also, let L =
{1, . . . , L} be the set of slots when the network is alive under
DLM-T and L∗ = {L + 1, . . . , L∗} be the set of slots when
the network is dead under DLM-T, but alive under OPT.

We can view the situation after the network dies under
DLM-T as if at the beginning of every slot j ∈ L∗, the
network finds an approximate minimum weight sensor cover
(it finds the same sensor cover for each j ∈ L∗) and since the
weight of this cover is greater than 2n, it does not activate it.
Under DLM-T, no sensor is activated after slot L and hence
the weights of all sensors remain unchanged thereafter.

Similar to the definitions of bu(j), lu(j), cu(j) and wu(j),
define bu(j, l) to be the amount of energy of sensor u that has
been consumed at the beginning of the l’th mini-slot of the
j’th slot, lu(j, l) =

bu(j,l)
Bu

, cu(j, l) = µlu(j,l) and the weight
of sensor u to be wu(j, l) =

cu(j,l)
Bu

.
Let S(j) be the sensor cover found by DLM-T in slot j

and W (j) be its weight. Let S∗(j, l) be the sensor cover used
by OPT in the l’th mini-slot of slot j, where l ∈ {1, . . . ,M}.
Also, let W ∗(j, l) be the sum of the weights of the sensors
in S∗(j, l) at the beginning of the l’th mini-slot of the j’th
slot, when the network is running DLM-T. We emphasize that
the sensor cover S∗(j, l) is the one used by OPT in the l’th
mini-slot of slot j, but the weights of the sensors in W ∗(j, l)
are those when the network is running DLM-T.

From the facts that (i) in each slot j, DLM-T finds an
O(logn)-approximate minimum weight sensor cover and (ii)
the weight of each sensor is an increasing function of time,
we get that there exists a constant α such that for each slot j:

W (j) ≤ (α log n)W ∗(j, l), l ∈ {1, . . . ,M}. (2)

The following theorem proves the approximation ratio
achieved by DLM-T.

Theorem 4: L∗ is at most an O((log n)(logµ)) factor
greater than L.

Theorem 4 proves the surprising result that DLM achieves a
non-trivial approximation ratio (O((log n)(logµ))) even when
compared to an optimal algorithm that computes sensor covers
much more frequently than DLM and the approximation ratio
is independent of M . Note that as M is increased, OPT’s
lifetime may increase (but is upper bounded by nB), and thus
the ratio between the lifetimes attained by OPT and DLM
may well be different for different M. However, our analysis
reveals that this ratio is upper-bounded by O((log n)(logµ))
for all M.

10If L∗ is not an integer, then in the proof of Theorem 4, we can replace
L∗ by ⌊L∗⌋ and then use the fact that L∗ ≤ ⌊L∗⌋+ 1.

The proof proceeds as follows. We first upper bound the
amount by which the network lifetime under OPT can exceed
that under the DLM-T algorithm (Lemma 4). Next, we lower
bound the lifetime achieved by DLM-T (Lemma 5). Finally,
we obtain an upper bound on the ratio L∗

L by combining the
above bounds.

Lemma 4:

L∗ − L ≤ α log n

2n

∑
u∈S

cu(L+ 1) (3)

Proof: We define the indicator function:

I{u ∈ S∗(j, l)} =

{
1 if u ∈ S∗(j, l)
0 else

Since W (j) > 2n for j ∈ L∗, from (2) it follows that:

W ∗(j, l) ≥ 2n

α log n
, ∀j ∈ L∗, l ∈ {1, . . . ,M}

Summing the above over j ∈ L∗ and l:

∑
j∈L∗

M∑
l=1

W ∗(j, l) ≥ 2n

α log n
(L∗ − L)M (4)

Hence,

2nM

α log n
(L∗ − L)

≤
∑
j∈L∗

M∑
l=1

∑
u∈S∗(j,l)

1

Bu
cu(j, l)

=
∑
j∈L∗

M∑
l=1

∑
u∈S∗(j,l)

1

Bu
cu(L+ 1) (5)

=
∑
j∈L∗

M∑
l=1

∑
u∈S

cu(L+ 1)

Bu
I{u ∈ S∗(j, l)}

=
∑
u∈S

cu(L+ 1)

 1

Bu

∑
j∈L∗

M∑
l=1

I{u ∈ S∗(j, l)}


≤ M

∑
u∈S

cu(L+ 1) (6)

where in (5), we used the fact that since the network is
dead under DLM-T at the beginning of slot L + 1, the
energy of each sensor remains same thereafter and hence
cu(j, l) = cu(L + 1) ∀j ∈ L∗, l ∈ {1, . . . ,M}. Also, we
get (6) from the inequality:

∑
j∈L∗

M∑
l=1

I{u ∈ S∗(j, l)} ≤ MBu,

which is true because its left hand side is the total number
of mini-slots in slots j ∈ L∗, in which sensor u is activated
under OPT, and cannot exceed M times u’s initial energy Bu.

The result follows from (6).
Lemma 5: ∑

u∈S

cu(L+ 1) ≤ n(2L logµ+ 1) (7)
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Proof: We begin by upper bounding the total growth in
the functions cu(.) of sensors u ∈ S(j) over slot j. For slot
j ∈ L, we have:∑
u∈S(j)

(cu(j + 1)− cu(j)) =
∑

u∈S(j)

(µlu(j)+
1

Bu − µlu(j))

=
∑

u∈S(j)

µlu(j)(2
log µ
Bu − 1)

≤
∑

u∈S(j)

µlu(j)

(
logµ

Bu

)
(8)

= logµ
∑

u∈S(j)

µlu(j)

Bu

≤ 2n logµ (9)

where (8) results from the facts that log µ
Bu

≤ 1 by Assumption 1
and 2x − 1 ≤ x ∀x ∈ [0, 1]. Inequality (9) follows from:∑

u∈S(j)

µlu(j)

Bu
= W (j) ≤ 2n

which is true because the network is not declared dead by
DLM-T at the beginning of slot j.

Now, in slot j, the energy of sensors u /∈ S(j) does not
change and hence cu(j + 1) = cu(j) ∀u /∈ S(j). So we get:∑

u∈S

(cu(j + 1)− cu(j)) =
∑

u∈S(j)

(cu(j + 1)− cu(j))

≤ 2n logµ

Summing this inequality over j ∈ L:
L∑

j=1

∑
u∈S

(cu(j + 1)− cu(j)) ≤ 2nL logµ

The left hand side is a telescoping sum. So we get:∑
u∈S

cu(L+ 1) ≤ 2nL logµ+
∑
u∈S

cu(1)

But cu(1) = µ0 = 1 ∀u ∈ S. Thus,∑
u∈S

cu(L+ 1) ≤ n(2L logµ+ 1)

Proof of Theorem 4: By Lemmas 4 and 5:

L∗ ≤ L(α(log n)(logµ) + 1) +
α log n

2

The result follows since α is a constant.
Remark 3: For simplicity, we assumed that OPT computes

a sensor cover every 1
M slots, for an integer M . It is easy

to show that Theorem 4 continues to hold even when OPT
computes a sensor cover every τ slots for an arbitrary real
number τ > 0.

IX. SIMULATIONS

We now evaluate the performance of DLM using simula-
tions. We consider a WSN with n sensors, each with an initial
energy of B units, sensing and transmission radii of 10 and 22
units respectively, deployed uniformly at random in a 50× 50
units2 target field. Each time slot was 1 unit long.

A. Lifetime Comparison with Other Schemes

We compared the lifetimes of the network under three
algorithms: the DLM algorithm (Fig. 2), the Garg-Konemann
(GK) algorithm [10] and a heuristic proposed in [12], [20]
that we denote by Min-Num. At every slot, Min-Num finds
a sensor cover with the minimum number of nodes (up to an
O(logn) factor) and activates it. GK [10] generates a sequence
of sets of weights to assign to the sensors and finds O(logn)-
approximate minimum weight sensor covers for each set of
weights. When the initial energy of each sensor is the same,
each sensor cover selected by GK is activated for an equal
amount of time, which is a monotonically increasing function
of an input parameter ϵ. Thus, the number of sensor cover com-
putations per slot, and hence the computation time required
for GK, increases as ϵ decreases. The lifetime approximation
ratio guaranteed for the GK algorithm however worsens with
increase in ϵ 11.

First, we plot in Fig. 6, lifetimes achieved by DLM, Min-
Num, GK as a function of n, for B = 15. For GK, we select (i)
ϵ such that it computes sensor covers at the same rate per unit
time as DLM and Min-Num (i.e., approximately once every
slot) (denoted by GK(1 slot)) and (ii) ϵ = 0.05 (denoted by
GK(ϵ = 0.05)). In (ii), GK computes sensor covers between
127.2 (for n = 100) and 146.1 (for n = 200) times per slot
for the range of n we considered. Next, in Fig. 7, we plot the
lifetimes of DLM, Min-Num, GK(1 slot) 12 and GK(ϵ = 0.05)
as a function of B for n = 150. GK(ϵ = 0.05) computes
sensor covers between 41.5 (for B = 50) and 138.3 (for
B = 15) times per slot for the considered range of B. The
figures show that the lifetimes achieved by GK(ϵ = 0.05) are
very close to those by DLM, whereas those by GK(1 slot)
are much lower. So GK and DLM perform similarly only
when GK computes sensor covers much more frequently than
DLM, and DLM outperforms GK otherwise. Thus, although
GK guarantees a better approximation ratio (while using
centralized computation and location information), in practice,
DLM outperforms GK. DLM substantially out-performs Min-
Num as well, which suggests that lifetime can be substantially
enhanced by deciding which sensors to activate based on their
residual energy.
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Fig. 6. Plot of lifetimes of DLM, GK (1 slot), Min-Num and GK (ϵ = 0.05)
vs. n for B = 15 units

11The network lifetime under the GK algorithm is guaranteed to be at most
a factor (1 + ϵ)f less than the optimal lifetime, where f = O(log n) is the
approximation ratio of the algorithm used for finding minimum weight sensor
covers [10].

12The values of ϵ used for GK(1 slot) lie in [0.67,0.72] for Fig. 6 and in
[0.35,0.70] for Fig. 7.
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B. Sensitivity of Lifetime to µ

Recall that DLM assigns weights to sensors using a param-
eter µ. In order to study the sensitivity of DLM to the value
of µ, we fixed the values of n and B and plot in Fig. 8,
the lifetime of DLM using values of µ between 2 and 40000.
The plot shows that the lifetime achieved by DLM is roughly
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Fig. 8. Plot of lifetimes of the DLM algorithm vs. µ for (n = 150, B = 20),
(n = 150, B = 50) and (n = 200, B = 20)

the same for different values of µ. This suggests that high
lifetimes can be attained even without selecting µ = 4nB,
as required for proving the approximation guarantee. Thus, in
practice, the sensors need not exchange any global information
(specifically, n,B) even during the initialization phase.

C. Convergence Time and Message Complexity of DSC
Now, we study via simulations, the amount of time taken by

DSC to converge. We consider the impact of different models
for the message propagation times on the convergence time.
Under each of these models, whenever a node transmits a
status update message (of type “I-Am-Active”, “Change-of-
AP” or “I-Am-Sleeping”), the delay until reception by each
contending neighbor is an independent, identically distributed
(i.i.d.) random variable. We consider three different distribu-
tions for this delay: Constant, Uniform and Geometric. In
the Constant model, the delay is constant and equals 1 nunit
(nanounit, i.e., 1 × 10−9 units) 13. In the Uniform model,
the delay is uniformly distributed in the range

[
2
3 ,

4
3

]
nunits.

In the Geometric model, the delay equals
∑Ñ

i=1 X̃i, where
Ñ has a geometric distribution [28] with success probability
p = 0.9 and X̃1, X̃2, . . . are i.i.d. random variables uniformly

13Recall, from Section VI, that a slot duration is of the order of at least
several minutes. Also, the expected delay would be of the order of a few
microseconds. Hence, the expected delay would be of the order of 10−9 of
a slot duration, e.g., the slot duration and the expected delay may be 1000s
and 1µs respectively.

distributed in the range
[
20
21p,

22
21p

]
nunits. Note that the

Geometric model simulates the scenario in which a message
may be received in error by the receiver with some probability
and is repeatedly retransmitted until received successfully. For
a fair comparison, the parameters of each model have been
selected such that the expected delay is 1 nunit.

We plot in Fig. 9, the average convergence times of the DSC
algorithm over the network lifetime for the above three delay
models as a function of n. We also plot 2 times the average
of the size (ñ) of the sensor cover found by DSC 14. The
figure shows that under each delay model, DSC converges in
a time that is significantly lower than 2n times the expected
delay of 1 nunit, i.e. 2n nunits, and also much lower than
2× (the average ñ) nunits. Thus, the convergence times of
DSC in practice are much lower than the pessimistic analytical
bounds in Theorem 2 and Remark 1. Fig. 9 also shows that
the convergence time in all three delay models is very small
(less than 37 nunits) compared to the slot duration.
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Fig. 9. The convergence times (in nunits) of the DSC algorithm versus n for
the Constant, Uniform and Geometric delay models. Also shown is 2 times
the average sensor cover size versus n.

Fig. 9 also shows that the convergence time decreases in
n for the Constant model, and increases for the Uniform and
Geometric models. It increases slightly for the Uniform model
and somewhat faster for the Geometric model, but seems to
saturate for the latter. We now explore the reasons behind these
trends. Fig. 9 shows that the average size of the sensor cover
decreases in n. Intuitively this is because, for higher n, there
are more sensors to choose the sensor cover from and hence
smaller sensor covers are more likely to exist. This explains
the observed decrease in the convergence time with n for
the Constant model– for higher n, DSC finds a sensor cover
with fewer sensors and hence requires fewer status update
messages. However, the convergence time for the Uniform and
Geometric models increases in n because of the following
effect. For greater n, the average number of neighbors of a
node is higher. Hence, the average delay in communicating a
status update message to all contending neighbors is higher.
This leads to an increase in DSC’s convergence time.

Now, we study the message complexity of DSC. Fig. 10
shows the average number of messages transmitted per node 15

in a sensor cover computation, averaged over the network
lifetime, and the upper bound analytically established in
Lemma 1. The figure shows that the average number of

14Note that by Theorem 3, DSC finds the same sensor cover independent
of the delay model.

15The number of messages in the plot is for the Constant delay model. The
number of messages for the Uniform and Geometric delay models are very
close to that for the Constant model.
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messages transmitted per node in a sensor cover computation
is quite low (less than 6.2). Hence, the energy consumption
due to the transmission of messages is small. Fig. 10 also
shows that the message complexity is much lower than the
upper bound. This is because, when a node activates itself,
the ap of a small number of nodes changes; in the calculation
of the bound, this number was upper bounded by n.
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Fig. 10. The average number of messages transmitted per node during the
DSC algorithm and the upper bound established in Lemma 1, versus n.

D. Inaccurate Distance Measurements

In our analysis, we assumed that each node accurately
knows the distances between pairs of adjacent nodes in its
vicinity. However, in practice, there may be some errors in the
distance measurements. We now study the effect of inaccurate
distance measurements on the performance of our algorithm.
We assume that the measured distance between adjacent nodes
u and v is given by:

Eval Distu,v = du,v · (1 +X · Error Index)

where, du,v is the actual distance between the nodes, X ∼
N(0, 1) is a normal random variable and Error Index is a
simulation parameter that controls the variance of the distance
measurement errors. We varied Error Index in the range
[0.5, 5%]. Note that the error in distance measurements has
been experimentally found to be normally distributed [31],
and values of its variance similar to the ones we use have
been used in prior work [32].

Now, in the presence of random errors in the distance mea-
surements, coverage cannot always be guaranteed while also
maximizing lifetime. (Coverage can of course be guaranteed
even without the knowledge of distances by trivial algorithms
such as those that activate all sensors, but these algorithms will
have low lifetimes). So instead, we seek a tradeoff between
coverage and lifetime, which we achieve via a minor heuristic
modification to our algorithm, which is described below.

Recall that under the DSC algorithm, a sensor goes to sleep
when it finds that all intersection points in its sensing range are
covered by active sensors. When there are errors in distance
measurements, a sensor u may erroneously conclude (i) that
an intersection point in its sensing range, which is actually
covered by a sensor v, is not covered (false negative) or (ii) that
an intersection point in its sensing range, which is not actually
covered by an active sensor v, is covered (false positive).
Our simulations revealed that false negative instances occur
much more frequently than false positive instances. However,
a simple heuristic modification, which we describe next, can
be used to reduce the number of false negative instances

and thereby attain the desired tradeoffs between coverage and
lifetime.

While checking whether an intersection point in its sensing
range is covered by a sensor v, a sensor u uses rv(1 +
Margin ∗ Error Index), instead of rv , as the sensing
radius of sensor v, where Margin is a parameter. The
larger the Margin, the more likely u is to conclude that v
covers the intersection point, which reduces the number of
false negatives. The top plot in Fig. 11 shows the lifetime,
normalized with respect to the lifetime with no errors in
distances, and the fraction of the target field covered versus
Margin for Error Index = 5%. The plot shows that the
lifetime increases significantly as Margin is increased, but
the fraction of the target field covered drops slightly below
1. Note that for large choices of Margin, the lifetime is
more than the lifetime with no errors in distances, but the
deterministic coverage guarantee is lost. The bottom plot in
Fig. 11 shows the normalized lifetime versus Error Index
when Margin is chosen so that, approximately, a fraction 0.95
of the target field is covered. It can be seen that the normalized
lifetime is close to 1 for all values of Error Index. Thus, in
the presence of errors in distance measurements, the desired
tradeoff between lifetime and coverage can be achieved by
using the above heuristic modification to the algorithm and
selecting the margin appropriately.
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Fig. 11. The top plot shows the normalized lifetime and the fraction of
the target field covered versus Margin for Error Index = 5%. The
bottom plot shows the normalized lifetime versus Error Index for Margin
corresponding to a coverage of approximately 0.95. For both plots, n = 150
and B = 15.

X. CONCLUSION

We designed a distributed, coordinate-free algorithm for
attaining high lifetimes in sensor networks, subject to ensuring
the k-coverage of the target field during the network lifetime.
We proved that the lifetime attained by our algorithm approx-
imates the maximum possible lifetime within a logarithmic
approximation factor. Simulation results reveal that our al-
gorithm substantially outperforms other schemes for lifetime
maximization.
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