
First-class Type-safe Reflection in Idris

Edwin Brady
School of Computer Science, University of St Andrews, St Andrews, Scotland.

ecb10@st-andrews.ac.uk

Abstract

Idris is a general purpose purely functional programming language
with dependent types, aiming to bring type-based program verifica-
tion techniques to functional programmers. One common difficulty
with programming with dependent types is that proof obligations
arise naturally once programs become even moderately sized. For
example, implementing an adder for binary numbers indexed over
their natural number equivalents will naturally lead to proof obliga-
tions for equalities of expressions over natural numbers. Similarly,
indexing a binary tree over its flattening as a list will naturally lead
to proof obligations for associativity of list concatenation.

As far as possible, we would like to solve such proof obligations
automatically. In this talk (which describes work in progress), I will
show one way to automate such proofs by reflection. I will show
how representing Idris expressions in a reflected form (indexed by
the original Idris expression) leads to straightforward construction
and manipulation of proof objects. I will also show how users
(i.e. application programmers) can apply proof procedures without
affecting the readability of their programs.

The method I describe is: lightweight, in that it requires minimal
modification to the Idris type checker and evaluator; first-class, in
that reflection is implemented by a normal Idris pattern matching
definition; and type-safe in that the resulting expressions are guar-
anteed to be faithful representations of the corresponding inputs
and any generated proof is guaranteed to be a proof of the required
property.

Example

Consider the following function type:
assocP : (x : a) -> (xs, ys : List a) ->

((xs ++ (x :: ys ++ xs)) =

((xs ++ [x]) ++ (ys ++ xs)))

This function represents a proof obligation which can be resolved
by repeated application of the following two lemmas:

appendNilNeutral : (xs : List a) -> xs ++ [] = xs

appendAssoc : (xs, ys, zs : List a)

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs

[Copyright notice will appear here once ’preprint’ option is removed.]

To do so by hand for many proof obligations quickly becomes
tedious! We can, however, automate such proofs by representing
expressions in a reflected form:

data Expr : List (List a) -> List a -> Type where

ENil : Expr G []

App : Expr G xs -> Expr G ys -> Expr G (xs ++ ys)

Var : Elem xs G -> Expr G xs

That is, a list expression is either an empty list ENil, representing
[], a concatenation of two lists App, representing xs ++ ys, or an
arbitrary list expression Var. Since this is a reflected form, we can
write functions to manipulate Exprs, e.g.

reduce : Expr G xs -> (xs’ ** (Expr G xs’, xs = xs’))

That is, given an expression reflecting xs, produce a new expres-
sion reflecting xs’ alongside a proof that the new list is equivalent
to the original. If reduce is written so as to reduce xs to a normal
form (say, fully right-associative lists) then it is a small step to write
the following function which attempts to prove an equality between
two lists given their reflected forms:

testEq : Expr G xs -> Expr G ys -> Maybe (xs = ys)

Similarly, we can reflect equality proofs over list expressions:
data ListEq : List (List a) -> Type -> Type where

EqP : Expr G xs -> Expr G ys -> ListEq G (xs = ys)

tryProof : ListEq G t -> Maybe t

tryProof (EqP xs ys) = testEq xs ys

In order to use this in practice, we write reflection functions for lists
and equality types, which convert a compile-time list expression
(resp. equality type) into the equivalent Expr:

reflectList : (G : List (List a)) -> (xs : List a) ->

(G’ ** Expr (G’ ++ G) xs)

reflectEq : (a : Type) -> (G : List (List a)) ->

(P : Type) -> (G’ ** ListEq (G’ ++ G) P)

In the talk, I will describe how these reflection functions are imple-
mented, how they are invoked and how they can be combined with
reduce and tryProof above, in such a way that the assocP ex-
ample above can be implemented fully (that is, as a total function)
as follows:

total

assocP : (x : a) -> (xs, ys : List a) ->

((xs ++ (x :: ys ++ xs)) =

((xs ++ [x]) ++ (ys ++ xs)))

assocP {a} x xs ys = AssocProof a

The result of implementing this reflection machinery is a reusable
compile-time decision procedure, AssocProof, which either suc-
ceeds producing a proof of the required equality, or fails with a
compile-time error message.

1 2013/8/12

