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Abstract—We consider price competition among multiple pri-
mary users in a Cognitive Radio Network with multiple sec-
ondary users. In every slot, each primary has unused bandwidth
with some probability, possibly different for different primaries,
which he would like to lease to a secondary. For the case in which
all the primaries and secondaries are in a single location, we
explicitly compute a Nash equilibrium and show its uniqueness.
Then we consider the game with spatial reuse of spectrum, and
for a special class of conflict graphs, explicitly compute a Nash
equilibrium and show its uniqueness in a natural sub-class of
Nash equilibria.

I. INTRODUCTION

Cognitive Radio Technology [1] is a newly emerging tech-
nique for using the available radio spectrum more efficiently.
In Cognitive Radio Networks (CRNs), there are two types of
spectrum users: (i) primary users who lease portions (channels
or bands) of the spectrum directly from the regulator, and
(ii) secondary users who lease channels from primaries and
can use a channel when it is not in use by the primary.
Time is slotted, and in every slot, each primary has unused
bandwidth with some probability, which he would like to sell
to secondaries. Now, secondaries would like to buy bandwidth
from the primaries that offer it at a low price, which results in
price competition among the primaries. If a primary quotes a
low price, it will attract buyers, but at the cost of reduced
revenues. This is a common feature of an oligopoly [2],
in which multiple firms sell a common good to a pool of
buyers. Price competition in an oligopoly is naturally modeled
using game theory [17], and has been extensively studied in
economics using, for example, the classic Bertrand game [2]
and its variants.

However, a CRN has several distinguishing features, which
makes the price competition very different from oligopolies
encountered in economics. First, in every slot, each primary
may or may not have unused bandwidth available. So a
primary who has unused bandwidth is uncertain about the
number of primaries from whom he will face competition.
A low price will result in unnecessarily low revenues in the
event that very few other primaries have unused bandwidth,
because even with a higher price the primary’s bandwidth
would have been bought, and vice versa. Second, spectrum is
a commodity that allows spatial reuse: the same band can be
simultaneously used at far-off locations without interference;
on the other hand, simultaneous transmissions at neighboring
locations on the same band interfere with each other.

Pricing related issues have been extensively studied
in the context of wired networks and the Internet;
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see [10] for an overview. Price competition among spec-
trum providers in wireless networks has been studied
in [11], [12], [13], [16], [14], [15]. However, neither uncertain
bandwidth availability, nor spatial reuse is modeled in any of
the above papers. Also, most of these papers do not explicitly
find a NE (exceptions are [12], [14]).

In the Economics literature, the Bertrand game [2] and
several of its variants [5], [6], [7], [8], [9] have been used to
study price competition. The closest to our work are [8], [9],
which analyze price competition where each seller may be
inactive with some probability and find a Nash equilibrium
[2] (NE), which they show to be unique. However, the results
in [8], [9] are restricted to the case of one buyer; but, a CRN is
likely to have multiple secondaries, which we seek to consider.
In our prior work [21], [22], we analyzed price competition in
a CRN with multiple primaries and secondaries. However, with
the exception of [21], all the above papers [8], [9], [22] analyze
only the symmetric model where the bandwidth availability
probability of each seller is the same. Even in [21], the
asymmetric case is considered only for a toy model with two
primaries and one secondary. Also, in [8], [21], [22] it is only
shown that the NE is unique in the class of symmetric NE.
In [9], uniqueness in the class of all NE is shown only for the
case of a single buyer (and symmetric bandwidth availability
probabilities). In addition, none of the above papers (except
[21], [22], which focus on the symmetric model) consider
spatial reuse.

We consider price competition in a CRN with multiple
primaries and multiple secondaries, where each primary has
available bandwidth in a slot with a certain probability, which
may be different for different primaries. First, we analyze the
case of primaries and secondaries in a single location (Sec-
tion II). Since prices can take real values, the strategy sets of
players are continuous. Thus, classical results do not establish
the existence and uniqueness of NE in the resulting game, and
there is no standard algorithm for finding a NE, unlike when
each player’s strategy set is finite [17]. Nevertheless, we are
able to explicitly compute a NE and show that it is unique
in the class of all NE, allowing for player strategies that are
arbitrary mixtures of continuous and discrete probability distri-
butions (Section III). Our explicit NE computations reveal that
asymmetry in bandwidth availability probabilities of different
primaries may lead to fundamental structural differences in
equilibrium pricing strategies as compared to the symmetric
scenario (Section III-C). We subsequently model the scenario
where each primary owns bandwidth across multiple locations
using a conflict graph in which there is an edge between
each pair of mutually interfering locations. Each primary
must simultaneously select a set of mutually non-interfering



locations (independent set) at which to offer bandwidth and the
prices at those locations (Section IV). We first show that there
exist multiple NE even for a simple two-node graph; then, for
a special, but general class of conflict graphs, we explicitly
compute a NE and shows its uniqueness among the class of
NE with symmetric independent set selection strategies of the
primaries. All proofs are deferred until the Appendix.

Finally, our results apply to any setting where the sellers’
supply is uncertain. In particular, microgrids [19] are a newly
emerging technology for distributed electricity generation,
which consist of a connected network of generators (e.g., solar
panels, wind turbines) and loads (e.g., households, factories).
There is uncertainty in the power generated by a generator at
a given time, e.g., the power produced by a solar panel on a
given day depends on the availability of sunlight. Our results
characterize NE in pricing games in such electricity markets.

II. SINGLE LOCATION MODEL

Suppose there are n ≥ 2 primaries and k ≥ 1 secondaries
in a region. Each secondary may constitute a customer who
requires 1 unit of bandwidth, or may simply be a demand for 1
unit of bandwidth. Time is divided into slots of equal duration.
In every slot, primary i ∈ {1, . . . , n} has unused bandwidth
with probability qi ∈ (0, 1), where we assume without loss of
generality that:

q1 ≥ q2 ≥ . . . ≥ qn. (1)

A primary i who has unused bandwidth in a slot can lease it
out to a secondary for the duration of the slot, in return for
an access fee of pi. Leasing in a slot incurs a cost of c ≥ 0.
This cost may arise, for example, if the secondary uses the
primary’s infrastructure to access the Internet. We assume that
pi ≤ v for each primary, for some constant v > c. This upper
bound v may either be a regulator imposed limit to ensure
that primaries do not excessively overprice bandwidth or the
valuation of each secondary for 1 unit of bandwidth.

Secondaries buy bandwidth from the primaries that offer
the lowest price. More precisely, in a given slot, let Z be the
number of primaries who offer unused bandwidth. Then the
bandwidth of the min(Z, k) primaries that offer the lowest
prices is bought (ties are resolved at random).

We formulate the above price competition among primaries
as a game [17], in which the primaries are the players, and
the action of primary i is the price pi that he chooses 1. If
primary i has unused bandwidth and primary j ∈ {1, . . . , n}
sets a price of pj , then the utility or payoff of primary i,
ui(p1, . . . , pn), is defined to be his net revenue 2. Thus:

ui(p1, . . . , pn) =

{
pi − c if primary i sells his bandwidth
0 otherwise

(2)
We allow each primary i to choose his price pi ran-

domly from a set of prices using an arbitrary distribution

1If primary i has no unused bandwidth, it does not matter what price pi
he sets. Yet, for convenience, we speak of pi as being his action.

2If instead, ui(p1, . . . , pn) were defined to be primary i’s net revenue,
unconditional on whether he has unused bandwidth or not, then the expected
utilities of primary i in the game analysis would all be scaled by qi.

function 3 (d.f.) ψi(.), which is referred to as the strategy
of primary i. The vector (ψ1(.), . . . , ψn(.)) of strategies of
the primaries is called a strategy profile [2]. Let ψ−i =
(ψ1(.), . . . , ψi−1(.), ψi+1(.), . . . , ψn(.)) denote the vector of
strategies of the primaries other than i. Let E{ui(ψi(.), ψ−i)}
denote the expected utility of primary i when he adopts
strategy ψi(.) and the other primaries adopt ψ−i.

A Nash equilibrium (NE) is a strategy profile such that
no player can improve his expected utility by unilaterally
deviating from his strategy [2]. Thus, (ψ∗

1(.), . . . , ψ
∗
n(.))

is a NE if for each primary i: E{ui(ψ∗
i (.), ψ

∗
−i)} ≥

E{ui(ψ̃i(.), ψ
∗
−i)}, ∀ ψ̃i(.). When players other than i play

ψ∗
−i, ψ

∗
i (.) maximizes i’s expected utility and is thus his best-

response [2] to ψ−i.
If k ≥ n, then the number of buyers is always greater than

or equal to the number of sellers. So a primary i will sell
his unused bandwidth even when he chooses the maximum
possible price v. So the strategy profile under which all
primaries deterministically choose the price v is the unique
NE. So henceforth, we assume that k ≤ n− 1.

III. SINGLE LOCATION NASH EQUILIBRIUM ANALYSIS

For convenience, we introduce the notion of a “pseudo-
price”. The pseudo-price of primary i ∈ {1, . . . , n}, denoted
as p′i, is the price he selects if he has unused bandwidth and
p′i = v + 1 otherwise 4. Let ϕi(.) be the d.f. of p′i. For
c ≤ x ≤ v, p′i ≤ x for a primary i iff he has unused bandwidth
and sets a price pi ≤ x. So ϕi(x) = qiP (pi ≤ x) = qiψi(x).
Thus, ψi(.) and ϕi(.) differ only by a constant factor on [c, v]
and we use them interchangeably wherever applicable.

For a function f(.), we denote the left and right hand side
limits at a point a, limx↑a f(x) and limx↓a f(x) by f(a−)
and f(a+) respectively [4].

A. Necessary Conditions for a NE

Consider a NE under which the d.f. of the price (re-
spectively, pseudo-price) of primary i ∈ {1, . . . , n} is ψi(.)
(respectively, ϕi(.)). In Theorem 1, we show that the NE
strategies must have a particular structure. First, we describe
some basic properties of the NE strategies.

Property 1: ϕ2(.), . . . , ϕn(.) are continuous on [c, v]. ϕ1(.)
is continuous at every x ∈ [c, v), has a jump 5 of size q1 − q2
at v if q1 > q2 and is continuous at v if q1 = q2.

In particular, there does not exist a pure strategy NE (one
in which every primary selects a single price with probability
(w.p.) 1).

Now, let ui,max be the expected payoff that primary i gets
in the NE and Li be the lower endpoint of the support set 6

of ψi(.), i.e.:
Li = inf{x : ψi(x) > 0}. (3)

3Recall that the distribution function [18] of a random variable (r.v.) X is
the function G(x) = P (X ≤ x).

4The choice v+ 1 is arbitrary. Any other value greater than v also works.
5A d.f. f(x) is said to have a jump (discontinuity) of size b > 0 at x = a

if f(a)− f(a−) = b [18].
6The support set of a d.f. is the smallest closed set such that its complement

has probability zero under the d.f. [18].



Also, let wi be the probability that k or more primaries
out of primaries {1, . . . , n}\i have unused bandwidth, which
can be easily computed using the fact that each primary j
independently has unused bandwidth w.p. qj .

Property 2: L1 = . . . Ln = p̃, where p̃ = v − w1(v − c).
Also, ui,max = p̃− c, i = 1, . . . , n.

Thus, the lower endpoints of the support sets of the d.f.s
ψ1(.), . . . , ψn(.) of all the primaries are the same, and every
primary gets the same expected payoff in the NE.

Theorem 1: The following are necessary conditions for
strategies ϕ1(.), . . . , ϕn(.) to constitute a NE:
1) ϕ1(.), . . . , ϕn(.) satisfy Property 1 and Property 2.
2) There exist numbers Rj , j = 1, . . . , n + 1, and a function
{ϕ(x) : x ∈ [p̃, v)} such that

p̃ = Rn+1 < Rn ≤ Rn−1 ≤ . . . ≤ R1 ≤ v, (4)

ϕ1(x) = . . . = ϕj(x) = ϕ(x), p̃ ≤ x < Rj , (5)

for each j ∈ {1, . . . , n},

and ϕj(Rj) = qj , j = 1, . . . , n. (6)

Also, every point in [p̃, Rj) is a best response for primary j and
he plays every sub-interval in [p̃, Rj) with positive probability.
Finally, R1 = R2 = v.

Theorem 1 says that all n primaries play prices in the range
[p̃, Rn), the d.f. ϕn(.) of primary n stops increasing at Rn,
the remaining primaries 1, . . . , n− 1 play prices in the range
[Rn, Rn−1), the d.f. ϕn−1(.) of primary n−1 stops increasing
at Rn−1, and so on. Also, primary 1’s d.f. ϕ1(.) has a jump of
height q1 − q2 at v if q1 > q2. Fig. 1 illustrates the structure.

Fig. 1. The figure shows the structure of a NE described in Theorem 1.
The horizontal axis shows prices in the range x ∈ [p̃, v] and the vertical axis
shows the functions ϕ(.) and ϕ1(.), . . . , ϕn(.).

B. Explicit Computation, Uniqueness and Sufficiency
By Theorem 1, for each i ∈ {1, . . . , n}:

ϕi(x) =

{
ϕ(x), p̃ ≤ x < Ri

qi, x ≥ Ri
(7)

So the candidate NE strategies ϕ1(.), . . . , ϕn(.) are completely
determined once the numbers p̃, R1, . . . , Rn and the function
ϕ(.) are specified. Also note that Property 2 provides the value
of p̃, and R1 = R2 = v by Theorem 1. First, we will show
that there also exist unique R3, . . . , Rn and ϕ(.) satisfying (4),
(5), and (6) and will compute them. Then, we will show that
the resulting strategies given by (7) indeed constitute a NE.

Let p′(k),i be the k’th smallest pseudo-price out of the
pseudo-prices, {p′l : l ∈ {1, . . . , n}, l ̸= i}, of the primaries
other than i. Also, let F−i(x) denote the d.f. of p′(k),i. Since
there are k secondaries, if primary 1 has unused bandwidth and
sets p1 = x ∈ [p̃, v), his bandwidth is bought iff 7 p′(k),1 > x,
which happens w.p. 1−F−1(x). Note that primary 1’s payoff
is (x− c) if his bandwidth is bought and 0 otherwise. So:

E{u1(x, ψ−1)} = (x−c)(1−F−1(x)) = p̃−c, x ∈ [p̃, v) (8)

where the second equality follows from the facts that each
x ∈ [p̃, v) is a best response for primary 1 by Theorem 1, and
u1,max = p̃− c by Property 2. By (8), we get:

F−1(x) = g(x), x ∈ [p̃, v) (9)

where, g(x) =
x− p̃

x− c
, x ∈ [p̃, v). (10)

Next, we calculate Ri, i = 3, . . . , n and ϕ(.) using (9).
1) Computation of Ri, i = 3, . . . , n: For a fixed k ∈

{1, . . . , n−1} and 0 ≤ y ≤ 1, let fi(y) be the probability of k
or more successes out of n− 1 independent Bernoulli events,
(i− 1) of which have the same success probability y and the
remaining (n− i) have success probabilities qi+1, . . . , qn. An
expression for fi(y) can be easily computed 8.

Now, to compute Ri, i ∈ {3, . . . , n}, we note that by (7)
and (4), ϕj(Ri) = qi, j = 2, . . . , i, and ϕj(Ri) = qj , j =
i+1, . . . , n. So from the preceding paragraph, with the events
{p′j ≤ Ri}, j = 2, . . . , n as the n − 1 Bernoulli events, and
by the definition of F−1(.), we get:

F−1(Ri) = fi(qi). (11)

By (9) and (11):
g(Ri) = fi(qi). (12)

By (10) and (12), Ri is unique and is given by:

Ri = c+
p̃− c

1− fi(qi)
. (13)

2) Computation of ϕ(.): Now we compute the function
{ϕ(.) : x ∈ [p̃, v)} by separately computing it for each interval
[Ri+1, Ri), i ∈ {2, . . . , n}. If Ri+1 = Ri, then note that the
interval [Ri+1, Ri) is empty. Now suppose Ri+1 < Ri. For
x ∈ [Ri+1, Ri), by (7) and (4):

ϕj(x) = qj , j = i+ 1, . . . , n (14)

and ϕ1(x) = . . . = ϕi(x) = ϕ(x). (15)

By definition of the function fi(.), with the events {p′j ≤
x}, j = 2, . . . , n as the n − 1 Bernoulli events, by definition
of F−1(x) and using P{p′j ≤ x} = ϕj(x), (14) and (15):

F−1(x) = fi(ϕ(x)), Ri+1 ≤ x < Ri. (16)

By (9) and (16):

fi(ϕ(x)) = g(x), Ri+1 ≤ x < Ri. (17)

7By Property 1, no primary has a jump at any x ∈ [p̃, v). So P (p′
(k),1

=

x) = 0.
8The expression is derived in the proof of Lemma 1 in the Appendix.



Lemma 1: For each x, (17) has a unique solution ϕ(x). The
function ϕ(.) is strictly increasing and continuous on [p̃, v).
For i ∈ {2, . . . , n}, ϕ(Ri) = qi. Also, ϕ(p̃) = 0.

Thus, there is a unique function ϕ(.), and by (7), unique
ϕi(.), i = 1, . . . , n that satisfy the conditions in Theorem 1.

3) Sufficiency: We have shown that R1, . . . , Rn and the
functions ϕ1(.), . . . , ϕn(.) computed above are the unique
ones that satisfy the necessary conditions for a NE stated in
Theorem 1. The following result shows sufficiency:

Theorem 2: The pseudo-price d.f.s ϕi(.), i = 1, . . . , n in
(7), with R1 = R2 = v, Ri, i = 3, . . . , n given by (13),
and ϕ(.) being the solution of (17), constitute the unique NE.
The corresponding price d.f.s are ψi(x) =

1
qi
ϕi(x), x ∈ [c, v],

i = 1, . . . , n.

C. Discussion

The structure of the unique NE identified in Theorems 1
and 2 provides several interesting insights:
1) First, from (1), (4) and the fact that the support set of
ψi(.) is [p̃, Ri], it follows that primaries with a low bandwidth
availability probability (q) do not play high prices, whereas
those with a high q do (see Fig. 1). Intuitively this is because
all the primaries play low prices (near p̃), so if a primary sets
a high price, he is undercut by all the other primaries. But a
primary with a high q runs a lower risk of being undercut than
one with a low q because of the lower bandwidth availability
probabilities of the set of primaries other than itself.
2) Second, by Property 1, ψ1(.) has a jump at v iff q1 > q2,
whereas ψ2(.), . . . , ψn(.) are always continuous on [c, v].

A special case of the model in this paper is the symmetric
case q1 = . . . = qn, which was studied in prior work [21]; in
the NE found in [21], the support set of every d.f. ψi(.), i =
1, . . . , n is the same ([p̃, v]) and they are all continuous. Also,
in [21], uniqueness of the NE in the class of symmetric NE
was shown, whereas in the present paper, we have shown
uniqueness in the class of all NE. Thus, the analysis in this
paper is consistent with that in [21] and strengthens that result;
also, it reveals the fundamental differences introduced by
asymmetric bandwidth availability probabilities in the support
sets and continuity of the NE strategies.

IV. SPATIAL REUSE

We now consider the price competition game with spatial
reuse, in which primaries can simultaneously lease bandwidth
to secondaries at multiple locations. Each of the n primaries
now owns a channel throughout a large region. For i ∈
{1, . . . , n}, primary i’s own usage of the channel is such that
in every slot, he either uses his channel throughout the region
(with probability (w.p.) 1−qi), or does not use it anywhere in
the region (w.p. qi). A typical scenario where this happens is
when the primary broadcasts the same signal over the entire
region, e.g., if the primary is a television broadcaster. Now, the
region contains smaller parts (e.g., towns in a state), which we
refer to as locations. There are k secondaries at each location.
As in Section II, each primary quotes a price of at most v, and
incurs a cost of c at each location at which it leases bandwidth.

The region can be represented by an undirected graph [20]
G, called the conflict graph, in which each node represents a

location, and there is an edge between two nodes iff transmis-
sions at the corresponding locations interfere with each other.
Now, a primary who is not using his channel must offer it
at a set of mutually non-interfering locations, or equivalently,
at an independent set 9 (I.S.) of nodes; otherwise secondaries
will not be able to successfully transmit simultaneously using
the bandwidth they purchase, owing to mutual interference 10.
Thus, each primary must jointly select an I.S. at which to
offer bandwidth, and the prices to set at the nodes in it. A
strategy of a primary now provides a probability mass function
(p.m.f.) for selection among the I.S. and the price distribution
he uses at each node of the I.S. (both selections contingent
on having unused bandwidth). Note that we allow a primary
to use different (and arbitrary) price distributions at different
nodes (and therefore allow, but do not require, the selection of
different prices at different nodes), and arbitrary p.m.f. (i.e.,
discrete distributions) for selection among the different I.S.

Now, in presence of spatial reuse, there are multiple NE
in general, in contrast to the single location case where we
showed that there is a unique NE (Theorem 2). For example,
suppose there are two nodes 1 and 2 connected by an edge, two
primaries (n = 2) and one secondary at each node (k = 1).
Then it is easy to check that there are three distinct NE– the
strategy profiles in which primary 1 offers bandwidth at node
1 and primary 2 at node 2 w.p. 1, or vice versa, and both
primaries set a price of v w.p. 1, and a third NE which will
be described in Theorem 3 below.

So henceforth, we focus on the class of NE where each
primary uses the same I.S. p.m.f. (but possibly different price
distributions at individual nodes). We denote this class of NE
with symmetric I.S. selection strategies of the primaries by
S. We now argue that under any NE in class S, the price
distributions at all the nodes are uniquely specified once the
I.S. selection strategy is determined. Let there be M I.S. in
G, and let each primary select among them as per the p.m.f.
(r1, . . . , rM ). This provides the probabilities with which a
primary offers bandwidth at each node when he has unused
bandwidth (this probability for a given node equals the sum
of the probabilities associated with all the I.S. that contain the
node). Let this selection probability for node j be denoted αj .
Then, considering that primary i has unused bandwidth w.p. qi,
he offers it at node j w.p. qiαj . The price selection problem at
each node j is now equivalent to that for the single location
case analyzed in the preceding two sections, the difference
being that primary i ∈ {1, . . . , n} offers unused bandwidth
w.p. qiαj , instead of qi, at node j. Thus:

Lemma 2: Suppose under a NE in class S, each primary
selects node j w.p. αj if he has unused bandwidth. Then under
that NE the price distribution of primary i ∈ {1, . . . , n} at
node j is ψi(.) in Theorem 2, with q1αj , . . . , qnαj in place
of q1, . . . , qn all through.

Thus, the NE strategies of all the primaries are completely
specified once the I.S. selection p.m.f. (r1, . . . , rM ) (which

9Recall that an independent set [20] in a graph is a set of nodes such that
there is no edge between any pair of nodes in the set.

10Note that secondaries are usually customers or local providers, and
purchase bandwidth for communication (and not T.V. broadcasts). Thus, two
secondaries can not use the same band simultaneously at interfering locations.



will in turn provide the αjs) is obtained. We determine this
p.m.f. for a specific conflict graph, Gm, which is a linear
arrangement of m ≥ 2 nodes as shown in Fig. 2, with an
edge between each pair of adjacent nodes. As an example, this
would be the conflict graph for locations along a highway or
a row of roadside shops. Let the nodes be numbered 1, . . . ,m
from left to right, and Io = {1, 3, . . .} and Ie = {2, 4, . . .} be
the “odd” and “even” I.S (see Fig. 2). Note that Io and Ie are
disjoint I. S., and Io ∪ Ie is the set of all nodes.

Fig. 2. The figure shows a linear graph Gm with m = 9. The darkened and
un-darkened nodes constitute Io and Ie respectively.

It is easy to check that in any NE, no primary selects an
I.S. that is not maximal 11. There are however several maximal
I.S. in Gm, e.g., {1, 4, 6, 8, . . .}. The following lemma allows
us to rule out all of them except Io, Ie under a NE in class S.

Lemma 3: A primary never selects any I.S. other than Io
and Ie under a NE in class S.

By Lemma 3, under a NE in class S, the p.m.f. for I.S.
selection is characterized by a single probability t with which
a primary selects Ie; each primary selects Io w.p. 1− t. Thus,

αj =

{
t, j ∈ Ie
1− t, j ∈ Io

(18)

We now state a theorem which, for different possible param-
eter values, provides a value of t that corresponds to a NE in
class S and shows that this value is unique. First, we introduce
some notation. Since primary i has unused bandwidth w.p. qi
and offers it at node j w.p. αj , he offers bandwidth at node
j w.p. qiαj . Let wi(αj) be the probability that k or more out
of primaries {1, . . . , n}\i offer bandwidth at node j. It can be
shown that for every fixed i, wi(αj) is a strictly increasing
function of αj on [0, 1]; also, intuitively, wi(αj) is a measure
of the price competition at node j. In particular, if αj (and
hence wi(αj)) is large, then primaries offer bandwidth with
a large probability at node j (conditional on having unused
bandwidth) and the price competition is intense, and vice
versa.

Theorem 3: The strategy profile in which, primary i, if
he has unused bandwidth, offers it at Ie and Io w.p. t and
1 − t respectively, and at node j selects the price as per the
distribution ψi(.) in Theorem 2, with q1, . . . , qn replaced by
q1αj , . . . , qnαj all through, where αj is as in (18), is the
unique NE in class S, where t in different cases is as follows:

• If m is even, t = 1
2 .

• If m is odd and w1(1) ≤ 2
m+1 , t = 0.

• If m is odd and w1(1) >
2

m+1 , t ∈ (0, 1) and is the
unique solution of:(

m+ 1

2

)
(1−w1(1−t)) =

(
m− 1

2

)
(1−w1(t)) (19)

We now explain Theorem 3. For m even, Io and Ie are of
the same size: |Io| = |Ie| = m

2 . So consistent with intuition,

11Recall that a maximal I.S. is one that is not a proper subset of any other
I.S [20].

in the NE in class S, each primary selects Io and Ie w.p.
1
2 each. For odd m, |Io| = m+1

2 and |Ie| = m−1
2 ; so Io is

larger than Ie. Hence, when w1(1) ≤ 2
m+1 , every primary

strictly prefers and offers bandwidth at the larger I.S. Io w.p.
1; so t = 0. But when w1(1) >

2
m+1 , if each primary were

to offer bandwidth w.p. 1 at Io, the price competition at the
nodes in Io would be intense (recall that w1(αj) is a measure
of the competition at node j), driving down the prices, and a
primary would prefer to unilaterally deviate to the smaller I.S.
Ie and set the maximum price v at every node in Ie. So t = 0
does not constitute a NE in this case. In the NE, each primary
offers bandwidth with positive probabilties at both Io and Ie
(0 < t < 1) such that the payoffs at Io and Ie are equalized–
the solution of (19) is the value of t at which this happens.

Due to space constraints, we have stated our results only for
a linear graph Gm. However, similar to our prior work [22]
(which analyzed the symmetric case q1 = . . . = qn), a NE
can be computed and its uniqueness in class S can be shown
for a large class of graphs, referred to as mean valid graphs,
which includes grid graphs in one, two and three dimensions,
and the conflict graph of a cellular network.
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APPENDIX

A. Proofs of results in Section III-A
We first prove a series of lemmas and then deduce Proper-

ties 1 and 2 and Theorem 1 from them.
Lemma 4: For i = 1, . . . , n, ψi(.) is continuous, except

possibly at v. Also, at most one primary has a jump at v.
Proof: Suppose ψi(.) has a jump at a point x0, c < x0 <

v. Then for some ϵ > 0, no primary j ̸= i chooses a price
in [x0, x0 + ϵ] because it can get a strictly higher payoff by
choosing a price just below x0 instead. This in turn implies
that primary i gets a strictly higher payoff at the price x0 + ϵ
than at x0. So x0 is not a best response for primary i, which
contradicts the assumption that ψi(.) has a jump at x0. Thus,
ψi(.) is continuous at all x < v.

Now, suppose primary i has a jump at v. Then a primary
j ̸= i gets a higher payoff at a price just below v than at v.
So v is not a best response for primary j and he plays it with
0 probability. Thus, at most one primary has a jump at v.

Lemma 5: For every ϵ > 0, there exist primaries m and j,
m ̸= j, such that ψm(v − ϵ) < 1 and ψj(v − ϵ) < 1.
That is, at least two primaries play prices just below v with
positive probability.

Proof: Suppose not. Fix i and let:

y = inf{x : ψl(x) = 1 ∀l ̸= i}. (20)

By definition of y, ψl(x) = 1 ∀l ̸= i and x > y. Also, since
ψl(.) is a distribution function, it is right continuous [18]. So

ψl(y) = 1 ∀l ̸= i. (21)

Suppose y < v. By (21):

P{pl ∈ (y, v]} = 0, ∀l ̸= i. (22)

So every price pi ∈ (y, v) is dominated by pi = v. Hence:

P{pi ∈ (y, v)} = 0 (23)

By (22) and (23):

P{pj ∈ (y, v)} = 0, j = 1, . . . , n. (24)

By (20), ∀ϵ > 0, ψl(y − ϵ) < 1 for at least one primary
l ̸= i; otherwise the infimum in the RHS of (20) would be less
than y. So this primary l plays prices just below y with positive
probability. Now, if primary l sets a price pl < v, he gets a
payoff equal to the revenue, (pl−c), if bandwidth is sold, times
the probability that bandwidth is sold. Also, by Lemma 4,
ψj(.), j = 1, . . . , n are continuous at all prices below v. So by
(24), a price pl just below v yields a higher payoff than a price
just below y. This is because, pl−c is lower by approximately
v − y for pl just below y than for pl just below v, but by
(24) and continuity of ψj(.), j = 1, . . . , n, the probability that

bandwidth is sold for a price pl just below y can be made
arbitrarily close to the probability that bandwidth is sold for
a price pl just below v. This contradicts the assumption that
primary l plays prices just below y with positive probability.

Thus, y in (20) equals v and hence at least one primary
j ̸= i plays prices just below v with positive probability. The
above arguments with j in place of i imply that at least one
primary other than j plays prices just below v with positive
probability. Thus, at least two primaries in {1, . . . , n} play
prices just below v with positive probability.

Let ui,max and Li be as defined in Section III-A.
Lemma 6: For i = 1, . . . , n, Li is a best response for

primary i.
Proof: By (3), either primary i has a jump at Li or

plays prices arbitrarily close to Li and above it with positive
probability.
Case (i): If primary i has a jump at Li, then Li is a best
response for i because in a NE, no primary plays a price other
than a best response with positive probability.
Case (ii): If primary i does not have a jump at Li, then by
(3), ψi(Li) = 0. Since every primary selects a price in [c, v],
ψi(v) = 1. So Li < v. So by Lemma 4, no primary among
{1, . . . , n}\i has a jump at Li. Hence, primary i’s payoff at a
price above Li and close enough to it is arbitrarily close to its
payoff at Li. But since primary i does not have a jump at Li,
by (3), he plays prices just above Li with positive probability
and they are best responses for him. So Li is also a best
response for primary i.

Lemma 7: For some c < p̃ < v, L1 = . . . Ln = p̃. Also,
ui,max = p̃− c, i = 1, . . . , n.
That is, the lower endpoint of the support set of the price
distribution of every primary is the same.

Proof: Let Lmin = min{Lm : m = 1, . . . , n}, and
Smin = {m : Lm = Lmin} be the set of primaries with
the lowest endpoint. First, we show by contradiction that:

|Smin| ≥ k + 1. (25)

Suppose |Smin| ≤ k. If Lmin = v, then all primaries play the
price v w.p. 1, which does not constitute a NE by Lemma 4.
So Lmin < v and again by Lemma 4, no primary has a jump
at Lmin. Also, by Lemma 6, Lmin is a best response for the
primaries in Smin. Let L̂ = min{Lm : m /∈ Smin} be the
second lowest endpoint. Now, a primary m ∈ Smin who has
unused bandwidth can get a higher payoff at a price just below
L̂ than at Lmin because in both cases, since |Smin| ≤ k,
primary m’s bandwidth is sold w.p. 1; however, he gets a
higher revenue at a price just below L̂ than at Lmin. This
contradicts the fact that Lmin is a best response for primary
m. Thus, (25) must hold.

Now, suppose Li < Lj for some i, j. By Lemma 6, Lj is
a best response for primary j. Now, the expected payoff that
primary j gets for pj = Lj is strictly less than the expected
payoff that primary i would get if he set pi to be just below Lj .
This is because, if primaries i or j set a price of approximately
Lj , then they see the same price distribution functions of the
primaries other than i and j. But primary j may be undercut
by primary i, since Li < Lj , whereas primary i may not
be undercut by primary j. Also, by (25), primary j’s expected



payoff is strictly lowered due to this undercutting by primary i.
(Note that undercutting by primary i would not lower primary
j’s probability of winning, and thereby the expected payoff, if
a total of ≤ k − 1 primaries played prices below Lj with
positive probability. This possibility is ruled out by (25).)
Hence, ui,max > uj,max.

Now, by Lemma 6, Li is a best response for primary i. If
primary j were to play price Li, then he would get a payoff
of ui,max. This is because, when primary i plays price Li,
he gets payoff ui,max. Since Lj > Li, primary i is, w.p. 1,
not undercut by primary j. If primary j were to set the price
Li, then w.p. 1, he would not be undercut by primary i. Also,
the price distributions of the primaries other than i and j are
exactly the same from the viewpoints of primaries i and j.
Thus, primary j can strictly increase his payoff from uj,max

to ui,max by playing price Li, which contradicts the fact that
Lj is a best response for him.

Thus, Li < Lj is not possible. By symmetry, Li > Lj is
not possible. So Li = Lj . Let L1 = . . . = Ln = p̃.

If p̃ = v, then every primary plays the price v w.p. 1, which
does not constitute a NE. So p̃ < v. So by Lemma 4, no
primary has a jump at p̃. Thus, since the lower endpoint of
the support set of every primary is p̃, by (3), a price of p̃ is
a best response for every primary i. Since no primary sets a
price lower than p̃, a price of p̃ fetches a payoff of p̃− c. So
ui,max = p̃− c, i = 1, . . . , n.

Let wi be as defined in Section III-A. Using (1), it can be
easily shown that:

w1 ≤ w2 ≤ . . . ≤ wn. (26)

Lemma 8: p̃ = v − w1(v − c).
Proof: If primary 1 sets the price p1 = v, then he gets

an expected payoff of at least (v − c)(1 − w1) because his
bandwidth is sold at least in the event that k − 1 or fewer
primaries out of 2, . . . , n have unused bandwidth. So u1,max ≥
(v − c)(1−w1). Since u1,max = p̃− c by Lemma 7, we get:

p̃ ≥ v − w1(v − c). (27)

Now, by Lemma 5, at least two primaries, say m and j, play
prices just below v with positive probability. By Lemma 4,
at most one of them has a jump at v. So assume, WLOG,
that no primary other than j has a jump at v. Then a price
of pj = v is a best response for primary j and fetches a
payoff of uj,max = (v− c)(1−wj) ≤ (v− c)(1−w1), where
the inequality follows from (26). Since uj,max = p̃ − c by
Lemma 7, we get:

p̃ ≤ v − w1(v − c). (28)

The result follows from (27) and (28).
Lemma 9: Let p̃ ≤ a < b ≤ v. Then at least two primaries

play prices in (a, b) with positive probability.
Proof: If b = v, then the claim is true by Lemma 5. If

a = p̃, then the claim is true by Lemma 4 and Lemma 7,
since p̃ < v is the lower endpoint of the support set of all
primaries and no primary has a jump at p̃; hence all primaries
play prices just above p̃ with positive probability.

Now, fix any a, b such that p̃ < a < b < v. Let:

a = inf{x ≤ a : ψj(x) = ψj(a) ∀j = 1, . . . , n} (29)

By Lemma 7, a > p̃. Also, by definition of a, P{pj ∈
[a, a]} = 0 ∀j = 1, . . . , n.

By definition of a, at least one primary, say primary i, plays
prices just below a with positive probability. (If not, then the
infimum in (29) would be less than a.) This implies that at
least one primary j ̸= i plays prices in (a, b) with positive
probability. (If not, then pi = b would yield a strictly higher
payoff to primary i than prices just below a.) Now, if primary
j is the only primary among primaries {1, . . . , n} who play
prices in (a, b) with positive probability, then pj = b yields a
strictly higher payoff than pj ∈ (a, b), which is a contradiction.
So at least two primaries play prices in (a, b) with positive
probability. But P{pl ∈ [a, a]} = 0 ∀l = 1, . . . , n by
definition of a. Hence, at least two primaries play prices in
(a, b) with positive probability.

Let F−i(x) be as defined in Section III-B.
Lemma 10: For a fixed x ∈ (p̃, v], and primaries i and j, (i)

F−i(x) = F−j(x) iff ϕi(x) = ϕj(x), (ii) F−i(x) < F−j(x)
iff ϕi(x) > ϕj(x).

Proof: Let p′(l) be the l’th smallest out of the pseudo-
prices of the primaries other than i and j. Then conditioning
on the event {p′j ≤ x} and using the fact that {p′l : l ̸= i} are
independent, we get:

F−i(x)

= P{k′th smallest of {p′l : l ̸= i} ≤ x}
= P{p′j ≤ x}P{p′(k−1) ≤ x}+ P{p′j > x}P{p′(k) ≤ x}
= ϕj(x)P{p′(k−1) ≤ x}+ (1− ϕj(x))P{p′(k) ≤ x}
= ϕj(x)[P{p′(k−1) ≤ x} − P{p′(k) ≤ x}]

+P{p′(k) ≤ x} (30)

Similarly,

F−j(x) = ϕi(x)[P{p′(k−1) ≤ x}−P{p′(k) ≤ x}]+P{p′(k) ≤ x}
(31)

By (30) and (31):

F−i(x)− F−j(x)

= (ϕj(x)− ϕi(x))[P{p′(k−1) ≤ x} − P{p′(k) ≤ x}]
= (ϕj(x)− ϕi(x))α (32)

where α = P{p′(k−1) ≤ x}−P{p′(k) ≤ x}. We will next show
that α > 0. Both parts of the result will then follow from (32).

Note that α equals the probability that exactly (k−1) out of
the pseudo-prices of the primaries other than i and j are ≤ x.
Since x > p̃, all primaries play prices in (p̃, x) with positive
probability by Lemma 7. So:

ϕl(x) = P{p′l ≤ x} > 0, l = 1, . . . , n. (33)

Also,
ϕl(x) ≤ ϕl(v) = ql < 1, l = 1, . . . , n. (34)

By (33) and (34):

0 < ϕl(x) < 1, l = 1, . . . , n. (35)

Also, since 1 ≤ k ≤ n− 1, we have:

0 ≤ k − 1 ≤ n− 2. (36)



Since α equals the probability of exactly k − 1 successes
out of n − 2 independent Bernoulli events that have success
probabilities {ϕl(x) : l = 1, . . . , n, l ̸= i, j}, α > 0 by (35)
and (36). This completes the proof.

Lemma 11: (i) ϕ2(.), . . . , ϕn(.) are continuous at v. (ii)
ϕ1(.) is continuous at v if q1 = q2 and has a jump of size
at most q1 − q2 at v if q1 > q2. Also,

ϕ1(v−) ≥ q2. (37)

Proof: If no primary i > 1 has a jump at v, then primary
1 gets a payoff of (v − c)(1 − w1), which equals p̃ − c by
Lemma 8, for a price p1 just below v in the limit as p1 → v−.
So if a primary i ≥ 2 has a jump at v, primary 1 can get a
payoff strictly greater than p̃ − c by playing a price close
enough to v. This contradicts the fact that u1,max = p̃ − c
(see Lemma 7). Thus, no primary i ≥ 2 has a jump at v and
ϕ2(.), . . . , ϕn(.) are continuous.

First, suppose q1 = q2. If primary 1 has a jump at v, then
similar to the preceding paragraph, primary 2 can get a payoff
strictly greater than p̃ − c by playing a price just below v,
which contradicts the fact that u2,max = p̃ − c. So ψ1(.) is
continuous.

Now suppose q1 > q2. First, suppose primary 1 has a jump
of size exactly q1− q2 at v. Then if primary 2 sets a price just
below v, then the probability of being undercut by primary
j ∈ {3, . . . , n} is approximately qj . Also, since primary 1
has a jump of size q1 − q2 at v, the probability of being
undercut by primary 1 is approximately q1 − (q1 − q2) = q2.
So at a price just below v, primary 2 sees the same set of
probabilities of being undercut by primaries other than itself
as primary 1 would see if he set a price just below v. Hence,
by the first paragraph of this proof, primary 2 gets a payoff
of approximately p̃− c at a price just below v.

Hence, if primary 1 has a jump of size, not equal to, but
greater than q1 − q2 at v, primary 2 gets a payoff of strictly
greater than p̃− c at a price just below v. This contradicts the
fact that u2,max = p̃− c.

Thus, primary 1 has a jump of at most size q1 − q2 at v.
So ϕ1(v) − ϕ1(v−) ≤ q1 − q2. This, along with ϕ1(v) = q1,
gives (37).

Lemma 12: If p̃ ≤ x < y < v and ψi(x) = ψi(y) for some
primary i, then ψi(v−) = ψi(x).

Thus, if x ≥ p̃ is the left endpoint of an interval of constancy
of ψi(.) for some i, then to the right of x, the interval of
constancy extends at least until v (there may be a jump at v).

Proof: Suppose not, i.e.:

ψi(v−) > ψi(x). (38)

Let:
y = sup{z ≥ x : ψi(z) = ψi(x)} (39)

By (38), (39) and the fact that ψi(.) is continuous below v
(by Lemma 4), we get y < v. So again by Lemma 4, no
primary among {1, . . . , n}\i has a jump at y. Also, primary i
uses prices just above y with positive probability (if not, the
supremum in the RHS of (39) would be > y). So y is a best
response for primary i and hence:

E{ui(y, ψ−i)} = (y−c)(1−F−i(y)) = ui,max = p̃−c. (40)

where the last equality follows from Lemma 7.
Now, by Lemma 9, there exists a primary j ̸= i who plays

prices just below y with positive probability. Since no primary
among {1, . . . , n}\j has a jump at y, y is a best response for
primary j. Hence:

E{uj(y, ψ−j)} = (y−c)(1−Fj(y)) = uj,max = p̃−c. (41)

By (40) and (41), F−i(y) = F−j(y). So by Lemma 10:

ϕi(y) = ϕj(y). (42)

But since primary j plays prices just below y with positive
probability, there exists ϵ > 0 such that x < y − ϵ and y − ϵ
is a best response for primary j. So

ϕj(y − ϵ) < ϕj(y). (43)

But by (39) and the continuity of ϕi(.) at y:

ϕi(y) = ϕi(y − ϵ). (44)

By (42), (43) and (44), ϕi(y−ϵ) > ϕj(y−ϵ). So by Lemma 10:

F−j(y − ϵ) > F−i(y − ϵ)

This implies:

p̃− c = E{uj(y − ϵ, ψ−j)}
= (y − ϵ− c)(1− F−j(y − ϵ))

< (y − ϵ− c)(1− F−i(y − ϵ))

= E{ui(y − ϵ, ψ−i)}

which contradicts the fact that every primary gets a payoff of
p̃− c at a best response in the NE.

Lemma 13: Part 2 of Theorem 1 holds.
Proof: We prove the result by induction. Let:

Rn = inf{x ≥ p̃ : ∃ y > x and i s.t. ϕi(y) = ϕi(x)} (45)

Note that Rn is the smallest value ≥ p̃ that is the left endpoint
of an interval of constancy for some ϕi(.). For this i, ϕi(Rn) =
ϕi(y) for some y > Rn

12. We must have Rn > p̃. This is
because, if Rn = p̃, then ϕi(y) = ϕi(p̃). But ϕi(p̃) = 0, since
p̃ is the lower endpoint of the support set of ϕi(.) by Lemma 7.
So ϕi(y) = 0, which implies that the lower endpoint of the
support set of ϕi(.) is ≥ y > p̃. This contradicts Lemma 7.
Thus, Rn > p̃.

Now, by definition of Rn, all primaries play every sub-
interval in [p̃, Rn) with positive probability and hence every
price x ∈ [p̃, Rn) is a best response for every primary. So
similar to the derivation of (8), for j ∈ {1, . . . , n} and x ∈
[p̃, Rn), E{uj(x, ψ−j)} = (x−c)(1−F−j(x)) = p̃−c. Hence,
F−1(x) = . . . = F−n(x) and by Lemma 10,

ϕ1(x) = . . . = ϕn(x) = ϕ(x) (say), p̃ ≤ x < Rn. (46)

which proves (5) for j = n.
Case (i): Suppose Rn = v. Then ϕl(Rn) = ql, l = 1, . . . , n
(since ψl(v) = 1), which proves (6).

12Note that ϕi(.) is a distribution function and hence is right continu-
ous [18]. So ϕi(Rn+) = ϕi(Rn).



Case (ii): Now suppose Rn < v. Then ϕj(.), j = 1, . . . , n are
continuous at Rn by Lemma 4. So by (46):

ϕ1(Rn) = ϕ2(Rn) = . . . = ϕn(Rn). (47)

Since Rn is the left endpoint of an interval of constancy of
ϕi(.), by Lemma 12:

ϕi(Rn) = ϕi(v−) = ϕn(Rn) ≤ qn (48)

where the second equality follows from (47).
Now, suppose i = 1. Then by (37) and (48):

ϕi(Rn) ≥ q2. (49)

By (48), (49) and (1), q2 = q3 = . . . = qn = ϕi(Rn).
Also, by (47), ϕj(Rn) = qj , j = 2, . . . , n. So ψj(Rn) = 1,
j = 2, . . . , n. This implies, since Rn < v by assumption, that
at most one primary (primary 1) plays prices in the interval
(Rn, v) with positive probability, which contradicts Lemma 5.
Thus, i ̸= 1.

So by Lemma 11, ϕi(.) is continuous at v and ϕi(v−) =
ϕi(v) = qi. So by (48):

ϕi(Rn) = qi. (50)

By (47) and (50), ϕn(Rn) = qi. If qi > qn, then ϕn(Rn) > qn,
which is a contradiction because ϕn(Rn) = qnψn(Rn) ≤ qn.
So qi ≤ qn. Also, since qi ≥ qn by (1), qi = qn. So:

ϕn(Rn) = qn. (51)

which proves (6) for j = n.
Now, as induction hypothesis, suppose there exist thresh-

olds:
p̃ < Rn ≤ Rn−1 ≤ . . . ≤ Ri+1 ≤ v

such that for each j ∈ {i+ 1, . . . , n}, ϕj(Rj) = qj ,

ϕ1(x) = . . . = ϕj(x) = ϕ(x), p̃ ≤ x < Rj , (52)

and each of primaries 1, . . . , j plays every sub-interval in
[p̃, Rj) with positive probability.

First, suppose Ri+1 < v. Let:

Ri = inf{x ≥ Ri+1 : ∃ y > x and j ∈ {1, . . . , i}
s.t. ϕj(y) = ϕj(x)}.

If Ri = Ri+1, then clearly by (52):

ϕ1(x) = . . . = ϕi(x) = ϕ(x), p̃ ≤ x < Ri (53)

which proves (5) for j = i. Also, similar to (51), it can be
shown that ϕi(Ri) = qi, which proves (6) for j = i and
completes the inductive step. Now suppose Ri > Ri+1. Then
similar to the proof of (46), it can be shown that:

ϕ1(x) = . . . = ϕi(x) = ϕ(x), Ri+1 ≤ x < Ri. (54)

By (52) and (54):

ϕ1(x) = . . . = ϕi(x) = ϕ(x), p̃ ≤ x < Ri.

which proves (5) for j = i. Also, similar to the proof of (51),
it can be shown that ϕi(Ri) = qi, which proves (6) for j = i.
This completes the induction.

If Ri+1 = v, then the induction is completed by simply
setting R1 = . . . = Ri = v.

It remains to show that R1 = R2 = v. If R1 < v, then no
primary plays a price in (R1, v), which contradicts Lemma 5.
So R1 = v. If R2 < v, then only primary 1 plays prices
in (R2, v) with positive probability, which again contradicts
Lemma 5. So R2 = v.

Lemma 14: If q1 > q2, then ϕ1(.) has a jump of size q1−q2
at v.

Proof: By Lemma 13, ϕ1(x) = ϕ2(x) for all x < R2 = v.
So:

ϕ1(v−) = ϕ2(v−)

= ϕ2(v) (since ϕ2(.) is continuous by Lemma 11)
= q2

Also, ϕ1(v) = q1ψ1(v) = q1. So ϕ1(v)− ϕ1(v−) = q1 − q2.

Finally, (i) Property 1 follows from Lemmas 4, 11 and 14;
(ii) Property 2 follows from Lemmas 7 and 8; (iii) Theorem 1
follows from Properties 1 and 2 and Lemma 13.

B. Proofs of results in Section III-B
We verify that with Ri as in (13), Ri ≥ Ri+1 as required by

(4) in Theorem 1. Recall from Section III-B1 that fi(qi) is the
probability of k or more successes out of n − 1 independent
Bernoulli events, i − 1 with success probability qi and n − i
with qi+1, . . . , qn. Also, fi+1(qi+1) is the probability of k or
more successes out of n−1 Bernoulli events, i−1 with success
probability qi+1 and n− i with qi+1, . . . , qn. Since qi ≥ qi+1

by (1), it is easy to check that fi(qi) ≥ fi+1(qi+1). So by
(13), Ri ≥ Ri+1, which is consistent with (4).

Proof of Lemma 1: First, let fi(.) be as defined in
Section III-B1. To compute fi(y), for i ∈ {3, . . . , n} and
l ∈ {0, . . . , n − i}, let vil(qi+1, . . . , qn) be the probability of
exactly l successes out of n − i independent Bernoulli trials
with success probabilities qi+1, . . . , qn. Recall the definition
of fi(y). Conditioning on the number of successes, say l, out
of the n− i trials with success probabilities qi+1, . . . , qn, we
get:

fi(y) =
n−i∑
l=k

vil(qi+1, . . . , qn)

+

min(k−1,n−i)∑
l=0

vil(qi+1, . . . , qn)h(y), (55)

where h(y) =
∑i−1

m=k−l

(
i− 1
m

)
ym(1 − y)i−1−m. Now,

for l satisfying:
1 ≤ k − l ≤ i− 1, (56)

h(y) is a strictly increasing function of y [3]. Also, it can be
checked that l = min(k−1, n−i), which is one of the indices
in the expression in (55), satisfies (56). So fi(y) is a strictly
increasing function of y. Also, note that fi(.) is a continuous
function.

Now, it can be checked from the definition of the function
fi(.) that:

fi(qi+1) = fi+1(qi+1). (57)



Also, replacing i with i+ 1 in (12), we get:

fi+1(qi+1) = g(Ri+1). (58)

By (57) and (58), we get:

fi(qi+1) = g(Ri+1). (59)

Now, as shown above, fi(y) is a continuous and strictly
increasing function of y. So fi(.) is invertible. By (17), ϕ(.)
is unique and is given by:

ϕ(x) = f−1
i (g(x)), Ri+1 ≤ x < Ri. (60)

Also, by (59) and (12), fi(qi+1) = g(Ri+1) and fi(qi) =
g(Ri). So fi(.) is a continuous one-to-one map from the
compact set [qi+1, qi] onto [g(Ri+1), g(Ri)], and hence f−1

i (.)
is continuous (see Theorem 4.17 in [4]). Also, g(x) in (10) is
continuous for all x ∈ [p̃, v) since x ≥ p̃ > c. So from (60),
ϕ(.) is a continuous function on [Ri+1, Ri], since it is the
composition of continuous functions f−1

i and g (see Theorem
4.7 in [4]). Also, as shown above, fi(.) is strictly increasing; so
f−1
i (.) is strictly increasing. Also, using x ≥ p̃ > c, it can be

checked from (10) that g′(x) > 0; so g(.) is strictly increasing.
By (60), ϕ(.) is the composition of the strictly increasing
functions f−1

i (.) and g(.) and hence is strictly increasing on
[Ri+1, Ri]. Also, by (12) and (60), ϕ(Ri) = f−1

i (g(Ri)) = qi.
Thus, the function ϕ(.) is strictly increasing and continuous

within each individual interval [Ri+1, Ri]; also, ϕ(Ri) = qi,
i = 2, . . . , n, and hence ϕ(.) is continuous at the endpoints
Ri, i = 2, . . . , n of these intervals. So ϕ(.) is strictly increasing
and continuous on [p̃, v).

It remains to show that ϕ(p̃) = 0. By definition of the
function fi(.), fn(0) = 0. As shown above, fn(.) is one-to-
one. So f−1

n (0) = 0. Also, by (10), g(p̃) = 0 and by (4),
Rn+1 = p̃. Putting i = n and x = Rn+1 = p̃ in (60), we get
ϕ(p̃) = f−1

n (g(p̃)) = f−1
n (0) = 0.

Proof of Theorem 2: By Lemma 1 and equation (7), the
functions ϕi(.), i = 1, . . . , n computed in Section III-B are
continuous and non-decreasing on [p̃, v]; also, ϕi(p̃) = 0 and
ϕi(v) = qi. This is consistent with the fact that ϕi(.) is the
d.f. of the pseudo-price p′i and hence should be non-decreasing
and right continuous [18], and ϕi(v) = qiψi(v) = qi (see the
beginning of Section III).

Now, we have shown in Sections III-A and III-B that (7) is
a necessary condition for the functions ϕi(.), i = 1, . . . , n to
constitute a NE. We now show sufficiency. Suppose for each
i ∈ {1, . . . , n}, primary i uses the strategy ϕi(.) in (7). Similar
to the derivation of (8), the expected payoff that primary i gets
at a price x ∈ [p̃, v) is:

E{ui(x, ψ−i)} = (x− c)(1− F−i(x)). (61)

Now, for x ∈ [p̃, Ri), by (4) and (7), ϕi(x) = ϕ1(x) = ϕ(x),
and hence by Lemma 10, F−i(x) = F−1(x). Also note that
ϕ(.) is the solution of (8), (16) and (17). By (8), (61) and the
fact that F−i(x) = F−1(x), for primary i, prices x ∈ [p̃, Ri)
fetch an expected payoff of p̃− c.

Now let x ∈ [Ri, v). Note that Ri ≤ x < v = R1. So
by (7), ϕi(x) = qi and ϕ1(x) = ϕ(x) ≥ ϕ(Ri) = qi. So
ϕ1(x) ≥ ϕi(x). Hence, by Lemma 10, F−1(x) ≤ F−i(x),
which by (8) and (61) implies E{ui(x, ψ−i)} ≤ p̃− c.

Finally, note that a price below p̃ fetches a payoff of less
than p̃ − c for primary i. So each price in [p̃, Ri) is a best
response for primary i; also, by (7), he randomizes over prices
only in this range under ϕi(.). So ϕi(.) is a best response.
Thus, the functions ϕi(.), i = 1, . . . , n constitute a NE.

C. Proofs of results in Section IV
Proof of Lemma 3: The proof is similar to that in the

symmetric case q1 = . . . = qn (see Lemma 4 in [21]) and is
omitted.

Let w1(.) be as defined in Section IV. The proof of
Theorem 3 uses the following lemma:

Lemma 15: w1(α) is a strictly increasing and continuous
function of α on [0, 1]. Also, w1(0) = 0.

Proof: From the definition of w1(α), it follows that it is a
polynomial function of α and hence continuous, and w1(0) =
0.

To show that w1(.) is strictly increasing, let 0 ≤ α < α′ ≤
1. It suffices to show that w1(α) < w1(α

′).
Let Yi, i = 2, . . . , n be independent Bernoulli random vari-

ables and let Yi have mean qiα. Also, let Zi, i = 2, . . . , n be
independent Bernoulli random variables that are independent
of Yi, i = 2, . . . , n and let Zi have mean qiα

′−qiα
1−qiα

.
For i = 2, . . . , n, let:

Xi =

{
1, if Yi = 1 or Zi = 1 (or both)
0, else (62)

P (Xi = 1) = P ({Yi = 1} ∪ (Zi = 1)})
= P (Yi = 1) + P (Zi = 1)

−P ({Yi = 1} ∩ {Zi = 1})
= P (Yi = 1) + P (Zi = 1)− P (Yi = 1)P (Zi = 1)

(since Yi and Zi are independent)

= qiα+
qiα

′ − qiα

1− qiα
− (qiα)

(
qiα

′ − qiα

1− qiα

)
= qiα

′

So Xi is Bernoulli with mean qiα′. Also, since Yi, i = 2, . . . , n
and Zi, i = 2, . . . , n are independent, Xi, i = 2, . . . , n are
independent.

But by (62),

{Yi = 1} ⊂ {Xi = 1}, i = 1, . . . , n (63)

Also,

P{Xi = 1, Yi = 0} = P (Zi = 1, Yi = 0)

= P (Zi = 1)P (Yi = 0)

=

(
qiα

′ − qiα

1− qiα

)
(1− qiα)

= qiα
′ − qiα

> 0 (64)

By (63) and (64):

P (Xi = 1) > P (Yi = 1). (65)

Now, let X =
∑n

i=2Xi and Y =
∑n

i=2 Yi. We interpret
Xi (respectively, Yi) as the indicator of the event that primary



i offers bandwidth at a node v with node probability αv = α′

(respectively, αv = α). So X(respectively, Y ) is the number
of primaries who offer bandwidth at node v when αv = α′

(respectively, αv = α). By definition of the function w1(.):

w1(α
′) = P (X ≥ k) (66)

and
w1(α) = P (Y ≥ k). (67)

By (65), (66), (67) and the facts X =
∑n

i=2Xi and Y =∑n
i=2 Yi, it follows that w1(α) < w1(α

′). This completes the
proof.

Proof of Theorem 3: Recall from Section III that when
there is a single location, primary i ∈ {1, . . . , n} offers band-
width (at that location) w.p. qi and in the NE, by Property 2,
every primary gets the same payoff, equal to (v− c)(1−w1).
Suppose in the case of the linear graph Gm, under a NE in
class S, each primary offers bandwidth at node j w.p. αj if he
has unused bandwidth. Then by Lemma 2, at node j, primary
i ∈ {1, . . . , n} selects the price as per the distribution ψi(.) in
Theorem 2, with q1, . . . , qn replaced by q1αj , . . . , qnαj . Now,
as shown in Section IV after Lemma 3, αj is given by (18)
for some t. It remains to show that the value of t stated in
Theorem 3 in different cases is the unique value corresponding
to a NE in class S.

By the definition of w1(.), at node j, every primary gets an
expected payoff of (v − c)(1− w1(αj)). Hence, if a primary
offers bandwidth at an I.S. I , its total expected payoff at the
nodes in I is

U(I) =
∑
j∈I

(v − c)(1− w1(αj)). (68)

By (68) and (18):

U(Ie) = (v − c)(1− w1(t))|Ie| (69)

and U(Io) = (v − c)(1− w1(1− t))|Io|. (70)

Now, recall that a strategy profile is a NE iff every primary
plays only best responses with positive probability. Since
in a NE in class S, every primary offers bandwidth w.p. t
(respectively, 1 − t) at Ie (respectively, Io), each one of the
following cases provides necessary and sufficient conditions
for a NE in class S (i) t = 1 and U(Ie) ≥ U(Io), (i) t = 0
and U(Io) ≥ U(Ie), and (iii) 0 < t < 1 and U(Ie) = U(Io).

Now, when m is even, |Io| = |Ie| = m
2 . In this case, it

can be checked using (69), (70) and Lemma 15, that if t =
1 (respectively, t = 0), then U(Ie) < U(Io) (respectively,
U(Io) < U(Ie)); also, t = 1

2 is the unique value for which
U(Ie) = U(Io). So the first two cases above do not correspond
to a NE in class S, and the third case does iff t = 1

2 . Hence,
t = 1

2 corresponds to the unique NE in class S.
Now, let m be odd. Then |Io| = m+1

2 and |Ie| = m−1
2 . If

w1(1) ≤ 2
m+1 , then it can be checked using (69), (70) and

Lemma 15 that if t > 0, then U(Ie) < U(Io); also, if t = 0,
then U(Io) ≥ U(Ie). So the second and third cases above do
not correspond to a NE in class S and t = 0 (the first case)
corresponds to the unique NE in class S.

Finally, if w1(1) >
2

m+1 , then it can be checked using (69),
(70) and Lemma 15 that if t = 0 (respectively, t = 1), then

U(Io) < U(Ie) (respectively, U(Ie) < U(Io)). So the first
two cases above do not correspond to a NE. Also, substituting
(69) and (70) into the equation U(Io) = U(Ie) we get (19).
By the continuity and strictly increasing property of w1(.)
(Lemma 15) and the intermediate value theorem (Theorem
4.23 in [4]), it follows that (19) has a unique solution t ∈
(0, 1). So by the third case above, this t corresponds to the
unique NE in S.


