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Abstract— We consider a wireless system with multiple chan-
nels when each channel has several different transmission states.
Different states are associated with different probabilities of suc-
cessful transmissions. In such networks, we are faced with making
transmission decisions in the presence of partial information
about channel states. This (typically probabilistic) information
about any channel can be refined by sending control packets in
the channels. In presence of multiple alternative channels, this
process of probing every channel to find the best one is onerous
and resource consuming. There is a natural tradeoff between the
resource consumed in probing and the estimate of channel state
we can obtain. The desired tradeoff can be attained by judiciously
determining which and how many channels to probe and also
which channel to transmit. We present adaptive algorithms for
provably approximating the desired tradeoffs within constant
factors.

I. I NTRODUCTION

Future wireless networks are likely to provide each node
access to a large number of channels. A channel can for
example be a frequency in a frequency division multiple
access (FDMA) network, or a code in a code division multiple
access (CDMA) network, or an antenna or a polarization state
(vertical or horizontal) of an antenna in a device with multiple
antennas (MIMO). Several existing wireless technologies, e.g.,
IEEE 802.11a [1], IEEE802.11b [8], IEEE802.11h [2] propose
to use multiple frequencies. For example, IEEE 802.11a pro-
tocol has8 channels for indoor use and4 channels for outdoor
use in the 5GHz band, while the IEEE 802.11b protocol has
3 channels in the2.4GHz band. The potential deregulation
of the wireless spectrum is likely to enable the use of a
significantly larger number of frequencies. Due to significant
advances in device technology, laptops with multiple antennas
(antenna arrays) incorporated in the front lid, and devices with
smart antennas have already been developed, and the number
of such antennas are likely to significantly increase in near
future. This increase in the number of channels is expected to
significantly enhance network capacity and enable several new
bandwidth-intensive applications as multiple transmissions can
now proceed simultaneously in a vicinity using different
channels, and the probability (at any given time) of existence
of at least one channel with acceptable transmission quality
significantly increases.

The main challenge, however, in exploiting multiple chan-
nels is that a node has only limited information about the trans-

mission quality of the individual channels which stochastically
vary with time. Presumably, a node’s transmission decisions
will become closer to optimal as the available information
about its channels increases. However, the bandwidth and the
energy expended in acquiring such information also increases
with the amount of information acquired. Note that a node
usually probes in a channel by transmitting a control packet
in the channel, and the receiver informs the sender about the
quality of the channel in a response packet (e.g., the RTS
and CTS packet exchange in IEEE 802.11). The exchange of
control packets consumes additional energy, and prevents other
neighboring users from simultaneously utilizing the channel.
Thus, each probe is associated with a cost.

Owing to the probing costs, the amount of information
a node acquires about its channels becomes an important
decision variable. Before each transmission, a node needs to
determine how many and which channels it will probe and also
the sequence in which these channels will be probed (probing
policy). Note that depending on the available hardware (e.g.,
availability, or lack thereof, of multiple network interface
cards, or compatible transmission circuits to appropriately
distribute the power across the antennas), a node may, or may
not, be able to simultaneously transmit in multiple channels. In
this paper, we consider the scenario where a node can transmit
in only one channel in a time slot and transmits one packet in
each slot. Based on the outcomes of the probes, a node must
select one of the available channels (channel selection policy),
which need not be those that it has probed.

An important performance goal in such networks is to de-
sign a jointly optimal probing and channel selection policy that
maximizes a system utility which is the difference between
the probability of successful transmission and the expected
probing cost before each transmission. Loosely, this utility
function represents the “gain” or the “profit” of the sender
if the sender receives credit from the receiver for each packet
it delivers successfully and needs to additionally compensate
the wireless provider for each probe packet it transmits1.

We first enumerate the challenges in designing the optimal
policy. We consider a single node with access ton channels.
The optimal policy needs to probe adaptively, i.e., the result

1The sender may have to share with the provider part of the credit it receives
from the receiver for each successfully delivered packet; then the credit we
are considering here is the credit remaining after the sharing process.



of a probe determines the channels to be probed subsequently.
For example, consider channels with3 possible states (0, 1, 2),
each of which is associated with a different transmission
quality. Clearly, the probing terminates if a probed channel
is in the highest state. Now, let a probed channel be in the
intermediate state (state1). Then the subsequent probes should
be limited to channels that have high probabilities of being
in the highest state. However, if all channels that have been
probed in a slot are in the lowest state, then the channels
that have high probabilities of being in the intermediate state
may also be subsequently probed. Furthermore, the channel
selection decision depends on the outcome of the probes and
also the expectation and uncertainty of the transmission quality
of the channels that have not been probed. The optimal policy
is therefore a decision tree overn variables. The time to
compute the optimum decision tree using a naive optimization
which evaluates all the decisions trees overn variables is
therefore clearly exponential in the problem size. Next,
the space required to store the optimum tree will also be
exponential in the problem space as this requires storage of
decisions associated with all the branches.

In a companion paper [10], we have showed that for two
state channels the optimum policy can be computed and
stored in polynomial complexity. In this paper, we show
that for an arbitrary number of states the optimal net gain
can be approximated within a factor of12 using a simple
approximation algorithm (Section IV), and when the number
of states is3 the approximation ratio can be improved to23
(Section V). The computation and storage complexities of our
policies are polynomial in the number of channels. We review
the related work in Section II and define the system model in
Section III.

II. RELATED WORK

Opportunistic selection of channels with complete knowl-
edge of channel states has been comprehensively investigated
over the last decade (e.g., [18]). The joint optimization of the
reward obtained from informed selections and the cost incurred
in acquiring the required information however remains largely
unexplored. Recently, Kanodiaet. al. [13] and Jiet. al. [12]
considered scenarios where a node probes multiple channels
and selects a channel based on the outcomes of the probes.
They consider only statistically identical channels with equal
probing costs and assume that a node can transmit in only a
channel that has been probed. Thus, their problem reduces to
a decision of how many channels to probe which is equivalent
to that of the well-investigated optimal stopping time problem
[5]. Optimizing the order of evaluation of random variables so
as to minimize the cost of evaluation (“pipelined filters”) has
been investigated in several different contexts like diagnostic
tests in fault detection and medical diagnosis, optimizing
conjunctive query and joint ordering in data-stream systems,
web services, and sensor networks [6], [14], [11], [7], [15],
[3], [16], [17], [4]. However our work is different from all
the above (including [13], [12]) in that, we allow a node
to transmit in a channel even if the channel has not been

probed. Furthermore, we allow for channels with different
distributions of the transmission qualities and different probing
costs which is not considered in [13], [12], and consider multi-
state channel models which pipeline filters seldom consider.
These complications significantly alter the decision issues and
the optimal solutions.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A senderU has access ton channels which are denoted
as channels1, 2, . . . , n, each of which hasK possible states,
0, . . . ,K − 1. We assume that time is slotted. In any slot
channelj is in statei with probability pij independent of
its state in other slots and the states of other channels in any
slot. In any slot,U transmits a data packet in one channel,
and if the channel is in statej, the transmission is successful
with probability rj . Thus, rj is the reward associated with
statej. Without loss of generality we assume0 ≤ r0 < r1 <
· · · < rK−1. For simplicity, we also assume thatr0 = 0; all
analytical results can however be generalized to the scenario
wherer0 > 0. WheneverU probes a channeli, it pays a cost
of ci ≥ 0. Probing different channels may incur different costs
as the probing process for different channels may interfere
with the channel access of different number of users (based
on geometry and allocation of channels). We now formally
define the policies and the performance metrics.

Definition 3.1: A probing policy is a rule that, given the
set of channels the sender has already probed in a slot (which
would be empty at the beginning of the slot) and the states
of the channels probed in the slot, determines (a) whether the
sender should probe any more channels and (b) if the sender
probes additional channels which channel it should probe next.
The sender knows the state of a channel in a slot if and only
if it probes the channel in the slot.

Definition 3.2: A selection policyis a rule that selects a
channel for the transmission of a data packet in a slot on the
basis of the states of the probed channels, after the completion
of the probing process in the slot. The selection policy can
select a channel even if it has not been probed in the slot, and
in that case, the channel is referred to as abackup channel.

Definition 3.3: Theprobing cost is the sum of the costs of
all channels probed in the slot. The probing cost is clearly a
random variable that depends on the probing policy and the
outcomes of the probes (as the sender may probe subsequent
channels depending on the outcomes of the previous probes).
The expected probing costis the expectation of this random
variable and depends on both the probing policy and the
channel statistics.

Definition 3.4: In any slot, thetransmission rewardis 1
if the packet is successfully transmitted in the slot and0
otherwise. Again, thetransmission rewardin any slot is a
random variable that depends on the probing and selection
policies and the states of the channels in the slot. Theexpected
transmission rewarddepends on the probing and selection
policies and the channel statistics.



Definition 3.5: The expected net gainof the sender, de-
noted simply asgain , is the difference between the expected
transmission reward and expected probing cost. This depends
on the probing and selection policies and the channel statistics.

Problem Definition: Given {ci}, {ri} and {pij} find a
probing and selection policy so as to maximize the expected
gain for independent channels. LetOPT denote the denote
gain of the optimal policy.

Since we are considering the independent channel model,
the optimal probing and selection policies in a slot need not
depend on the decisions and the observations in other slots.
Also, the optimal policies remain the same in all slots, though
the specific choices made by each policy may be different in
different slots depending on the outcome of the probes.

In [10], we showed that the optimal probing and channel
selection policy for two state channels can be computed in
polynomial time. In this paper we considerK state channels
whenK ≥ 3.

IV. OPTIMAL POLICIES WHEN K ≥ 3

We first show that the optimal policy in the class of policies
that does not transmit on an unprobed (backup) channel can
be computed in polynomial time (Subsection IV-A). We then
obtain a policy that may transmit in a backup channel, but is
guaranteed to attain at least1

2 the maximum gain in the class
of all policies that may or may not use backup (Subsection IV-
B).

A. Optimal Algorithm without Backups

We present an optimal polynomial time algorithm for multi-
state channels when no backup channel is allowed to be used.
We first introduce the following definition.

Definition 4.1: Define r̃i[u] =∑
v:u≤v pvirvi

/∑
v:u≤v pvi and p̃i[u] =

∑
v:u≤v pvi. Define

Hu = Φ for all u > K. Recursively, starting fromHK , define
Hu =

{
i|i 6∈

⋃
v:v>u Hv and r̃i[u]− ci

p̃i[u] > ru−1

}
.

Assumeci/p̃i[u] = +∞ when p̃i[u] = 0.

OPTNOBKUP

Consider eachHu in decreasing order ofu starting from
u = K.
Within eachHu probe in non-increasing order of̃rj [u] −

cj

p̃j [u]
, and stop if any channel is found to be in stateu or

above.
Select the channel which is in the highest state among all
probed channels.

We now present the intuition behind OPTNOBKUP. Note
that once a sender observes that a probed channel is in stateu
it can not increase its gain any further by discovering another
probed channel in stateu or lower. Thus, subsequently it
probes only the channelsj for which the incremental gain
(r̃j [u + 1]p̃j [u + 1] − ru) is less than the costcj , i.e., the

channels inHv, v > u. The probing sequence in eachHu

naturally follows an increasing order of the incremental gains.

Theorem 4.1:The expected gain of OPTNOBKUP is max-
imum among all strategies that do not use a backup.

Proof: The proof follows immediately from Lemmas 4.2
and 4.3.

Lemma 4.2:The optimum policy probes only channels in⋃
v>u Hv, after it observes a channel to be in stateu. Further

if there an is un-probed channel in
⋃

v>u Hv and the best
state seen so far isu, then probing that channel improves the
expected gain.

Proof: The proof is immediate foru = K, where no
further probing is needed. Considerj 6∈

⋃
v>u

Hv. Sincej 6∈

Hu+1 we know thatr̃j [u + 1]p̃i[u + 1]− ru ≤ ci. But r̃j [u +
1]p̃i[u + 1] − ru is the expected gain (over the already seen
channel in stateu), and this is less than the cost of probing
the channel. Clearly it is suboptimal to probe such a channel
after we have seen a channel at stateu. Likewise considerj
in Hv for somev > u. The expected gain (reward minus cost)
of probing j is r̃j [v]p̃j [v]− cj − ru > rv − ru > 0.

The optimum cannot therefore “stop” in a stateu if any
channel fromHv for somev > u is left unprobed.

Lemma 4.3:The optimum policy must probe the channels
of Hu in non-increasing order of̃rj [u]− cj

p̃j [u] provided it has
not seen a channel in stateu or better so far. Further ifv > u
then the optimum policy must probe all the channels ofHv

before probing any channel inHu.
Proof: We will prove by induction, first onu (starting

from u = K+1) and then on the number of unprobed channels
of Hu remaining in a particular sequence/run of the optimum
policy. The base case isu > K and there is nothing to prove.

Assume that we are in some inductive caseu. We assume
there is some channel inHu which is unprobed and the best
state seen so far is worse thanu; otherwise there is nothing
to prove foru. Among those (unprobed) channels ofHu let j
be the channel with the largestr̃j [u]− cj

p̃j [u] value.
Suppose the optimum policy at the current point is to probe

somei 6= j contradicting the hypothesis.
If we find the channeli in stateu or better, the optimum

policy is to stop since by the induction hypothesis onv > u all
states inHv have been probed and there is no further benefit
(in expectation) possible by Lemma (4.2). If we observe any
worse state, we probej next by the induction hypothesis (since
the number of unprobed channels inHu decreases, we can
apply the hypothesis).

The situation resembles a decision tree as in Figure (1a).
The treesT1 . . . Tu2 correspond to observing the ordered pair
(i = u′, j = u′′) where0 ≤ u′, u′′ ≤ u− 1. The square boxes
denote that we will definitely not probe anything else.

Now consider an alternate scenario of probing as shown in
Figure (1b) wherej is probed first and theni. The treeT ′

corresponding to the ordered pair(i = u′, j = u′′) is assigned
appropriately, on the branch corresponding to observingj in
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Fig. 1. The decision trees of the Optimal policy foru = 3

u′′ and subsequently observingi in u′. The contributions to
the gain from the treesT1, . . . Tu2 remain the same because
in both the scenarios the probability of probing these trees are
the same.

The expected gain from scenario (a) (from not considering
T1 etc.) is p̃i[u]r̃i[u]− ci + (1− p̃i[u])[p̃j [u]r̃j [u]− cj ]. This
accounts for stopping after probingi as well as stopping after
probing i and thenj. Note that the reward for probingj is
r̃j [u]p̃j [u] which is the weighted reward from observingj in
statesu or better.

The expected gain in scenario (b) isp̃j [u]r̃j [u]− cj + (1−
p̃j [u])[p̃i[u]r̃i[u] − ci]. Now if i ∈ Hu then we havẽrj [u] −

cj

p̃j [u] > r̃i[u] − ci

p̃j [u] which is the condition that arises from
violating the non-increasing order.Otherwisei 6∈ Hu implies
r̃i[u]− ci

p̃i[u] ≤ ru−1. But r̃j [u]− cj

p̃j [u] > ru−1 sincej ∈ Hu.
Thereforein both caseswe haver̃j [u]− cj

p̃j [u] ≤ r̃i[u]− ci

p̃i[u] .
But this implies that

p̃j [u]r̃j [u]− cj + (1− p̃j [u]) {p̃i[u]r̃i[u]− ci}
−p̃i[u]r̃i[u] + ci − (1− p̃i[u]) {p̃j [u]r̃j [u]− cj} =

p̃i[u]p̃j [u]
(

r̃j [u]− cj

p̃j [u]
− r̃i[u] +

ci

p̃i[u]

)
> 0

Thus by considering the scenario (b), we increase the profit
of the optimum solution, which is impossible and we arrive at
a contradiction. Thus by induction the lemma is true.

B. Approximation Algorithm for the Backup Case

We now consider the case that the optimal policy can
transmit in an unprobed channel, and present a policy which
attains at least12 the optimal gain, and has a computation
complexity which is polynomial inn.

APPROXBKUP

Let ` denote the channel with the highest expected reward,
r̃`[0].
Compute the gainR of OPTNOBKUP.
If R > r̃`[0] then use OPTNOBKUP,
elsedo not probe any channels, and select`.

Theorem 4.4:The gain of algorithm APPROXBKUP is at
least half the optimal gain.

Proof: In the optimal policy, let the expected gain from
using backups (given a backup is used) bez and letα denote
the probability with which backups are used. Thus, the total
gain from the backups isαz. Let ALG denote the expected
gain of APPROXBKUP. We first have

ALG ≥ z. (1)

Now modify the optimal policy so that the backups are
not used, but the rest of the policy remains the same. Let
OPT ′ denote the expected gain of this policy, and letx
denote the expected gain of this policy given that the optimal
uses a backup. Then,OPT − OPT ′ = α(z − x). Thus,
OPT ≤ OPT ′+αz. In addition, since OPTNOBKUP returns
a solution with gain at leastOPT ′, we haveALG ≥ OPT ′.
Therefore,

ALG ≥ OPT − αz. (2)

Combining Equations 1 and 2, we have2ALG ≥ OPT .

Note that the gain of APPROXBKUP is at least
max(OPT

1+α , OPT −maxi ci), whereα is the probability with
which the optimal solution uses backups [9]. Thus, the ap-
proximation ratio is better than the worst case bound in many
cases.

V. THREE STATE CHANNELS

We present an improved approximation for3-state channels.

Definition 5.1: A 0/1-path in a decision tree is a sub-tree
where the next action is the same irrespective of whether a
probed channel is in state0 or 1.

Note that0/1 paths are not paths but behave like paths;
hence henceforth we will not distinguish between a path and
a 0/1 path. Recall thatH2 = {i|(r2− r1) > ci

p2i
}. andr̃i[0] =

r2p2i+r1p1i which is the expected benefit of using the channel
i as a backup.

Clearly, after having seen a channel in state1 the subsequent
sequence of actions are identical if a channel is observed in



state0 1. Thus, after a channel is seen in a state1, the optimal
decision tree becomes a path.

The key technical lemma in this section is the following.

Lemma 5.1:If the optimum policy uses a backup after
seeing some channelj in state1, then there exists another
optimal policy where the decision tree rooted at channelj
is a 0/1-path ending in the backup and the two policies are
otherwise the same.

Proof: Consider a node (say nodem) closest to the
decision tree at which some channelj is probed and the path
which corresponds to the observation thatj is in state1 uses
a backup channel. Since after a channel is observed in state1,
the decision tree becomes a0/1 path, the backup channel will
be used, unless a channel is observed in state2 somewhere
before. Note that the expected reward of this backup is at
leastr1. Let the decision tree that arises after probingj and
observing it to be in state0 be A. If we observej to be in
state1 then the decisions form a pathP . This is shown in
Figure 2(a).

Let the optimum policy traverse nodem with probability
p. Let G1 be the conditional expected gain of the optimum
policy if it does not traverse nodem, GA be the conditional
expected gain of the optimum policy if it traverses nodem
andj is observed to be in state0, andGP be the conditional
expected gain of the optimum policy if it traverses nodem
and j is observed to be in state1. Clearly, OPT = (1 −
p)G1 +p(p0jGA +p1jGP +p2jr2). Now, consider a modified
policy where the treeA is used in place of the pathP if j
is observed in state1 at nodem. We refer to the gain of this
policy asOPT ′. Clearly, OPT ′ = (1 − p)G1 + p(p0jGA +
p1jGA + p2jr2). Since OPT ′ ≤ OPT , GA ≤ GP . Now,
consider another policy which is obtained by modifying the
optimal policy as follows: pathP is used instead of treeA
when j is observed to be in state0 in nodem. We refer to
the gain of this policy asOPT ′′. Since unless a channel is
observed in state2, P uses a backup,GP is the optimal gain
of this policy given that it traverses nodem andj is observed
to be in state0. Thus, OPT ′′ = (1 − p)G1 + p(p0jGP +
p1jGP + p2jr2). SinceGP ≥ GA, OPT ′′ ≥ OPT. Thus, the
second modification corresponds to an optimal policy as well.
Note that the second modification is otherwise similar to the
original optimum, but its decision sub-tree rooted at nodem
is a 0/1 path. The result follows.

0
2

1
0

2

1

Backup

0 11
1

1

(a) (b) (c)

Fig. 2. The first two figures show how the paths are formed, (c) shows the
consequence of Lemma 5.1

Applying the above lemma bottom-up on the optimal deci-
sion tree yields the following structure theorem, whose proof
we omit.

Theorem 5.2 (Structure Theorem):For three-state chan-
nels, there exists an optimum policy that uses a unique backup
channel (if at all) on only one path.

The structure theorem implies that the choice of the backup
does not depend on the outcomes of the probes. Note that the
uniqueness of the path on which a backup is used implies that
the probability of using a backup is likely to be small. Further-
more, this theorem allows us to improve the approximation
guarantee to2/3 by combining the policies APPROXBKUP,
OPTNOBKUP and another policy RESERVEBKUP, which we
describe next.

Definition 5.2: Let P (`) denote the class of policies, each
of which (a) never probes̀ and (b) never use any channel
other thaǹ as a backup.

The best algorithm inP (`) (over all choices of̀ ) may still
be suboptimal, but will give us the desired approximation.
Consider the following algorithm.

RESERVEBKUP(`)

1) If r̃`[0] ≥ r1 then use the policy which is optimal
under the two state model among all policies that
usel as backup (the two state model is obtained by
treating state1 the same as state0, and the optimal
policy in this case has been obtained in [10]).

2) Otherwise (for the remainder of the algorithm,
r̃`[0] < r1) sort the channels inH2 \ {`} in
decreasing order ofr2 − c2j

p2j
.

3) Probe the channels inH2 \ {`} in the above order.
Stop if a channel is found to be in state2, and select
the channel.

4) If all channels inH2 \ {`} have been probed and if
a channel has been observed in state1, select that
channel.

5) Otherwise let H̃1(l) = {j|j 6∈ H2 ∪
{`} and

r̃j [0]−cj

1−p0j
> r̃`[0]}. Probe channels iñH1(l)

in order of decreasing
r̃j [0]−cj

1−p0j
and stop if any

channelj is observed in states2 or 1, and select
channelj.

6) If all the channels probed so far are in state0, use`
as a backup.

Lemma 5.3:The algorithm RESERVEBKUP(`) is optimal
for the class of policiesP (`).

Proof: First note if r̃`[0] ≥ r1 then the best algorithm
in the classP (`) will use the backup as long as no state is
observed in state2. In effect the algorithm will simply ignore
state1. This reduces this case to the two state problem with
backup (see [10]), and RESERVEBKUP uses this solution.

Thus it suffices to consider̃r`[0] < r1 in the rest of the
proof.

Using arguments similar to those in the proofs of Lemma 4.2
and Lemma 4.3, we can show the following.

1) All channels inH2\{`} must be probed unless a channel
is observed to be in state2.



2) The optimal policy probes the channels inH2 \ {`} in
decreasing order ofr2 − c2j

p2j
.

3) If some channel inH2 \ {`} is found to be in state1,
channels outsideH2 \ {`} need not be probed.

Parts (1) and (2) prove that the actions in step(3) of the
algorithm are optimal for algorithms inP (`).

Now, consider step(4) of the algorithm. From part (3) and
since r̃`[0] ≥ r1, after all channels inH2 \ {`} are probed, if
any channel has been found in state1, the probing will stop
and the channel must be selected. Thus, it follows that the
actions in step(4) of the algorithm are optimal for algorithms
in P (`).

We now outline the proof that the actions in step(5)
are optimal for algorithms inP (`). Note that the algorithm
executes step(5) only when all channels inH2 \ {`} are
observed to be in state0. Again note that at this stage if
any channel is found to be in state1 or 2, the probing must
stop and the channel must be selected. Thus, from this point
onwards, the best algorithm inP (`) must treat states1 and
2 as the same. Thus, the channels in effect have two states,
but the reward in state1 depends on the channel. We can
show that in this case the optimum algorithm inP (`) must
probe a channel iñH1(l) before using the backup (as then the
gain increases). Subsequently we show that two consequently
probed channels must be in non-increasing order ofr̃j [0]−cj

1−p0j
,

or the net gain can be increased by switching their order. The
result follows.

Finally, we prove that if a channelj is probed just before
using the backup andr̃j [0]−cj

1−p0j
≤ r̃`[0] then the net gain does

not decrease by eliminating the probe ofj. Applying this
condition recursively, we establish that only the channels in
H̃1(l) need to be probed before the backup is used. Thus, the
actions in step(6) are optimal for all algorithms iñH1(l).

We now present the main approximation algorithm CHOICE:

CHOICE
G1 = Gain of using the best backup channel (G1 =
maxi r̃i[0]).
G2 = Gain of OPTNOBKUP.
G3 = Gain of RESERVEBKUP(`) for the best choice of̀.
Select the best of the above three solutions.

Theorem 5.4:The CHOICE algorithm gives a2/3 approxi-
mation to the best adaptive probing policy for3-state channels.

Proof: By the structure Theorem (Theorem 5.2), the
optimum policy uses a unique backup (if at all). Let this
backup be`. Recall that the reward of using the backup is
r̃`[0]. Let p` denote the probability with which the backup is
used. Recall thatOPT denotes the optimal gain. LetALG
denote the expected gain of CHOICE. Equations 1 and 2 hold
(settingz = r̃`[0]) just as in Theorem 4.4.

Now, modify the optimum policy so that̀ is removed from
all places where it is probed (but it may still be used as the
backup). The probability with which it is probed is at most
1−p`, and the gain from probing it is at mostr̃`[0]. Therefore,
the expected gain from probing it is at most(1−p`)r̃`[0]. Let

the new expected gain beOPT ′′. We haveOPT ′′ ≥ OPT −
(1−p`)r̃`[0]. Since RESERVEBKUP(`) returns a solution with
at least this value, we have

ALG ≥ OPT − (1− p`)r̃`[0] (3)

Adding Equations 1, 2, and 3, we have3ALG ≥ 2OPT ,
implying a 2

3 approximation.
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