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ABSTRACT
Reliable security measures against outbreaks of malware is
imperative to enable large scale proliferation of wireless tech-
nologies. Immunization and healing of the nodes through
dissemination of security patches can counter the spread of
a malware upon an epidemic outbreak. The distribution of
patches however burdens the bandwidth which is scarce in
wireless networks. The trade-offs between security risks and
resource consumption can be attained by activating at any
given time only fractions of dispatchers and dynamically se-
lecting their packet transmission rates. We formulate the
above trade-offs as an optimal control problem that seek to
minimize the aggregate network costs that depend on secu-
rity risks and resource consumed by the countermeasures.
Using Pontryagin’s maximum principle, we prove that the
dynamic control strategies have simple structures. When
the resource consumption cost is concave, optimal strategy
is to use maximum resources for distribution of patches un-
til a threshold time, upon which, the patching should halt.
When the resource consumption cost is convex, the above
transition is strict but continuous.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Wireless communication,
K.6.5 [Security and Protection (D.4.6, K.4.2)]

General Terms: Security, Theory.

Keywords: Dynamic Patching, Optimal Control, Security-
Performance trade-off.

System Model
A susceptible node is a mobile wireless device which is not
contaminated by the worm, yet is vulnerable to infection.
A node is infective if it is contaminated by the worm. An
infective spreads the worm to a susceptible while transmit-
ting data or control messages to it whenever the two are in
contact, that is, the infective detects the presence of the sus-
ceptible in its transmission range. A functional node that is
immune to the worm is referred to as recovered. A frac-
tion R0 of mobile nodes, referred to as dispatchers, are pre-
loaded with security patches. The dispatchers are immune
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to infection themselves, and can transmit the patches to the
susceptible and infective nodes and immunize the suscep-
tibles and heal the infectives to the recovered state. Once
a node receives a security patch, it can retransmit it upon
contact with other nodes. Thus, all recovered nodes become
dispatchers and hence, the fraction of dispatchers grows to
R(t) at time t.

Let the fraction of activated dispatchers at time t be ε(t),
and each scans the media at rate u(t) (i.e., u(t) is the rate of
transmission of scanning packets). Upon a contact between
an activated dispatcher and another node, the security patch
is transmitted from the dispatcher to the receiver node. If
the receptor is a susceptible node, it installs the security
patch, is subsequently immunized, and its state changes to
recovered. If however the receptor is an infective, the patch
may fail to heal it, or, the worm may prevent its installation.
We capture the above possibility, by introducing a coefficient
0 ≤ π ≤ 1. Let ϑ(t) := u(t)ε(t). One can develop the follow-
ing epidemic model for the spread of the malware [2]:

Ṡ(t) = −βI(t)S(t)− βϑ(t)R(t)S(t) (1a)

İ(t) = βI(t)S(t)− πβϑ(t)R(t)I(t) (1b)

Ṙ(t) = βϑ(t)R(t)S(t) + πβϑ(t)R(t)I(t) (1c)

with initial constraints:

I(0) = I0, R(0) = R0, S(0) = 1− I0 −R0, (2)

where 0 < I0, R0, I0 +R0 < 1. Also,

0 ≤ S(t), I(t), R(t), S(t) + I(t) +R(t) = 1. (3)

Coefficient β > 0 in (1) depends on the nodes densities, mo-
bility pattern and average relative velocities of the nodes. It
can be readily shown [2] that for any admissible ϑ, the state
constraints (3) are satisfied and hence can be ignored. An
admissible control should satisfy 0 ≤ ϑ(t) ≤ ϑmax for all t ∈
[0, T ]. With appropriate scaling by choice of β, we can as-
sume ϑmax = 1. Thus,

0 ≤ ϑ(t) ≤ 1 for all t ∈ [0, T ]. (4)

The worm may inflict damage over time by attempting
to (i) eavesdrop and analyze and/or (ii) alter or destroy the
traffic that is generated or relayed by the infected hosts. At
each time t, the network incurs a cost of f (I(t)) due to
the presence of the infectives, where f(.) is a general non-
decreasing differentiable function of I, such that f(0) = 0
and f(I) > 0 for I > 0. The resource consumption cost
incurred at time t due to the bandwidth consumed in media



scanning by the dispatchers is h (R(t)ϑ(t)) . h(.) is a twice-
differentiable and increasing function such that h(0) = 0 and
h(x) > 0 when x > 0. Thus, the aggregate network cost is:

J(ϑ) =

∫ T

0

[f (I(t)) + h (R(t)ϑ(t))] dt, (5)

Note that the assumptions on f(.), h(.) are mild and natural
and a large class of functions satisfy them.

Optimal Dynamic Patching
The network seeks to find an admissible ϑ(t) to minimize
the cost function in (5) for the state dynamics (1) and the
initial state values (2). We apply Pontryagin’s Maximum
Principle. Define the Hamiltonian H and costate functions
λ1 to λ3 as:

H = f(I) + h(Rϑ) + (λ2 − λ1)βIS − (λ1 − λ3)βϑRS

−(λ2 − λ3)πβϑRI (6)

λ̇1 = −∂H

∂S
= −(λ2 − λ1)βI + (λ1 − λ3)βϑR

λ̇2 = −∂H

∂I
= −f ′(I)− (λ2 − λ1)βS + (λ2 − λ3)πβ1ϑR

λ̇3 = −∂H

∂R
= (λ1 − λ3)βϑS + (λ2 − λ3)πβϑI − ϑh′(Rϑ)

(7)

and the transversality conditions as:

λ1(T ) = λ2(T ) = λ3(T ) = 0. (8)

Then according to Pontryagin’s Maximum Principle ([1, P.
109, Theorem 3.14]), there exist continuous and piecewise
continuously differentiable co-state functions λ1, λ2, λ3, that
(i) satisfy (8), and (ii) at every t ∈ [0 . . . T ] where ϑ is contin-
uous, satisfy (7), and together with the optimal trajectory
S, I,R satisfy

ϑ ∈ arg min
0≤ϑ≤1

H(~λ, (S, I,R), ϑ). (9)

Structure of optimal dynamic patching ϑ(t):

Theorem 1. An optimal immunization rate function ϑ(.)
has the following structure:

1. if h(.) is concave, ϑ(t) = 1 for 0 < t < t1 and ϑ(t) = 0
for t1 < t < T.

2. if h(.) is strictly convex, ∃ t0, t1, 0 ≤ t0 ≤ t1 ≤ T :
(1) ϑ(t) = 1 on 0 < t ≤ t0; (2) ϑ(t) strictly and contin-
ually decreases on (t0, t1); (3) ϑ(t) = 0 on t1 ≤ t ≤ T.

In what follows, we outline the proof of the above theorem
for the concave case.

Proof. We will use the following key properties of the
co-state functions, whose proof is omitted due to space limit.

lem. 1. For all 0 ≤ t < T, we have (λ2 − λ1) > 0, (λ1 −
λ3) > 0 and λ3 ≤ 0.

Now, define ϕ := (λ1 − λ3)βRS + (λ2 − λ3)πβRI, which is
a continuous function of time, and from (8), ϕ(T ) = 0. The
Hamiltonian in (6) can be rewritten as follows:

H = f(I) + (λ2 − λ1)βIS + h(Rϑ)− ϕϑ. (10)

From (9), for each admissible control ϑ, and ∀t ∈ [0, T ],
h (R(t)ϑ(t))− ϕ(t)ϑ(t) ≤ h (R(t)ϑ(t))− ϕ(t)ϑ(t), thus

ϑ(t) ∈ arg min
x∈[0,1]

h (R(t)x)− ϕ(t)x. (11)

Also, since ϑ = 0 is an admissible control, [h(Rϑ)−ϕϑ] ≤
0 at all t.

When h(.) is concave (i.e., h′′ ≤ 0), a minima in (11) is
either at x = 0 or x = 1 at each time t, and this minima is
unique unless h(R)− ϕ = 0. Then,

ϑ =

{
0, ϕ− h(R) < 0

1, ϕ− h(R) > 0
(12)

For the case of h′′ < 0, whenever h(R)− ϕ = 0, ϑ ∈ {0, 1}.
Let ψ(t) := ϕ(t)−h (R(t)). Because ϕ(T ) = 0 and from (12)
and since h (R(T )) > 0, ψ < 0 over a subinterval that ex-
tends to T. If this sub-interval starts from t = 0, the theorem
follows from (12) with t1 = 0. Else, from the continuity of
ψ, and the Intermediate Value Theorem, ψ(t) = 0 for some
t ∈ [0, T ). But there can be at most one such t, since (as
we will show next) ψ strictly decreases with increasing t.
Hence, ψ(t) > 0 for t ∈ [0, t1), and ψ(t) < 0 for t ∈ (t1, T ].
The theorem now follows from (12).

Since ϑ is piecewise continuous and ϕ, h,R are continuous
functions of time, it suffices to show that ψ̇ is negative at
any t ∈ [0, T ) at which ϑ is continuous. Referring to the
definition of ψ, at any such t:

ψ̇ = ϕ̇− h′(R)Ṙ

= (λ̇1 − λ̇3)βRS + (λ̇2 − λ̇3)πβRI + (λ1 − λ3)βṘS

+(λ2 − λ3)πβṘI + (λ1 − λ3)βRṠ

+(λ2 − λ3)πβRİ − h′(R)Ṙ

which after replacing from (1) and (7) and simplification
yields:

= −β2(1− π)RIS(λ1 − λ3)− β2RIS(λ2 − λ1)

−πβf ′(I)RI − Ṙ(h′(R)− h′(Rϑ)) (13)

We only need to show that the expression in (13) is neg-

ative at each t ∈ [0, T ). Note that Ṙ(h′(R) − h′(Rϑ)) ≡ 0.
This follows readily for h′′ ≡ 0 as then h′(R) − h′(Rϑ) ≡ 0
for any value of ϑ. When h′′ < 0, as we argued in (12) and
after, ϑ ∈ {0, 1}; now for ϑ = 1, h′(R)− h′(Rϑ) = 0 and for

ϑ = 0, Ṙ = 0. The negativity follows from positivity of the
states (S, I,R) and lem. 1.
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