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Optimizing transmission rate in wireless channels
using adaptive probes

Sudipto Guha, Kamesh Munagala, and Saswati Sarkar

Abstract— We consider a wireless system with multiple chan-
nels where each channel is either on or off, and probing the
state of any channel incurs a cost. We present a polynomial
time algorithm that determines which channels to probe and
also which channel to transmit so as to maximize the difference
between the rate of successful transmissions and the cost incurred
in probing.

I. INTRODUCTION

In future wireless networks each node is expected to have
access to a large number of channels. The challenge in
exploiting multiple channels is that a node will likely have
only limited information about the instantaneous transmission
quality of the individual channels. A node can learn the
instantaneous transmission quality of a channel by transmitting
a probe packet in the channel and subsequently measuring
the signal to noise ratio. The probing process is however
associated with a cost as it consumes additional energy and
prevents neighboring users from simultaneously utilizing the
channel. In this paper we initiate a study where a node seeks
to maximize a utility function that depends on both the rate
of successful transmission and the cost accrued in probing the
channels, using the available channel statistics. Towards this
end, a node needs to determine a jointly optimal (a) probing
policy which specifies which channels to probe as well as
the probing sequence, and (b) channel selection policy, which
decides which channel to transmit based on the outcomes of
the probes.

Problem Definition: We consider a sender U which has
access to n channels which are denoted as channels 1, 2, . . . , n.
Each channel has 2 possible states, 0, 1. We assume that time
is slotted. We assume that a node transmits one packet in
each time slot and transmits the packet in only one channel
which it need not have probed in the slot. In any slot channel
j is in state i with probability pij independent of its state
in other slots and the states of other channels in any slot.
The transmission in a slot is successful if and only if the
selected channel is in state 1. Whenever U probes a channel
i, it learns its state and pays a cost of ci ≥ 0. Given
{ci} and {pij} we seek a probing and selection policy that
maximizes the difference between the expected number of
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successful transmissions and the expected probing cost before
each transmission. Loosely, this utility function represents the
“gain” or the “profit” of the sender if the sender receives
credit from the receiver for each packet it delivers successfully
and needs to additionally compensate the wireless provider for
each probe packet it transmits.

Related Work: Recently, Sabharwal et al [1], Kanodia et al
[2] and Ji et al [3] have considered variants of the above
problem in systems where channels are statistically identical
but may have arbitrary number of states. In a companion paper
[4], we extend our results to multiple channels with potentially
different statistical characteristics and arbitrary number of
states, and also review the related literature in more detail.

II. OPTIMAL PROBING AND CHANNEL SELECTION POLICY

We first consider a specific class of probing and selection
policies and prove that the optimal policy belongs in this class.
Subsequently we show how to find the optimal policy in this
class in polynomial time.

Definition 2.1: Given S ⊂ {1, . . . , n}, i 6∈ S, let
EXHAUST(S, i) denote the class of policies which probe all
channels in S in a deterministic order until a probed channel
is in state 1 or all channels in S have been probed. It selects the
last probed channel if it is in state 1, and selects i otherwise.
Channel i is denoted as the backup channel.

Lemma 2.1: There exists an EXHAUST(S, i) policy which
is optimal.

Proof: We prove the lemma by induction on the number
of channels n. For the base case, n = 1, the expected gain
is p11 − c1 if the optimal policy probes the channel, and
p11 otherwise. Since c1 ≥ 0, the policy that selects the
channel without probing is optimal over all possible convex
combinations, i.e., randomizations, of the above two policies.
Thus, EXHAUST(Φ, 1) is an optimal policy in this case.

Assuming the lemma holds for n = s, consider a set J of
n = s + 1 channels. The optimal policy can randomize over
the two possibilities: (a) selects a channel without probing
or (b) probes a channel. Conditioned on (a), the policy can
randomize over the channels which is a convex combination
of EXHAUST(Φ, j) policies. Now, conditioned on (b), the
optimum policy chooses to probe a channel i with some
probability. Subsequent to the probe, if i is in state 1, the
optimal transmission policy selects i and no further probing
will occur. If i is in state 0 then the optimal policy takes the
same decisions as that in a system with the s remaining chan-
nels and by the induction hypothesis, uses EXHAUST(Q, j)
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policy for some Q ⊂ J − {i}, j ∈ (J − Q) − {i}. Thus, the
optimal policy in this case is an EXHAUST({i} ◦Q, j) where
the ◦ denotes the ordering. Therefore conditioned on (b), the
optimum policy is a convex combination of EXHAUST policies
as well. Therefore the overall policy is a convex combination
of EXHAUST policies. Thus, there exists an optimum policy
which is EXHAUST(S, i).

We next prove that the optimal policy satisfies additional
properties, which allows a fast computation of the policy.

Lemma 2.2: Let Si = {j : (1 − p1i)p1j > cj}. If
EXHAUST(S, i) is an optimum policy, then

1) channels j in S are probed in decreasing order of p1j/cj ,
and

2) EXHAUST(Si, i) policy is an optimum policy.
Proof: Let EXHAUST(S, i) policy be the optimum policy.

Wlog. S = {k1, . . . k|S|}, where channel kl is probed before
kl+1. Then the expected gain of EXHAUST(S, i) policy is

A =
|S|∑
l=1

(p1kl
− ckl

)
l−1∏
m=1

(1− p1km) + p1i

|S|∏
m=1

(1− p1km).

We first prove (1). If p1j = 1 for some channel j, then
the policy that does not probe any channel and always selects
channel j maximizes the expected gain. Thus, henceforth, we
assume that p1j < 1 for all channels j. Let p1ks/cks <
p1ks+1/cks+1 . Consider a new policy which probes ks+1 before
ks but is other-wise similar to the EXHAUST(S, i) policy. Let
the expected gain of this new policy be B. Then, A − B =∏s−1

m=1(1− p1,km
)(p1,scs+1− p1,s+1cs). Since p1j < 1 for all

j, and p1s/cs < p1,s+1/cs+1, B > A. Thus, EXHAUST(S, i)
is not the optimum policy. The result follows.

We now prove (2). If S = Si the result follows. Let S 6= Si.
Thus, either Si \ S 6= φ or S \ Si 6= φ.

Let S \ Si 6= φ. Consider some j ∈ S \ Si. From (1),
p1ks/cks ≥ p1ks+1/cks+1 . Thus, (1 − p1i)p1k|S|/ck|S| =
min1≤l≤|S|(1 − p1i)pl/cl ≤ (1 − p1i)p1j/cj ≤ 1. Thus,
k|S| ∈ S \ Si. Let Q = S \ {k|S|}. The expected gain of
EXHAUST(Q, i) policy with probing sequence k1, . . . , k|S|−1

is D =
∑|S|−1

l=1 (p1kl
− ckl

)Πl−1
m=1(1− p1km) + p1iΠ

|S|−1
m=1 (1−

p1km
). Now, D − A = (ck|S| − (1 − p1i)p1k|S|)Π

|S|−1
m=1 (1 −

p1km). Since (1 − p1i)p1k|S| ≤ ck|S| , D ≥ A. Thus,
EXHAUST(Q, i) is an optimum policy, where Q ⊆ S and
|Q \ Si| < |S \ Si|. Continuing this argument, clearly there
exists a T such that T ⊆ S and T \Si = φ and EXHAUST(T, i)
policy is optimal.

Now let Si \ S 6= φ. If S \ Si 6= φ, let T be as constructed
in the above paragraph; otherwise let T = S. In both cases,
EXHAUST(T, i) policy is optimal. We now show that Si \T =
φ. If not, consider a j ∈ Si \ T. Let Q = T ∪ {j}. The
expected gain of EXHAUST(T, i) policy with probing sequence
k1, . . . k|T |, kj is C =

∑|T |
l=1(p1kl

− ckl
)Πl−1

m=1(1 − p1km) +
(p1j − cj)Π

|T |
l=1(1− p1kl

) + p1i(1− p1j)Π
|T |
l=1(1− p1kl

). Now,
C − A = ((1− p1i)p1j − cj) Π|T |

l=1(1 − p1kl
). Since p1s < 1

for all s and (1 − p1i)p1j > cj , C > A. This contradicts the
optimality of the EXHAUST(T, i). Thus, Si \ T = φ. Thus,
Si = T. Hence, EXHAUST(Si, i) policy is optimal.

Procedure Determining Best Backup Channel
begin

Wlog. let channels be numbered in decreasing order of p1i/ci, i.e., if
i < j, p1i/ci > p1j/cj .
Si = {j : (1− p1i)p1j > cj , j 6= i}.
Compute Fj =

Pj−1
l=1 (p1l − cl)

Ql−1
m=1(1− p1m) for each j

/* Gain of the first j − 1 channels if probed. */
Compute Dj = Πj−1

l=1 (1− p1l) for each j
/* Probability that first j − 1 channels return state “0” */

For each channel i,
if i ≤ |Si| then

Gain(i) = Fi +
F|Si|+2−Fi−(p1i−ci)Di

1−p1i
+

p1i
1−p1i

D|Si|+2;
/* Omit channel i from ordering */

else
Gain(i) = F|Si|+1 + p1iD|Si|+1.

Let Best-Bkup = arg maxi=1,...,n Gain(i).
end

Procedure Optimum Probing and Transmission
begin

Probe channels j ∈ SBest-Bkup until a probed channel is in state 1 or
all channels in SBest-Bkup have been probed.
if the last probed channel j is in state 1, then

transmit the packet in j;
else

transmit the packet in Best-Bkup.

end

Fig. 1. Pseudo Code for the Optimum Probing and Selection Strategy

Lemma 2.2 together with Lemma 2.1 proves that there exists
an EXHAUST(Si, i) policy that is optimal, and this policy
probes the channels in Si in decreasing order of p1j/cj . The
procedure “Determining Best Backup Channel” in Figure 1
determines the policy that has the maximum expected gain
among all such policies, and the procedure “Optimum Probing
and Selection” executes this policy.

The computation is optimized for efficiency as follows. The
set of channels in Si is a prefix of the channels sorted in
decreasing order of p1j

cj
, omitting the channel i. We compute

the gain of probing channels in each prefix in the sorted
order including channel i; channel i’s contribution to this
gain can be omitted in constant time. The overall running
time is dominated by the sorting of the channels, which takes
O(n log n) time. Therefore, we have the following Theorem.

Theorem 2.3: The policy proposed in Figure 1 maximizes
the expected gain, and can be executed in O(n log n) time.
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