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Abstract—We consider a wireless system with multiple chan- mission quality of the individual channels which stochastically
nels when each channel has several different transmission statesyary with time. Presumably, a node’s transmission decisions
Different states are associated with different probabilities of suc- become closer to optimal as the available information

cessful transmissions. In such networks, we are faced with making bout its ch Is i H the bandwidth and th
transmission decisions in the presence of partial information about Its channels increases. However, the banawi an e

about channel states. This (typically probabilistic) information €nergy expended in acquiring such information also increases
about any channel can be refined by sending control packets in with the amount of information acquired. Note that a node

the channels. In presence of multiple alternative channels, this ysually probes in a channel by transmitting a control packet
process of probing every channel to find the best one is onerous;, e channel, and the receiver informs the sender about the

and resource consuming. There is a natural tradeoff between the lity of the ch Li ket the RTS
resource consumed in probing and the estimate of channel state QU&lity Of the channel in a response packet (e.g., the

we can obtain. The desired tradeoff can be attained by judiciously @nd CTS packet exchange in IEEE 802.11). The exchange of
determining which and how many channels to probe and also control packets consumes additional energy, and prevents other

which channel to transmit. We present adaptive algorithms for neighboring users from simultaneously utilizing the channel.
provably approximating the desired tradeoffs within constant Thus, each probe is associated with a cost.
factors. . . . .
Owing to the probing costs, the amount of information
a node acquires about its channels becomes an important
decision variable. Before each transmission, a node needs to
Future wireless networks are likely to provide each nodietermine how many and which channels it will probe and also
access to a large number of channels. A channel can fhe sequence in which these channels will be prolpeabing
example be a frequency in a frequency division multiplpolicy). Note that depending on the available hardware (e.g.,
access (FDMA) network, or a code in a code division multiplavailability, or lack thereof, of multiple network interface
access (CDMA) network, or an antenna or a polarization staterds, or compatible transmission circuits to appropriately
(vertical or horizontal) of an antenna in a device with multipldistribute the power across the antennas), a node may, or may
antennas (MIMO). Several existing wireless technologies, e.gat, be able to simultaneously transmit in multiple channels. In
IEEE 802.11a [1], IEEE802.11b [8], IEEE802.11h [2] proposthis paper, we consider the scenario where a node can transmit
to use multiple frequencies. For example, IEEE 802.11a prio-only one channel in a time slot and transmits one packet in
tocol has8 channels for indoor use ardchannels for outdoor each slot. Based on the outcomes of the probes, a node must
use in the 5GHz band, while the IEEE 802.11b protocol haglect one of the available channedegnnel selection poligy
3 channels in the2.4GHz band. The potential deregulationwhich need not be those that it has probed.
of the wireless spectrum is likely to enable the use of a An important performance goal in such networks is to de-
significantly larger number of frequencies. Due to significaisign a jointly optimal probing and channel selection policy that
advances in device technology, laptops with multiple antennasximizes a system utility which is the difference between
(antenna arrays) incorporated in the front lid, and devices witthe probability of successful transmission and the expected
smart antennas have already been developed, and the nurpbebing cost before each transmission. Loosely, this utility
of such antennas are likely to significantly increase in neamction represents the “gain” or the “profit” of the sender
future. This increase in the number of channels is expectediftthe sender receives credit from the receiver for each packet
significantly enhance network capacity and enable several nigwlelivers successfully and needs to additionally compensate
bandwidth-intensive applications as multiple transmissions ctire wireless provider for each probe packet it transmits
now proceed simultaneously in a vicinity using different We first enumerate the challenges in designing the optimal
channels, and the probability (at any given time) of existenp®licy. We consider a single node with access:tehannels.
of at least one channel with acceptable transmission qualfhe optimal policy needs to probe adaptively, i.e., the result

significantly increases. N _ _ o .
Th . hall h . loiti ltipl h The sender may have to share with the provider part of the credit it receives
_e main challenge, OWQVQI’, 'r_' explol _mg mullipl€ chaltom the receiver for each successfully delivered packet; then the credit we
nels is that a node has only limited information about the transe considering here is the credit remaining after the sharing process.

I. INTRODUCTION



of a probe determines the channels to be probed subsequeptigbed. Furthermore, we allow for channels with different
For example, consider channels wilpossible state€)(1,2), distributions of the transmission qualities and different probing
each of which is associated with a different transmissiaosts which is not considered in [13], [12], and consider multi-
quality. Clearly, the probing terminates if a probed channstate channel models which pipeline filters seldom consider.
is in the highest state. Now, let a probed channel be in tidese complications significantly alter the decision issues and
intermediate state (statg. Then the subsequent probes shoulthe optimal solutions.
be limited to channels that have high probabilities of being
in the highest state. However, if all channels that have been
probed in a slot are in the lowest state, then the channelsA senderU has access ta channels which are denoted
that have high probabilities of being in the intermediate stag& channeld, 2, ..., n, each of which had{ possible states,
may also be subsequently probed. Furthermore, the chanhel ., K — 1. We assume that time is slotted. In any slot
selection decision depends on the outcome of the probes g&hdnnel;j is in state: with probability p;; independent of
also the expectation and uncertainty of the transmission qually state in other slots and the states of other channels in any
of the channels that have not been probed. The optimal pol@gt. In any slot,U transmits a data packet in one channel,
is therefore a decision tree over variables. The time to and if the channel is in statg the transmission is successful
compute the optimum decision tree using a naive optimizatigvith probability »;. Thus, r; is the reward associated with
which evaluates all the decisions trees ovewariables is statej. Without loss of generality we assunfe< ro < r; <
therefore clearly exponential in the problem size. Next;- < rx_1. For simplicity, we also assume thag = 0; all
the space required to store the optimum tree will also lealytical results can however be generalized to the scenario
exponential in the problem space as this requires storagewdferer, > 0. WheneverU probes a channél it pays a cost
decisions associated with all the branches. of ¢; > 0. Probing different channels may incur different costs
In a companion paper [10], we have showed that for twas the probing process for different channels may interfere
state channels the optimum policy can be computed awith the channel access of different number of users (based
stored in polynomial complexity. In this paper, we shown geometry and allocation of channels). We now formally
that for an arbitrary number of states the optimal net gaftefine the policies and the performance metrics.
can be. approxmatgd within a factor (%f using a simple Definition 3.1: A probing policy is a rule that, given the
approxmgtlon algorlthm_ (Septlon l\./)’ and When the numbesret of channels the sender has already probed in a slot (which
of states is3 the approximation ratio can be improved §o

Section V). Th tati d st lexiti f would be empty at the beginning of the slot) and the states
( ection )- The computation and storage complexities ol Off yna channels probed in the slot, determines (a) whether the
policies are polynomial in the number of channels. We review, \1er should probe any more channels and (b) if the sender
the related work in Section Il and define the system model

Section Il] ﬂﬂobes additional channels which channel it should probe next.
ection 1l The sender knows the state of a channel in a slot if and only
Il. RELATED WORK if it probes the channel in the slot.

Il. SYSTEM MODEL AND PROBLEM DEFINITION

Opportunistic selection of channels with complete knowl- Definition 3.2: A selection policyis a rule that selects a
edge of channel states has been comprehensively investigateannel for the transmission of a data packet in a slot on the
over the last decade (e.g., [18]). The joint optimization of thgasis of the states of the probed channels, after the completion
reward obtained from informed selections and the cost incurretithe probing process in the slot. The selection policy can
in acquiring the required information however remains largeBelect a channel even if it has not been probed in the slot, and
unexplored. Recently, Kanodit. al. [13] and Jiet. al. [12] in that case, the channel is referred to dsaakup channel.
considered scenarios where a node probes multiple Channelﬁefinition 3.3: The probing costis the sum of the costs of
and selects a channel based on the outcomes of the pro%ﬁs

; - : : . ¢hannels probed in the slot. The probing cost is clearly a
They consider only statistically identical channels with equal | 1om variable that depends on the probing policy and the

probing costs and assume that a node can transmit in Onl%Ltﬁcomes of the probes (as the sender may probe subsequent

channel that has been probed. Thus, their problem re(]luce%h(@mnels depending on the outcomes of the previous probes).

a decision of how many channels to probe which is equival . . .
to that of the well-investigated optimal stopping time proble?—rﬁﬁe expected probing costs the expectation of this random

[5]. Optimizing the order of evaluation of random variables variable and depends on both the probing policy and the

SOl -
L : L ) nnel istics.
as to minimize the cost of evaluation (“pipelined filters”) ha§ o e statistics

been investigated in several different contexts like diagnosticDefinition 3.4: In any slot, thetransmission rewards 1
tests in fault detection and medical diagnosis, optimizin§ the packet is successfully transmitted in the slot ahd
conjunctive query and joint ordering in data-stream systenmherwise. Again, theéransmission rewardn any slot is a
web services, and sensor networks [6], [14], [11], [7], [15fandom variable that depends on the probing and selection
[3], [16], [17], [4]. However our work is different from all policies and the states of the channels in the slot. &Xpected

the above (including [13], [12]) in that, we allow a noddransmission rewarddepends on the probing and selection
to transmit in a channel even if the channel has not bepnlicies and the channel statistics.



Definition 3.5: The expected net gainof the sender, de- channels inH,, v > u. The probing sequence in eadh,
noted simply again, is the difference between the expectedaturally follows an increasing order of the incremental gains.
transmission reward and expected probing cost. This depend'.?,

. . g .. _Theorem 4.1:The expected gain of OPTOBKUP is max-
on the probing and selection policies and the channel statistics. )
Imum among all strategies that do not use a backup.

Problem Definition: Given {c¢;},{r;} and {p;;} find a Proof: The proof follows immediately from Lemmas 4.2
probing and selection policy so as to maximize the expectadd 4.3. ]
gain for independent channels. L&XPT denote the denote

gain of the optimal policy. Lemma 4.2:The optimum policy probes only channels in

U,s. Ho, after it observes a channel to be in staté-urther
Since we are considering the independent channel modelthere an is un-probed channel ., H, and the best
the optimal probing and selection policies in a slot need nstate seen so far is, then probing that channel improves the
depend on the decisions and the observations in other slexpected gain.

Also, the optimal policies remain the same in all slots, though Proof: The proof is immediate forw = K, where no
the specific choices made by each policy may be different farther probing is needed. Considgrg U H,. Sincej ¢

different slots depending on the outcome of the probes. v>u
Hy,+1 we know thatr;[u + 1]p;[u + 1] — r, < ¢;. But7j{u+
In [10], we showed that the optimal probing and channglj,[u + 1] — r, is the expected gain (over the already seen
selection policy for two state channels can be computed dhannel in state:), and this is less than the cost of probing
polynomial time. In this paper we considéf state channels the channel. Clearly it is suboptimal to probe such a channel
when K > 3. after we have seen a channel at statd.ikewise consider;
in H, for somev > u. The expected gain (reward minus cost)
of probingj is 7;[v]p;[v] — ¢; — ry > 1y — 1y > 0. [ |
We first show that the optimal policy in the class of policies . ) - .
that does not transmit on an unprobed (backup) channel C%ﬁl’he optimum: cannot therefor.e stop” in a stateif any
be computed in polynomial time (Subsection IV-A). We thefi@nnel fromi, for somev > w is left unprobed.
obtain a policy that may transmit in a backup channel, but is _Lemma 4.3:The optimum policy must probe the channels
guaranteed to attain at leaktthe maximum gain in the classof H,, in non-increasing order of; [u] — ﬁc[ju] provided it has
of all policies that may or may not use backup (Subsection ot seen a channel in stateor better so far. Further if > u
B). then the optimum policy must probe all the channelsHqf
before probing any channel iAd,,.
Proof: We will prove by induction, first on: (starting
We present an optimal polynomial time algorithm for multifrom « = K +1) and then on the number of unprobed channels
state channels when no backup channel is allowed to be ussfdi, remaining in a particular sequence/run of the optimum
We first introduce the following definition. policy. The base case is > K and there is nothing to prove.
Assume that we are in some inductive caséNe assume
_ . there is some channel iH,, which is unprobed and the best
2 viugo Puilvi /Zv:uSv poi @ndpiful = 3., <, Pui- DEfiNe - gate seen so far is worse thanotherwise there is nothing
H, = ® for all w > K. Recursively, starting front{x, define q prove foru. Among those (unprobed) channelsf, let j

IV. OPTIMAL POLICIES WHENK > 3

A. Optimal Algorithm without Backups

Definition 4.1: Define 7ilul =

H, = {i\i ¢ Upipsu Ho and - 7ifu] — =55 > Tu—1}- be the channel with the largesf[u] — - value.
Assumec; /p;[u] = +o0o whenp;[u] = 0. Suppose the optimum policy at the current point is to probe
somei # j contradicting the hypothesis.
OPTNOBKUP If we find the channel in stateu or better, the optimum
policy is to stop since by the induction hypothesiswon  all
Consider eachf],, in decreasing order of, starting from states inH, have been probed and there is no further benefit
\IILVEhiIrf.eachHu probe in non-increasing order 6f[u] — (in expectation) possjble by Lemma (4.'2)' If we obgervg any
% and stop if any channel is found to be in stater worse state, we probgenext by the induction hypothesis (since
gf:,[gl,e. the number of unprobed channels i, decreases, we can
Select the channel which is in the highest state among all ~ apply the hypothesis).
probed channels. The situation resembles a decision tree as in Figure (l1a).

The treesT; ... T,> correspond to observing the ordered pair
We now present the intuition behind OPDRKUP. Note (i =v/,j = ") where0 < u/,u” < u — 1. The square boxes
that once a sender observes that a probed channel is irustatkenote that we will definitely not probe anything else.
it can not increase its gain any further by discovering anotherNow consider an alternate scenario of probing as shown in
probed channel in state or lower. Thus, subsequently itFigure (1b) where;j is probed first and then. The treeT”
probes only the channelg for which the incremental gain corresponding to the ordered p&ir=v’,j = «”) is assigned
(Fjlu + 1]p;[u + 1] — ry,) is less than the cost;, i.e., the appropriately, on the branch corresponding to obseryirigy



Fig. 1.

u” and subsequently observirigin «’. The contributions t
the gain from the treeg,..
in both the scenarios the probability of probing these tree
the same.

The decision trees of the Optimal policy for= 3

0 Theorem 4.4:The gain of algorithm APROXBKUP is at

.T,2 remain the same becausdeast half the optimal gain.

s are Proof: In the optimal policy, let the expected gain from
using backups (given a backup is used):band leta denote

The expected gain from scenario (a) (from not consideririge probability with which backups are used. Thus, the total

T etc.) |Sﬁl[u}’ﬂ [u] — ¢+ (1 — Di [u])[@ [U]FJ‘ [u] — Cj]. This

gain from the backups iaz. Let ALG denote the expected

accounts for stopping after probirigas well as stopping after gain of APPROXBKUP. We first have

probing ¢ and thenj;. Note that the reward for probing is
7;{u]p;[u] which is the weighted reward from observigign
statesu or better.

The expected gain in scenario (b)agiu]#;[u] —¢; + (1 —
pjlu])[piu]7;[u] — ¢]. Now if ¢ € H,, then we haver;[u] —
ﬁ > T [u] —
violating the non-increasing orde@therwise:i ¢ H, implies
Filu] — i < Tu—1. BU 7ju] — ﬁ > ry_1 Sincej € H,.
Thereforein both casesve haver;[u] — ﬁ < 7ifu] —
But this implies that

Pilul
Byl ] — 5 + (1 — By ful) s ulfslu] — i}
il + ¢ — (1 — pful) {5 [l ful — 5} =
ilulf o] ( ] — -4 ‘ )> 0

~ pilul

7

pilu]

— fi [U] +

ALG > z. 1)

Now modify the optimal policy so that the backups are
not used, but the rest of the policy remains the same. Let
OPT’ denote the expected gain of this policy, and let

7,1 Which is the condition that arises fromgenote the expected gain of this policy given that the optimal

uses a backup. Thed@PT — OPT’' = a(z — z). Thus,
OPT < OPT'+«az. In addition, since OPTNBKUP returns
a solution with gain at leasd PT’, we haveALG > OPT'.
Therefore,

ALG > OPT — az. (2)
Combining Equations 1 and 2, we had LG > OPT. m
Note that the gain of APROXBKUP is at least

%, OPT — max; ¢;), Wherea is the probability with

max( =

Thus by considering the scenario (b), we increase the profifich the optimal solution uses backups [9]. Thus, the ap-
of the optimum solution, which is impossible and we arrive daroximation ratio is better than the worst case bound in many

a contradiction. Thus by induction the lemma is true. =

B. Approximation Algorithm for the Backup Case
We now consider the case that the optimal policy

cases.

V. THREE STATE CHANNELS

can We present an improved approximation festate channels.

transmit in an unprobed channel, and present a policy whichDefinition 5.1: A 0/1-path in a decision tree is a sub-tree
attains at least; the optimal gain, and has a computatiofvhere the next action is the same irrespective of whether a

complexity which is polynomial im.

probed channel is in stateor 1.

APPROXBKUP

Let ¢ denote the channel with the highest expected rew
7¢[0].

Compute the gail® of OPTNoOBKUP.

If R > 7[0] then use OPTNBKUP,

Note that0/1 paths are not paths but behave like paths;
hence henceforth we will not distinguish between a path and
Artk 0/1 path. Recall thaff, = {i[(ro —1) > 2= }. and7;[0]
ropa;+1r1p1; Which is the expected benefit of using the channel
1 as a backup.

elsedo not probe any channels, and seléct

Clearly, after having seen a channel in stathe subsequent
sequence of actions are identical if a channel is observed in



state0 1. Thus, after a channel is seen in a sthtéhe optimal Applying the above lemma bottom-up on the optimal deci-
decision tree becomes a path. sion tree yields the following structure theorem, whose proof

The key technical lemma in this section is the following. We omit.

Theorem 5.2 (Structure Theorenfjor three-state chan-

Lemma 5.1:f the optimum policy uses a backup aftemels, there exists an optimum policy that uses a unique backup
seeing some channglin state1, then there exists anotherchannel (if at all) on only one path.

optimal policy where the decision tree rooted at chanjpel
is a0/1-path ending in the backup and the two policies ar
otherwise the same.

Proof: Consider a node (say node) closest to the
decision tree at which some chanpek probed and the path
which corresponds to the observation thas in statel uses
a backup channel. Since after a channel is observed inistat
the decision tree becomed)al path, the backup channel will
be used, unless a channel is observed in statemewhere
before. Note that the expected reward of this backup is atDefinition 5.2: Let P(¢) denote the class of policies, each
leastr;. Let the decision tree that arises after probjngnd of which (a) never probeg¢ and (b) never use any channel
observing it to be in staté be A. If we observej to be in other than/ as a backup.
st'atel then the decisions form a patR. This is shown in The best algorithm inP(¢) (over all choices of) may still
Figure 2(a). be suboptimal, but will give us the desired approximation.

Let the optimum policy traverse node with probability Consider the following algorithm.
p. Let G; be the conditional expected gain of the optimum

he structure theorem implies that the choice of the backup
oes not depend on the outcomes of the probes. Note that the
uniqueness of the path on which a backup is used implies that
the probability of using a backup is likely to be small. Further-
more, this theorem allows us to improve the approximation

uarantee t®/3 by combining the policies APROXBKUP,

PTNoBkuP and another policy RSERVEBKUP, which we
describe next.

policy if it does not traverse node:, G4 be the conditional RESERVEBKUP(Y)
expected gain of the optimum policy if it traverses nade 1) If 7#[0] > 71 then use the policy which is optimal
andj is observed to be in state andGp be the conditional under the two state model among all policies that
expected gain of the optimum policy if it traverses node use! as backup (the two state model is obtained by

. . treating statel the same as statg and the optimal
and j is observed to be in state. Clearly, QPT = (1_f policy in this case has been obtained in [10]).
P)G1+p(pojGa+p1;Gp+p2ir2). Now, consider a modified 2) Otherwise (for the remainder of the algorithm,
policy where the treed is used in place of the pat® if j 7¢[0] < r1) sort the channels inH> \ {£} in
is observed in staté at nodem. We refer to the gain of this decreasing order of; — 2%
policy asOPT". Clearly, OPT' = (1 — p)G1 + p(po;Ga + 3) Probe the channels iff \ {K} in the above order!
p1;Ga + p2j7,2). Since OPT' < OPT, G4 < Gp. Now, ﬁltg%gaiﬁgfnnel is found to be in stateand select
coqsider another policy which is. obtaineq by modifying the 4) If all channels iz \ {¢} have been probed and if
optimal policy as follows: pathP is used instead of tred a channel has been observed in sthteselect that
when j is observed to be in statein nodem. We refer to channel. ;
the gain of this policy a®)PT”. Since unless a channel is 5) OtheleSe Iet Hi(l) = {jli ¢ H2U
observed in state, P uses a backug p is the optimal gain {¢} and “4=-4 > 74[0]}. Probe channels i (1)
of this policy given that it traverses node andj is observed in order of decreasmgi and stop if any
to be in state0. Thus, OPT” = (1 — p)G1 + p(po;Gp + channel;j is observed in stateg or 1, and select
p1;Gp +p2jre). SinceGp > G4, OPT” > OPT. Thus, the channelj. _
second modification corresponds to an optimal policy as well.| ) If all the channels probed so far are in stajaiset

S . L as a backup.

Note that the second modification is otherwise similar to the

original optimum, but its decision sub-tree rooted at nede

) Lemma 5.3:The algorithm RESERVEBKUP({) is optimal
is a0/1 path. The result follows. g () P

for the class of policie(¢).

Proof: First note if7,[0] > r; then the best algorithm
in the classP(¢) will use the backup as long as no state is
observed in statg. In effect the algorithm will simply ignore
statel. This reduces this case to the two state problem with
backup (see [10]), and BSERVEBKUP uses this solution.

Thus it suffices to considef,[0] < r; in the rest of the
proof.

Using arguments similar to those in the proofs of Lemma 4.2
and Lemma 4.3, we can show the following.

Fig. 2. The first two figures show how the paths are formed, (c) shows the 1) All channels infi,\ {¢} must be probed unless a channel
consequence of Lemma 5.1 is observed to be in state




2) The optimal policy probes the channelsif \ {¢} in the new expected gain l@PT". We haveOPT" > OPT —
decreasing order afy — ;"‘J (1—pe)7e[0]. Since RESERVEBKUP(Y) returns a solution with
3) If some channel inf, \ {¢} is found to be in statd, at least this value, we have
channels outsidél, \ {¢} need not be probed.

e ALG > OPT — (1 — py)i[0] (3)

Parts (1) and (2) prove that the actions in s{@p of the

algorithm are optimal for algorithms i®(¢). Adding Equations 1, 2, and 3, we haglLG > 20PT,
Now, consider ste4) of the algorithm. From part (3) and implying a 2 approximation. [ |

since,[0] > ry, after all channels i, \ {¢} are probed, if

any channel has been found in statethe probing will stop V1. ACKNOWLEDGEMENTS
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