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Throughput-optimal Scheduling in Multichannel
Access Point Networks under Infrequent Channel

Measurements
Koushik Kar, Xiang Luo and Saswati Sarkar

Abstract—We consider the problem of uplink/downlink
scheduling in a multichannel wireless access point networkwhere
channel states differ across channels as well as users, varywith
time, and can be measured only infrequently. We demonstrate
that, unlike infrequent measurement of queue lengths, infrequent
measurement of channel states reduce the maximum attainable
throughput. We then prove that in frequency division multiplexed
systems, a dynamic scheduling policy that depends on both the
channel rates (averaged over the measurement interval) and
the queue lengths, is throughput optimal. We also generalize
the scheduling policy to solve the joint power allocation and
scheduling problem. In addition, we provide simulation studies
that demonstrate the impact of the frequency of channel and
queue state measurements on the average delay and attained
throughput.

Index Terms—Infrequent channel measurements, multi-
channel access point networks, throughput-optimal scheduling.

I. I NTRODUCTION

Future wireless networks are likely to provide each user
access to multiple channels. The dynamic scheduling problem
at any given time in such networks is to determine (i) the set
of users that can transmit/receive, and (ii) the set of channels
that a user can use. Our goal is to optimally determine the
above so as to maximize the system throughput using on-
line adaptive policies. The availability of multiple channels
gives rise to several unique challenges in attaining the above
goal. Channel characteristics at any given time will typically
be different for different channels, and these characteristics
will also vary with time. In a system with a large number of
users and channels, an individual user could use only a small
number of channels at any time. Therefore, measuring the
channel quality perceived by each user for each channel would
require additional probe packets, which introduces a significant
measurement overhead. Thus unlike single-channel networks,
scheduling in multichannel networks must be done under
inaccurate channel state information, resulting from infrequent
channel measurements. Moreover, in a multichannel wireless
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system, the scheduling questions depend strongly on the trans-
mission mechanisms. Specifically, the scheduling constraints
differ significantly based on whether the transmission by each
user is single-channel or multi-channel, and the manner in
which power is allocated across channels. Our contribution
in this paper is to develop optimal scheduling policies that
address the above challenges.

Our first contribution is to demonstrate that infrequent
channel state measurements affect the system throughput in
a fundamentally different way than infrequent measurements
of other state variables. Specifically, it is well-known that
infrequent measurements of queue lengths of users do not
alter the maximum attainable throughput region, as long as
the measurement intervals are upper bounded by a constant.
We however show that infrequent measurement of channel
states does reduce the maximum attainable throughput region.
We further prove that a weighted queue-length based schedul-
ing policy attains the maximum attainable throughput region
under partial information about channel states. The weights
must be chosen based on the average channel rates till the
next measurement instant. We also investigate the structure
of the optimal scheduling policy under specific scheduling
constraints. We show that for single-channel transmissionby
users, the throughput-optimal scheduling policy is a maximum
weighted matching between the users and the channels, and
for multi-channel transmission by users, on the other hand,the
scheduling policy corresponds to a maximum weightedpoly-
matching. We then show how our results can be extended to
jointly optimize the scheduling and power allocation under
multi-channel transmission. From a practical perspective, the
algorithms that we present in this paper can be used for
uplink/downlink scheduling and power assignment for mul-
tichannel wireless systems like 802.16 access point networks.

II. RELATED WORK

There is a rich body of literature on the subject of
throughput-optimal scheduling in a wide variety of queueing
networks [1], [2], [6], [7], [15], [19], [20], [21], [22], [23],
[24], [25], [26], [29], [31], [30]. These papers either assume
that the service rates of the queues do not vary with time,
or if the service rates vary, the schedulers know the service
rates of the queues before each scheduling decision. The
equivalent assumption in our context is that the schedulers
know the instantaneous channel states. Recently, Neelyat al.
have addressed the problem of jointly selecting the queues
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to serve and determining the service rates of the selected
queues by appropriately regulating the transmission power
levels [18]. They also assume that the scheduler always knows
the instantaneous states of the channels. Our main contribution
is to develop throughput optimal scheduling policies when
the scheduler knows the channel states only infrequently. We
also demonstrate that the impact of infrequent knowledge of
channel states is substantially different from that of infrequent
knowledge of queue lengths. While infrequent knowledge
of queue lengths does not alter the maximum achievable
throughput region (as shown by several previous results in
different settings [1], [2], [20], [21], [22], [23], [24], [25],
[26], [27]), we show in this paper that infrequent knowledge
of service rates substantially reduces the maximum achievable
throughput region.

Several interesting medium access control protocols, e.g.,
[9], [14], [8], [16], [28], [32], have been proposed for se-
lecting channels in context of specific wireless technologies,
e.g., IEEE 802.11, which do not however guarantee through-
put optimality. Our contribution lies in the development of
scheduling algorithms that provably maximize throughput in
presence of time variations, asymmetry in the rates of different
channels, and infrequent measurements.

For the case where each user can transmit over multiple
channels simultaneously, there have been several recent papers
that address a problem that is closely related to ours [5],
[33], [10], [12]. The authors in [5], [33] have addressed the
question of how resources (like bandwidth and power) should
be allocated to users in an multi-channel transmission system
to maximize system throughput. However, in these works, the
resource allocation problem is not considered in a stochastic
setting, and therefore the problem addressed in [5], [33]
is quite different from the stochastic dynamic optimization
problem that we consider here. In [10], [12], the authors
address the multi-channel transmission case of our problem
for two-state (on-off) channel models. In contrast, we consider
channel models that are much more general (can have any
number of states) and address both the cases of single-channel
and multi-channel transmission by users. More importantly,
unlike our work, the results in [10], [12] assume that the
instantaneous channel states are always known, and do not
jointly optimize the channel and power allocations.

III. F ORMULATION

A. System Model and Assumptions

Our system consists of a set of users sharing a set of
channels to communicate with an access point (AP). Let
M denote the set of channels, andN denote the set of
users. The access point network that we consider is a cen-
tralized network, where the scheduling decisions (both uplink
and downlink) are taken by the AP. In the following, we
focus most of our discussion on uplink scheduling, where
the users are transmitting data to the AP; the formulation
and approach presented here can easily be extended to the
downlink case. We assume that the AP is equipped with a
separate transceiver for each channel, and is thus capable of
receiving data simultaneously from multiple users provided

they receive on different channels. However, the AP cannot
successfully receive data from multiple users over a single
channel. In this scenario, whether a user can simultaneously
transmit on multiple channels or not, depends on the specific
system considered, and is discussed in Section III-B.

We allow channel conditions to vary across channels as
well as users. Channel conditions depend on various factors
like fading and interference (from neighboring access point
networks), which typically depend on the channel frequency,
as well as the user location. Therefore, the attainable rateon a
channel may be different for different channels; moreover,the
attainable rate may also depend on the user using the channel.
Let αij (0 ≤ αij ≤ 1) denote the packet success probability
when useri transmits a packet on channelj. In the rest of
the paper, we will therefore refer toαij as thechannel rate of
useri on channelj. Note that the channel rates are typically
functions of time, since fading and interference levels at any
location can vary with time. These variations will be more
pronounced when the users are mobile.

We assume that time is slotted, and the slots are denoted
by t = 1, 2, .... All packets have the same length, and the
transmission time of a packet equals a slot length. We assume
that packet arrivals occur at the beginning of any time slot,
and packet departures occur at the end of the time slot. At
any given time slot, the number of packet arrivals for different
users can be arbitrarily correlated. For useri, the number of
arrivals in any slot follows an i.i.d. process, with meanλi.
Let ~λ = (λi, i ∈ N) denote the vector of average arrival
rates. Note that while our results assume i.i.d. traffic arrival
patterns, they can be extended to more general arrival patterns
using fluid flow techniques [4]. We assume that each channel
rate, αij , evolves in time according to a finite-state Markov
chain. At any given time, the differentαijs can be arbitrarily
correlated. Finally, we state our assumptions on the sampling
of channel and queue states. Let the time slots be grouped
into intervals of time T . Thus the(k + 1)th interval consists
of slotskT, ..., (k+1)T −1. Although the channel conditions
and queue lengths can change in each slot, these are measured
only at the beginning of each interval, i.e., at the beginning of
slotkT , for k = 0, 1, .... Thus the interval lengthT denotes the
duration between successive sampling instances of the channel
conditions and queue lengths.

B. Scheduling Constraints

Next, we describe the constraints on our scheduling policy.
At the beginning of each interval, for each channel, a user is
selected to transmit on that channel during the interval. Note
that a channel cannot be assigned to multiple users in the
same interval. Under single-channel transmission, a user can
transmit on only one channel at any given time. Therefore, in
this case, the scheduling policy across channels corresponds
to a matching [3] in a bipartite graph, where the users and
the channels represent the two sets of vertices that need to be
matched. Under multi-channel transmission, however, a user
can transmit on multiple channels at the same time. Thus in
this case, a user can be matched to multiple channels, but
not vice versa. In this paper, we refer to such a one-to-many
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Fig. 1. Matching vs. poly-matching: The figure shows one possible matching
and one possible poly-matching for 3 users and 2 channels. (Note that the
matching/poly-matching is represented by the bold edges.)

matching between the users and channels as apoly-matching.
Figure 1 explains the difference between matchings and poly-
matchings.

Note that there can be multiple matchings or poly-matchings
in the bipartite graph of users and channels (the total number of
matchings or poly-matchings is in fact, exponential in the size
of the user-channel graph), and different matchings and poly-
matchings will provide significantly different throughputs.
A good choice of matching or poly-matching is critical to
attaining high system throughput. Therefore, the key challenge
in the dynamic scheduling question considered here is to select
the right matching or poly-matching at any time slot, so as to
maximize the long-term system throughput.

C. Stability Region and Throughput-optimal Scheduling

The notion of throughput-optimal scheduling is based on
the notion of a “stability region”; so we define the latter first.
A system is said to bestable for an arrival rate vector~λ
under a scheduling policyΨ, if the expected lengths of all
queues in the system remain bounded over all time, when the
packet arrival rate vector is~λ andΨ is used as the scheduling
policy. In such a case, scheduling policyΨ is said tostabilize
the system for arrival rate vector~λ. The stability region of
the system is the set of all arrival rate vectors for which the
system can be stabilized bysome scheduling policy. Intuitively,
the arrival rate vector belonging to the stability region is
“attainable”, since there exists a scheduling policy underwhich
the system is stable for that arrival rate vector. Moreover,a
rate vector outside the stability region is not attainable,since
all scheduling policies would lead to unbounded queues in
the system for that arrival rate vector. As we argue later in
the paper, the stability region in our system depends on the
measurement intervalT . Let ΛT denote the stability region of
the system for interval lengthT . An analytical characterization
of the stability region of the system that we consider can be
found in the appendix (refer to (8)-(10)).

A scheduling policy is said to bethroughput-optimal if it
stabilizes the system for all arrival rate vectors that arestrictly
within the stability region. In other words, a throughput-
optimal scheduling policy can “attain” all arrival rate vectors

that belong to theinterior of the stability regionΛT . In the
next few sections, we present throughput-optimal scheduling
policies for the multichannel wireless system described above.

IV. T HROUGHPUT-OPTIMAL SCHEDULING

Before we present our scheduling policy and argue about
its throughput-optimality, we discuss some properties of the
stability regionΛT .

A. Characterization of the Stability Region

In the following lemma, we prove that the stability region
reduces with increase inT. Let Int(ΛT ) represent the interior
of the stability region,ΛT .

Lemma 1: For anyT ≥ 1, ΛlT ⊆ ΛT ∀ positive integers
l. If l > 1, there exists systems whereInt(ΛlT ) ⊂ Int(ΛT ).

Lemma 1 is proved in the appendix. Intuitively, Lemma 1
states that the stability region “shrinks” as the measurement
interval increases.

Note that in practice, some inference on the channel states
can be drawn from the success or failure of packets transmitted
during an interval. However, in our definition ofΛT , we
assume that such information is not used by the scheduling
policy.

Let us now consider a scenario where the queue states are
measured only at the beginning of each interval (ofT time
slots), but the channel states are measured at the beginning
of every time slot. LetΛ̂T denote the stability region in this
case. The following result can be easily shown, and has been
observed in the existing literature in different contexts [21],
[23], [24], [25], [26], [27]:

Observation 2: For anyT ≥ 1, Int(Λ̂T ) = Int(Λ).
The above observation (proof outline in appendix) states that

the stability region remains the same if the queue measurement
interval is increased, as long as the channel states are measured
every time slot.

From the lemma and observation stated above, we can
conclude that the shrinking of the stability regionΛT with
increasingT , is a result of the reduction in the channel rate
measurement frequency, and not due to the reduction in the
frequency of queue-length measurements. Increasing the queue
measurement interval (while keeping the channel measure-
ment interval fixed) does not affect the maximum achievable
throughput; it usually results only in an increase in the average
packet delay. Increasing the channel measurement interval,
however, not only increases the average delay, but also leads to
a reduction in the maximum achievable throughput. Thus the
reduction in the frequency of measurement in the channel rates
affects the system in a fundamentally different way than that
of the queue-lengths. The optimal scheduling policy which
we state in the next section provides more intuition behind
these results. We also substantiate these observations through
simulation results in Section V.

B. Scheduling Policy

We now describe our scheduling policyΨT , which is
parameterized by the lengthT of the measurement interval.
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The scheduling policy consists of two components: (i) packet
queueing policy and (ii) packet service policy. Both of these
can be executed in parallel. We will first describe the packet
queuing policy which assigns the service channel to each
packet of each user. Each user maintains a queue for each
of the channels (see Figure 2). A queue for channelj at user
i contains packets ofi that will be scheduled on channelj. A
packet, on arrival, is stored in the queue with thesmallest
queue-length, amongst all queues for that user. Thus the
channel on which a packet will be scheduled is assigned on
packet arrival. LetQij(t) denote the length of the queue for
channelj at useri at time slott. In computingQij(t), the
packets that enter the corresponding queue at the beginningof
time slott are also taken into account. In our packet queueing
policy, the arriving packets are routed to the corresponding
queue (i.e., are considered eligible for scheduling) only at the
beginning of each interval. Thus, a packet of useri arriving
at a time slott, wheret satisfies(k − 1)T ≤ t < kT , will
enter a queue only at the beginning of time slotkT , i.e., at
the beginning of the(k + 1)th interval. Moreover, the packet
will enter the queue for channelj at useri, wherej satisfies

j = arg min
j′∈M

Qij′(kT ). (1)

We now describe the packet service policy. Our packet
service policy selects the matching (poly-matching) at the
beginning of the(k + 1)th interval, and uses it for the rest
of that interval. Recall that the channel ratesαij are functions
of time, and letαij(t) denote the corresponding values in time
slot t. Now, for any useri and channelj, defineα̃ij(kT ) as
follows

α̃ij(kT ) =
1

T
E(

(k+1)T−1
∑

t=kT

αij(t)|αij(kT )), (2)

where E(·) denotes the expectation of a random variable.
In other words,α̃ij(kT ) denotes the average channel rate
until the next channel measurement instant, given the current
(observed) channel state,αij(kT ). Note that since the channel
rate αij evolves according to a finite-state Markov chain,
α̃ij(kT ) can be computed from (2) using the multi-step
transition probabilities of the Markov chain.

Now associate a weight of̃αij(kT )Qij(kT ) with each
“edge” (i, j) in the user-channel bipartite graph (note that
an edge corresponds to a user-channel pair). Note that a
matching (poly-matching) can be viewed as a collection of
edges. The weight of a matching (poly-matching) is the sum
of the weights of the edges belonging to the matching (poly-
matching). Thus, the weight of a matching (poly-matching)Φ,
computed at timekT , is given by

∑

(i,j)∈Φ

α̃ij(kT )Qij(kT ). (3)

Then the packet service policy is to assign channels to usersso
that (3) is maximized. Thus the user-channel assignment for
the single-channel transmission (multi-channel transmission)
case corresponds to themaximum weighted matching (poly-
matching) in the user-channel bipartite graph. Figure 2
provides a schematic diagram that explains our queueing and
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. The number shown across each edge represents,α̃ij(kT ), the average

channel rate until the next measurement instant, given the current (observed)
channel state. Note that the queue-length for channel 2 is smaller than that
for channel 1, at all users; therefore, any packets arrivingat any user before
the next measurement instant will be stored in the queue corresponding to
channel 2 at that user.

service policies for the two cases.
We now describe the intuition behind the design. For higher

system throughput, we would like to schedule useri to
transmit on channelj if the expected rate (in the current
interval) of i on j, expressed bỹαij , is high. In other words,
in selecting the user-channel pairs (edges) for scheduling,
preference should be given to those with higher expected
channel rates in the current interval. Moreover, for stability
of the system, we would prefer to choose user-channel pairs
for which the corresponding queue-lengths are large. This
intuitively justifies the termQij in the weight of edge(i, j). A
useri should transmit more packets on a channelj in which
it has higher channel rate. The queue lengthQij in such a
channel will be low due to frequent service of packets. This
justifies the selection of the least loaded queue for each new
packet in the packet queueing policy.

C. Optimality Result

Theorem 2: The scheduling policyΨT stabilizes the system
for all arrival rate vectors~λ ∈ Int(ΛT ), for anyT ≥ 1.

The above result (see the appendix for proof) states that our
policy stabilizes the system for all arrival rate vectors that are
strictly within the stability region. In other words, Theorem 2
states that our scheduling policy,ΨT , is throughput-optimal.
Note that the throughput-optimality of the maximum queue-
length matching based scheduling in input-queued switches, as
shown in [15], follows as a special case of the above result,
by considering the caseT = 1 andαij(t) = 1 ∀i, j, t.

D. Discussion

The design ofΨT also explains why the impact of infre-
quent channel measurements is fundamentally different from
that of infrequent queue-length measurements. Note that the
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packet service policy forΨT depends on the products of the
queue lengths and corresponding average channel rates. If the
queue lengths known by the scheduler differ from the actual
queue lengths by an amount that is upper bounded by a finite
constant that independent of the queue-lengths (which is the
case as long as the measurement intervals are finite), then
the difference between the weights are also bounded since
the channel rates are upper bounded by1. This difference
constitutes a negligible fraction of the actual weights forlarge
queue lengths. However, when the channel rates are inaccurate,
then the difference in the weights become arbitrarily largeas
queue lengths increase. This holds even when the inaccuracy
in the channel weights is small. Thus the performance of
the optimal strategy deteriorates primarily due to infrequent
channel measurements.

The design ofΨT also demonstrates that using the current
queue-lengths in the edge-weight computation is enough to
ensure throughput-optimality. However, it can be shown that
the use of the current channel rate in the edge-weight computa-
tion need not guarantee throughput-optimality; some measure
of the average channel rate till the next measurement instant
can be used instead, as in (2).

Finally, the assumption that channel and queue state mea-
surements are made at the same time is mainly for the ease
of exposition and analysis. Our results can be extended to the
case where the channel and queue state measurements occur
at different instants (and even different frequencies), aslong
as the measurement intervals remain bounded. In that case,
the matching/poly-matching computation is done whenever the
channel states (channel rates) are measured. In the edge-weight
calculations, the last observed queue-lengths can be used.The
calculation procedure of the average channel rate (see (2))
remains the same.

Wireless systems often transmit the same data (or interleave
coded data) across multiple frequency channels to achieve
frequency diversity. This variant of multi-channel transmission
can be incorporated into our throughput-optimality framework
as well, as discussed next. In this case, a valid channel
assignment corresponds to a poly-matching, and it can be
shown that the optimal channel assignment corresponds to
finding a poly-matchingΦ that maximizes an expression sim-
ilar to that given by (2)-(3). However, the only (although very
signicant) difference is that the channel rateαij in this case is
a function of the poly-matching (Φ) itself (not justkT ). Since
αij(Φ, k, T ) (and therefore,̃αij(Φ, k, T )) will typically be a
complex, non-linear function ofΦ, optimizing the expression
in (3) may be a computationally difcult problem.

E. Computational Aspects

The maximum weighted bipartite matching problem, also
popularly known as theassignment problem, can be solved
efficiently using the well-knownHungarian Method [13]. Let
m = |M | andn = |N |. Then the maximum weighted bipartite
matching problem can be solved inO(mn2) time if m ≤ n,
and inO(m2n) time if m > n.

The maximum weighted poly-matching can be computed
as follows: each channel greedily selects the “best” user

on that channel, irrespective of whether the user was se-
lected by other channels or not. Thus during the(k + 1)th
interval, a channelj will select user i satisfying i =
argmaxi′∈N α̃i′j(kT )Qi′j(kT ) for receiving traffic on chan-
nel j. Note that in this assignment, a user can be assigned
to multiple channels, but a channel can be assigned to at
most one user. The algorithm requiresO(mn) time under
sequential computation. However, note that the user selections
across different channels are independent of each other, and
can be executed in parallel; in that case, the algorithm can be
completed inO(n) time.

Our scheduling policy can be somewhat generalized, with-
out affecting throughput optimality. More specifically, inthe
weight computation procedure, the queue lengthQij(kT )
could be replaced byfij(Qij(kT )), wherefij is some function
of the queue-length. As long as the functionsfij are strictly
increasing, and satisfy some additional (fairly general) criteria,
throughput optimality is achieved by our scheduling policy.
The choice of the function, however, affects the average
packet delays of different users. This fact can be exploitedto
provide delay differentiation to users. For example, if we use
linear functionsfij(Qij(kT )) = wiQij(kT ), we can attain
delay differentiation by associating larger weightswi with
higher priority users. We explore this issue further through
simulations in Section V.

F. Joint Scheduling and Power Allocation under Multi-channel
Transmission

In a multi-channel transmission system, as mentioned ear-
lier, data of a single user can be transmitted on multiple chan-
nels simultaneously. In the uplink case, the user might have
fixed power budget per slot, which can be split across the dif-
ferent channels used by the user. The channel rates depend on
the power allocation in these different channels. Also notethat
the optimal power allocation across different channels depends
on the poly-matching chosen. In this scenario, therefore, the
optimal scheduling and power allocation questions are closely
coupled, and both scheduling and power allocation need to
be jointly optimized for maximizing system throughput. We
next show how our scheduling policy described earlier can be
extended so as to solve this joint optimization question.

Let Pi denote the maximum power at which useri can
transmit (over all channels). Letpij denote the transmission
power used by useri on channelj in any time slot. Thus
∑

j∈M pij ≤ Pi. We assume that a useri can transmit on
any channel using only a finite number of power levels; let
Ωi denote the set of these power levels. Thuspij ∈ Ωi ∀j =
1, 2, ..., M . The constraints on the power allocations,pij , are

pij ∈ Ωi, ∀j ∈ M, ∀i ∈ N, (4)
∑

j∈M

pij ≤ Pi, ∀i ∈ N. (5)

We assume that the channel rates are functions of the power
allocation of useri on channelj. Thusαij(t), the channel rate
of user i on channelj at time t, can be written asαij(t) =
α̂ij(pij , t). Typically, α̂ij is a concave function ofpij .
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The packet queuing policy remains the same as the one
described in Section IV-B. Let̄αij(kT ) denote the average
channel quality in the(k + 1)th interval, derived using (2),
while replacingαij(t) by α̂ij(pij , t). Then our scheduling and
power allocation policy for the(k + 1)th interval involves
finding the power allocationspijs and the poly-matchingΥ
so as to maximize

∑

(i,j)∈Υ

ᾱij(pij , kT )Qij(kT ), (6)

wherepijs must satisfy (4)-(5). We can show that the stability
result (Theorem 2) holds in this case as well; a proof outline
is provided in the appendix. It is worth noting, however, that
computing the optimal power allocations and poly-matching
that maximizes (6) is in general a difficult problem. Efficient
computation of the optimal power allocations and the poly-
matching for cases where the user-channel graph is large,
remains an open question.

V. SIMULATION STUDIES

In this section, we evaluate the performance of our schedul-
ing policy through simulations. More specifically, we demon-
strate that our maximum weighted matching (poly-matching)
based scheduling policy attains maximum achievable through-
put when the channel/queue state measurement interval (T )
is set to unity. We also study the reduction of the attained
throughput, and the increase in the average delays, as the
measurement intervalT increases. Finally, we demonstrate that
the maximum achievable throughput remains unaltered when
the queue state measurement interval increases, provided the
channel states are measured every time slot.

We consider downlink data transmission in an access point
network with 6 users and 4 channels. We consider two channel
models. In the first model, each channel has two states−
“good” and “bad”, and the channel rates associated with the
two states are 1 and 0, respectively. In the second model,
each channel has three states− “good”, “intermediate” and
“bad”, and the rates associated with the three states are 0.9, 0.5
and 0.1, respectively. The state of each channel for each user
varies in time according to a Markov chain, with a symmetric
transition probability matrix. At any time slot, channel states
(rates) for different channels or different users are independent
of each other. The packet arrival process for each user is
Bernoulli; packet arrival processes for different users are
independent of each other. The nature of the simulation results
for both the single-channel and multi-channel transmission
cases are similar; therefore, we only present results for the
single-channel transmission case.

Figure 3 shows how the average packet delay varies with the
arrival rate, for different values of the measurement interval
T , for the 2-state channel model. Note that we assume that
the channel and queue state measurements, as well as the
scheduling decisions, are made once every interval (ofT time
slots). The packet arrival rate for users1, 2, 3 is λ per user,
and that for users4, 5, 6 is λ/2 per user. The figure shows
that for a given arrival rate parameterλ, the average delay
increases with an increase inT . Moreover, the maximumλ
that can be supported (and therefore, the maximum throughput
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attained per user) decreases asT increases, as expected from
Lemma 1. This is also evident from Figure 4, which plots the
maximum supportableλ versusT , in a semi-log scale. Note
that for T = 1, the maximum attainableλ in this case can
easily be calculated as(8/9) ≈ 0.889. Figures 5-6 are similar
to Figures 3-4, but for the 3-state channel model. The trends
observed in this case are also similar to the ones discussed
above.

Let us next explore how delay differentiation can be attained
by associating different weights with different queues. In
Figure 7 we plot the average delay vs.λ curves in the case
where user 1 is associated with a higher weight than the rest of
the users. More specifically, in computing the matching/poly-
matching, user 1’s queue-length in multiplied by a factor of
4, while the weight calculations for the other users remain
unaltered. The average delay vs.λ curve for the undifferen-
tiated case (where all users are associated with equal weight,
and therefore treated uniformly) is also shown in the figure.
Figure 7 shows that with this weight-based differentiation, the
average delay of user 1 decreases, while that of the other users
increases, compared to the undifferentiated case. However,
note that the maximum attainableλ remains the same.

Now, let us consider the case where the channel state
measurement and scheduling decisions are made every time
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Fig. 5. Average packet delay vs.λ (3-state channel)
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Fig. 6. Maximum attainableλ vs. Measurement intervalT (3-state channel)

slot, but the queue measurement decisions are made only once
everyT -slot interval. Figure 8 plots the average packet delay
versusλ in this scenario, for different values ofT . The plots
demonstrate that in this scenario, the maximum achievable
throughput does not change asT increases, as discussed in
Section IV-A. The plots also demonstrate that our weighted
matching based scheduling algorithm attains the maximum
achievable throughput, for every value ofT considered.

Finally we consider the joint scheduling and power alloca-
tion problem; figures 9-10 show the average delay and maxi-
mum attainableλ in this case, for 3 users and 2 channels. Here,
the channel rateαij is expressed asαij = B log(1 + κ

pij

nij
),

whereB andκ are constants,pij represents the transmission
power allocated on channelj by useri, andnij is the noise
power on channelj for useri. We assume that there are three
noise power level values− 0.1, 0.5, 0.9, and the noise power
levels vary according to a Markov chain with a symmetric
transition probability matrix. The maximum powerPi is unity
for each useri, and the transmission powerpij can be chosen
from three different levels− 0, 0.5 and 1. We consider non-
uniform traffic, where the packet arrival rate for users 1 and
2 is λ per user, and that for user 3 isλ/2. The optimal power
and channel assignments (which maximize (6) subject to (4)-
(5)) are computed by complete enumeration over all possible
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Fig. 7. Delay differentiation: Average packet delay vs.λ (3-state channel)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

45

50

Arrival Rate

A
ve

ra
ge

 D
el

ay

T=1
T=2
T=4
T=8
T=16

Fig. 8. Average packet delay vs.λ, when only queue state measurements
are made infrequently (3-state channel)

power levels and channel allocations. Figures 9-10 show a
trend similar to the cases without power allocation discussed
earlier.

VI. CONCLUDING REMARKS

We have presented a throughput-optimal uplink/downlink
scheduling policy in a multichannel wireless access point
network where the time-varying channel rates can be mea-
sured only infrequently. We identified a fundamental disparity
between the roles played by the queue and channel state
measurements: less frequent queue-length measurements do
not affect the maximum throughput achieved, but a reduc-
tion in the channel rate measurement frequency reduces the
maximum achievable throughput. Finally, we have also shown
how our approach can be used for joint optimization of power
allocation and scheduling in a multi-channel transmission
system. Computationally efficient approaches of computing
the optimal power allocations and schedules in this case
remains an open question.

APPENDIX

PROOF OFLEMMA 1

Proof: Consider any positive integerl. Choose any~λ ∈ ΛlT .
Then there exists a scheduling policy, sayΨ̂, that achieves
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stability for the arrival rate vector~λ, in a system where the
measurement interval has lengthlT , i.e., measurements are
made only at time slotskT for which k is a multiple of l.
Now consider usinĝΨ in the system where the measurement
interval has lengthT , i.e. measurements are made only at time
slots kT , for k = 0, 1, . . .. In this case, our policy simply
ignores the measurements made at time slotkT (and keeps
using the previously computed matching/poly-matching), un-
lessk is a multiple ofl. Clearly, this policy will also achieve
stability for the arrival rate vector~λ, in the system where the
measurement interval has lengthT . Therefore~λ ∈ ΛT . Since
~λ was chosen arbitrarily fromΛlT , we concludeΛlT ⊆ ΛT .

We now provide an example scenario whereInt(ΛlT ) ⊂
Int(ΛT ). Consider a single-channel transmission system with
T = 1, l = 2, 1 user and2 channels. In any slot, for both
channelsj, α1j is a Bernoulli random variable with probability
p of failure, i.e., α1j = 1 with probability 1 − p, and 0
otherwise. Let0 < p < 1. Consider measurement intervals
of size T , i.e., when the channel rates and queue lengths
are measured every slot. Since the channels are statistically
identical and there is only one user, it can be shown that in
each slot the optimal policy is to transmit a packet in any
channel that has rate1 provided the user has a packet to
transmit. Thus, the user does not transmit only when it does

not have a packet to transmit or both channels have rate0.
This policy can stabilize the system as long as the arrival
rateλ of the user is less than1− p2. Thus, the interior of the
stability regionΛT is given by0 < λ < 1−p2. Now, consider
measurement intervals of sizelT , i.e., channel measurements
are done in alternate slots. Again, since the channels are
statistically identical and there is only one user, the optimal
policy is to select a channel that has rate1 in the slot in
which the channel is measured, and transmit packets in the
same channel during the interval while the user has a packet
to transmit. This policy can stabilize the system as long as the
arrival rateλ of the user is less than1−(p2+p)/2. The interior
of the stability regionΛlT is given by0 < λ < 1−(p2+p)/2.
Clearly, this region is a proper subset of0 < λ < 1−p2. Thus,
Int(ΛlT ) ⊂ IntΛT .

PROOF OUTLINE OF THEOREM 2

Preliminaries: First we introduce some notation which will
be used in the proof. Let~α(t) = (αij(t), i ∈ N, j ∈ M)
denote the vector of channel rates at timet. Let p~θ

=

Pr
(

~α(t) = ~θ
)

, denote the stationary probabilities of the

Markov chain of the channel rate vector~α(t). Let Θ = {~θ :
p~θ

> 0}, and |Θ| be finite.
In the following, we use a vector representation of match-

ing (poly-matching)Φ, where Φ is represented as aNM -
dimensional vector~φ with componentsφij , where

φij =

{

1 if channelj is used by useri,
0 otherwise.

It is easy to see that~α(lT ), l = 0, 1, . . . constitutes a positive
recurrent Markov chain with stationary probabilitiesp~θ

, θ ∈ Θ.
Let ~Q(t) = (Qij(t), i ∈ N, j ∈ M) denote the vector of
queue-lengths at timet.

Let us consider the(l + 1)th interval, i.e. the interval
[lT, ..., (l + 1)T − 1], for any non-negative integerl. Define
~θ = ~α(lT ), i.e., ~θ is the vector of the channel rates at the

beginning of the interval. Letγ~φ,~θ = (γ
~φ,~θ
ij , i ∈ N, j ∈ M),

denote the vector of expected throughputs in that interval,if
matching (poly-matching)~φ is chosen, and if all queues are
continuously backlogged during that interval. DefineH~θ

as the

set of~γ~φ,~θ for all possible~φ when~θ is the vector of channel
rates at the beginning of the chosen interval.

Let ~Dl+1 be a NM -dimensional vector representing the
number of packet departures from the different queues in the
(l+1)th interval. Also, let~Al+1 be aNM -dimensional vector
representing the number of arrivals entering the different
queues at the beginning of the(l+2)th interval. (Recall that the
packets entering the queues at the beginning of the(l + 2)th
interval are those that arrive during the(l + 1)th interval.)
Let a denote an upper bound on the number of arrivals, and
the number of departures, in any interval. For simplicity of
exposition, we prove Theorem 2 under an additional restriction
(R) on the scheduling policy: ifQij(lT ) < aT , then no
packets of useri is scheduled on channelj during the(l+1)th
interval. It should however be noted that the proof presented
here can be extended to work even in the absence of restriction
R.
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Let ~φ(lT ) denote the matching (poly-matching) selected at
the beginning of the(l+1)th interval, i.e., the matching (poly-
matching) selected at timelT . Let J(lT ) = {~φ : ~φij =
0 if Qij(lT ) < aT }. Then, for our scheduling policyΨT

under restrictionR, we have

~φ(lT ) = arg max
~φ∈J(lT )

(

~Q(lT )
)T

~γ
~φ,~α(lT ), (7)

where we use(·)T to denote the transpose of a vector, with
slight abuse of notation.

We now proceed with the proof of Theorem 2.

Proof: First we characterize the interior of the stability region
ΛT . A rate vector~λ ∈ Int(ΛT ) if there exist non-negative real
numbersµijs andβ

~γ~θ
s such that

λi =
∑

j∈M

µij ∀i, (8)

~µ = (1/T )
∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β
~γ~θ

~γ, (9)

∑

~γ∈H~θ

β
~γ~θ

< 1 ∀ ~θ ∈ Θ. (10)

Note that in (9),~µ = (µij , i ∈ N, j ∈ M) denotes the vector
of the µijs.

We defineV (t) as
V (t) =

(

~Q(t)
)T

~Q(t).

Let j be a non-negative integer. We will show that there exist
a positive integerk and a negative real numberK such that
E
(

V ((j + k)T ) − V (jT )/ ~Q(jT ), ~α(jT ) = ~ν
)

< K for all

~ν, whenever~λ ∈ Int(ΛT ), and|| ~Q(jT )|| is sufficiently large.

Let q~ν,i
~θ

be the probability that~α ((j + i)T ) = ~θ given that
~α(jT ) = ~ν. Let

ǫ = max
~θ,~ν∈Θ

|

∑k
i=1 q~ν,i

~θ

kp~θ

− 1|. (11)

Let k be a large enough integer such that

ǫ < 1 − max
~θ∈Θ

∑

~γ∈H~θ

β
~γ~θ

. (12)

Clearly, there exists one suchk since
∑

~γ∈H~θ
β

~γ~θ
< 1 ∀ ~θ ∈

Θ (from (10)), |Θ| is finite, andp~θ
, ~θ ∈ Θ, is the stationary

distribution of the positive recurrent Markov chain~α(lT ), l =
0, 1, . . . Clearly,

~Q ((j + k)T ) = ~Q(jT ) +

k
∑

i=1

~Aj+i −

k
∑

i=1

~Dj+i.

Then,

E
(

V ((j + k)T ) − V (jT )/ ~Q(jT ), ~α(jT ) = ~ν
)

= 2

k
∑

i=1

E

{

(

~Q(jT )
)T (

~Aj+i − ~Dj+i
)

/

~Q(jT ), ~α(jT ) = ~ν
}

+

k
∑

i=1

E

{

(

~Aj+i − ~Dj+i
)T (

~Aj+i − ~Dj+i
)

/

~Q(jT ), ~α(jT ) = ~ν
}

.

Since the number of arrivals and departures in any interval
is bounded (bya), there exists a constantK1 such that for any
~ν,

k
∑

i=1

E

{

(

~Aj+i − ~Dj+i
)T (

~Aj+i − ~Dj+i
)

/ ~Q(jT ), ~α(jT ) = ~ν

}

< kTK1.

Thus,

E
(

V ((j + k)T ) − V (jT )/ ~Q(jT ), ~α(jT ) = ~ν
)

< 2
(

~Q(jT )
)T

E

{

k
∑

i=1

(

~Aj+i − ~Dj+i
)

/ ~Q(jT ), ~α(jT ) = ~ν

}

+kTK1

= 2
(

~Q(jT )
)T

E

{

k
∑

i=1

~Aj+i/ ~Q(jT ), ~α(jT ) = ~ν

}

−2
(

~Q(jT )
)T

E

{

k
∑

i=1

~Dj+i/ ~Q(jT ), ~α(jT ) = ~ν

}

+kTK1. (13)

We can derive the following inequalities:

(

~Q(jT )
)T

E

{

k
∑

i=1

~Aj+i/ ~Q(jT ), ~α(jT ) = ~ν

}

≤ kT
(

~Q(jT )
)T

~µ + f1(k), (14)

(

~Q(jT )
)T

E

{

k
∑

i=1

~D(j+i)/ ~Q(jT ), ~α(jT ) = ~ν

}

≥

k
∑

i=1

∑

~θ∈Θ

q~ν,i
~θ

max
~γ∈H~θ

(

~Q(jT )
)T

~γ − f2(k), (15)

where f1(k) = aT 2k2(aMN +
∑N

l=1 λl) and f2(k) =
aTMNk2 + 2a2T 2kMN. Note that f1(k) and f2(k) are
both positive terms. The derivations of (14) and (15) are
rather tedious, and can be found in [11]; these are omitted
here due to space constraints. Both (14) and (15) derived
using the fact that the arrivals/departures in any slot is upper
bounded bya. Furthermore, (14) is derived using the fact
that arrivals are routed to the queue with the smallest length,
as in (1). On the other hand, (15) is derived using the fact
that our scheduling policy corresponds to maximum weight
matching/poly-matching, as in (3). Intuitively, the termf1(k)
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can be viewed as a “correction factor” needed due to the devi-
ation of the expected arrival rate in thek intervals considered,
from the arrival rate vector~λ. Similarly, the termf2(k) can be
intuitively viewed as a “correction factor” needed due to the
inaccuracy in the scheduling policy, resulting from infrequent
measurements/scheduling, and restrictionR.

From (14) and (9),

(

~Q(jT )
)T

E

{

k
∑

i=1

~At+i/ ~Q(jT ), ~α(jT ) = ~ν

}

≤ k
(

~Q(jT )
)T ∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β
~γ~θ

~γ + f1(k)

= k
∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β
~γ~θ

(

~Q(jT )
)T

~γ + f1(k)

≤ k
∑

~θ∈Θ

p~θ

∑

~γ∈H~θ

β
~γ~θ

max
~γ∈H~θ

(

~Q(jT )
)T

~γ + f1(k)

≤ k



max
~θ∈Θ

∑

~γ∈H~θ

β
~γ~θ





∑

~θ∈Θ

p~θ
max
~γ∈H~θ

(

~Q(jT )
)T

~γ

+f1(k). (16)

From (15) and (11),

(

~Q(jT )
)T

E

{

k
∑

i=1

~D(j+i)/ ~Q(jT ), ~α(jT ) = ~ν

}

≥

k
∑

i=1

∑

~θ∈Θ

q~ν,i
~θ

max
~γ∈H~θ

(

~Q(jT )
)T

~γ − f2(k)

=
∑

~θ∈Θ

k
∑

i=1

q~ν,i
~θ

max
~γ∈H~θ

(

~Q(jT )
)T

~γ − f2(k)

=
∑

~θ∈Θ

(

k
∑

i=1

q~ν,i
~θ

)

max
~γ∈H~θ

(

~Q(jT )
)T

~γ − f2(k)

≥ k(1 − ǫ)
∑

~θ∈Θ

p~θ
max
~γ∈H~θ

(

~Q(jT )
)T

~γ − f2(k). (17)

From (13), (16) and (17), for any~ν and sufficiently large
|| ~Q(jT )||,

E
(

V ((t + k)T ) − V (jT )/ ~Q(jT ), ~α(jT ) = ~ν
)

< −2k(1 − ǫ − max
~θ∈Θ

∑

~γ∈H~θ

β
~γ~θ

) ×
∑

~θ∈Θ

p~θ
max
~γ∈H~θ

(

~Q(jT )
)T

~γ

+kTK1 + f1(k) + f2(k).

From the last inequality and (12), we see that
E
(

V ((j + k)T ) − V (jT )/ ~Q(jT ), ~α(jT ) = ~ν
)

< K

for some negative numberK, when || ~Q(jT )|| is sufficiently
large. From standard results in stochastic stability (see
pages 330-331 of [17]), it now follows that the expected
queue-lengths are bounded.

PROOF OUTLINE OF OBSERVATION 2

Clearly, Λ1 = Λ. Thus, we only need to show that
Int(Λ̂T ) = Int(Λ1) for all T ≥ 1. Consider the policyΨ̂T

which is the same asΨ1 except that it measures queue lengths
at the beginning of the first slot of each interval ofT slots,
and uses this measurement to compute the channel assignment
to be used over the entire interval. Consider the proof for
Theorem 2 withT = 1. All the arguments in this proof, except
possible equation (15), hold for̂ΨT irrespective of the value
of T . Since Ψ̂T does not select the schedule~γ that attains

max~γ∈H~θ

(

~Q(j)
)T

~γ in each slotj, it is not clear that (15)
holds. Nevertheless, as we argue next, (15) still holds in this
case with a different value forf2(k), which does not depend
on the queue lengths. Note that the proof holds as long as
f2(k) does not depend on the queue lengths, irrespective of
the exact value off2(k). Thus, the proof holds in this case as
well.

Note that Ψ̂T selects the schedule~γ that attains
max~γ∈H~θ

(

~Q(ĵ)T~γ
)

in each slotj, whereĵ = ⌊j/T ⌋T is the
first slot of the queue length measurement interval containing
j). Now, |Qxy(j) − Qxy(j − 1)| ≤ a for any userx and
channely, since the number of arrivals and departures in any
slot is bounded bya. Sincej − ĵ ≤ T , |Qxy(j) − Qxy(ĵ)| ≤

(j − ĵ)a ≤ Ta, for eachx, y. Thus,max~γ∈H~θ

(

~Q(ĵ)T~γ
)

≥

max~γ∈H~θ

(

~Q(j)T~γ
)

− MNTa2. Thus, (15) now holds with

f2(k) = aMNk2 + 2a2kMN + MNTa2. We obtain this
expression forf2(k) by setting the “channel measurement
interval T ” to 1 in the proof for Theorem 2, and augmenting
the resulting expression withMNTa2 as per the above
discussions, whereT is the queue length measurement interval
in this case.

PROOF OUTLINE OF THEOREM 2 FOR JOINT SCHEDULING

AND POWER ALLOCATION

The proof is similar to that for Theorem 2. The only differ-
ence is that now,φij is used to denote the transmission power
used by useri on channelj. If the pair (i, j) is not selected
in the poly-matching, i.e.,(i, j) /∈ Υ, then φij = 0. Thus,
φij also specifies the poly-matching. The constraints on the
transmission power determines the set of~φ that can be used in
any given slot. Now, as before,γ~φ,~θ = (γ

~φ,~θ
ij , i ∈ N, j ∈ M),

denotes the vector of expected throughputs in that interval, if
~φ is chosen, and if all queues are continuously backlogged
during that interval; similarly,H~θ

denotes the set of~γ~φ,~θ for
all possible~φ when ~θ is the vector of channel rates at the
beginning of the chosen interval. The rest of the proof for
Theorem 2 can now be used as is.
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