
COMBINING PROOFS AND PROGRAMS
Chris Casinghino

A DISSERTATION
in

Computer and Information Science
Presented to the Faculties of the University of Pennsylvania

in
Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
2014

Supervisor of Dissertation

Stephanie Weirich
Associate Professor of CIS

Graduate Group Chairperson

Lyle Ungar
Professor of CIS

Dissertation Committee
Jean Gallier (Professor of CIS)
Benjamin C. Pierce (Henry Salvatori Professor of CIS; Committee Chair)
Aaron Stump (Professor of Computer Science, University of Iowa)
Steve Zdancewic (Associate Professor of CIS)

For my father, who taught me how to write.

Acknowledgments

When I was visiting prospective graduate schools seven years ago, my primary goal
was to find a place with a large group of researchers who were excited and motivated
by the same things that excite me. On that basis I chose Penn, and I’m happy to
report that I was not mistaken. I am extremely grateful to the many faculty, postdocs
and fellow graduate students I have worked with along the way—this document could
not exist without them.

Thanks must go first to my advisor, Stephanie Weirich, for her unending patience
and helpfulness. The metatheory of dependently typed languages is an extremely
complex field, where small changes to a system can have drastic and hard to predict
consequences in proofs that span hundreds of pages (or thousands of lines of Coq
code). Stephanie’s generosity with her time and her ability to rapidly take in a new
language and predict problems before I explained them (or even noticed them) have
been invaluable.

My closest collaborator at Penn has certainly been Vilhelm Sjöberg, whose related
thesis you will read more about later. We spent countless fun afternoons puzzling
through the tricky details of proofs about (usually flawed) language designs. The act
of theorem proving is so often solitary—it is truly a joy to have a colleague who is
working on closely related systems and is willing to, at the drop of a hat, talk through
a complex proof or just listen to crazy ideas.

The PCCθ language is a direct result of Trellys, a multi-institution collaborative
research project aimed at making dependently typed languages more practical. I
confess that I did not have high expectations for hammering out the specifics of a
language design in the context of multi-day research meetings with 15-20 collabora-
tors. I am delighted that working with the other members of the Trellys project has
proved me wrong and been such a great pleasure. Thanks go the faculty at other
the other institutions, Aaron Stump and Tim Sheard, and to their graduate students
and postdocs, especially to those I have worked with most closely: Nathan Collins,
Harley Eades, and Garrin Kimmell.

The weekly meetings of the Penn PL Club have always given me something to look
forward to. The faculty involved, Benjamin Pierce and Steve Zdancewic, have been
nothing but helpful and have demonstrated a repeated commitment to the success of
everyone in the group (especially via excellent feedback on drafts and talks). I have
been extremely lucky to spend time here with a group of graduate students who are

iii

working on so many interesting projects and who are always a pleasure to talk to.
Thanks especially to my Hac ϕ co-organizers Daniel Wagner and Brent Yorgey, to
my (long gone) officemates Aaron Bohannon and Karl Mazurak, to my fellow-traveler
Michael Greenberg, and to Peter-Michael Osera, for endless fun conversations.

This work was supported by the National Science Foundation (NSF grant 0910500).

iv

ABSTRACT
COMBINING PROOFS AND PROGRAMS

Chris Casinghino

Stephanie Weirich

Dependently typed languages allow us to develop programs and write proofs

quickly and without errors. The last decade has seen many success stories for verified

programming with dependent types. Despite these successes, dependently typed lan-

guages are rarely used for day-to-day programming tasks. There are many reasons

why these languages have not been more widely adopted. This thesis addresses two

of them: First, existing dependently typed languages restrict recursion and require

programmers to prove that every function terminates. Second, traditional representa-

tions of equality are inconvenient to work with because they require too much typing

information and because their eliminations clutter terms.

This thesis introduces PCCθ, a new dependently typed core language that ad-

dresses these problems. To handle potentially non-terminating computations, PCCθ

is split into two fragments: a programmatic fragment with support for general recur-

sion, and a logical fragment that is restricted for consistency. Crucially, while the

logical fragment is consistent, it can reason about programs written in the inconsis-

tent programmatic fragment. To make equality reasoning easier, PCCθ includes a

novel heterogeneous notion of equality whose eliminations are not marked in terms.

The metatheory of PCCθ is studied in detail, including a complete proof of nor-

malization and consistency for its logical fragment. The normalization proof required

the development of a novel technique, partially step-indexed logical relations, which

is motivated and explained. Additionally, to demonstrate that PCCθ addresses the

problems described above, we have extended it to a complete core language Theta,

v

adding features like user-defined datatypes and an infinite hierarchy of universes.

Several examples are carried out in Theta, and an implementation is available.

vi

Contents

1 Introduction 1
1.1 Dependent Types and General Recursion 2
1.2 Dependent Types and Equality . 3

1.2.1 Traditional Intensional Equality 3
1.2.2 The PCCθ Approach to Equality 5

1.3 Contributions and Outline . 6

2 The Theta Language 8
2.1 Syntax and Operational Semantics 9
2.2 Typing . 12

2.2.1 Variables, Universes and Functions 12
2.2.2 The Fragments . 15
2.2.3 Equality . 18
2.2.4 Datatypes . 19

2.3 Examples . 22
2.3.1 Example: Vector Append . 24
2.3.2 Example: Comparison and Course-of-Values Induction 28
2.3.3 Example: Merge Sort . 31

2.4 Conclusion . 37

3 Partially Step-Indexed Logical Relations for Normalization 39
3.1 Language Definition . 41

3.1.1 The Typing Judgement . 41
3.1.2 Operational Semantics . 44

3.2 Syntactic Metatheory . 44
3.2.1 Canonical Forms and Progress 45
3.2.2 Substitution, Inversion and Preservation 46

3.3 Adapting the Girard–Tait Method . 47
3.3.1 First Attempt: Ignoring the Programmatic Fragment 47
3.3.2 Second Attempt: Partial Correctness for the Programmatic

Fragment . 49
3.3.3 A Step-Indexed Interpretation 50
3.3.4 Normalization . 52

vii

4 Adding Dependent Types 53
4.1 The LFθ Language . 54

4.1.1 Typing Basics . 56
4.1.2 Reasoning About Equality . 59

4.2 Preservation and a Problem for Progress 61
4.2.1 Getting Stuck on Progress . 62
4.2.2 Substitution and Inversion . 62
4.2.3 Preservation . 65

4.3 Normalization . 66
4.3.1 The Interpretation . 66
4.3.2 The Proof . 68

4.4 Progress . 70

5 Adding Polymorphism and Type-Level Computation 71
5.1 The PCCθ Language . 72
5.2 Syntactic Metatheory . 76

5.2.1 Reduction Basics . 80
5.2.2 Typing Basics . 82
5.2.3 Substitution . 85
5.2.4 Inversion and Preservation . 88

5.3 Levels and Polymorphism . 97
5.4 The Interpretation . 101

5.4.1 Type of the Interpretation . 102
5.4.2 Definition of the Interpretation 104

5.5 Basic Facts About the Interpretation and Environments 108
5.5.1 Universe-Indexed Properties of the Interpretation 114

5.6 A Notion of Equivalence for Interpretations 124
5.7 Main Interpretation Lemmas . 126
5.8 The Fundamental Theorem, Normalization, and Consistency 136
5.9 Progress . 147

6 Difficulties Scaling Up 150
6.1 Programmatic Types . 151
6.2 Extensionality . 152
6.3 Infinite Universe Hierarchy . 152
6.4 Collapsed Syntax . 154
6.5 Function Domains . 156
6.6 Large Eliminations . 157

7 Related work 158
7.1 Other Approaches to Recursion and Partiality 158

7.1.1 Partiality Monad . 158
7.1.2 Non-Constructive Fixpoint semantics. 159

viii

7.1.3 Partial Types . 159
7.1.4 Hoare Type Theory. 160
7.1.5 Terminating Sublanguages . 161
7.1.6 The “Later” Modality . 161

7.2 Modal Type Systems for Distributed Computation 162
7.3 Equality in Dependent Type Theory 163

7.3.1 John Major Equality . 163
7.3.2 Extensional Type Theory . 163
7.3.3 Observational Type Theory 164
7.3.4 Guru . 164
7.3.5 GHC Core . 164

7.4 Step-indexed logical relations . 165

8 Conclusion 166

A Reduction Relations 168
A.1 Parallel Reduction for LFθ . 168
A.2 Reduction for PCCθ . 170

A.2.1 Deterministic reduction . 170
A.2.2 Parallel reduction . 172

Bibliography 176

ix

List of Figures

2.1 Theta: Syntax . 9
2.2 Theta: Operational Semantics . 10
2.3 Theta: Parallel Reduction . 11
2.4 Theta Typing: Variables, Universes and Functions 13
2.5 Theta Typing: The Fragments . 15
2.6 Theta Typing: Equality . 18
2.7 Theta Typing: Datatypes and Contexts 20

3.1 λθ: Syntax . 40
3.2 λθ: Typing . 42
3.3 λθ: Operational Semantics . 44

4.1 LFθ: Syntax . 54
4.2 LFθ: Operational Semantics . 55
4.3 LFθ Typing: Variables, Functions, and Datatypes 57
4.4 LFθ Typing: The Fragments . 58
4.5 LFθ Typing: Equality . 60
4.6 LFθ Typing: Injectivity Axioms . 61
4.7 LFθ: The Type Interpretation . 67

5.1 PCCθ: Syntax . 72
5.2 PCCθ: Operational Semantics (excerpt) 73
5.3 PCCθ Typing: Basics . 74
5.4 PCCθ Typing: The Fragments . 76
5.5 PCCθ Typing: Datatypes . 77
5.6 PCCθ Typing: Equality . 78
5.7 PCCθ Typing: Injectivity Axioms . 79

x

Chapter 1

Introduction

From the entrance to the exit,
Is longer than it looks from where we stand.
I want to say I’m sorry for stuff I haven’t done yet.
Things will shortly get completely out of hand.

Old College Try
The Mountain Goats

Dependently typed languages allow us to develop programs and write proofs
quickly and without errors. The last decade has seen many success stories for de-
pendently type programming. For example, the CompCert project has produced
a formally verified C compiler [38]. Researchers have created concurrency libraries
that guarantee programs are deadlock free [10], and security libraries that guaran-
tee access-control and information flow properties [44]. Dependent types allow us to
write programs whose types could not be captured by more traditional languages,
as in generic programming [61, 60, 63]. And they have been used to verify sub-
stantial mathematical results, like the four color theorem and the Feit-Thompson
theorem [29, 30].

Despite these successes, dependently typed languages are rarely used for day-to-
day programming tasks. In this thesis, we introduce PCCθ, a new dependently typed
core language that includes novel features which address two of the major problems
for practical programming with dependent types. First, PCCθ allows programmers
to write arbitrary recursive functions and reason about them without sacrificing the
consistency of its type system. Second, PCCθ includes a novel notion of equality that
ignores type annotations and whose uses do not pollute terms.

The next two sections motivate these problems in greater detail and describe how
they are handled in PCCθ at a high level. The introduction concludes with an outline
of this document and its contributions.

1

1.1 Dependent Types and General Recursion
Dependently typed languages have usually held general recursion at arm’s length.
One reason is that unrestricted recursion makes it simple to write an infinite loop at
any type. If every type is inhabited, the language is inconsistent when considered
as a logic via the Curry-Howard isomorphism. Consistency is important—it ensures
that the properties of programs we verify with dependent types really hold.

But programmers do not always stop to prove that their recursive functions ter-
minate. Some intentionally write functions that loop or fail on certain inputs. A
few programs, like web servers and REPLs, are meant to run forever. A language to
support reasoning about practical programs must naturally handle these situations
while retaining the property that its proofs are really proofs.

Worse, in languages like Coq and Agda [59, 49], termination arguments cloud the
definitions of our programs. When reasoning about programs in these languages, we
usually prefer to give our programs somewhat simple types and to verify properties
about them after they have been defined. But this is not possible for termination,
which must be verified as part of the function itself. As a result, we sometimes must
rewrite functions in ways that are complex, inefficient and difficult to reason about
in order to satisfy the termination checker. We would prefer a language that allows
an incremental or extrinsic approach to termination, where we may reason about the
termination behavior of functions after they have been defined (if ever).

To handle potentially non-terminating programs without sacrificing consistency,
PCCθ is broken into two fragments: a programmatic fragment with support for non-
termination and a logical fragment that can reason about programs but is itself re-
stricted for consistency. An important design goal for PCCθ is freedom of speech—
although the logical fragment is consistent, logical terms must be allowed to refer to
non-logical terms, since we want to write proofs about programs. Informally, proofs
may talk about programs, but not run them.

As a simple example, consider the following natural number division function
written in a Haskell-like syntax:

prog div : Nat → Nat → Nat
div n m = if n < m then 0 else 1 + (div (n - m) m)

This function correctly computes the integer division of n by m unless m is 0, in which
case it loops forever. It is labeled “prog” to indicate that it must be defined in the
programmatic fragment described above. Disappointingly, div cannot be written
directly in popular dependently typed languages like Coq or Agda because it is not
total.

There are many sensible properties a programmer might wish to verify about div.
For example, div 6 3 evaluates to 2 and div n m ≤ n when m is not zero. Even
though div itself is defined in the programmatic fragment, we wish to state and prove
these properties in the consistent logical fragment. For example:

2

log div63 : div 6 3 = 2
div63 = refl

Above, the program (aka proof) div63 is tagged with “log” to indicate that it should
be typechecked in the logical fragment. The proof itself is just reflexivity, based on
the operational behavior of div.

To encourage incremental verification, PCCθ also allows programs that are not
known to be terminating to produce proofs. For example, programmers implement-
ing a complicated decision procedure might begin by writing in the programmatic
fragment and come back to prove termination at a later time. To support passing the
proofs produced by such a procedure to the logical fragment, the language includes
an internalized logicality judgement—programs may assert that other programs type-
check in a certain fragment. We use the new type form A@θ, where θ is L or P for the
logical or programmatic fragments, to claim that a term has type A in a particular
fragment. For example, a SAT solver that is not known to be terminating might be
given the following type:

prog solver : (f : Formula) → Maybe ((Satisfiable f) @ L)

Here, solver takes in some representation of a formula and optionally produces a
proof that it is satisfiable. Since solver is written in the programmatic fragment, it
may not terminate. The @L in its type indicates that if it does return a value, that
value typechecks in the logical fragment.

Calls to solver may not be evaluated directly in the logical fragment, since they
may not terminate. However, if they do terminate, the logical fragment may analyze
the resulting values. For example, it may pattern match on the result, as in the
following fragment:

prog isSat : Maybe ((Satisfiable f) @ L)
isSat = solver f

log prf : ... f ...
prf = case isSat of

Just y → ... -- use proof y of satisfiability
Nothing → ... -- use knowledge that solver returned Nothing

If the call to solver terminates, the logical fragment may use it to prove some property
of the formula f.

1.2 Dependent Types and Equality

1.2.1 Traditional Intensional Equality

In traditional dependently typed languages like Coq and Agda, equality is defined as
a datatype in the language.

3

data Eq {A : Type} (a : A) : A → Type where
refl : Eq a a

The use of curly braces in the type of Eq indicates an implicit argument that the
typechecker will infer for us based on the context. Typechecking for these languages
is permitted to insert reduction anywhere, so although the definition above seems to
say only two identical terms are equal, it actually says two terms are equal if both
can be reduced to the same term. For example, in Agda we can prove that refl has
the type 1+1 = 2, because Agda can see that 1+1 reduces to 2. Note that we use =

here as syntax sugar; this equality could be written as Eq (1+1) 2 instead.
One problem with this notion of equality can be seen in its definition—it demands

that the terms being compared have the same type. This restriction can quickly
become a nuisance when working with dependent types. As an example, consider the
following datatype of length-indexed vectors and a corresponding append operation:

data Vec (A : Type) : Nat → Type where
Nil : Vec A 0
Cons : {n : Nat} → A → Vec A n → Vec A (1+n)

app : {A : Type} → {n m : Nat} → Vec A n → Vec A m → Vec A (n + m)
app Nil ys = ys
app (Cons x xs) ys = Cons x (app xs ys)

The app function is, of course, associative. We might hope to prove this in the
form of a program of type:

app_assoc : {A : Type} → {n m k : Nat}
→ (v1 : Vec A n) → (v2 : Vec A m) → (v3 : Vec A k)
→ (app v1 (app v2 v3)) = (app (app v1 v2) v3)

However, this type itself does not pass the typechecker in Coq or Agda. The
problem is that the two vectors we wish to compare do not have the same type:

app v1 (app v2 v3) : Vec A (n + (m + k))
app (app v1 v2) v3 : Vec A ((n + m) + k)

Since neither of (n + (m + k)) and ((n + m) + k) reduces to the other, the use of
equality above is ill-typed. Thus, we cannot directly state the theorem that app is
associative.

The solution is to explicitly prove that addition is also associative and to use this
fact in the statement of the theorem above. We can prove the following theorem:

plus_assoc : (n m k : Nat) → (n + m) + k = n + (m + k)

However, a second inconvenience appears when we attempt to use this proof. The
type systems of Coq and Agda have no way to automatically use proved equalities, so
we must explicitly eliminate them. For example, the equality datatype above usually
comes with an elimination principle like this one:

4

conv : {A : Type} → (f : A → Type) → {a b : A}
→ a = b → f a → f b

In some languages, conv is derived automatically as the elimination principle for
the Eq type, while in other languages it is implemented by pattern matching. In
either case, restating the app_assoc theorem in a way that passes the typechecker
will require us to make explicit use of conv:

app_assoc : (A : Type) → (n m k : Nat)
→ (v1 : Vec A n) → (v2 : Vec A m) → (vs : Vec A k)
→ (app v1 (app v2 v3))

= conv (Vec A) (plus_assoc n m k)
(app (app v1 v2) v3)

This theorem no longer states quite what we wanted—we had hoped for an equality
between (app v1 (app v2 v3)) and (app (v1 v2) v3) and instead we are required
to state an equality between the former and conv applied to the latter. This theorem
does have the meaning that we want, because conv is operationally the identity func-
tion, but that meaning has been obscured by the unfortunate definition of equality.
Worse, this theorem is inconvenient to use in other contexts because it mentions a
particular proof that addition is associative, and the details of that other proof are
now bound up in the type of our proof about vectors.

1.2.2 The PCCθ Approach to Equality

A major design goal for PCCθ is to prevent type information from getting in the way
of equality reasoning. To that end, PCCθ features a built-in equality type which is
heterogeneous. That is, the terms related by equality do not need to have the same
type. Thus, the property that vector append is associative may be stated directly,
without a use of conversion.

Additionally, eliminations of equality proofs are unmarked in the syntax of PCCθ

terms. Thus, the proof of app_assoc is surprisingly simple:

log app_assoc : {A : Type} → {n m k : Nat}
→ (v1 : Vec A n) → (v2 : Vec A m) → (vs : Vec A k)
→ (app v1 (app v2 v3)) = (app (app v1 v2) v3)

app_assoc nil v2 v3 = refl
app_assoc (x::xs) v2 v3 = refl

Intuitively, to typecheck this proof, we must do some equational reasoning about
the definition of app and make a recursive call, app_assoc xs v2 v3, for an induction
hypothesis. However, in PCCθ, uses of these derived equalities are not marked by an
explicit call to a “conv” function in the syntax.

Of course, typechecking is undecidable for a language with these features. PCCθ is
not intended to be suitable for programming in or typechecking directly. In practice,
programmers will need to add annotations to their programs to help the type-checker

5

find the relevant equalities and places to use conversion in the above program. A
complete surface language for PCCθ is beyond the scope of this thesis. However,
Vilhelm Sjöberg has designed such a language, Zombie [51], as part of his thesis.
These two theses can be thought of as companion works, one examining the metathe-
ory of PCCθ, and the other developing a surface language and novel type-inference
algorithm that makes programming in PCCθ practical. Intuitively, Zombie programs
are elaborated into core PCCθ derivations before typechecking.

Crucially, Zombie retains the pleasant equality we have described. To accomplish
this, Zombie terms are erased into core terms before checking equalities or evaluation.
This erasure operation removes any type annotations and uses of conversion. So, while
writing app_assoc in Zombie requires some additional work (for example, an explicit
appeal to the induction hypothesis), app_assoc is still given the type shown above
and its implementation erases into this program.

1.3 Contributions and Outline
The remainder of this thesis is broken into chapters which each make several contri-
butions:

• PCCθ is essentially a predicative variant of the Calculus of Constructions [21] ex-
tended with the novel features outlined in this introduction. To demonstrate how
these features solve the problems described above, it is useful to consider a some-
what larger language including convenient features like user-defined datatypes.
Chapter 2 introduces such a language, Theta, and exhibits several example pro-
grams which involve non-termination and equality reasoning.

• The metatheory of PCCθ is interesting and challenging. Demonstrating the type
safety and consistency of a language with PCCθ-like fragments requires the devel-
opment of a new technique, “partially step-indexed logical relations”. Chapters 3
and 4 comprise a tutorial, including a demonstration that traditional techniques
fail for languages like PCCθ and examples of the new technique in the smaller
settings of a simply typed language and a language with dependent types and
equality, but not polymorphism or type level computation. The proofs in these
two chapters have been mechanized in Coq and are available as part of a digital
appendix to this thesis [13].

• Chapter 5 considers PCCθ itself. This adds polymorphism and type level com-
putation to the languages from Chapters 3 and 4 to achieve a “full spectrum”
dependently typed core language. We examine its metatheory in great detail, ex-
tending the techniques of the previous chapters. This chapter proves type safety
and the normalization and consistency of PCCθ’s logical fragment.

• Several of the features present in Theta but absent in PCCθ have proved metathe-
oretically challenging. Chapter 6 demonstrates this by exhibiting a series of flawed

6

language designs and failed proof techniques. In particular, PCCθ-like equality in-
troduces subtle problems for traditional techniques in modeling dependently typed
languages. While an exploration of these challenges is interesting in its own right,
we hope that it is also useful as a roadmap for future work.

• Chapter 7 describes related work. Since this thesis tackles two problems, the re-
lated work falls into two broad categories—we compare PCCθ both with other
approaches to integrating non-termination with dependent types, and to other at-
tempts to enhance dependently typed langauges with a more extensional equality.
Finally, Chapter 8 concludes.

7

Chapter 2

The Theta Language

But they came, and when they finally made it here,
It was least that we could do to make our welcome clear.
Come on in. We haven’t slept for weeks.
Drink some of this. This’ll put color in your cheeks.

Color in Your Cheeks
The Mountain Goats

In this chapter we will formally specify a new dependently typed core language,
Theta, and show several examples of programs written in it. This language makes
concrete the solutions to the problems of general recursion and equality reasoning
that were described in the introduction. In particular, Theta comprises a logical
fragment that resembles Coq and Agda and a programmatic fragment that includes
non-termination. Additionally, it includes a built-in equality type that ignores type
information and whose eliminations are unmarked in expressions.

Theta is an extension of PCCθ with features like user-defined datatypes and an
infinite hierarchy of universes. These features are typically convenient in dependently
typed languages (and thus useful in our examples), but they are too syntactically
burdensome or metatheoretically challenging to include in the language our formal
proofs consider. PCCθ itself is examined in Chapter 5, and the differences between
PCCθ and Theta are the subject of Chapter 6.

Typechecking for Theta expressions is undecidable. One reason is that the equal-
ity relation itself is undecidable—since programs in Theta may not terminate, the
traditional “normalize and compare” approach will not work here. Additionally, uses
of equality are unmarked in the syntax of expressions. So, even if equality were decid-
able, the typechecker would need to “guess” where to insert uses of it. In this sense,
Theta’s notion of equality is related to extensional type theories, like Nuprl [18].
This connection is considered in greater detail in Chapter 7.

As described in Chapter 1, Theta programs are written in the surface language
Zombie, elaborated into Theta derivations for typechecking, and then erased into

8

Expressions
a, b, A, B ::= Type` | (x : A)→ B | a = b | D Ai

i | a < b | A@θ

| x | λx . b | rec f x .b | ind f x .b | b a | refl | d ai i | abort | contra

| ord | case a of { di xi ⇒ ai
i }

Consistency Classifiers
θ ::= L | P

Contexts
Γ ::= . | Γ, x :θA | Γ, dataD ∆ : Awhere { di of ∆i

i } | Γ, dataD ∆ : A

Telescopes
∆ ::= · | (x : A)∆

Values
v ::= Type` | (x : A)→ B | a = b | D Ai

i | a < b | A@θ

| x | λx . a | rec f x .a | ind f x .a | refl | d vi |

Figure 2.1: Theta: Syntax

Theta expressions for evaluation. While describing the syntax and static semantics
for Theta, we will point out several places where allowing undecidable typechecking
makes it possible to drop typing information from terms and thus provide a more
convenient notion of equality.

2.1 Syntax and Operational Semantics
The abstract syntax of Theta is given in Figure 2.1. For uniformity, terms and
types are collapsed into one syntactic category, as in the presentation of the lambda
cube [6] and many other dependently typed languages [59, 49, 42]. As a matter of
discipline, we will use the word “expression” to refer to any element of this grammar,
reserving “term” for expressions at the term level and “type” for expressions at the type
level. When possible, we will use lowercase metavariables for terms and uppercase
metavariables for types.

The first line of the grammar exhibits the language’s types. Functions are classified
by dependent pi types (x : A)→ B . We will sometimes write A→ B as syntax sugar
for (x : A)→ B when x does not occur free in B. Theta includes a built-in equality
type a = b and user-defined datatypes D Ai

i. The type form a < b is an ordering used
for terminating recursion and the new type A@θ internalizes the consistency classifier
portion of the typing judgement. Types are classified by the kind Type` where ` ∈ N,

9

Evaluation Contexts
E ::= [·] | E b | v E | d vi

i E aj j | case E of { di ∆i ⇒ ai
i }

a b

(λx . b) v [v/x]b
SLam

(rec f x .b) v [v/x][rec f x .b/f]b
SRec

(ind f x .b) v [v/x][λx . λz . (ind f x .b) x/f]b
SInd

case dk vj
j of { di ∆i ⇒ ai

i } [vj
j /∆k]ak

SCase

E [abort] abort
SAbort

a b

E [a] E [b]
SCtx

a ∗ b

a ∗ a
MSRefl

a b

b ∗ b′

a ∗ b′
MSStep

Figure 2.2: Theta: Operational Semantics

representing an infinite hierarchy of universes.
In addition to lambdas, the language includes two types of recursive functions:

rec f x .b is used for unrestricted general recursion, while ind f x .b is used for termi-
nating recursion. Theta also includes abort, which is used for general failure (similar
to error in Haskell), contra, which will be used to eliminate contradictory equalities,
and ord, which constructs proofs of a < b to be used with terminating recursion, as
we will see below.

The language uses a consistency classifier θ to distinguish the two fragments—L
for logical and P for programmatic. Contexts Γ record the logicality of each variable.
Contexts also include the declarations of user-defined datatypes. The second datatype
form, dataD ∆ : A, specifies abstract datatypes without a definition, and is used only
internally when checking datatype constructors for well-formedness.

These datatype declarations mention telescopes ∆. A telescope is a list of typed
variables, (x1 : A1) . . . (xj : Aj). We will sometimes abuse telescope notation by using
∆ as a list of variables, as in the constructor application d ∆ or the multi-substitution
[ai

i∈1..j /∆]b. We will also write (Γ,∆ θ) to indicate the context Γ extended with the
variable bindings in ∆ where each has been tagged with the consistency classifier θ.

Figure 2.2 provides the operational semantics of Theta. Call-by-value reduction
a b is specified as beta rules for the language’s elimination forms closed over
evaluation contexts E . The reduction rules are standard except for beta reduction of

10

a V b

a V a
PRefl

v V v ′ b V b′

(λx . b) v V [v ′/x]b′
PLam

b V b′ v V v ′

(rec f x .b) v V [v ′/x][rec f x .b′/f]b′
PRec

b V b′ v V v ′

(ind f x .b) v V [v ′/x][λx . λz . (ind f x .b′) x/f]b′
PInd

vj V v ′j
j

ak V a ′k

case dk vj
j of { di ∆i ⇒ ai

i }V [v ′j
j
/∆k]a ′k

PCase
E [abort]V abort

PAbort

aj V a ′j
j

d aj
j V d a ′j

j PTrmCon1
aj V a ′j

j

D aj
j V D a ′j

j PTypCon1

b V b′

λx . b V λx . b′
PLam1

b V b′

rec f x .b V rec f x .b′
PRec1

b V b′

ind f x .b V ind f x .b′
PInd1

b V b′ a V a ′

b a V b′ a ′
PApp1

AV A′

A@θ V A′@θ
PAt1

AV A′ B V B ′

(x : A)→ B V (x : A′)→ B ′
PArr1

a V a ′ bi V b′i
i

case a of { di xi ⇒ bi
i }V case a ′ of { di xi ⇒ b′i

i
}

PCase1
a V a ′ b V b′

a = b V a ′ = b′
PEq1

a V a ′ b V b′

a < b V a ′ < b′
PLT1

a V∗ b

a V∗ a
MPRefl

a V b

b V∗ b′

a V∗ b′
MPStep

Figure 2.3: Theta: Parallel Reduction

11

terminating recursion, which inserts a surprising eta-expansion. This will be explained
in Section 2.2 when we describe the corresponding typing rule.

We also require a notion of parallel reduction for Theta. This appears in Fig-
ure 2.3. It permits reductions under binders and will be used when checking equalities
between terms. Call-by-value reduction is a subrelation of parallel reduction.

2.2 Typing
In this section we describe Theta’s typing relation. The typing judgement is indexed
by a consistency classifier θ to indicate in which fragment the term is being checked:

Γ `θ a : A

The use of unsafe features like general recursion and abort is allowed only when θ is
P. Most other typing rules for terms are generic in θ, and the fragments can explicitly
interact in a few ways, as we will see in Section 2.2.2. For ease of explanation, we
have divided the typing judgement into groups of related rules below.

2.2.1 Variables, Universes and Functions

Figure 2.4 presents the typing rules related to variables, universes, and functions.
Except for the consistency classifiers and the presence of general recursion, these
rules resemble those of other dependently typed core languages, like the Calculus of
Constructions [21]. For example, in rule TVar we see that variables are tagged with
a consistency classifier in the context. This indicates whether the value assigned to
this variable is guaranteed to typecheck in the logical fragment. This rule includes the
premise ` Γ which checks contexts for well-formedness. It is defined in Section 2.2.4.

Rules TType and TCumul handle the cumulative hierarchy of universes. Intu-
itively, the type system is divided into an infinite number of levels. Terms are at the
base level, and they are classified by types. Types themselves are classified by the
kind Type0, which has kind Type1 and so on. Rule TCumul makes this hierarchy
“cumulative”, in that any expression which checks at level ` will also check at all
higher levels.

Rule TArr checks arrow types. All expressions which can classify other expres-
sions have the type Type` for some level `. In this case ` is the maximum of the
levels of the arrow’s domain and range. This enforces predicative polymorphism—a
type never quantifies over itself. To see this, observe that polymorphism occurs when
the domain of an arrow type is Type` (i.e., when a type quantifies over other types).
But since we have already seen that Type` has the type Type`+1, such an arrow type
would live at level `+ 1 or higher and thus not be in its own domain. The additional
premise Mob (A) demands that the domain of a function type is always “mobile” and
will be explained in Section 2.2.2.

12

Γ `θ a : A

` Γ

x :θA ∈ Γ

Γ `θ x : A
TVar

` Γ

Γ `L Type` : Type`+1

TType

Γ `θ b : Type`
` < `′

Γ `θ b : Type`′
TCumul

Γ `L A : Type`1 Mob (A)

Γ, x :LA `L B : Type`2
Γ `L (x : A)→ B : Type(max(`1,`2))

TArr

Γ `θ b : (x : A)→ B

Γ `θ a : A

Γ `L [a/x]B : Type`

Γ `θ b a : [a/x]B
TApp

Γ `L (x : A)→ B : Type`
Γ, x :θA `θ b : B

Γ `θ λx . b : (x : A)→ B
TLam

Γ `L (y : A)→ B : Type`
Γ, y :PB , f :P (y : A)→ B `P b : B

Γ `P rec f y .b : (y : A)→ B
TRec

Γ `L (y : A)→ B : Type`
Γ, y :LA, f :L (x : A)→ (z : x < y)→ [x/y]B `L b : B

Γ `L ind f y .b : (y : A)→ B
TInd

Γ `P a : A Γ `P b : B

Γ `L a < b : Type0
TSmaller

Γ `L a : b = d1 bi
i∈1...j

Γ `L ord : bi < b
TOrd

Γ `L a : b1 < b2

Γ `L a ′ : b2 < b3

Γ `L ord : b1 < b3
TOrdTrans

Γ `L A : Type`

Γ `P abort : A
TAbort

Figure 2.4: Theta Typing: Variables, Universes and Functions

Note that for an arrow type to typecheck, its components must check in fragment
L. In general, we will maintain the invariant that any expression used to classify other
expressions must check in the logical fragment. This prevents non-termination at the
type level. The reasons for this restriction are described in Section 6.1.

The rule for function application, TApp, differs from the usual application rule
in pure dependently-typed languages in the additional premise Γ `L [a/x]B : Type`.
This checks that the result type is well-formed. Some rules of the language are
sensitive to whether expressions are values (such as the Box rules in Section 2.2.2 and
β-reduction which occurs when checking equality). Because values include variables,
substituting an expression a for the variable x could violate a value restriction that
is allowing B to typecheck, necessitating this extra premise.

Any dependently typed language that combines pure and effectful code will likely
have to restrict the application rule in some way. Previous work [39, 34, 57] is more
restrictive in typing applications. These systems use two rules: one which permits

13

only value dependency and requires the argument to be a value, and one which allows
a non-dependent function to be applied to an arbitrary argument.

Γ ` f : (x : A)→ B
Γ ` v : A

Γ ` f v : [v/x]B

Γ ` f : A→ B
Γ ` a : A

Γ ` f a : B

Since substituting a value can never violate a value restriction in B , our application
rule subsumes the value-dependent version. Likewise, in the case of no dependency,
the extra premise can never fail because the substitution has no effect on B . As we
will see in the examples below, being able to call dependent functions with non-value
arguments is useful in many situations. For example, in the introduction we used the
example of proving that the append function for vectors is associative. There, append
must be applied to a vector whose length has the form (n + m), a non-value.1

There are three ways to define functions in Theta. Rule TLam allows non-
recursive functions in either fragment, whereas rule TRec allows general recursive
rec-expressions and can only be used in the programmatic fragment. Note that the
consistency classifier does not simply describe whether an expression terminates—
rec f x .b is a normal form, but rule TRec it is still restricted to fragment P. Intu-
itively, this restriction exists because functions defined in this way cannot be thought
of as constructive proofs.

Additionally, terminating recursion is provided in the logical fragment by rule
TInd. When typechecking the body of a terminating recursive function (ind f x .b),
the recursive call f takes an extra argument proving that it is being applied to a
“smaller” value than the initial argument x. This ensures termination. When beta-
reducing such an expression, this argument is ignored by wrapping the function in an
extra lambda (rule SInd from Figure 2.2).

The definition of “smaller” comprises rules TSmaller, TOrd and TOrdTrans.
The first of these rules says that a < b is a type for any well-typed a and b. As
we will see in Section 2.2.2, expressions that check in L also check in P, so the use
of the programmatic fragment in the premises of this rule is not a restriction. Rule
TOrd says that an expression bi is smaller than b if there is a proof that b is a term
constructor applied to bi (using the built-in equality type that will be specified in
Section 2.2.3). Thus, the use of < in the TInd rule captures structural recursion—we
are allowed to make recursive calls when the argument is a piece of the original input
obtained by pattern matching. Rule TOrdTrans makes the < relation transitive,
which allows deeper patterns.

1Since we made the length arguments to app implicit, (n + m) does not appear in the statement
of the associativity result. But implicit arguments are a surface language feature—this example
would be elaborated into a core term where the length argument was explicit. Since (n + m) is
a non-value and the length does appear in the result type of app, the restricted rules shown here
would not work.

14

2.2.2 The Fragments

Mob (A)

Mob (a = b)
MobEq

Mob (a < b)
MobSmaller

Mob (B@θ)
MobAt

Mob (D Ai
i
)

MobData
Mob (Type`)

MobType

Γ `θ a : A

Γ `L a : A

Γ `P a : A
TSub

Γ `P v : A

Mob (A)

Γ `L v : A
TMVal

Γ `L A : Type`

Γ `L A@θ : Type`
TAt

Γ `L a : A

Γ `L a : A@θ′
TBoxLL

Γ `P v : A

Γ `L v : A@P
TBoxLV

Γ `θ a : A

Γ `P a : A@θ
TBoxP

Γ `θ v : B@θ′

Γ `θ′ v : B
TUnboxVal

Figure 2.5: Theta Typing: The Fragments

Figure 2.5 shows typing rules allowing implicit and explicit interactions between
the fragments. One such interaction is that every logical expression can be safely used
programmatically. We reflect this fact into the type system via the “subsumption” rule
TSub, which says that if an expression a typechecks logically, then it also typechecks
programmatically. For example, a logical term can always be supplied to a function
expecting a programmatic argument, and a function defined in the logical fragment
can be freely used in the programmatic fragment. This rule is useful to avoid code
duplication.

Subsumption also eliminates duplication in the design of the language. For exam-
ple, we need only one type a = b to describe equalities between logical expressions
or programmatic expressions. In fact, we can also equate expressions from different
fragments.

Internalized Consistency Classification

To provide a general mechanism for logical expressions to appear in programs and
programmatic values to appear in proofs, we introduce a type that internalizes the
typing judgment, written A@θ. Nonterminating programs can take logical proofs as
preconditions (with functions of type (x : A@L)→ B), return them as postconditions
(with functions of type (x : A) → (B@L)), and store them in data structures (for

15

example, with lists of type List (A@L)). At the same time, logical lemmas can use @
to manipulate values from the programmatic fragment.

The rules for the A@θ type appear in Figure 2.5. Intuitively, the judgment
Γ `θ1 a : A@θ2 holds if the fragment θ1 may safely observe that Γ `θ2 a : A. This
intuition is captured by the three introduction rules. The programmatic fragment can
internalize any typing judgement (TBoxP), but in the logical fragment (TBoxLL
and TBoxLV) we sometimes need a value restriction to ensure termination. There-
fore, rule TBoxLV only applies when the subject of the typing rule is a value. The
rule TBoxL can introduce A@θ for any θ since logical terms are also programmatic.
Both introduction and elimination of @ is unmarked in the syntax, so the reduction
behavior of an expression is unaffected by whether the type system deems it to be
provably terminating or not.

As an example, a recursive function f can require an argument to be a proof by
marking it @L, e.g., A@L→ B , forcing that argument to be checked in fragment L:

Γ `P f : A@L→ B

Γ `L a : A

Γ `P a : A@L
TBoxP

Γ `P f a : B
TApp

Similarly, a logical lemma g can be applied to a programmatic value by marking it
@P:

Γ `L g : A@P→ B

Γ `P v : A

Γ `L v : A@P
TBoxLV

Γ `L g v : B
TApp

Of course, g can only be defined in the logical fragment if it is careful to not use its
argument in unsafe ways. For example, using TConv we can prove a lemma of type

(n: Nat) → (f: (Nat → Nat) @ P) → (f (plus n 0) = f n)

because reasoning about f does not require calling f at runtime.
There is no way to apply a logical lemma to a programmatic non-value expression.

If an expression a may diverge, then so may f a, so we must not assign it a type in
the logical fragment.2 However, we can work around this restriction either by first
evaluating a to a value in the programmatic fragment or by thunking.

The @-types are eliminated by the rule TUnboxVal. To preserve termination,
the rule is restricted to apply only to values. We believe it is possible to extend the
system with three “unbox” rules, the symmetric twins of our three “box” rules, but
since TUnboxVal has been sufficient for our examples, we have not yet explored
this possibility in detail.

Recall, from the introduction, the function solver:

prog solver : (f:Formula) → Maybe ((Satisfiable f) @ L)

2This is one drawback of working in a strict rather than a lazy language. If we know that f is
nonstrict, then this application is indeed safe.

16

In the introduction, we asserted that the following code typechecks.
prog isSat : Maybe ((Satisfiable f) @ L)
isSat = solver f

log prf : ... f ...
prf = case isSat of

Just y → ... -- use proof y of satisfiability
Nothing → ... -- use knowledge that solver returned Nothing

In this example, the logical program prf cannot directly treat solver f as a proof
because it may diverge. However, once it has been evaluated to a value, it can safely
be used by the logical fragment. Defining the intermediate variable isSat forces
evaluation of the expression solver f, introducing a new programmatic variable of
type Maybe ((Satisfiable f) @ L) into the context. Because variables are values,
any logical context can freely use the variable through TUnboxVal, even though it
was computed by the programmatic language.

Mobile Types

The consistency classifier tracks which expressions are known to come from a con-
sistent language. For some types of values, however, the rules described so far can
be unnecessarily conservative. For example, while a programmatic expression of type
Nat may diverge, a programmatic value of that type is just a number, so we can treat
it as if it were logical. On the other hand, we cannot treat a programmatic function
value as logical, since it might cause non-termination when applied.

The rule TMVal (Figure 2.5) allows values to be moved from the programmatic
to the logical fragment. It relies on an auxiliary judgment Mob (A). Intuitively, a
type is mobile if the same set of values inhabit the type when θ = L and when θ = P.
In particular, these types do not include functions (though any type may be made
mobile by tagging its fragment with @).

Concretely, the equality and less-than types are mobile as they are inhabited
only by refl and ord, respectively. Any @-type is mobile, since it fixes a particular
θ independent of the one on the typing judgment. Datatypes are also mobile—as
we will see in Section 2.2.4, data contained in a datatype must be mobile, so the
whole datatype is as well. Finally, Type` is mobile because all types check logically
in Theta.

The arguments to functions must always have mobile types. This prevents prob-
lems when functions are moved between the fragments. For example, when a function
is defined in the logical fragment, the body of the function assumes that its argument
checks logically. If this function is then moved to the programmatic argument via
subsumption and applied to a programmatic argument, the body of the function may
no longer be sensible. To solve this problem, TArr requires the domains of function
types to be mobile. One consequence of this restriction is that higher-order functions
must use @-types to specify which fragment their arguments belong to. For example,

17

Γ `θ a : A

Γ `P a : A

Γ `P b : B

Γ `L a = b : Type0
TEq

Γ `L a1 = a2 : Type`
a1 V∗ b a2 V∗ b

Γ `L refl : a1 = a2
TRefl

Γ `θ a : [b1/x]A

Γ `L b : b1 = b2

Γ `L [b2/x]A : Type`

Γ `θ a : [b2/x]A
TConv

Γ `L a : A1 = A2

Γ `L A : Type`
hd(A1) = hf1 hd(A2) = hf2 hf1 6= hf2

Γ `L contra : A
TContra

Head Forms
hf ::= HType ` | HDataD | HAt θ | HArr | HEq

hd(A) = hf

hd(Type`) = HType `
HType

hd(D Ai
i
) = HDataD

HData

hd(A@θ) = HAt θ
HAt

hd((x : A)→ B) = HArr
HArr

hd(a = b) = HEq
HEq

Figure 2.6: Theta Typing: Equality

the type (Nat → Nat) → A is not well-formed, so the programmer must choose either
((Nat → Nat) @ L) → A or ((Nat → Nat) @ P) → A.

The use of mobile rules allow programmers to write simpler types because mobile
types never need to be tagged with logical classifiers. For example, without loss of gen-
erality we can give a function the type (a = b) → B instead of ((a = b) @ L) → B,
since, when needed, the body of the function can treat the argument as logical through
TMVal. Similarly, multiple @’s have no effect beyond the innermost @ in a type.
Values of type A @ P @ L @ P @ L can be used as if they had type A @ P.

2.2.3 Equality

A major goal for Theta is the ability to write proofs about potentially non-
terminating programs. For example, in the introduction we considered several proper-
ties of a non-total division function. Our rules for propositional equality (Figure 2.6)
are designed to support such reasoning uniformly, based only on the run-time behav-
ior of the expressions being equated, and independently of the fragment in which they
are defined. Therefore, the rule TEq shows that the type a = b is well-formed and in
the logical fragment even when a and b can be typechecked only programmatically.

18

This is freedom of speech: proofs can refer to nonterminating programs.
The term refl is the primitive proof of equality. Rule TRefl says that refl is a proof

of a = b just when a and b reduce to a common expression. The notion of reduction
used in the rule is parallel reduction, written a V b. This relation extends ordinary
evaluation a b by allowing reduction under binders, e.g. (λx.1 + 1)V (λx.2) even
though (λx.1+1) is already a value. Having this extra flexibility makes equality more
expressive.

Equalities are used to modify the type assigned to an expression via the elimination
rule TConv. We demand that the equality proof used in conversion typechecks in
the logical fragment for type safety. All types are inhabited in the programmatic
fragment, so if we permitted the user to convert using a programmatic proof of, say,
Nat = Nat→ Nat, it would be easy to create a stuck term. Similar to TApp, we need
to check that b2 does not violate any value restrictions, so the last premise checks
the well-formedness of the type given to the converted term. Rule TConv is quite
general, and may be used to change some small part of A or the entire type by picking
x for A.

Uses of TConv are not marked in the term because they are not relevant at
runtime. Again, types should describe terms without interfering with equality; we do
not want terms with the same runtime behavior to be considered unequal due to uses
of conversion. This treatment of equality is a variant of Sjöberg et al. [52]. However,
that setting did not include a logical sublanguage; instead it enforced soundness by
requiring the proof term used in conversion to be a value.

Finally, rule TContra may be used to eliminate contradictory equalities. An
equality is considered a contradiction if it equates two types with different head forms,
as described in Figure 2.6. For example, in the presence of a logical proof that
Type0 = (Nat → Nat), the term contra may be given any type. The notion of head
forms given here considers only types, but it is possible to derive within Theta a
similar elimination principle for equalities between distinct data constructors, like
true = false. The Zombie implementation includes this facility.

2.2.4 Datatypes

The rules for datatypes and pattern matching appear in Figure 2.7. Datatype decla-
rations have the form:

dataD ∆ : Type` where { di of ∆i
i∈1..k }

Here, D is the type being introduced. The telescope ∆ contains its parameters. Its
term constructors are the di and their arguments are ∆i .

Datatype declarations are checked by the context well-formedness judgement ` Γ
(Figure 2.7). Its rule CData handles datatypes. The first two premises use the
auxiliary judgement Γ ` ∆ : Type` to ensure that the types of the type constructor
and term constructors are themselves well typed and reside at the appropriate universe

19

Γ `θ a : A

dataD ∆ : Type` where { di of ∆i
i∈1...j } ∈ Γ

Γ `L Ai
i

: ∆ ` Γ

Γ `L D Ai
i

: Type`
TTCon

dataD ∆ : Type` ∈ Γ

Γ `L Ai
i

: ∆ ` Γ

Γ `θ D Ai
i

: Type`
TATCon

dataD ∆ : Type` where { di of ∆i
i∈1...j } ∈ Γ

Γ `L Ai
i

: ∆ ` Γ

Γ `θ ai i : [Ai
i
/∆]∆k

Γ `θ dk ai i : D Ai
i

TDCon

Γ `L a : D ai
i Γ `L B : Type`2

dataD ∆ : Type`1 where { di of ∆i
i∈1...k } ∈ Γ

∀i ∈ 1...k , Γ, [ai
i/∆]∆i θ, y :L a = di ∆i `θ bi : B

Γ `θ case a of { di ∆i ⇒ bi
i∈1...k } : B

TCase

` Γ

` .
CNil

Γ `L A : Type`
x /∈ dom (Γ) ` Γ

` Γ, x :θA
CVar

Γ ` ∆ : Type`
∀i ∈ 1...k , Γ, dataD ∆ : Type`,∆ L ` ∆i : Type`
∀i ∈ 1...k , D ’s occurances in ∆i are strictly positive

D /∈ dom (Γ) di /∈ dom (Γ)
i∈1...k

` Γ

` Γ, dataD ∆ : Type` where { di of ∆i
i∈1...k }

CData

Γ ` ∆ : Type`

Γ ` · : Type`
TeleWFNil

Γ `L A : Type` Mob (A)

Γ, x :LA ` ∆ : Type`

Γ ` (x : A)∆ : Type`
TeleWFCons

Γ `θ ai i : ∆

` Γ

Γ `θ · : ·
TeleNil

Γ `θ a : A

Γ `θ ai i : [a/x]∆

Γ `θ a ai i : (x : A)∆
TeleCons

Figure 2.7: Theta Typing: Datatypes and Contexts

20

level. In the latter case, we add two declarations to the context. First, we add an
abstract version of the datatype being defined (since the type constructor should be
available when checking the types of the term constructors, but the term constructors
themselves should not). Second, we add the parameters to the type constructor—
these can be thought of as implicit arguments to each term constructor. Note that
all arguments to type and term constructors are required to have mobile types. This
is the reason datatypes are mobile themselves. The CData rule also ensures that
recursive uses of the type constructor are strictly positive, a standard requirement
which is necessary to ensure the consistency of the logical fragment. We omit the
technical definition of strictly positive, but it can be found in the literature [40].

Our representation of dependent datatypes is somewhat unusual in that it does
not explicitly include “indices”—arguments to the type constructor that may vary
in the result type of each data constructor. We have chosen this representation for
simplicity. It is still possible to encode invariants for which indices are typically used.
Rather than having a constructor’s return type instantiate a parameter, one may add
an extra argument to the constructor assuming that the relevant parameter is equal
to some other term. For example, to encode a length-indexed vector type with a
natural-number parameter x, the nil constructor would take an extra argument of
type x = 0, and the cons constructor would take two extra arguments: the length y
of the tail and a proof that x = Succ y . This example will be considered in greater
detail in Section 2.3.1.

Term and type constructors are looked up from the context with rules TDCon,
TTCon and TATCon. For type constructors, rules TTCon and TATCon simply
look up the constructor in the context and ensure that the arguments to which it
is applied correspond to its declared telescope of parameters, using the auxiliary
judgement Γ `θ ai i : ∆.

For term constructors, the situation is slightly more complicated. In most de-
pendently typed languages, if d is a constructor of type D ∆, the parameters ∆ are
arguments to d as well, since they appear in d ’s return type. For example, in Coq
and Agda, the type ListA has constructors nil and cons which take the type A of data
contained in the list as an argument. However, rather than actually requiring d to be
applied explicitly to an appropriate instantiation of these variables, the rule TDCon
simply checks that a suitable instantiation of ∆ exists. Of course, in practice, this
is undecidable and these arguments must often be supplied explicitly in a surface
language. But by leaving them out of the term constructor applications in the core
language, we prevent type information from getting in the way of equalities.

Pattern matching expressions have the form:

case a of { di ∆i ⇒ bi
i∈1...k }

Here we are using a telescope to represent the list of bound variables—this is the
pattern being matched against. These expressions are checked by rule TCase. The
first two premises check that the scrutinee a is a member of some datatype D ai

i

21

and that the match’s return type B is well-formed. The third premise ensures that
D is defined in the context. Note that we don’t require any relationship between
the universe level of B and the universe level of the datatype D. In particular, this
permits large eliminations, which are types defined by pattern matching on values.
Large eliminations are discussed in greater detail in Section 6.6.

The final premise checks the individual clauses of the pattern match. Since the
parameters of the datatype are not arguments to each constructor, users do not
match against them. Instead, when we extend the environment with the rest of the
arguments to the appropriate constructor, we substitute the scrutinee’s instantiation
of D’s parameters into the types of di’s arguments. When checking a branch di ∆i ⇒
bi , we also extend the context with a proof that a = di ∆i (i.e., that the scrutinee is
equal to the pattern being matched against).

Readers familiar with dependent pattern matching might be surprised that the
final premise of this rule does not perform any substitutions in the return type of the
match. Since indices are represented by adding equality hypotheses to the constructor
types, these will be available to the type system for rewriting in each branch, along
with the proof that the scrutinee is an application of the appropriate constructor.
While this might be inconvenient in practice, we believe that a more standard pattern
matching construct in the surface language could be compiled into our explicit version.

2.3 Examples
In this section we will show several example Theta programs, with the goal of high-
lighting how its type system solves the problems we described in the introduction.
The design of a surface language for Theta and corresponding type inference algo-
rithm are beyond the scope of this thesis. Therefore, we will show our examples as
core Theta expressions instead, using a Coq and Agda-like concrete syntax. For
readability, we will make use of a few surface language features that do not appear
in Theta, but which are simple to translate into Theta expressions. In particular:

• We will make use of “implicit arguments” as they appear in Coq or Agda. This
standard feature allows us to omit some arguments from function applications
when the typechecker can easily fill in these arguments from the context. For
example, as in the introduction, we write the type of vector append this way:

app : {A : Type} → {n m : Nat} → Vec A n → Vec A m → Vec A (n + m)

This indicates that we will omit the first three arguments when applying app

because the typechecker can infer them from the types of the remaining arguments.
In the corresponding core Theta program, these arguments always appear.

• In Theta, the domain type of every function and the type of each argument to a
data constructor are required to be “mobile”. In some cases, as in the type of app
above, this requirement is satisfied naturally. In other cases, types must be tagged

22

with a fragment using the @ type constructor to make them mobile. For example,
because variables are not mobile, we might write the type of the polymorphic
identity function this way:

(A : Type) → (A @ L) → A

This requirement can result in types that are harder to read than we would like,
so the Zombie surface language allows programmers to pick a “default” logicality
by writing “usually log” or “usually prog” at the top of a file. It then auto-
matically adds an appropriate @ to any type that is not mobile but needs to be.
For readability, we will adopt the “usually log” convention in our examples—to
obtain valid Theta programs, non-mobile function domains and data construc-
tor argument types are implicitly tagged with @ L. Since the typing rules for
introducing and eliminating @-types are not marked in the syntax, this does not
require any change to the programs themselves.

• The contra term eliminates contradictory equalities between type constructors,
but not term constructors. It is, however, possible to derive a similar elimination
principle for contradictory equalities between term constructors within Theta.
For example, we may eliminate equalities of the form Zero = Succ n using a large
elimination:

log f : Nat → Type
f n = case n of

Zero → Nat
Succ _ → Bool

log nat_contra : (A : Type) → (n : Nat) → (eq : Zero = Succ n) → A
nat_contra A n eq = contra

We will explain how the use of contra in the definition of nat_contra typechecks
in a few steps. First, observe that by TRefl, we know that refl : f Zero = f

Zero. But we may use Conv along with the eq argument to nat_contra to
turn this into a proof f Zero = f (Succ n). Since f Zero reduces to Nat and
f (Succ n) reduces to Bool, two more uses of TRefl and TConv turn this into
a proof of Nat = Bool, which can be eliminated by the built-in contra.

None of this reasoning appears in the core Theta program above because the
proof eliminated by contra does not appear in the syntax of the expression, but
it would appear in the corresponding Theta typing derivation. Since contra for
term constructors is derivable, it is supported directly in Zombie, and we will use
it our example programs below.

• In Theta, all recursive functions are written with the rec form, which is checked
by two separate rules - one for terminating functions and one for unrestricted re-
cursion in the programmatic fragment. In examples below, we will tag terminating

23

recursion with the keyword ind and use unrestricted recursion in the programmatic
fragment without explicitly mentioning rec. We will also write function defini-
tions with multiple arguments, which are understood as nested single-argument
lambdas and recursive functions.

• While Theta has an infinite hierarchy of universes, our examples require only
Type 0, and we will write just Type.

• In the examples below, we will sometimes use the notation let x = a in b. Of
course, Theta does not include let-bindings. However, they can be understood
as β-expansions. That is, let x = a in b is equivalent to (\x . b) a.

Sometimes, it is necessary to know inside the body b that the variable x is equal
to the expression a. It is possible to achieve this with an additional β-expansion:
(\x . \y . b) a refl, where the variable y here has the type x = a. None of
our examples require us to reason explicitly with these equalities, so we will not
introduce new syntax for this case.

All of the examples in this chapter have been implemented in Zombie and may
be found in the digital appendix available with this thesis [13]. In many cases, the
Zombie programs are substantially larger than the erased Theta programs shown
here, because we must provide additional information about which equalities are nec-
essary for typechecking. In these cases, we include a description of why the program
typechecks to guide the reader’s intuition about Theta equality.

We will focus on examples that exhibit the particular novel features of the Theta
type system. Several additional examples have also been implemented in Zombie and
are available online 3. For example, Vilhelm Sjöberg has implemented a SAT-solver
and a unification algorithm for a simple tree language.

2.3.1 Example: Vector Append

In the introduction we used the example of proving that vector append is associative to
illustrate some of the problems with how equality is represented in typical dependently
typed languages. We will now revisit this example to examine how Theta handles
it in detail.

We begin with natural numbers and plus

data Nat : Type where
Zero
Succ of (x : Nat)

log plus : Nat → Nat → Nat
ind plus n m =
case n of

3http://code.google.com/p/trellys/

24

http://code.google.com/p/trellys/

Zero → m
Succ n’ → Succ (plus n’ ord m)

These definitions are standard except for the extra argument “ord” in the recursive
call of plus. To understand this argument, recall the rule for terminating recursion
in Theta:

Γ `L (y : A)→ B : Type`
Γ, y :LA, f :L (x : A)→ (z : x < y)→ [x/y]B `L b : B

Γ `L ind f y .b : (y : A)→ B
TInd

When checking the body of an inductive function, the recursive call f (here plus)
must be provided with the extra argument z—a proof that the expression on which
f is called is a subterm of the original input. Here, in particular, we need to show
that n’ < n. Such proofs are constructed by ord:

Γ `L a : b = d1 bi
i∈1...j

Γ `L ord : bi < b
TOrd

So we can see that for ord to typecheck here, it would be enough to have a proof of
n = Succ n’. Happily, our rule for pattern matching adds exactly such an equality
into the context when checking this branch (as the variable y in the final premise
below):

Γ `L a : D ai
i Γ `L B : Type`2

dataD ∆ : Type`1 where { di of ∆i
i∈1...k } ∈ Γ

∀i ∈ 1...k , Γ, [ai
i/∆]∆i θ, y :L a = di ∆i `θ bi : B

Γ `θ case a of { di ∆i ⇒ bi
i∈1...k } : B

TCase

In the concrete syntax of Zombie, this reasoning is made more explicit by naming
the equality proof provided by pattern matching and supplying it as an argument to
ord. But Zombie terms erase to core Theta terms before evaluation, so we obtain
the program here that closely resembles the typical addition function.

With natural numbers in hand, we are prepared to represent vectors. As men-
tioned in Section 2.2.4, core Theta datatypes have parameters but no indices. Typ-
ically the length of a vector is represented with an index, so our definition of vectors
is slightly unusual:
data Vec (A : Type) (n : Nat) : Type where
Nil of {n = 0}
Cons of {sz : Nat} {n = Succ sz} A (Vec A sz)

Here we simulate indices by adding extra arguments to the constructors Nil and
Cons. In the former case, we demand a proof that the length is zero, and in the latter
case we demand a proof that the length is one greater than the length of the tail.

Carrying around these proofs at run-time would be inefficient, so Zombie includes
another feature: ICC∗-style “compile-time only” annotations [7, 43]. This allows the

25

user to tag these arguments as irrelevant at run time. We have not modeled this
feature in Theta, so we will keep the proofs as real arguments but mark them as
implicit since they are typically uninteresting and inferable.

We can define append for vectors inductively:

log app : {A : Type} → {n m : Nat}
→ Vec A n → Vec A m → Vec A (plus n m)

ind app v1 v2 =
case v1 of
Nil → v2
Cons a v1’ → Cons a (app v1’ ord v2)

There is quite a bit of implicit equality reasoning needed to typecheck this pro-
gram. Consider the Nil branch of the pattern match. We are expected to return a
term of type Vec A (plus n m), but have supplied vs whose type is Vec A m. To see
why this typechecks, recall from our definition of vectors that Nil actually carries
with it a proof that the vector’s length is zero, so when checking this clause of the
match we have a proof of n = 0 in the context. Additionally, the rule TRefl may
be used to obtain a proof of plus 0 m = m:

Γ `L a1 = a2 : Type`
a1 V∗ b a2 V∗ b

Γ `L refl : a1 = a2

TRefl

We can put these proofs together using rule TConv to give v2 the desired type.

Γ `θ a : [b1/x]A

Γ `L b : b1 = b2

Γ `L [b2/x]A : Type`

Γ `θ a : [b2/x]A
TConv

In particular, one use of TConv changes the type (Vec A m) to (Vec A (plus 0 m))
using the proof from refl, and a second use of TConv changes the type
(Vec A (plus 0 m)) to (Vec A (plus n m)) using the proof from Nil. In the cur-
rent version of the source language Zombie, the typechecker is able to infer both
uses of conversion if the user provides the hint that plus 0 m should be reduced.
Regardless of how much annotation is required in the source, however, the program
is erased to the version shown here.

We would like to prove that vector append is associative, as described in the
introduction. As we observed there, Theta’s heterogeneous equality allows us to
state and prove this theorem directly:

log app_assoc : {A : Type} → {n m k : Nat}
→ (v1 : Vec A n) → (v2 : Vec A m) → (v3 : Vec A k)
→ app v1 (app v2 v3) = app (app v1 v2) v3

26

ind app_assoc v1 v2 v3 =
case v1 of
Nil → refl
Cons a v1’ → refl

Although typechecking this proof requires substantial equality reasoning, including
a recursive call to app_assoc, we can see that none of this is reflected in the core
Theta term itself because conversion is unmarked. To demonstrate how conversion
is being used here, we will walk through how the Cons case of this program typechecks
in detail.

Begin by observing that, by TRefl, we have:

refl : app v1 (app v2 v3) = app v1 (app v2 v3)

We will use this proof as a starting point and convert it to the desired type via
multiple uses of TConv. Recall that Theta’s pattern matching rule will provide us
with a proof of v1 = Cons a v1’, so we may use conversion to obtain:

refl : app v1 (app v2 v3) = app (Cons a v1’) (app v2 v3)

We would like to unfold the definition of app on the right hand side of this equality.
Since Theta is a call-by-value language, this expression is stuck and TRefl will not
reduce it. However, we can still achieve the desired result via lambdas. First, observe
that:

\x . refl : (x : Vec A k) → app (Cons a v1’) x = Cons (a (app v1’ x))

This equality typechecks where the other did not because x is a value and thus TRefl
can reduce the use of app. We may apply this function to obtain:

(\x.refl) (app v2 v3)
: app (Cons a v1’) (app v2 v3) = Cons a (app v1’ (app v2 v3))

Using this equality and TConv with our previous equality, we obtain:

refl : app v1 (app v2 v3) = Cons a (app v1’ (app v2 v3))

At this point, we would like to make a recursive call to get an equality involving the
tail of the right-hand side. In particular:

app_assoc v1’ ord v2 v3 : app v1’ (app v2 v3) = app (app v1’ v2) v3

Note that, as we saw before, the recursive call must be supplied with a proof ord that
the new argument is smaller than the original input. Specifically, here ord must have
the type v1’ < v1. But pattern matching provides a proof of v1 = Cons a v1’, so
TOrd can give ord the desired type.

Using the result of the recursive call and TConv with the previous equality, we
obtain:

refl : app v1 (app v2 v3) = Cons a (app (app v1’ v2) v3)

27

Now we would like to fold the definition of app back up in order to obtain the desired
result. We may use the same eta-expansion trick we used for the previous step of
reduction to prove:

Cons a (app (app v1’ v2) v3) = app (app (Cons a v1’) v2) v3

Using this equality and TConv with the previous equality, we obtain:

refl : app v1 (app v2 v3) = app (app (Cons a v1’) v2) v3

And since pattern matching provided a proof of v1 = Cons a v1’, a final use of
TConv brings us to the desired equality:

refl : app v1 (app v2 v3) = app (app v1 v2) v3

It is clear that choosing not to mark uses of conversion in the syntax of expressions
is buying us substantially simpler core programs. In the description of how just the
Cons branch of the app_assoc theorem typechecks we used TConv five times. In a
language like Coq, most of these require an explicit appeal to an equality eliminator
in the proof itself.

In the remaining examples we will not describe how the programs typecheck in such
detail. The curious reader may refer to the annotated versions that were typechecked
with Zombie, where some of this reasoning is made explicit.

2.3.2 Example: Comparison and Course-of-Values Induction

The built-in terminating recursion operator in Theta supports only recursing on
structural subterms. In the examples below, we will need “strong” or “course-of-
values” induction for natural numbers, so we introduce it here.4 The examples in this
section include moderately involved mathematical reasoning, so readers interested in
more practical examples are encouraged to skip to the next section and refer back to
the definition of LT and the type given to course-of-values induction as necessary.

We begin by defining a “less than” relation for natural numbers. As before, we
use equality arguments to simulate indices.

data LT (n : Nat) (m : Nat) : Type where
LSucc of (m = Succ n)
LStep of (m’:Nat) (m = Succ m’) (LT n m’)

We will need several definitions and properties of LT before we can define course-
of-values induction. We begin with a definition of predecessor for natural numbers
and a simple related fact: while it is not the case that n = Succ (pred n) in general
(because n may be 0), this is the case if there is anything less than n.

log pred : Nat → Nat
pred n = case n of

4The definition of course-of-values induction shown here is based on a Zombie version imple-
mented by Nathan Collins.

28

Zero → Zero
Succ n’ → n’

log n_eq_SPn : (m n : Nat) → LT m n → n = Succ (pred n)
n_eq_SPn m n lt_m_n =
case n of
Zero →
case lt_m_n of
LSucc eq_0_Sn → contra
LStep _ eq_0_Sn’ _ → contra

Succ n’ → refl

The proof of n_eq_SPn is unsurprising. If n is Succ n’, then the result follows
directly by reduction. If n is 0, we find a contradiction of the form 0 = Succ m’ by
examining the proof of LT m n.

We also need to observe that LT enjoys a strong transitivity property: if LT n m

and LT m k, then LT n (pred k).

log lt_trans_pred : (n m k : Nat) → LT n m → LT m k → LT n (pred k)
ind lt_trans_pred n m k lt_n_m lt_m_k =
case lt_m_k of
LSucc eq_k_Sm → lt_n_m
LStep k’ eq_k_Sk’ lt_m_k’ →
let ih = lt_trans_pred n m k’ lt_n_m lt_m_k’ ord in
-- ih : LT n (pred k’)
LStep (pred k’) (n_eq_SPn m k’ lt_m_k’) ih

Typechecking the above definition requires many (unmarked!) uses of TConv
and TRefl. In the first case, we know that k = Succ m, and thus pred k = m. So,
the proof that LT n m is also a proof of LT n (pred k). In the second case, we know
that k = Succ k’ for some k’. A recursive call therefore yields that LT n (pred k’),
and the result follows by LStep.

The implementation of course-of-values recursion is somewhat complicated, so we
will first illustrate the technique used in a more specific setting. Consider the following
ceiling division function for natural numbers:

log minus : Nat → Nat → Nat
ind minus n m =
case m of
Zero → n
Succ m’ → case n of

Zero → Zero
Succ n’ → minus n’ ord m’

prog div : Nat → Nat → Nat
div n m =
case n of

29

Zero → Zero
Succ n’ → Succ (div (minus n’ (pred m)) m)

We can see that, unlike the definition of div in the introduction, this implemen-
tation of division is safe because it always recurses on a strictly smaller number.
However, because the recursion is not on a structural subterm, it cannot be be cap-
tured directly by Theta’s built-in terminating recursor.

The trick we will use is to add a “dummy” argument to div. This dummy argument
will descend by one in each recursive call, making the recursion structural. However,
the function will still compute the correct division. To make this work, we will
maintain the invariant that the “real” argument is less than the dummy argument.
log div’ : (i n m : Nat) → LT n i → Nat
ind div’ i n m n_lt_i =
case n of
Zero → Zero
Succ n’ → Succ (div (pred i) ord (minus n’ (pred m)) m

(lt_trans_pred ... n_lt_i))

Intuitively, i serves as a descending upper bound on the actual recursive argument.
Typechecking ord in this recursive call requires somewhat more work than usual: since
LT n i, we know that i is Succ i’ for some i’. Since i’ = pred i, we can show
pred i < i. Additionally, the “...” in this example must be filled in by a proof that
LT (minus n’ (pred m)) (Succ n’) (this is easily obtained but uninteresting).

With div’ in hand, we can define div by picking (Succ n) for i:
log div : Nat → Nat → Nat
div n m = div’ (Succ n) n m (LSucc refl)

We will now define a general course-of-values recursor. The type we assign to cov

is unsurprising: given a property p of natural numbers, cov constructs a proof that
p holds for any natural number, provided we have a proof that, if p m holds for all m
that are less than n, then p n holds as well.
log cov : (p:Nat → Type)

→ ((n:Nat) → ((m:Nat) → LT m n → p m) → p n)
→ (n:Nat) → p n

cov p f =
-- g : (i:Nat) -> (n:Nat) -> (LT n i)
-- -> ((m:Nat) -> (LT m n) -> p m))
let g =
ind g i = \n n_lt_i m m_lt_n .
let m_lt_i’ = lt_trans_pred m n i m_lt_n n_lt_i in
-- m_lt_i’ : m < pred i
f m (g (pred i) ord m m_lt_i’)

in \n . f n (g (Succ n) n (LSucc refl))

The implementation of course-of-values induction is somewhat complex. Intu-
itively, however, it uses the same “dummy argument” trick as in our implementation

30

of div above. In particular, cov takes in a “recursive template” f, and then implements
a structurally recursive version of this template g by adding a dummy argument.

2.3.3 Example: Merge Sort

In this section we will examine merge sort, a classic example for dependently-typed
languages [3]. Merge sort is an excellent example for Theta because, while it is total,
it is not structurally recursive. The basic idea of merge sort is very simple: take a
list, split it in half, sort the halves, merge them back together. Unfortunately we get
the two halves of a list by calling another function to split it, and thus the recursion
on these two halves is not structural, even though it is clear they are both smaller.

There are several approaches to getting around this problem in languages that
demand structural recursion. One option is to index merge sort by the length of
the list and observe that this length will go down in the recursive calls. Another
option is to use an intermediate binary tree data structure so that the recursion
become structural. In either case, we have modified the behavior and the type of this
standard algorithm, which is somewhat unsatisfactory. The termination argument
for merge sort is “polluting” its definition.

With Theta, we have a new option. We will implement merge sort in the pro-
grammatic fragment where we are allowed to use “unsafe” general recursion. Thus, its
definition will look just like we had implemented it in a standard functional language
like Haskell or OCaml. After we have defined merge sort, we will give a separate
proof that it always terminates. This verifies extrinsically the termination property
that must be encoded intrinsically in a language like Coq or Agda. It will also allow
us to use merge sort in the logical fragment.

The definition of merge sort is relatively standard. We begin with definitions of
a few datatypes. Lists are the things we’ll sort. Pairs are needed for the return type
of the function that splits a list into halves. Booleans are needed for the type of a
comparison function to use while sorting. We will use if/then/else notation where
convenient rather than explicitly pattern matching on booleans.
data Prod (A:Type) (B:Type) : Type where
Pair of (x:A) (y:B)

data Bool : Type 0 where
True
False

data List (A:Type) : Type where
Nil
Cons of (a:A) (xs:List A)

Merge sort itself comprises three functions: one to divide lists in half, one to
merge sorted lists together, and the top-level sort function itself. We define all three
functions in the programmatic fragment, although split and merge could be defined

31

logically without much effort, using ordtrans in the former case to handle the deep
pattern matching, and using a nested recursion in the latter case to handle recursing
on two lists.

We begin with split, which takes in a list and splits it into two lists. It is
implemented by pattern matching on the input list. In the case where it has at least
two elements, we recurse on the tail and add one of the first two elements to each of
the resulting lists.

prog split : {A : Type} → List A → Prod (List A) (List A)
split xs =
case xs of
Nil → Pair Nil Nil
Cons x1 Nil → Pair (Cons x1 Nil) Nil
Cons x1 (Cons x2 xs’) →
case (split xs’) of
Pair xs1 xs2 → Pair (Cons x1 xs1) (Cons x2 xs2)

Next we define merge, which merges two sorted lists. It is implemented by pattern
matching on the lists. In the case where both contain at least one element, the smaller
of the two becomes the head of the resulting list. For convenience, we pattern match
on two variables at once—this is not technically allowed in Theta, but can be easily
expanded into a nested match. Both merge and sort take a comparison function for
the elements of the list as an argument.

prog merge : {A:Type} → (A → A → Bool) → List A → List A → List A
merge lt xs ys =

case xs , ys of
Nil , _ → ys
_ , Nil → xs
Cons x xs’ , Cons y ys’ →
if (lt x y) then Cons x (merge lt xs’ ys)

else Cons y (merge lt xs ys’)

Finally we have sort itself.

prog sort : {A : Type} → (A → A → Bool) → List A → List A
sort lt xs =
case xs of
Nil → Nil
Cons x Nil → Cons x Nil
_ →
case (split xs) of
Pair xs1 xs2 → merge lt (sort lt xs1) (sort lt xs2)

We would like to prove that sort always terminates. The first task is to state this
in the language itself. For this purpose, we need existential types:

data Sigma (A : Type) (B : (x:A) → Type) : Type where
Ex of (x : A) (pf : B x)

32

As a matter of notational convenience, we will write Sigma (x:A) B rather than
Sigma A (\x . B) in the code below. We may assert that an expression terminates
using an existential:

log sort_terminates : {A : Type} → (lt : A → A → Bool) → (xs : List A)
→ Sigma (ys : List A) (ys = sort lt xs)

Since this function is in the logical fragment, it is guaranteed to terminate. When
it does, we will have a list value and a proof that this value is equal to sort lt xs.
Thus, because the language is confluent, sort must terminate on these arguments.

To show that sort terminates, we must show that the two functions it calls also
terminate. We begin with merge. Note that we define merge_terminates using a
nested induction, since when merge recurses one of its two input lists will get smaller
and we must have an induction hypothesis available for either case.

log merge_terminates : {A:Type} → (lt : A → A → Bool)
→ (xs1 xs2 : List A)
→ Sigma (ys : List A) (ys = merge lt xs1 xs2)

ind merge_terminates lt xs1 =
ind mt’ xs2 =
case xs1 , xs2 of
Nil , Nil → Ex Nil refl
Nil , Cons x2 xs2’ → Ex xs2 refl
Cons x1 xs1’ , Nil → Ex xs1 refl
Cons x1 xs1’ , Cons x2 xs2’ →
case (lt x1 x2) of
True →
case (merge_terminates lt xs1’ ord xs) of
Ex ys ys_eq → Ex (Cons x1 ys) refl

False →
case (mt’ xs2’ ord) of
Ex ys ys_eq → Ex (Cons x2 ys) refl

There are two parts to understanding this proof. The first is understanding how
the witness of termination is constructed (i.e., the first element of the result pair).
When one of the lists is empty, merge simply returns the other, so constructing the
witness list is quite easy in the first three cases here. Constructing the witness when
both lists are non-empty is slightly more complicated. We begin by checking which
head element is smaller, since this is the head of the new list. Then we call one of
the two induction hypotheses (merge_terminates itself, or mt’) depending on which
list gets smaller. This provides a witness of the termination of merge’s recursive call,
which is the tail of the new list.

While the core Theta term shown here constructs the witness of termination
quite explicitly, it does not show the equational reasoning necessary to prove that
this witness is the result of merge. This is unsurprising, since such reasoning will be
used by TConv to give refl the appropriate type, and uses of TConv are unmarked

33

in the syntax. Spelling out this reasoning in detail would take a number of (likely
uninformative) pages, so we will not consider it in great detail. At a high level,
the underlying Theta derivation observes that the structure exposed by pattern
matching on the lists allows merge to unfold once, and then uses the equality from
the appropriate induction hypothesis to close the gap. Much of this reasoning is made
more explicit in the source language version this function.

It remains to show that split terminates and then that sort itself terminates.
Since sort is not structurally recursive, the built-in ind recursor we used in the
proof of merge_terminates will be insufficient. Instead we will use course-of-values
recursion on the length of the list, as defined in the previous section. This will
require us to show that the lists on which sort calls itself have a smaller length than
the input list. Since these lists are themselves the result of a call to split, our proof
of split_terminates will need to provide more than a simple termination witness—it
will also need to produce proofs that the result lists are smaller than the input list.

For this purpose, we define a length operation on lists.

log length : {A : Type} → List A → Nat
ind length xs =
case xs of
Nil → Zero
Cons _ xs’ → Succ (length xs’ ord)

The proof that split terminates will also require a few simple facts about natural
numbers and the less-than relation. We omit the proofs of these lemmas, as they are
uninteresting:

log lt_1_0_contra : {A : Type} → LT (Succ Zero) Zero → A

log lt_1_1_contra : {A : Type} → LT 1 1 → A

log LT_SS : {n m : Nat} → LT n m → LT (Succ n) (Succ m)

log LT_1_SSm : (m : Nat) → LT 1 (Succ (Succ m))

We are now prepared to prove that split terminates. As described above, we
actually prove a more expressive theorem that characterizes the sizes of the result
lists. In particular, we show that if the input list had at least two elements, then the
result lists have a smaller length. This is the most complicated part of the termination
proof for sort.

log split_terminates : {A : Type} → (xs : List A)
→ Sigma (ys1 : List A) (Sigma (ys2 : List A)

(Prod (split A xs = Pair ys1 ys2)
(LT 1 (length xs)
→ Prod (LT (length ys1) (length xs))

(LT (length ys2) (length xs)))))
ind split_terminates xs =

34

case xs of
Nil → Ex Nil (Ex Nil (Pair refl (\lt_1_0 . lt_1_0_contra lt_1_0)))
Cons a Nil →
Ex (Cons a Nil)

(Ex Nil (Pair refl (\lt_1_1 . lt_1_1_contra lt_1_1)))
Cons a (Cons a’ xs’’) →
case (split_terminates xs’’ ord) of
Ex ys1 (Ex ys2 (Pair split_eq flen)) →

-- flen’ : LT 1 (length xs)
-- -> Prod (LT (length ys1) (length xs))
-- (LT (length ys2) (length xs))
let flen’ = \lt_1__len_xs .
case (length xs’’) of
Zero → Pair (LSucc refl) (LSucc refl)
Succ Zero →
Pair (LSucc refl) (LStep 2 refl (LSucc refl))

Succ (Succ n’) →
-- lt_1_lxs’’ : LT 1 (length xs’’)
let lt_1_lxs’’ = LT_1_SSm (pred (pred (length xs’’)))
in
case (flen lt_1_lxs’’) of
Pair lt__lys1_lxs’’ lt__lys2_lxs’’ →
Pair (LStep (Succ (length xs’’)) refl

(LT_SS lt__lys1_lxs’’))
(LStep (Succ (length xs’’)) refl

(LT_SS lt__lys2_lxs’’))
in
Ex (Cons a ys1) (Ex (Cons a’ ys2) (Pair refl flen’))

Predictably, the portion of this function which computes the witnesses to termi-
nation is relatively straightforward. The more complicated reasoning in this term is
used to construct the proof about the length of the result lists. In a language like
Coq, this proof would be more conveniently constructed via tactics, but here we build
it explicitly.

In particular, in each case we must construct a function of type:

LT 1 (length xs) → Prod (LT (length ys1) (length xs))
(LT (length ys2) (length xs))

Here, xs is the input list and ys1 and ys2 are the output lists. In the cases where xs

has zero or one elements, this is simple. The input inequality is a contradiction, and
we use two of the lemmas mentioned above to eliminate it.

In the case where xs has the form Cons a (Cons a’ xs’’), we know that ys1 and
ys2 have the forms Cons a ys1’ and Cons a’ ys2’, respectively. Here ys1’ and ys2’

are the results of split xs’’, provided by the induction hypothesis of our lemma.

35

Thus, it will be enough to show, along with a similar result for ys2’, that:

LT (Succ (length ys1’)) (Succ (Succ (length xs’’)))

Happily, the induction hypothesis relates the length of ys1’ and the length of xs’’
for us, when the latter has at least two elements. And in the case where xs’’ has
zero or one elements, we know the exact lengths of all the lists involved.

We can now prove that sort terminates. The proof goes by course-of-value induc-
tion on the length of the list being sorted.

log sort_terminates : {A:Type} → (lt : A → A → Bool)
→ (xs : List A)
→ Sigma (ys : List A) (ys = sort lt xs)

sort_terminates lt ys =
let st_def =
(\n st_rec xs xs_len_eq .

case xs of
Nil → Ex Nil refl
Cons a Nil → Ex (Cons a Nil) refl
Cons a (Cons a’ xs’’) →
let split_term = split_terminates xs in
case split_term of
Ex ys1 (Ex ys2 (Pair ys_eq ys_length)) →
let len_LT = LT_1_SSm (length xs’’) in
-- len_LT : LT 1 (length xs)
case (ys_length len_LT) of
Pair ys1_length ys2_length →
let ih1 = st_rec (length ys1) ys1_length ys1 refl in
let ih2 = st_rec (length ys2) ys2_length ys2 refl in
case ih1 , ih2 of
Ex ys1_sorted _ , Ex ys2_sorted _ →
merge_terminates lt ys1_sorted ys2_sorted)

let st = cov (\n . (xs: List A) → (n = length xs)
→ Exists (ys : List A) (ys = sort lt xs))

st_def (length ys) in
-- st : (xs : List A) -> (length ys = length xs)
-- -> Sigma (ys : List A) (ys = sort lt xs))
st ys refl

The bulk of the definition is in the intermediate function st_def. This is the
“recursive template” passed to our course-of-values recursor cov. Intuitively, it takes
as an argument a proof that sort terminates for any list whose length is less than n

(st_rec), and it proves that sort terminates for any list of length n. Its type is:

st_def : (n:Nat)
→ ((m:Nat) → LT m n → (xs:List A) → m = length xs

→ Sigma (ys : List A) (ys = sort lt xs))
→ (xs:List A) → n = length xs

36

→ Sigma (ys : List A) (ys = sort lt xs)

Its implementation is relatively straightforward. When the input list has only
zero or one elements, it constructs the sorted list directly. For longer lists, sort calls
split and then merge. So st_def first calls split_terminates to obtain a proof that
the call to split returns lists ys1 and ys2 whose length is less than the length of
the original list. This fact about their lengths allows two “recursive” calls to st_def

to produce the sorted versions of ys1 and ys2. The definition of sort simply merges
these sorted lists, so use merge_terminates to conclude.

Having proved that sort terminates, we may obtain a logical version of it and
prove that the logical version agrees with the programmatic version:
log lsort : {A : Type} → (A → A → Bool) → List A → List A
lsort lt xs =
case (sort_terminates lt xs) of
Ex xs’ _ → xs’

log lsort_eq_sort : {A : Type} → (lt : A → A → Bool) → (xs :List A)
→ (lsort lt xs = sort lt xs)

lsort_eq_sort lt xs =
case (sort_terminates lt xs) of
Ex xs’ xs’_eq_sort_xs → xs’_eq_sort_xs

2.4 Conclusion
In this chapter we exhibited the design of Theta, a new dependently typed core
language. Theta can define and reason about potentially non-terminating functions,
and it includes a notion of equality that is not constrained by types and whose uses
do not pollute terms.

We then showed, by example, that Theta’s novel features solve the problems
with dependently typed programming described in the introduction. We began by
revisiting the proof of the associativity for vector append, a property that is difficult
even to state elegantly in Coq and Agda. In Theta, we were able to give it the
expected type and a simple definition. Then, after a detour through course-of-values
induction, we considered the classic example of merge sort. Even though merge sort
is not structurally recursive, it may be defined directly in Theta’s programmatic
fragment. This fragment provides no termination guarantee for merge sort, but we
showed it is possible to prove that the algorithm terminates after the fact. Thus, the
termination argument need not clutter the definition of merge sort itself.

The proof that merge sort terminates is somewhat complicated, and because of
the untyped nature of Theta terms it can be difficult to follow. However, we do not
believe this to be a substantial problem for Theta. The proofs shown here resemble
Coq proof terms—with appropriate tool support, like a tactic language, it would not
be necessary to construct them directly.

37

Theta is an extension of PCCθ with several features that are useful for examples.
In the next few chapters, we will examine the metatheory of PCCθ to gain confidence
that our design is reasonable. While the theory of Theta has proven difficult (as
described in detail in Chapter 6), we have shown type safety and consistency (of the
logical fragment) for several sublanguages of Theta, including PCCθ. These proofs
have even been mechanized for a sublanguage with dependent types. Thus, we are
optimistic that the design shown here is a sensible solution to some of the problems
with current dependently typed languages.

38

Chapter 3

Partially Step-Indexed Logical
Relations for Normalization

You may not like Tate’s methods,
But you’ve got to admit,
She’s a real nice kid.

Linda Blair was Born Innocent
The Mountain Goats

In the previous chapter, we described a language with two novel features: it
allowed general recursion by splitting the language into two fragments, and it featured
a notion of equality whose uses were completely unmarked in the syntax of terms.
Both features substantially complicate the metatheory of the language, and they do
it in largely orthogonal ways.

This chapter explores the complications introduced by adding general recursion in
the context of a simply typed language. This language is called λθ. The language λθ
can be thought of as a drastically cut down version of Theta. It features a program-
matic fragment with non-termination and a logical fragment which is more restricted.
The primary technical contribution of this chapter is a proof of normalization for the
logical fragment of λθ. This proof makes use of a new technique, called partially
step-indexed logical relations. A language similar to λθ and the technique we exhibit
in this chapter first appeared in previous work with Vilhelm Sjöberg and Stephanie
Weirich [15].

We begin with λθ’s definition (Section 3.1) and a demonstration that it enjoys
a standard progress property (Section 3.2.1). Since the language is simply typed,
it features no notion of provable equality—that feature will be further explored in
Chapter 4. However, in keeping with our overall goals, λθ records very little typing
information in the terms. For example, uses of the “@” type constructor are unmarked.
This introduces minor difficulties which foreshadow the development of the next two
chapters, especially in the inversion lemmas needed for the proof of preservation
(Section 3.2.2).

39

Types
A,B ::= Unit | A→ B | A + B | A@θ | α | µα.A

Terms
a, b ::= x | rec f x .a | a b | () | roll a | unroll a

| inl a | inr a | case a of {inl x ⇒ a1; inr x ⇒ a2}

Consistency Classifiers
θ ::= L | P

Environments
Γ ::= · | Γ, x :θ A

Values
v ::= x | () | inl v | inr v | rec f x .a | roll v

Syntactic Abbreviation:

λx .a , rec f x .a when f /∈ FV(a)

Figure 3.1: λθ: Syntax

To motivate the “partially step-indexed” technique, we will demonstrate that di-
rect adaptations of the Girard–Tait reducibility method [27, 58] are insufficient to
prove normalization of λθ’s logical fragment (Section 3.3). Since logical terms are
permitted to make use of certain values computed programmatically, it is necessary
to simultaneously verify partial correctness properties of the programmatic fragment.
Thus, the new technique combines the traditional method with step-indexed logical
relations [2, 5]. The chapter concludes with an introduction of this technique (Sec-
tion 3.3.3) and a demonstration that it is sufficient to prove λθ’s logical fragment
normalizes (Section 3.3.4).

The metatheoretic results in this chapter have been completely mechanized in
the Coq proof assistant, and are available in the LTheta subdirectory of this thesis’s
digital appendix [13]. Since there is no doubt about the correctness of the results,
we avoid monotonous details and focus on clarity in explaining the techniques used
and how our proofs differ from those for the simply typed lambda calculus without
a programmatic fragment. Proofs for a larger system are written out in detail in
Chapter 5.

40

3.1 Language Definition
The language that we consider in this chapter is a variant of the simply typed call-
by-value lambda calculus with recursive types and general recursion. Its syntax is
given in Figure 3.1. The chief novelty is the presence of consistency classifiers θ.
These classifiers are used by the typing judgement (written Γ `θ a : A) to divide the
language into two fragments. The logical fragment, denoted by L, is a simply typed
lambda calculus with unit and sums. As we will show, all terms in this fragment
are normalizing. The programmatic fragment, denoted by P, adds general recursion
and recursive types. The programmatic fragment is a strict superset of the logical
fragment: if Γ `L a : A, then Γ `P a : A as well.

Terms in the language may include subexpressions from both fragments. The
A@θ type form mark such transitions. Intuitively, the judgement Γ `θ a : A@θ′ holds
when fragment θ can safely observe that a has type A in the fragment θ′.

3.1.1 The Typing Judgement

We now describe the typing rules, given in Figure 3.2. As shown in rule TVar, vari-
ables in the typing context are tagged with a fragment. When a value is substituted
for a variable, the value must check in the corresponding fragment.

There are two rules for type-checking functions. The first, TLam, checks non-
recursive functions in the logical fragment. Here, λx .b is syntax sugar for rec f x .b
when f does not occur free in b. The second rule, TRec, checks (potentially) recursive
functions in the programmatic fragment. Observe that, in both cases, the argument
is assumed to check in the same fragment as the function itself. However, it is still
possible for a function in one fragment to take an argument from the other fragment
using the domain type A@θ, which we discuss next. Additionally, we require that the
domain type of a function be “mobile” using the judgement Mob(A). This requirement
is explained in detail when we describe mobile types below. The rule for function
application, TApp, is standard.

The type form A@θ internalizes the typing judgement. Three rules assign @-types,
describing the circumstances in which the fragments may safely talk about each other.
The first rule, TBoxP, says that the programmatic fragment may internalize any
typing judgement—if a has type A in fragment θ, then the programmatic fragment
can observe that a has type A@θ.

Rules TBoxL and TBoxLV internalize the typing judgement in the logical frag-
ment and are restricted to ensure termination. The former says that if a itself has
type A in the logical fragment, then a may also be given the type A@θ for any θ
(since logical terms are also programmatic). The latter permits the logical fragment
to observe that a term checks programmatically. In that case, the term must be
a value to ensure normalization. This restriction still permits the logical fragment
to consider programmatic terms (for example, recursive functions are values). The
@-types are eliminated by the rule TUnboxVal, which is restricted to values to

41

Γ `θ a : A

x :θ A ∈ Γ

Γ `θ x : A
TVar

Γ, x :L A `L b : B

Mob(A)

Γ `L λx .b : A→ B
TLam

Γ `θ b : A→ B

Γ `θ a : A

Γ `θ b a : B
TApp

Γ, y :P A, f :P A→ B `P a : B

Mob(A)

Γ `P rec f y .a : A→ B
TRec

Γ `θ a : A

Γ `P a : A@θ
TBoxP

Γ `L a : A

Γ `L a : A@θ
TBoxL

Γ `P v : A

Γ `L v : A@P
TBoxLV

Γ `θ v : A@θ′

Γ `θ′ v : A
TUnboxVal

Γ `L () : Unit
TUnit

Γ `L a : A

Γ `P a : A
TSub

Γ `P v : A Mob(A)

Γ `L v : A
TMobVal

Γ `θ a : A

Γ `θ inl a : A + B
TInl

Γ `θ b : B

Γ `θ inr b : A + B
TInr

Γ `θ a : (A1 + A2)@θ′

Γ, x :θ
′
A1 `θ b1 : B Γ, x :θ

′
A2 `θ b2 : B

Γ `θ case a of {inl x ⇒ b1; inr x ⇒ b2} : B
TCase

Γ `P a : [µα.A/α]A

Γ `P roll a : µα.A
TRoll

Γ `P a : µα.A

Γ `P unroll a : [µα.A/α]A
TUnroll

Mob(A)

Mob(Unit)
MUnit

Mob(A) Mob(B)

Mob(A + B)
MSum

Mob(A@θ)
MAt

Figure 3.2: λθ: Typing

42

preserve termination in the logical fragment.
Rules TUnit, TInl and TInr deal with the introduction forms for the unit and

sum base types. These terms may be used in either fragment and the typing rules
are standard. Rule TCase checks the pattern matching elimination form for sums.
Notably, sums that typecheck in one fragment may be eliminated in the other. We
use the @ type to ensure that this does not introduce non-termination into the logical
fragment. To pattern match on a term a from fragment θ′ in fragment θ, we require
that Γ `θ a : (A1+A2)@θ′. That is, we require that fragment θ can safely observe that
‘a’ has a sum type in fragment θ′. The restrictions built into the @-type introduction
rule ensure that a terminates if θ is L. In Theta this was unnecessary because all
arguments to datatypes were mobile, but we have relaxed that restriction in λθ.

Two rules describe the relationship between the fragments. As already discussed,
any logical term can be used programmatically—this is the content of rule TSub. Rule
TMobVal is more interesting. It allows potentially dangerous programmatic terms
to be used in the logical fragment in certain circumstances. In particular, the term
must be a value (to ensure termination) and its type must be “mobile”. The mobile
restriction, formalized by the Mob(A) judgement in the same figure, intuitively means
that we move can move data but not computations from the programmatic fragment
to the logical one. For example, moving a natural number computed in P to L is safe,
but moving a function from P to L could cause non-termination when the function is
applied.

Importantly, A@θ is a mobile type for any A. The programmatic fragment is
permitted to compute logical values, including logical function values, and pass them
back to the logical fragment. When the language is extended with dependent types,
this becomes useful for working with proofs. For example, a partial decision procedure
could be written in the programmatic fragment and the resulting proofs could be used
in the logical fragment if the procedure terminates (as in the SAT solver example from
Chapter 1).

We can now explain the requirement that the domain types of functions must be
mobile. Recall that when checking a function, we assume it will be passed an argument
that lives in the same fragment as the function. But suppose we define a function in
the logical fragment and then move it to the programmatic fragment with rule TSub.
Now the application rule will permit the function to be applied to programmatic
arguments, but the body of the function might depend on the assumption that the
argument will be logical.

The requirement that function domains are mobile eliminates this problem by
ensuring functions are only ever applied to types whose values are the same in both
fragments. Since any type may be made mobile by tagging it with a fragment, this
does not restrict expressiveness. In earlier versions of this work, we solved this problem
in a different way: by explicitly tagging all function domains with a fragment. The
present solution improves on that approach by only requiring tags for functions whose
domains aren’t naturally mobile.

43

Evaluation contexts
E ::= [·] | E b | v E | rollE | unrollE | inlE | inrE

| case E of {inl x ⇒ a1; inr x ⇒ a2}

a b

(rec f x .a) v [v/x][rec f x .a/f]a
SBeta

case inl v of {inl x ⇒ a1; inr x ⇒ a2} [v/x]a1
SCaseL

unroll (roll v) v
SUnroll

case inr v of {inl x ⇒ a1; inr x ⇒ a2} [v/x]a2
SCaseR

a b

E[a] E[b]
SCtx

a n b a ∗ b

a 0 a
MSRefl

a k b b b′

a (k+1) b′
MSStep

a k b

a ∗ b
ASAny

Figure 3.3: λθ: Operational Semantics

Finally, the language includes iso-recursive types [50]. These are checked by the
two rules TRoll and TUnroll. Recursive types with negative occurrences—that is,
with the recursive variable appearing to the left of an arrow, such as µα.(α→ A)—
are a potential source of nontermination. To ensure normalization for the logical
fragment, we restrict recursive types to the programmatic fragment (we will revisit
and relax this restriction in Chapter 4).

3.1.2 Operational Semantics

The language’s operational semantics are given in Figure 3.3. We use standard call-
by-value evaluation contexts and a small-step reduction relation. The multi-step
reduction relation is indexed by a natural number—this will be useful in the step-
indexed logical relation defined in Section 3.3.3.

3.2 Syntactic Metatheory
We begin our examination of λθ’s metatheory with a syntactic proof of type safety
via progress and preservation lemmas [65]. As mentioned above, we will focus on
explaining the structure of our proofs and how they differ from those for a more
traditional language.

44

3.2.1 Canonical Forms and Progress

Canonical forms lemmas are used to classify the possible closed values for each type.
For example, we have the following lemma for sum types:

Lemma 3.2.1 (Canonical forms for sums). If · `θ v : B1 + B2 then there is some v′
such that v = inl v ′ or v = inr v ′.

This lemma is usually proved directly by induction on the given typing derivation.
However, in our setting, this approach gets stuck in the case for the rule TUnboxVal.
Instantiated for our lemma, it has the form:

· `θ v : (A + B)@θ′

· `θ′ v : A + B
TUnboxVal

The problem is that the conclusion of this rule matches the theorem but the hypothesis
does not, so we have no induction hypothesis to tell us about v. The solution is to
generalize the statement of the lemma to account for the possibility of @ types:

Lemma 3.2.2 (Generalized canonical forms for sums). Suppose · `θ v : A and
A = B1 + B2 or A = (...((B1 + B2)@θ1)...)@θn for some θ1, ..., θn . Then there is some
v′ such that v = inl v ′ or v = inr v ′.

This generalized statement of the canonical forms lemma is provable directly by
induction on the typing derivation. The original statement follows immediately as
a corollary. We prove canonical forms lemmas for the other types using the same
technique.

Lemma 3.2.3 (Canonical forms for Unit). If · `θ v : Unit then v = ().

Lemma 3.2.4 (Canonical forms for arrows). If · `θ v : A→ B then v = rec f x .b for
some f, x and b.

Lemma 3.2.5 (Canonical forms for recursive types). If · `θ v : µα.A then v = roll v ′

for some v′.

With these lemmas, we can prove a standard progress theorem. We show only the
application case. The other cases are similarly straightforward.

Theorem 3.2.6 (Progress). If · `θ a : A then either a is a value or a a ′ for some
a ′.

Proof. By induction on the typing derivation D :: · `θ a : A. Consider the application
case:

45

• D =

D1

· `θ b : A→ B
D2

· `θ a : A

· `θ b a : B
TApp

Since b a is not a value, we must show that it steps.

The IHs for D1 and D2 give us that both b and a either step or are themselves
values. If b steps, then b a steps because E a is an evaluation context. Similarly,
if b is a value v but a steps, b a steps because v E is an evaluation context.

So suppose both b and a are values. By canonical forms for arrow types
(Lemma 3.2.4) and D1, we know that b = rec f x .b ′ for some f, x and b′. Thus,
b a = (rec f x .b ′) a steps by rule SBeta, since a is a value.

3.2.2 Substitution, Inversion and Preservation

For preservation, a substitution lemma is required. Because variables are values
and our language includes a value restriction (in the TBoxLV rule), we prove the
substitution lemma only when the term being substituted in is a value.

Lemma 3.2.7 (Substitution). If Γ, x :θ
′
B `θ a : A and Γ `θ′ v : B , then Γ `θ

[v/x]a : A.

The proof goes by induction on the first typing derivation and is entirely standard.
Since we employ a call-by-value operational semantics, the value-restricted substitu-
tion lemma is enough for the beta-reduction cases of the preservation theorem.

Preservation also requires inversion lemmas which describe the types that can be
given to certain term forms. Like the canonical forms lemmas in the previous section,
the inversion lemmas are slightly complicated because the introduction of @-types
is not marked in the syntax of terms. For example, we might expect the following
lemma to hold:

Lemma. If Γ `θ inl a : A then A = B1 + B2 for some types B1 and B2 such that
Γ `θ a : B1.

However, this lemma is false because it may also the case that A has the form
(B1 + B2)@θ1 or ((B1 + B2)@θ1)@θ2, and so on. Additionally, the fragment in which
a typechecks will depend on whether an @-type was used. The following modified
inversion lemma can be proved by a straightforward induction on the typing deriva-
tion:

Lemma 3.2.8 (Inversion for inl). Suppose Γ `θ inl a : A. Then either:

• A = B1 +B2 for some B1 and B2 such that Γ `θ a : B1,

46

• or A = (...((B1 +B2)@θ1)...)@θn for some B1, B2 and θ1,...,θn such that Γ `θ1 a :
B1.

It is convenient to prove the following corollary for the common case that the type
has the expected form. This arises in the proof of preservation.

Lemma 3.2.9 (Inversion for inl at sum types). If Γ `θ inl a : B1+B2 then Γ `θ a : B1.

After proving similar lemmas for the term forms inr a, rec f x .b and roll a, we are
prepared for preservation itself.

Theorem 3.2.10 (Preservation). If Γ `θ a : A and a a ′, then Γ `θ a ′ : A.

Proof. By induction on the typing derivation, examining the possible forms of the
reduction step in each case.

3.3 Adapting the Girard–Tait Method
To motivate the use of step-indexed logical relations in our normalization proof, we
will first revisit the standard Girard–Tait reducibility method [27, 58] and examine
why more direct adaptations of it fail. Traditional techniques for proving strong
normalization begin by defining the “interpretation” of each type. That is, for each
type A, a set of terms JAK is defined approximating the type A and where each term
in the set is known to be strongly normalizing. Then a theorem, called “soundness”
or “the fundamental theorem of the interpretation”, is proved. It shows that if a has
type A then a ∈ JAK. This implies a is strongly normalizing.

3.3.1 First Attempt: Ignoring the Programmatic Fragment

We begin by modifying this technique in two ways to fit our setting. First, since we
have a deterministic call-by-value operational semantics, the interpretation of each
type will be a set of values (not arbitrary terms). Second, since the terms at a given
type differ in the programmatic and logical fragments, we index the interpretation by
θ, writing JAKθ.

Since we are uninterested in the normalization behavior of the programmatic frag-
ment, it is natural to think that our model of it can be very simple. Perhaps, for
example, just the values of the appropriate type will do. In this section, we will

47

demonstrate that such an attempt fails. Consider the following interpretation:

JAKP = {v | · `P v : A}

JUnitKL = {()}
JA + BKL = {inl v | v ∈ JAKL} ∪ {inr v | v ∈ JBKL}
JA→ BKL = {λx .a | · `L λx .a : A→ B

and for any v ∈ JAKL, [v/x]a ∗ v ′ ∈ JBKL}
JA@θKL = {v | v ∈ JAKθ}
Jµα.AKL = ∅
JαKL = ∅

Here, the logical interpretation of Unit contains only (). The logical interpretation of
a sum type A+B contains inl v for every v in the interpretation A and inr v for every
v in the interpretation of B . The logical interpretation of functions types is standard:
A → B contains the term λx .a if, for any v in the interpretation of the domain,
[v/x]a reduces to a value in the interpretation of the range (“related functions take
related arguments to related results”). The logical interpretation of A@θ comprises
the values v where v is in JAKθ. Finally, the logical interpretations of recursive types
and type variables are empty, since these are used only in the programmatic fragment.

Before we can state a soundness theorem, we must account for contexts. We
use ρ for mappings of variables to values, and write ρ |= Γ if x :θ A ∈ Γ implies
ρx ∈ JAKθ. We let ρa stand for the simultaneous replacement of the variables in a by
the corresponding terms in ρ.

In this setting, we would hope to be able to prove the following soundness theorem:

Soundness: Suppose Γ `L a : A and ρ |= Γ. Then ρa ∗ v ∈ JAKL.

In a proof by induction on the typing derivation, most of the cases offer little resistance
(the interested reader is encouraged to write out the case for the TLam and TApp
rules). However, the proof gets stuck at the case for the mobile values rule:

Γ `P v : A Mob(A)

Γ `L v : A
TMobVal

Here, we must show that ρv ∈ JAKL (substituting values into a value produces a value,
so ρv does not step). However, since the premise is in the programmatic fragment,
we have no induction hypothesis for v. If A = Unit, we can complete the case using a
canonical forms lemma (since we know by a substitution lemma that · `L ρv : Unit).
However, if A is B@L, we are stuck.

48

3.3.2 Second Attempt: Partial Correctness for the Program-
matic Fragment

Our previous attempt failed because the language permits values of mobile types to
move from the programmatic fragment to the logical fragment, but the theorem we
were trying to prove didn’t capture any information about the programmatic frag-
ment. To fix this, we might try making two changes. First, the programmatic and
logical interpretations should agree at mobile types. Second, the programmatic inter-
pretation and the soundness theorem should be modified to prove a partial correctness
result for the programmatic fragment. In particular, since only values may be moved
from the programmatic fragment to the logical fragment, we’ll need to know that if
a programmatic term normalizes, then it is in the appropriate interpretation.

These changes should allow us to handle the previously problematic TMobVal
case. Consider the following modified interpretation, ignoring recursive types for the
moment:

JUnitKθ = {()}
JA + BKθ = {inl v | v ∈ JAKθ} ∪ {inr v | v ∈ JBKθ}
JA→ BKL = {λx .a | · `L λx .a : A→ B

and for any v ∈ JAKL, [v/x]a ∗ v ′ ∈ JBKL}
JA→ BKP = {rec f x .a | · `P rec f x .a : A→ B

and for any v ∈ JAKP, if [v/x][rec f x .a/f]a ∗ v ′

then v ′ ∈ JBKP}
JA@θ′Kθ = {v | v ∈ JAKθ′}

Here, the logical interpretation is unchanged. The programmatic interpretation of
the mobile types is now the same as the logical interpretation. Finally, we have mod-
ified the programmatic interpretation of function types to state a partial correctness
property: if a function terminates when passed a value in the interpretation of its
domain, then the result must be in the interpretation of its range. We now restate
the soundness theorem similarly.

Soundness: Suppose Γ `θ a : A and ρ |= Γ.

• If θ is L, then ρa ∗ v ∈ JAKL.

• If θ is P and ρa ∗ v , then v ∈ JAKP.

With the modified interpretation and soundness theorem, the TMobVal case now
goes through. Because the rule only applies to values, the theorem now yields a useful
induction hypothesis for the premise.

Unfortunately, this style of definition introduces a new problem: the program-
matic interpretation of recursive types. The previous definition (from Section 3.3.1)
is insufficient to handle the TUnroll case of the new soundness theorem. To extend

49

our partial correctness property, we might demand that when unrolling results in a
value, that value is in the interpretation of the unrolled type:

Jµα.AKP = {roll v | · `P roll v : µα.A and v ∈ J[µα.A/α]AKP}

However, this is not a valid definition. If the interpretation is a function defined
by recursion on the structure of types, the substitution in J[µα.A/α]AKP ruins its
well-foundedness.

A second, slightly harder to see problem also exists with this definition: a proof
of the soundness theorem as stated above runs into trouble in the case for recursive
functions. Consider the TRec case of a proof of that theorem by induction on typing
derivations:

Γ, y :P A, f :P A→ B `P a : B

Mob(A)

Γ `P rec f y .a : A→ B
TRec

Here, we must show that rec f y .ρa ∈ JA → BKP. But to do this we will need to use
the induction hypothesis for the subderivation which checks a. Since the context for
this subderivation is extended and rec f x .ρa is substituted for f by the definition of
the intepretation, the “ρ |= Γ” premise of the induction hypothesis would require us
to show that rec f y .ρa ∈ JA→ BKP. This is exactly what we were trying to show in
the first place, so we are stuck. Thus, even if we removed recursive types from the
system, the approach suggested here would fail.

3.3.3 A Step-Indexed Interpretation

Happily, a technique exists in the literature to cope with the circularity introduced by
iso-recursive types and recursive functions. Step-indexed logical relations [2, 5] add
an index to the interpretation, indicating the number of available future execution
steps. Terms in the relation are guaranteed to respect the property in question only
for the number of steps indicated. The interpretation is defined recursively on this
additional index, circumventing the circularity problem we encountered above.

However, the usual formulation of a step-indexed type interpretation only lends
itself to proving partial correctness properties—it tells us that an expression will not
do anything bad for the next k steps. By contrast, in the normalization theorem we
want to know that every expression will eventually do something good (namely reduce
to a value). In our definition, we take a hybrid approach by only counting steps that
happen in the P fragment. The difference can be seen by comparing the definitions
of V [[A→ B]]Lk and V [[A→ B]]Pk , which say “j ≤ k” and “j < k” respectively. If all θs
in a derivation are L, then no inequalities are strict, so the step-count k never needs
to decrease.

Following Ahmed [2], our interpretation is split into two parts. The value inter-
pretation V [[A]]θk resembles the interpretations shown in the previous sections. The k

50

index here indicates that when a value appears in a larger term, its programmatic com-
ponents will be “well behaved” for at least k steps of computation. The computational
interpretation C[[A]]θk contains closed terms, not just values. Its definition resembles
the statement of the soundness theorem from the previous section, with steps counted
explicitly. Terms in C[[A]]Lk are guaranteed to normalize to values in V [[A]]Lk . On the
other hand, we have a partial correctness property for terms in C[[A]]Pk—if they reach
a value in j steps for some j ≤ k, then the value is in V [[A]]Pk−j .

V [[Unit]]θk = {()}
V [[A + B]]θk = {inl v | v ∈ V [[A]]θk} ∪ {inr v | v ∈ V [[B]]θk}
V [[A@θ′]]θk = {v | v ∈ V [[A]]θ

′

k }
V [[A→ B]]Lk = {λx .a | · `L λx .a : A→ B

and ∀j ≤ k, if v ∈ V [[A]]Lj then [v/x]a ∈ C[[B]]Lj }
V [[A→ B]]Pk = {rec f x .a | · `P rec f x .a : A→ B

and ∀j < k, if v ∈ V [[A]]Pj then [v/x][rec f x .a/f]a ∈ C[[B]]Pj }
V [[µα.A]]Lk = ∅
V [[µα.A]]Pk = {roll v | · `P roll v : µα.A and ∀j < k, v ∈ V [[[µα.A/α]A]]Pj }

C[[A]]Pk = {a | · `P a : A and ∀j ≤ k, if a j v then v ∈ V [[A]]P(k−j)}
C[[A]]Lk = {a | · `L a : A and a ∗ v ∈ V [[A]]Lk}

The value interpretation is similar to the proposed interpretation in the previous
section, with two changes. First, the function type cases now refer to the computation
interpretation rather than explicitly mentioning the reduction behavior. Second, the
step indices track reductions in the programmatic fragment. In particular, note that
the programmatic interpretation of function types demands that related functions
take related arguments to related results at all strictly smaller indices, effectively
counting the one beta reduction step that this definition unfolds. The beta step in
the logical interpretation is not counted, since we are tracking only the reduction of
programmatic components.

Unlike the proposed definition from the previous section, this interpretation is well
defined. We can formalize its descending well-founded metric as a lexicographically
ordered triple (k,A,Ω): k is the index, A is the type and Ω is one of C or V with
V < C. The third element of the triple tracks which interpretation is being called—
the computational interpretation may call the value interpretation at the same index
and type, but not vice-versa.

51

3.3.4 Normalization

The step-indexed interpretation from the previous section repairs the problems en-
countered in the first two proposed interpretations and can be used to prove nor-
malization for the logical fragment. Since our results are formalized in Coq, we give
only a high-level overview of the proof here. To begin, we must update the ρ |= Γ
judgement to account for steps. We now write Γ |=k ρ when x :θ A ∈ Γ implies
ρx ∈ V [[A]]θk .

Three key lemmas are needed in the main soundness theorem. The first is a
standard “downward closure” property that often accompanies step-indexed logical
relations. This lemma captures the idea that we build a more precise interpretation
of a type by considering terms that must be valid for more steps.

Lemma 3.3.1 (Downward Closure). For any A and θ, if j ≤ k then V [[A]]θk ⊆ V [[A]]θj
and C[[A]]θk ⊆ C[[A]]θj .

Two lemmas relate the programmatic and logical interpretations, corresponding
to the TMobVal and TSub typing rules. The first says that the two interpretations
agree on mobile types:

Lemma 3.3.2. If Mob(A), then V [[A]]Lk = V [[A]]Pk .

The second captures the idea that the logical fragment is a subsystem of the
programmatic fragment:

Lemma 3.3.3. For any A and k, V [[A]]Lk ⊆ V [[A]]Pk and C[[A]]Lk ⊆ C[[A]]Pk .

The content of the soundness theorem is essentially the same as in our second
failed attempt, but we can now state it more directly, using the computational inter-
pretation. The theorem is proved by induction on step count k (to handle the case
of recursive functions), with a nested induction on the typing derivation. It uses the
lemmas outlined above.

Theorem 3.3.4 (Soundness). If Γ `θ a : A and Γ |=k ρ, then ρa ∈ C[[A]]θk .

The normalization of the logical fragment is a direct consequence of this theorem
and the definition of the interpretation.

Lemma 3.3.5 (Normalization). If · `L a : A then there exists a value v such that
a ∗ v .

52

Chapter 4

Adding Dependent Types

Head down towards Kansas.
We will get there when we get there, don’t you worry.
Feel bad about the things we do along the way,
But not really that bad.

Psalms 40:2
The Mountain Goats

In this chapter, we will extend the language λθ with dependent types and equality.
We call this new system LFθ, to reflect that it has roughly the same level of expres-
siveness as LF [31]. Like LF, this system has dependent types but not type-level
computation or polymorphism. However, there are some important differences.

In being more precise about how LFθ relates to LF, it is convenient to refer
to Barendregt’s lambda cube [6]. In particular, LF comprises the (?, ?) and (?,�)
corners of the lambda cube. The former allows normal term-level functions, while the
latter allows type-level functions that take terms as arguments (“dependent types”).
It does not include the (�, ?) corner (which allows polymorphic functions) or the
(�,�) corner (which allows functions from types to types, and is often referred to as
type-level computation). On the other hand, LFθ does not allow arbitrary functions
from terms to types via the (?,�) rule, but we still say it has dependent types because
we include an explicit type constructor that takes terms as arguments (equality) and
because the range of an arrow type may refer to the value of its domain (i.e., arrow
types have the form (x :A)→ B rather than A→ B).

Unlike LF, LFθ includes the logical and programmatic fragments we have seen
previously, along with a novel equality type. In particular, the elimination of equality
is not marked in the syntax of terms, a substantial departure from traditional in-
tensional dependently typed languages where equality typically arises as a datatype
with a pattern-matching elimination form. We saw in Chapter 2 that this unmarked
elimination can be very convenient for programmers, as uses of conversion no longer
“clutter” terms. However, as we will see in this chapter and the next two, this notion

53

Expressions
a, b, A, B ::= ? | (x :A)→ B | a = b | Nat | A + B | Σx :A.B | µx .A | A@θ

| x | λx .b | rec f x .b | ind f x .b | b a | refl | inl a | inr b

| scasez a of {inl x ⇒ a1; inr y ⇒ a2} | pcasez a of {(x , y)⇒ b}
| 〈a, b〉 | Z | S a | ncasez a of {Z ⇒ a1; S x ⇒ a2}
| roll a | unroll a

Consistency Classifiers
θ ::= L | P

Values
v ::= ? | (x :A)→ B | a = b | Nat | A + B | Σx :A.B | µx .A | A@θ

| x | λx .a | rec f x .a | ind f x .a | refl | inl v | inr v | 〈v1, v2〉 | Z | S v | roll v

Figure 4.1: LFθ: Syntax

of equality substantially complicates the metatheory of the language.
We begin in Section 4.1 with a specification of LFθ. The type safety of LFθ must

be approached slightly differently than that of λθ. In particular, in Section 4.2 we
will prove preservation and show that a proof of progress must wait until after we
have demonstrated LFθ’s consistency. While LFθ’s notion of equality complicates
the proof of type safety, we will see in Section 4.3 that the partially step-indexed
technique from Chapter 3 can be extended in a standard way to show that the logical
fragment of LFθ normalizes (and is therefore consistent). Finally, in Section 4.4, we
show progress for LFθ, completing the proof of type safety.

As was the case in Chapter 3, LFθ and its metatheory have been completely
mechanized in Coq. The proofs are available in this thesis’s digital appendix [13].
For this reason, we focus here on a clear explanation of our techniques and the key
differences between LFθ and more traditional language, rather than explicitly writing
out the details of every lemma.

4.1 The LFθ Language
We begin our technical development with a specification of LFθ. This language ex-
tends λθ from Chapter 3 with dependent types in the form of an equality type and
dependent pairs. We also include natural numbers and an associated terminating
recursor. The syntax of LFθ is shown in Figure 4.1. For uniformity, terms, types and
the single kind ? (the “type” of types) are drawn from the same syntactic category,

54

Evaluation Contexts
E ::= [·] | E b | v E | inlE | inrE | 〈E, b〉 | 〈v , E〉 | SE | rollE | unrollE

| scasez E of {inl x ⇒ a1; inr x ⇒ a2} | pcasez E of {(x , y)⇒ b}
| ncaseE E of {Z ⇒ a; S x ⇒ b}

a b

(rec f x .a) v [v/x][rec f x .a/f]a
SFun

(ind f x .a) v [v/x][λy .λz .(ind f x .a) y/f]a
SInd

(λx .a) v [v/x]a
SLam

pcasez 〈v1, v2〉 of {(x , y)⇒ a} [refl/z][v1/x][v2/y]a
SCP

scasez inl v of {inl x ⇒ a1; inr x ⇒ a2} [refl/z][v/x]a1
SCL

scasez inr v of {inl x ⇒ a1; inr x ⇒ a2} [refl/z][v/x]a2
SCR

ncasez Z of {Z ⇒ a1; S x ⇒ a2} [refl/z]a1
SCZ

ncasez S v of {Z ⇒ a1; S x ⇒ a2} [refl/z][v/x]a2
SCS

unroll (roll v) v
SUnroll

a b

E[a] E[b]
SCtx

Figure 4.2: LFθ: Operational Semantics

as in pure type systems [6].1 By convention, we use lowercase metavariables a, b for
expressions that are terms and uppercase metavariables A,B for expressions that are
types.

The first line of the expression grammar lists the types, which now include the
equality form a = b, dependent pairs Σx :A.B , and Nat. The language’s terms
include those of λθ with the addition of natural numbers (constructed by Z and
S a and eliminated by ncase), dependently typed pairs (constructed by 〈a, b〉 and
eliminated by pcase), functions defined by natural number induction (constructed by
ind f x .a) and a primitive proof of equality (refl). The z subscript on the pattern-
matching elimination forms will be explained along with the corresponding typing
rules. Values include the term introduction forms as well as ?, all type forms, and
variables. Including variables is safe, as it was in λθ, because CBV evaluation only

1Unfortunately, we will be forced to abandon a collapsed syntax in the next chapter for metathe-
oretic reasons (as described in detail in Section 6.4). This chapter retains a collapsed syntax in
order to demonstrate that the problems we encounter later do not occur without the addition of
polymorphism and type-level computation.

55

substitutes values for variables.
It is worth emphasizing that functions in LFθ can be given dependent types (x :

A)→ B . In such types, the result type B can depend on the value x of the argument.
This value can appear inside equality types a = b, which are assertions that the term
a equals the term b. The equality type has a trivial proof refl, which holds when
two expressions can be reduced to the same term. Equality proofs can be eliminated
implicitly, substituting provably equal terms at any point in a typing derivation.

Figure 4.2 gives a call-by-value, small-step operational semantics for LFθ via the
reduction relation a b. The slightly unusual beta rule for natural number induction
(SInd) is similar to the induction rule from Theta and is described in Section 4.1.1.

In the remainder of this section, we describe the typing judgement for LFθ. We
begin with rules for the basic components of functional programming and rules for
the interactions between the two fragments (Section 4.1.1). In both cases the rules
closely resemble those from λθ, extended with dependent types and extra term forms.
We conclude with a description of LFθ’s equality (Section 4.1.2).

4.1.1 Typing Basics

Like λθ, LFθ’s typing judgement Γ `θ a : A is indexed by a consistency classifier θ.
The judgement is designed so that expressions that typecheck at L always terminate,
but this is not the case for expressions that typecheck at P.

Figure 4.3 shows the typing rules for the basic building blocks of the language—
variables, functions and various data structures and their types. Because we work with
a collapsed syntax, we use the type system to identify which expressions are types:
A is a well-formed type if Γ `θ A : ?. Unlike Theta, LFθ does not demand that all
types check in the logical fragment. Instead, we require that if a term is checked in a
given fragment, its type checks in the same fragment. As described in Section 6.1, this
relaxed regime would introduce substantial problems for the metatheory of a larger
system, but as we will see it does not complicate LFθ’s metatheory.

Contexts are lists of assumptions about the types of variables.

Γ ::= ∅ | Γ, x :θ A

Each variable in the context is tagged with θ to indicate its fragment, and this tag is
checked in the TVar typing rule. A context is valid, written ` Γ, if each type A is
valid in the corresponding fragment.

The rules TArr, TSigma, TSum, and TMu check types for well-kindedness. For
example, TArr checks a function type by checking the the domain and range. The
premise Mob (A) has the same meaning here as in λθ. It is defined in Figure 4.4,
which is discussed below.

There are three ways to define functions in LFθ. Rule TLam types non-recursive
λ-expressions in the logical fragment, whereas rule TRec types general recursive
rec-expressions and can only be used in the programmatic fragment.

56

` Γ

` ·
CNil

` Γ

` Γ, x :θ ?
CStar

` Γ Γ `θ A : ?

` Γ, x :θ A
CType

Γ `θ a : A

(x :θ A) ∈ Γ ` Γ

Γ `θ x : A
TVar

Γ `θ A : ? Mob (A)

Γ, x :θ A `θ B : ?

Γ `θ (x :A)→ B : ?
TArr

Γ `θ b : (x :A)→ B

Γ `θ a : A Γ `θ [a/x]B : ?

Γ `θ b a : [a/x]B
TApp

Γ, f :P (x :A)→ B , x :P A `P b : B

Γ `P (x :A)→ B : ?

Γ `P rec f x .b : (x :A)→ B
TRec

Γ, x :L A `L b : B

Γ `L (x :A)→ B : ?

Γ `L λx .b : (x :A)→ B
TLam

Γ, x :L Nat, f :L (y :Nat)→ (z :S y = x)→ B `L b : B

Γ `L (x :Nat)→ B : ?

Γ `L ind f x .b : (x :Nat)→ B
TInd

Γ `θ a : A

Γ `θ A + B : ?

Γ `θ inl a : A + B
TInl

Γ `θ b : B

Γ `θ A + B : ?

Γ `θ inr b : A + B
TInr

Γ `θ A : ?

Γ `θ B : ?

Γ `θ A + B : ?
TSum

Γ `θ a : (A1 + A2)@θ′ Γ `θ B : ?

Γ, x :θ
′
A1, z :L inl x = a `θ b1 : B

Γ, x :θ
′
A2, z :L inr x = a `θ b2 : B

Γ `θ scasez a of {inl x ⇒ b1; inr x ⇒ b2} : B
TSCase

Γ `θ Σx :A.B : ? Γ `θ a : A

Γ `θ b : [a/x]B

Γ `θ [a/x]B : ?

Γ `θ 〈a, b〉 : Σx :A.B
TPair

Γ `θ A : ? Mob (A)

Γ, x :θ A `θ B : ?

Γ `θ Σx :A.B : ?
TSigma

Γ `θ a : (Σx :A1.A2)@θ′ Γ `θ B : ?

Γ, x :θ
′
A1, y :θ

′
A2, z :L 〈x , y〉 = a `θ b : B

Γ `θ pcasez a of {(x , y)⇒ b} : B
TPCase

Γ, x :L ? `L A : ?

Γ `L µx .A : ?
TMu

Γ `θ a : [µx .A/x]A

Γ `θ µx .A : ?

Γ `θ roll a : µx .A
TRoll

Γ `P a : µx .A

Γ `P [µx .A/x]A : ?

Γ `P unroll a : [µx .A/x]A
TUnroll

` Γ

Γ `L Nat : ?
TNat

` Γ

Γ `L Z : Nat
TZero

Γ `θ a : Nat

Γ `θ S a : Nat
TSucc

Γ `θ a : Nat Γ `θ B : ?

Γ, z :L Z = a `θ b1 : B

Γ, x :θ Nat, z :L (S x) = a `θ b2 : B

Γ `θ ncasez a of {Z ⇒ b1; S x ⇒ b2} : B
TNCase

Figure 4.3: LFθ Typing: Variables, Functions, and Datatypes

57

Γ `θ a : A

Γ `L a : A

Γ `P a : A
TSub

Γ `θ′ A : ?

Γ `θ A@θ′ : ?
TAt

Γ `θ v : A@θ′

Γ `θ′ A : ?

Γ `θ′ v : A
TUnboxVal

Γ `θ a : A

Γ `θ A : ?

Γ `P a : A@θ
TBoxP

Γ `L a : A

Γ `θ A : ?

Γ `L a : A@θ
TBoxL

Γ `P v : A

Γ `P A : ?

Γ `L v : A@P
TBoxLV

Γ `P v : A Γ `L A : ? Mob (A)

Γ `L v : A
TMVal

Mob (A)

Mob (A@θ)
MAt

Mob (a = b)
MEq

Mob (A) Mob (B)

Mob (Σx :A.B)
MSigma

Mob (Nat)
MNat

Mob (A) Mob (B)

Mob (A + B)
MSum

Figure 4.4: LFθ Typing: The Fragments

Additionally, terminating recursion over natural numbers is provided in the logical
fragment by rule TInd. When typechecking the body of a terminating recursive
function (ind f x .b), the recursive call f takes an extra argument proving that it is
being applied to the predecessor of the initial argument x. This ensures termination.
When beta-reducing such an expression, this argument is ignored by wrapping the
function in an extra lambda (rule SInd from Figure 4.2).

The rule for function application, TApp, differs from the usual application rule
in pure dependently typed languages in the additional third premise Γ `θ [a/x]B : ?,
which checks that the result type is well-formed. This mirrors the application rule in
Theta, described in Section 2.2.1.

The rules for sum types (TSum, TInl, TInr, and TSCase) provide dependent
case analysis. The term scase binds the logical variable z inside both branches of
the case. As we saw in Chapter 2, this variable provides an equality between the
scrutinee and the pattern of the branch so that typechecking is flow-sensitive. At
runtime, this variable is replaced by refl because the scrutinee matches the pattern
for the branch to be taken. Additionally, as in λθ, we use the @ type constructor
to allow each fragment to pattern match on expressions from the other. The typing
rules for @ in LFθ appear in Figure 4.4, and are described below.

The rules for dependent products (TSigma, TPair, TPCase) allow the type of

58

the second component of the pair to depend on the value of the first component.
The first component is required to have a mobile type, for reasons similar to function
domains (this is somewhat less restrictive than Theta, where we required all datatype
arguments to be mobile). As with function application, the premise Γ `θ [a/x]B : ?
ensures that substituting the expression a does not violate any assumptions made
about the value x in the type of the second component. Analogously to sums, the
eliminator for pairs makes available a logical proof z that equates the scrutinee to the
pattern in the body of the match. The availability of this equality means that the
strong elimination forms (projections) for Σ-types are derivable.

The rules TMu, TRoll and TUnroll deal with general recursive types. These
are the standard rules for iso-recursive types (see, e.g., [50]). But recursive types
with negative occurrences—that is, with the recursive variable appearing to the left
of an arrow, such as µx .(x → Nat)—are a potential source of nontermination. To
ensure normalization, it suffices to restrict the the elimination rule TUnroll to be
in P. The introduction rule TRoll can be used in both fragments. This reflects
the fact that it is not dangerous to construct negative datatype values; the potential
nontermination comes from their elimination.

The typing rules relating the two fragments appear in Figure 4.4. These closely
mirror the rules we saw in LFθ and Theta. Rule TSub formalizes the idea that
the logical fragment is a sublanguage of the programmatic fragment. Rule TAt
checks @-types, while rules TBoxP, TBoxL and TBoxLV introduce them and rule
TUnboxVal eliminates them. Rule TMVal allows mobile values to be used in the
logical fragment even if they were computed programmatically. The restrictions in
these rules are identical to the ones we saw in previous systems and have the same
motivations.

4.1.2 Reasoning About Equality

The rules for LFθ’s propositional equality (Figure 4.5) are similar to those we saw in
the context of Theta. As in that system, a major design goal is to permit writing
proofs about potentially non-terminating programs. Thus, the rule TEq shows that
the type a = b is well-formed and in the logical fragment even when a and b can be
typechecked only programmatically.

As in Theta, the primitive proof of equality refl is checked using parallel reduction
a V b rather than our previously defined call-by-value relation a b. Parallel
reduction has the advantage of equating more terms, and also simplifies the proof of
preservation. The relation V can only reduce redexes when the active subexpression
is a value, so the rule TRefl proves (λx .a) v = [v/x]a but not the more general
(λx .a) b = [b/x]a. This value restriction reflects the usual equational theory of a
CBV language. The complete definition of a V b can be found in Appendix A.

Equality proofs are used to modify types by rule TConv. The equality proof is
checked in L to ensure that it is valid, since all types are inhabited in the programmatic
fragment. As in TApp, we need to check that b2 does not violate any value restrictions,

59

Head Forms
hf ::= HStar | HArr | HAt θ | HEq | HNat | HSum | HSigma | HMu

hd (A) = hf

hd (?) = HStar
HStar

hd ((x :A)→ B) = HArr
HArr

hd (A@θ) = HAt θ
HAt

hd (A = B) = HEq
HEq

hd (Nat) = HNat
HNat

hd (A + B) = HSum
HSum

hd (Σx :A.B) = HSigma
HSigma

hd (µx .A) = HMu
HMu

Γ `θ a : A

Γ `P a : A Γ `P b : B

Γ `L a = b : ?
TEq

a V∗ c b V∗ c

Γ `θ1 a : A Γ `θ2 b : B

Γ `L refl : a = b
TRefl

Γ `L b : b1 = b2 Γ `θ a : [b1/x]A

Γ `θ [b2/x]A : ?

Γ `θ a : [b2/x]A
TConv

Γ `L a1 : B1 = B2

hd(B1) 6= hd(B2)

Γ `θ a : A

Γ `θ A : ? Γ `θ′ B : ?

Γ `θ′ a : B
TContra

Figure 4.5: LFθ Typing: Equality

so the last premise checks the well-formedness of the type given to the converted term.
Uses of equality are not marked in the term and thus do not interfere with reduction.

Rule TContra eliminates contradictory equalities, and is somewhat more general
than its Theta counterpart. In particular, TContra in LFθ can be used to give
any term any type in either fragment, as long as the term has some type and the new
type is well-formed in the relevant fragment. Theta’s version has almost the same
expressive power, since it can be used to check equality proofs that can then change
the type of arbitrary terms. It cannot, however, change the fragment in which a given
term checks. This additional bit of expressiveness is convenient in the preservation
proof.

We also include several injectivity axioms for the type constructors of LFθ, pic-
tured in Figure 4.6. These axioms are used in the proof of the inversion lemmas
needed by preservation, as we will see in Section 4.2.2. We do not include new term
forms to make use of these rules. Instead they are unmarked, much like rule TConv.

60

Γ `θ a : A

Γ `θ a : ((x :A1)→ A2) = ((x :B1)→ B2)

Γ `θ A1 = B1 : ?

Γ `θ a : A1 = B1
TArrInv1

Γ `θ a : ((x :A1)→ A2) = ((x :B1)→ B2)

Γ `θ′ v : A1 Γ `θ [v/x]A2 = [v/x]B2 : ?

Γ `θ a : [v/x]A2 = [v/x]B2
TArrInv2

Γ `θ a : (A1 + A2) = (B1 + B2)

Γ `θ A1 = B1 : ?

Γ `θ a : A1 = B1
TSumInv1

Γ `θ a : (A1 + A2) = (B1 + B2)

Γ `θ A2 = B2 : ?

Γ `θ a : A2 = B2
TSumInv2

Γ `θ a : (Σx :A1.A2) = (Σx :B1.B2)

Γ `θ A1 = B1 : ?

Γ `θ a : A1 = B1
TSigmaInv1

Γ `θ a : (Σx :A1.A2) = (Σx :B1.B2)

Γ `θ′ v : A1 Γ `θ [v/x]A2 = [v/x]B2 : ?

Γ `θ a : [v/x]A2 = [v/x]B2
TSigmaInv2

Γ `θ a : (µx .A) = (µx .B)

Γ `θ ([µx .A/x]A) = ([µx .B/x]B) : ?

Γ `θ a : ([µx .A/x]A) = ([µx .B/x]B)
TMuInv

Γ `θ a : (A@θ′) = (B@θ′)

Γ `θ A = B : ?

Γ `θ a : A = B
TAtInv

Figure 4.6: LFθ Typing: Injectivity Axioms

4.2 Preservation and a Problem for Progress
We now begin analyzing the metatheory of LFθ. We are interested in two properties.
First, that the entire language is type safe, including both the L and P fragments.
Second, that any closed term in the L fragment normalizes, which implies logical
consistency.

Before beginning the proof of type safety, it is convenient to observe a few basic
facts about typing in LFθ. First, the kind ? itself has no type. This fact is useful to
eliminate a number of contradictory cases in the proofs that follow. It may be proved
by an induction on typing derivations.

Lemma 4.2.1 (? has no type). There is no derivation of Γ `θ ? : A for any Γ, θ or
A.

Secondly, LFθ enjoys a standard “regularity” property which helps keep track of

61

the various “levels” of expressions.

Lemma 4.2.2 (Regularity). If Γ `θ a : A, then either A = ? or Γ `θ A : ?.

The regularity result depends on a number of basic lemmas, including weakening
and several simple results about the interactions between the fragments. These details
are simple to work out and we elide them. They are provided in detail for the system
PCCθ in Chapter 5, and the same approach used there works here.

4.2.1 Getting Stuck on Progress

Type safety will be proved using progress and preservation lemmas. For λθ, we
began with progress. However, for LFθ, this is no longer possible. In particular,
the canonical forms lemmas can not be proved until after we have shown LFθ to be
consistent. Consider a standard canonical forms lemma for sums:

Lemma (Canonical forms for sums). If · `θ v : B1 + B2 then there is some v′ such
that v = inl v ′ or v = inr v ′.

This lemma is usually proved by induction on the typing derivation. As described
in Section 3.2.1, the fact that introductions and eliminations of @-types are not
marked in the syntax requires us to generalize this lemma as follows:

Lemma (Generalized canonical forms for sums). Suppose · `θ v : A and A = B1 +B2

or A = (...((B1 + B2)@θ1)...)@θn for some θ1, ..., θn . Then there is some v′ such that
v = inl v ′ or v = inr v ′.

However, in the case of LFθ, even proving this generalized form by induction on
the typing derivation will get stuck. The problem occurs if the derivation goes by
rule TConv:

Γ `L b : b1 = b2 Γ `θ a : [b1/x]A

Γ `θ [b2/x]A : ?

Γ `θ a : [b2/x]A
TConv

Here, it may be the case that [b2/x]A has the form B1 + B2 while [b1/x]A does not.
For example, if there is a proof of Nat = (Nat + Nat) in the system, then TConv can
be used to prove that · `L Z : Nat + Nat. So, the canonical forms lemma will not hold
unless the system is consistent. Accordingly, we delay the proof of progress until after
we have demonstrated that the logical fragment of LFθ normalizes and is consistent.

4.2.2 Substitution and Inversion

As usual, the preservation proof relies on substitution and inversion lemmas. As we
saw in Chapter 3 with λθ, the substitution lemma is restricted to values due to the
value restrictions in the type system:

62

Lemma 4.2.3 (Substitution). If Γ1, x :θ
′
B ,Γ2 `θ a : A and Γ1 `θ

′
v : B , then

Γ1, [v/x]Γ2 `θ [v/x]a : [v/x]A.

Preservation requires inversion lemmas for most term forms. Due to our collapsed
syntax and the fact that our typing rules have been designed to maintain regularity,
inversion lemmas for term forms often require corresponding inversion lemmas for
type forms. The inversion lemmas for types have the expected statements, and their
proofs are relatively straightforward. We show two examples:

Lemma 4.2.4 (Inversion for sum types). If Γ `θ A1 + A2 : B then Γ `L A1 : ?,
Γ `L A2 : ?, and B = ?.

Lemma 4.2.5 (Inversion for pair types). If Γ `θ Σx :A1.A2 : B then Mob (A1),
B = ?, Γ `θ A1 : ?, and Γ, x :θ A1 `θ A2 : ?.

As in Chapter 3, the inversion lemmas for terms in LFθ will be somewhat more
complicated than usual to cope with the unmarked introduction and eliminations
of @-types. There is an additional twist related to the unmarked eliminations of
equalities that is new to LFθ. Consider inversion for terms of the form inl a. In λθ,
we generalized the inversion lemma to handle the fact that inl a may have an @-type
as follows:

Lemma (Inversion for inl). Suppose Γ `θ inl a : A. Then either

• A = B1 +B2 for some B1 and B2 such that Γ `θ a : B1,

• or A = (...((B1 +B2)@θ1)...)@θn for some B1, B2 and θ1,...,θn such that Γ `θ1 a :
B1.

An attempt to prove this lemma for LFθ by induction on the typing derivation
will fall apart when we reach the case for TConv:

Γ `L b : b1 = b2 Γ `θ a : [b1/x]A

Γ `θ [b2/x]A : ?

Γ `θ a : [b2/x]A
TConv

Here, the IH will give us that [b1/x]A has one of the desired forms, but this tells us
nothing about [b2/x]A. The solution is to weaken the lemma so that it only claims
the type given to inl a is provably equal to one of the desired forms, as opposed to
syntactically identical. The actual inversion lemma for inl is:

Lemma 4.2.6 (Inversion for inl). Suppose Γ `θ inl a : A. Then either:

• Γ `L p : A = B1 + B2 for some p,B1, and B2 such that Γ `θ b : B1,

• or, Γ `L p : A = (...((B1 + B2)@θ1)...)@θn for some p,B1, B2, and θ1,...θn such
that Γ `θ1 a : B1.

63

In the special case where A is known to have the form B1 +B2, we can show that
the first case of the previous lemma applies. The proof of this makes convenient use
of two unusual rules from our type system, TContra and TSumInv1, so we show
it in detail.

Lemma 4.2.7 (Inversion for inl at sum types). Suppose Γ `θ inl a : B1 + B2. Then
Γ `θ a : B1.

Proof. By Lemma 4.2.6, one of two cases applies. We consider each individually:

• In the first case, we have some p, B′1 and B′2 such that there are derivations
D1 :: Γ `L p : (B1 +B2) = (B ′1 +B ′2) and D2 :: Γ `θ b : B ′1. But by rule TSumInv1
and D1, we may show Γ `L p : B1 = B ′1. And, thus, by rule TConv and D2, we
have Γ `θ a : B1 as desired.

• In the second case, we have a proof of Γ `L p : (B1+B2) = (...((B′1+B′2)@θ1)...)@θn
for some p,B′1, B′2, and θ1,...θn , and we know Γ `θ1 a : B ′1. But the two sides of
this equality have different head forms, so the desired result Γ `θ a : B1 will follow
by TContra if we can prove that rule’s well-formedness hypotheses Γ `θ1 B ′1 : ?
and Γ `θ B1 : ?. These follow from regularity and the inversion lemmas for sum
and @ types.

Note that here we have used rule TContra explicitly to change the fragment
in which a term checks rather than its type. The proof would be stuck without this
use of TContra. It might be possible to continue without TContra by improving
Lemma 4.2.6 to provide an explicit connection between θ and θ1 in the second case,
but it is not immediately obvious what that connection would be. In particular, any
of the four combinations of θ and θ1 is possible, so such a connection would need to
include other information as well.

We can prove similar inversion lemmas for most of the other term forms in the
language. The specialized versions when we know the term has a type of the expected
form are useful in our proof of preservation and resemble the standard lemmas from
systems without unmarked introduction forms.

The specialized versions of the inversion lemmas for functions and sigma types
have a slightly different form than the one we saw for inl. In particular, they explicitly
mention a substitution or value restriction, corresponding to the equality inversion
typing rules for these forms.

Consider lambdas as an example. The inversion lemma itself has the same form
as the corresponding lemma for inl.

Lemma 4.2.8 (Inversion for λ-expressions). Suppose Γ `θ λx .b : A. Then either:

• Γ `L p : A = (x :B1)→ B2 for some p,B1, and B2 such that Γ, x :θ B1 `θ b : B2,

64

• or, Γ `L p : A = (...(((x : B1) → B2)@θ1)...)@θn for some p,B1, B2, and θ1,...θn
such that Γ, x :θ1 B1 `θ1 b : B2.

When we specialize the lemma to the case where we know the type is an arrow
type, we mention an explicit substitution into the body of the function, rather than
leaving a hole for the argument:

Lemma 4.2.9 (Inversion for λ-expressions at arrow types). Suppose Γ `θ λx .b : (x :
B1)→ B2 and Γ `θ v : B1. Then Γ `θ [v/x]b : [v/x]B2.

The inversion lemmas for the other function forms and pairs are similar. The
explicit substitution of a value for the argument to the function makes the lemma
substantially easier to prove and is sufficient for preservation.

4.2.3 Preservation

The proof of preservation introduces one additional complication. We might hope to
directly prove a standard statement of preservation, like this:

Theorem 4.2.10 (Preservation). If Γ `θ a : A and a a ′, then Γ `θ a ′ : A.

While this theorem is true for LFθ, an attempt to prove it directly will get stuck.
Consider the case where the term is an application and the argument steps. That is,
suppose a a ′ and we have a derivation:

D =
Γ `θ v : (x :A)→ B Γ `θ a : A

D′
Γ `θ [a/x]B : ?

Γ `θ v a : [a/x]B
TApp

To complete this case of the preservation proof, we must show that Γ `θ v a ′ : [a/x]B .
The natural approach is to use TApp to derive that Γ `θ v a ′ : [a ′/x]B , then observe
that [a/x]B and [a ′/x]B are provably equal, and conclude with TConv.

However, there is a hitch in this plan. Our use of TApp to conclude that Γ `θ
v a ′ : [a ′/x]B will require us first to show that [a ′/x]B is a well-formed type, i.e., that
Γ `θ [a ′/x]B : ?. Since a′ is not necessarily a value, we cannot hope to show this by
inverting the well-formedness of (x :A)→ B and using substitution. So we are stuck.

Another approach is to observe that Γ `θ [a ′/x]B : ? is a potential conclusion
of the IH for the subderivation D′. Unfortunately, to use this IH we would need
to show that [a/x]B [a ′/x]B . This may not be the case, since x might appear
multiple times in B, or under binders. But this suggests a solution in the form of
a more general statement of the preservation theorem itself—while it isn’t the case
that [a/x]B [a ′/x]B , it is the case that [a/x]B V [a ′/x]B . So if we attempt to
prove preservation for parallel reductions rather than the relation, we will not be
stuck here.

65

The following generalized statement of preservation can be proved directly by
performing induction on the typing derivation and considering the possible ways for
a to step in each case.

Theorem 4.2.11 (Preservation for parallel reduction). If Γ `θ a : A and a V a ′,
then Γ `θ a ′ : A.

After proving this, the original statement of preservation (Theorem 4.2.10) may
be recovered as a special case, since if a a ′ then a V a ′.

4.3 Normalization
Our normalization proof builds upon the “partially step-indexed” technique intro-
duced in Chapter 3. Happily, the modifications required to extend this technique to
LFθ are relatively standard. In particular, to properly interpret equality types we
will introduce an environment to the interpretation that will keep track of values for
each free variable. The rule TConv can be thought of as a large elimination—it
changes types based on the elimination of a term. A value environment is standard
for systems with large eliminations [64].

4.3.1 The Interpretation

The definition of the interpretation appears in Figure 4.7. As was the case in the
previous chapter, we define two mutually recursive functions, Vρ[[A]]θk and Cρ[[A]]θk .
The former interprets types as sets of values and the latter interprets types as sets of
expressions. The new argument ρ is the value environment. It has the form:

ρ ::= ∅ | ρ[x 7→ v]

We write ρ a for the simultaneous substitution of values in ρ for the variables of a.
The interpretation for LFθ closely mirrors the interpretation for λθ, so we will

describe only the major changes. We add an interpretation for the kind ?, which is
simply all type values. This definition suffices due to the limitations LFθ imposes
on the type level (as exhibited, for example, by Lemma 4.2.1). Since LFθ includes
three ways to introduce functions, the interpretation of arrow types is a union over
the possible forms (and includes unrestricted recursion only at P). For each form,
the definition follows the standard pattern of a logical relation and closely mirrors
λθ, except that we extend the environment context with the argument value when
interpreting the range type.

The remaining changes and additions are in the interpretation of data types—
sums, pairs, and equality. In the case of sums, we add a typing assumption to maintain
the property that if v ∈ Vρ[[A]]θk , then · `θ v : ρA. The interpretation for pairs is new
but straightforward—a pair 〈v1, v2〉 is in the interpretation of Σx :A.B just if v1 is in

66

Vρ[[?]]θk = {v | · `θ v : ?}

Vρ[[Nat]]θk = {v | v is of the form Sn Z}

Vρ[[A@θ′]]θk = {v | v ∈ Vρ[[A]]θ
′

k }

Vρ[[(x :A)→ B]]Lk = {λx .b | · `L λx .b : ρ ((x :A)→ B)

and ∀j ≤ k, if v ∈ Vρ[[A]]Lj then [v/x]b ∈ Cρ[x 7→v][[B]]Lj }

∪ {ind f x .b | · `L ind f x .b : ρ ((x :A)→ B)

and ∀j ≤ k, if v ∈ Vρ[[A]]Lj
then [v/x][λy .λz .(ind f x .b) y/f]b ∈ Cρ[x 7→v][[B]]Lj }

Vρ[[(x :A)→ B]]Pk = {λx .b | · `P λx .b : ρ ((x :A)→ B)

and ∀j < k, if v ∈ Vρ[[A]]Pj then [v/x]b ∈ Cρ[x 7→v][[B]]Pj }

∪ {rec f x .b | · `P rec f x .b : ρ ((x :A)→ B)

and ∀j < k, if v ∈ Vρ[[A]]Pj then [v/x][rec f x .b/f]b ∈ Cρ[x 7→v][[B]]Pj }

∪ {ind f x .b | · `P ind f x .b : ρ ((x :A)→ B)

and ∀j < k, if v ∈ Vρ[[A]]Pj
then [v/x][λy .λz .(ind f x .b) y/f]b ∈ Cρ[x 7→v][[B]]Pj }

Vρ[[A + B]]θk = {inl v | · `θ ρ (A + B) : ? and v ∈ Vρ[[A]]θk}
∪ {inr v | · `θ ρ (A + B) : ? and v ∈ Vρ[[B]]θk}

Vρ[[Σx :A.B]]θk = {〈v1, v2〉 | · `θ ρ (Σx :A.B) : ? and v1 ∈ Vρ[[A]]θk and v2 ∈ Vρ[x 7→v1][[B]]θk}

Vρ[[µx .A]]θk = {roll v | · `θ′ roll v : ρ (µx .A) and ∀j < k, v ∈ Vρ[[[µx .A/x]A]]θj }

Vρ[[a1 = a2]]θk = {refl | · `θ ρ (a1 = a2) : ? and ρ a1 V∗ a and ρ a2 V∗ a for some a}

Vρ[[A]]θk = ∅ otherwise

Cρ[[A]]Pk = {a | · `P a : ρA and ∀j ≤ k, if a j v then v ∈ Vρ[[A]]P(k−j)}

Cρ[[A]]Lk = {a | · `L a : ρA and a ∗ v ∈ Vρ[[A]]Lk}

Figure 4.7: LFθ: The Type Interpretation

67

the interpretation of A and v2 is in the interpretation of [v1/x]B (though note that,
to preserve the well-foundedness of the interpretation, we extend the context when
interpreting B rather than substituting).

The interpretation of equality is the only case where the value environment ρ
is used. The idea is simple—the interpretation of a = b in the context ρ is a set
containing the single term refl when ρ a and ρ b reduce to a common expression, and
is empty otherwise. The interpretation also contains a typing assumption, for the
same reason as sums.

The interpretation is a well-defined recursive function. We can formalize its de-
scending well-founded metric as a lexicographically ordered triple (k,A,Ω), as we did
in Chapter 3. Here, k is the index, A is the expression and Ω is one of C or V with
V < C. The third element of the triple tracks which interpretation is being called—
the computational interpretation may call the value interpretation at the same index
and type, but not vice-versa.

4.3.2 The Proof

The proof of normalization using the interpretation above closely resembles the proof
from Chapter 3. The primary difference is additional infrastructure to deal with the
value environment. In particular, we begin by defining the judgement ρ |=k Γ, which
indicates that ρ is a good model for the context Γ, for at least k steps.

∅ |=k ·
ENil

ρ |=k Γ v ∈ Vρ[[A]]θk Γ `θ A : ?

ρ[x 7→ v] |=k Γ, x :θ A
ECons

Intuitively, ρ |=k Γ asserts that ρ maps term variables to well-behaved values.
Because of the premise Γ `θ A : ?, it also asserts that Γ does not contain any type
variables. This is vacuously true for the empty context and preserved by each case of
the type interpretation.

The soundness theorem relies on a few key lemmas about the interpretation. These
lemmas may all be proved by induction over the same ordering which we used to
demonstrate that the interpretation is well-defined. The first is a standard “downward
closure” property for step-indexed relations: it says that requiring values to stay well-
behaved for a larger number of steps creates a more precise interpretation.

Lemma 4.3.1. For any A, θ and ρ, if j ≤ k then Vρ[[A]]θk ⊆ Vρ[[A]]θj .

The next two lemmas relate the L and P interpretations of a type. They are
used to handle the TSub and TMVal rules, respectively. The first says that the set
of logical values is a subset of the corresponding programmatic sets. Recall that Ω
ranges over V and C.

Lemma 4.3.2. For any A, k, θ and ρ, Ωρ[[A]]Lk ⊆ Ωρ[[A]]Pk .

68

The second says that for mobile types, the reverse containment also holds. For these
types, the interpretations contain the same values in both fragments.

Lemma 4.3.3. For any k and ρ, if Mob (A) then Vρ[[A]]Pk ⊆ Vρ[[A]]Lk .

Finally, because of the TConv rule, we need equal types to have the same interpre-
tation.

Lemma 4.3.4. Suppose ρB1 V∗ A and ρB2 V∗ A and Γ `θ B1 : ? and Γ `θ B2 : ?
and ρ |=k Γ. Then a ∈ Ωρ[[B1]]θk iff a ∈ Ωρ[[B2]]θk .

We can now prove the main soundness result by induction on Γ `θ a : A. Nor-
malization is an immediate corollary. We also get a characterization of which terms
can be proven equal in the empty context. We need such a characterization to prove
progress.

Theorem 4.3.5 (Soundness). If Γ `θ a : A and ρ |=k Γ, then ρ a ∈ Cρ[[A]]θk .

Corollary 4.3.6 (Normalization).
If · `L a : A, then there exists a value v such that a ∗ v .

Corollary 4.3.7 (Soundness of propositional equality).
If · `L a : A1 = A2, then there exists some A such that A1 V∗ A and A2 V∗ A.

Normalization holds only for closed terms. This is a result of the fact that uses of
the TConv rule are unmarked in the syntax. It is possible to assume a contradictory
equality and use it to typecheck a non-terminating term in the logical fragment. For
example, the following statement is derivable:

y :L Nat = (Nat→ Nat) `L (λx .x x) (λx .x x) : Nat

This distinguishes LFθ from intensional type theories like Coq and Agda. In those
systems, our rule TConv arises as the pattern-matching elimination form for a de-
fined equality datatype. Uses of this eliminator would appear in the term above, and
their reduction would get “stuck” on the variable y, since it does not reduce to the
appropriate constructor.

The benefit of giving up normalization of open terms is a more generous equality.
Since uses of conversion appear in terms in Coq and Agda, they often get in the
way of judging two terms which use such conversions equal. In our system, this
cannot happen. The drawback is that the typechecker cannot automatically normalize
expressions (since they may diverge), so, in a surface language, some uses of refl must
be explicit and annotated with a maximum step count. However, in a language
with general recursion some explicit proofs are unavoidable, since checking a logical
term can involve reducing a programmatic term that appears in its type. Since our
language must accommodate such proofs in any case, making conversion unmarked
is appealing.

69

4.4 Progress
The progress theorem relies on canonical forms lemmas, which we may now prove.
As described in Section 4.2.1, the TConv and TContra cases of each proof will
require us to rule out inconsistent equalities such as (Nat + Nat) = Nat. Therefore,
these lemmas rely on Corollary 4.3.7. Otherwise, the proofs go by the technique
described in Section 3.2.1.

Lemma 4.4.1 (Canonical forms for Nat). If · `θ v : Nat then either v = Z or v = S v ′

for some value v′.

Lemma 4.4.2 (Canonical forms for arrows). If · `θ v : (x : A) → B then either
v = (λx .b), v = rec f x .b, or v = ind f x .b for some f and b.

Lemma 4.4.3 (Canonical forms for sums). If · `θ v : B1 + B2 then there is some v′
such that v = inl v ′ or v = inr v ′.

Lemma 4.4.4 (Canonical forms for pairs). If · `θ v : Σx :B1.B2 then there are some
v1 and v2 such that v = 〈v1, v2〉.

Lemma 4.4.5 (Canonical forms for recursive types). If · `θ v : µalpha.A then
v = roll b ′ for some v′.

The progress theorem is then an easy induction on · `θ a : A.

Theorem 4.4.6 (Progress). If · `θ a : A, then either a is a value or there exists a ′
such that a a ′.

70

Chapter 5

Adding Polymorphism and
Type-Level Computation

I know what my weaknesses are, probably better than you do.
Revolutionary Chinese propaganda, the color of blue.
I thought I knew what my weaknesses were anyway,
Then the orange tree blossomed last Saturday.
There was nothing in it but pain for me.

Ontario
The Mountain Goats

This chapter introduces the language PCCθ, which extends LFθ with predicative
polymorphism and type-level computation. Thus, PCCθ is a complete dependently
typed core language in its own right. We have chosen the name PCCθ to emphasize
that it can be thought of as a predicative variant of the Calculus of Constructions,
enhanced with the novel logicality and equality features described above. The primary
contribution of the chapter is a proof that this language is type safe and that its logical
fragment is normalizing and consequently consistent as a logic. This demonstrates
that the novel features we have introduced can soundly coexist with a “full-spectrum”
dependent type theory.

On the other hand, a number of features we included for convenience in Theta
are absent from PCCθ. Some of these, such as a general notion of datatypes and
a terminating recursor, have been omitted because we believe they are not likely to
introduce genuine problems, but would introduce many complex cases to an already
very long proof. Others, like the universe hierarchy, have been omitted because their
metatheory has proved intractable in the setting of LFθ. Omissions of the latter kind
are considered in detail in Chapter 6.

Unlike the proofs in Chapters 3 and 4, the metatheory of PCCθ has not been
mechanized. Type-level computation, in particular, substantially complicates the
definition of the interpretation of types used in the proof of normalization of the logical

71

Sorts
s ::= ?τ | ?σ

Kinds
k ::= s | (x : A)→ k | (x : k1)→ k2

Types
A, B ::= x | (x : A)→ B | (x : k)→ B | λx : A.B | λx : k .B | B a | B A

| Nat | A + B | Σx :A .B | µ x .A | A@θ | a = b | A = B |

Terms
a, b ::= x | λx :A.b | λx :k .b | rec f (x :A).b | rec f (x :k).b | b a | b A

| Z | S a | ncasez a of {Z ⇒ b1; S x ⇒ b2} |
| inl a | inr a | scasez a of {inl x ⇒ b1; inr y ⇒ b2} |
| 〈a, b〉 | pcasez a of 〈x , y〉 ⇒ b | roll a | unroll a | refl | trefl

Consistency Classifiers
θ ::= L | P

Type Values
V ::= x | (x : A)→ B | (x : k)→ B | λx : A.B | λx : k .B

| Nat | A + B | Σx :A .B | µ x .A | A@θ | a = b | A = B |

Term Values
v ::= x | λx :A.b | λx :k .b | rec f (x :A).b | rec f (x :k).b

| Z | S v | inl v | inr v | 〈v1, v2〉 | roll v | refl | trefl

Figure 5.1: PCCθ: Syntax

fragment. Where previous interpretations always computed a set of expressions, the
interpretation we define in Section 5.4 can produce several different kinds of set-
theoretic objects and is therefore substantially more work to model in a proof assistant
like Coq. For this reason, the metatheory of PCCθ appears here in great detail.

5.1 The PCCθ Language
Since PCCθ is quite similar to both LFθ and Theta which have been described earlier
in this thesis, we will focus here only on the differences. The syntax of PCCθ appears
in Figure 5.1. Unlike LFθ and Theta, we present PCCθ with a stratified syntax—
terms, types, and kinds are their own syntactic categories. This introduces some
unfortunate duplication in the typing and reduction relations, but is necessary due

72

a b

(λx :A.b) v [v/x]b
SBeta

(λx :k .b) V [V /x]b
SBetaT

(rec f (x :A).b) v [v/x][rec f (x :A).b/f]b
SFBeta

(rec f (x :k).b) V [V /x][rec f (x :k).b/f]b
SFBetaT

ncasez Z of {Z ⇒ a1; S x ⇒ a2} [refl/z]a1
SCaseZ

ncasez S v of {Z ⇒ a1; S x ⇒ a2} [refl/z][v/x]a2
SCaseS

A B

(λx : A.B) v [v/x]B
TSBeta

(λx : k .B) V [V /x]B
TSBetaT

Figure 5.2: PCCθ: Operational Semantics (excerpt)

to metatheoretic complications described in Section 6.4. The only unusual pieces of
syntax are the kinds ?τ and ?σ, which are used to handle predicative polymorphism
and are described below.

The operational semantics of PCCθ appear in Figure 5.2. For convenience in the
proof below, we have written out congruence rules for the reduction relations rather
then specifying them via evaluation contexts. For readability, we do not show the
complete definition here, but it may be found in Appendix A. The definition of parallel
reduction, which is used in the typing rules for equality proofs and in the metatheory,
may also be found in Appendix A.

The typing rules for functions, function types, variables and sorts appear in Fig-
ure 5.3. There are four mutually defined relations—Γ `θ a : A assigns types to terms,
Γ ` A : k assigns kinds to types, Γ ` k checks kinds, and ` Γ checks contexts.

Since the system uses a stratified syntax, we have four distinct arrow forms (two
types and two kinds). We have given the typing rules names reflecting a correspon-
dence with the four “rules” in the pure type system presentation of the Calculus of
Constructions [6]. In particular, KArrTLC handles type-level computation (CC rule
(�,�)), KArrDep handles dependent lambdas (CC rule (?,�)), and TArrComp
handles normal term-level computation (CC rule (?, ?)). On the other hand, TAr-
rPoly handles polymorphism but does not correspond directly to the CC rule (�, ?)
because PCCθ is predicative, as we will see shortly.

The system also includes recursive function forms at the term level, but not at the

73

Γ ` k

` Γ

Γ ` ?τ
KSort

Γ ` k1 Γ, x : k1 ` k2

Γ ` (x : k1)→ k2
KArrTLC

Γ ` A : ?σ Mob (A)

Γ, x : A ` k

Γ ` (x : A)→ k
KArrDep

Γ ` A : k

(x : k) ∈ Γ ` Γ

Γ ` x : k
TVar

Γ ` A : ?τ

Γ ` A : ?σ
TMonoPoly

Γ ` A : s Mob (A)

Γ, x : A ` B : s

Γ ` (x : A)→ B : s
TArrComp

Γ ` k

Γ, x : k ` B : ?σ

Γ ` (x : k)→ B : ?σ
TArrPoly

Γ, x : k1 ` B : k2

Γ ` (x : k1)→ k2

Γ ` λx : k1.B : (x : k1)→ k2
TLamTLC

Γ, x : A ` B : k2

Γ ` (x : A)→ k2

Γ ` λx : A.B : (x : A)→ k2
TLamDep

Γ ` B : (x : k1)→ k2

Γ ` A : k1 Γ ` [A/x]k2

Γ ` B A : [A/x]k2
TAppTLC

Γ ` B : (x : A)→ k

Γ `L a : A Γ ` [a/x]k

Γ ` B a : [a/x]k
TAppDep

Γ `θ a : A

(x : A) ∈ Γ ` Γ

Γ `θ x : A
EVar

Γ, x : A `L b : B

Γ ` (x : A)→ B : ?σ

Γ `L λx :A.b : (x : A)→ B
ELamComp

Γ, x : k `L b : B

Γ ` (x : k)→ B : ?σ

Γ `L λx :k .b : (x : k)→ B
ELamPoly

Γ, f : (x : A)→ B , x : A `P b : B

Γ ` (x : A)→ B : ?σ

Γ `P rec f (x :A).a : (x : A)→ B
ERecComp

Γ, f : (x : k)→ B , x : k `P b : B

Γ ` (x : k)→ B : ?σ

Γ `P rec f (x :k).a : (x : k)→ B
ERecPoly

Γ `θ b : (x : A)→ B

Γ `θ a : A Γ ` [a/x]B : ?σ

Γ `θ b a : [a/x]B
EAppComp

Γ `θ b : (x : k)→ B

Γ ` A : k Γ ` [A/x]B : ?σ

Γ `θ b A : [A/x]B
EAppPoly

` Γ

` ·
CNil

` Γ Γ ` A : ?σ

Mob (A) x /∈ dom(Γ)

` Γ, x : A
CTrm

` Γ Γ ` k

x /∈ dom(Γ)

` Γ, x : k
CTyp

Figure 5.3: PCCθ Typing: Basics

74

type-level. This mirrors Theta’s restriction that types must check logically, which
is discussed in greater detail in Section 6.1. Restricting the type level to “logical”
constructs permits a few other simplifications in the specification of PCCθ. The
kinding judgement Γ ` A : k is not indexed by a logicality (though one may imagine
an implicit logicality L when comparing to the other systems in this document).
Similarly, we do not mark type variables with a logicality in the context. In fact, the
typing rules for terms can be stated in such a way that only mobile types are assigned
to term variables in the context, so the stratified syntax allows us to avoid marking
any variables at all with logicalities, as we see in the definition of ` Γ.

In order to enforce predicative polymorphism, we use two sorts for types: ?σ and
?τ . If Γ ` A : ?τ , then we know A is a monomorphic type. On the other hand, ?σ
may classify any type, including those that make use of polymorphism. The names
of these sorts are intended to evoke systems like Standard ML, which syntactically
distinguishes between monotypes τ and type schemes σ:

σ ::= τ | ∀α.σ
τ ::= α | Nat | τ → τ | τ1 + τ2 | . . .

In PCCθ, the σs are more general because they are not required to be in prenex form.
Our types look more like the following grammar.

σ ::= τ | ∀α.σ | σ → σ | σ1 + σ2 | . . .
τ ::= α | Nat | τ → τ | τ1 + τ2 | . . .

However, type variables still only range over monotypes τ ; one can never instantiate
a ∀-type with another polymorphic type. We have chosen to use sorts to distin-
guish polytypes from monotypes rather than separating the syntax because it avoids
duplication in the typing rules and because this allows us to demonstrate the inter-
esting result that, while a completely collapsed syntax causes problems for our proof
techniques (Section 6.4), we can at least collapse this much.

The predicativity restriction is captured in the formalism by the rule TArrPoly
and the judgement Γ ` k . In particular, for k to be a valid domain for a polymorphic
arrow type, it must be the case that Γ ` k . It is not the case that Γ ` ?σ. Polymorphic
types are themselves given the kind ?σ, so the domain of a polymorphic arrow type
never ranges over itself. Thus, the judgement Γ ` k can be read as “k is a kind that
classifies monotypes”, and there are valid kinds for which Γ ` k does not hold (e.g.,
?σ). The rule TMonoPoly allows monotypes to be used in contexts where polytypes
are expected (just as τ is included in σ in the grammars above). In particular, this
means that we can use Γ ` A : ?σ as a general well-formedness check on A when we
do not care whether or not it is polymorphic.

Like Theta, λθ and LFθ, PCCθ allows the two fragments to interact in a variety of
ways, as shown in Figure 5.4. In particular, PCCθ can internalize its typing judgement
via the A@θ type form, and data computed by the programmatic fragment can be

75

Γ ` A : k

Γ ` A : s

Γ ` A@θ : s
TAt

Γ `θ a : A

Γ `θ v : A@θ′

Γ ` A : ?σ

Γ `θ′ v : A
EUnboxVal

Mob (A)

Γ `P v : A

Γ `L v : A
EMVal

Γ `θ a : A

Γ `P a : A@θ
EBoxP

Γ `L a : A

Γ `L a : A@θ
EBoxL

Γ `P v : A

Γ `L v : A@P
EBoxLV

Mob (A)

Mob (Nat)
MNat

Mob (a = b)
MEq

Mob (A = B)
MEqT

Mob (A@θ)
MAt

Mob (A) Mob (B)

Mob (A + B)
MSum

Mob (A) Mob (B)

Mob (Σx :A .B)
MSigma

Figure 5.4: PCCθ Typing: The Fragments

used in the logical fragment via the EMVal rule. We do not need an equivalent kind
form, as in k@θ, since the kinding judgement is not indexed by a fragment.

The rules for datatypes appear in Figure 5.5. One small difference from previous
systems appears in the pattern matching rules for sums and products, where we tag
the potentially non-mobile types of the scrutinee’s components with an explicit @-
type, to preserve the property that term variables in the context are assigned mobile
types.

Finally, the rules for equality appear in Figure 5.6. Due to the stratified syntax,
there are two equality forms in PCCθ—one for terms and one for types. Both behave
similarly to LFθ’s equality, and both may be used for conversion during typechecking
and kind checking (rules EConv, EConvT, TConv and TConvT). As in LFθ, the
inversion lemmas for our preservation proof require us to add injectivity axioms for
the system’s type constructors. They appear in Figure 5.7.

5.2 Syntactic Metatheory
In this section, we will prove basic syntactic results for PCCθ. The goal of this chapter
is to demonstrate that the logical fragment of PCCθ is consistent, and to verify this

76

Γ ` A : k

` Γ

Γ ` Nat : ?τ
TNat

Γ ` A : s

Γ ` B : s

Γ ` A + B : s
TSum

Γ ` A : s Mob (A)

Γ, x : A ` B : s

Γ ` Σx :A .B : s
TSigma

Γ, x : ?τ ` A : ?τ

Γ ` µ x .A : ?τ
TMu

Γ `θ a : A

` Γ

Γ `L Z : Nat
EZero

Γ `θ a : Nat

Γ `θ S a : Nat
ESucc

Γ `θ a : Nat Γ ` B : ?σ

Γ, z : Z = a `θ b1 : B

Γ, x : Nat, z : (S x) = a `θ b2 : B

Γ `θ ncasez a of {Z ⇒ b1; S x ⇒ b2} : B
ENCase

Γ `θ a : A

Γ ` A + B : ?σ

Γ `θ inl a : A + B
EInl

Γ `θ b : B

Γ ` A + B : ?σ

Γ `θ inr b : A + B
EInr

Γ `θ a : (A1 + A2)@θ′ Γ ` B : ?σ

Γ, x : A1@θ′, z : inl x = a `θ b1 : B

Γ, x : A2@θ′, z : inr x = a `θ b2 : B

Γ `θ scasez a of {inl x ⇒ b1; inr x ⇒ b2} : B
ESCase

Γ ` Σx :A .B : ?σ

Γ `θ a : A

Γ `θ b : [a/x]B

Γ `θ 〈a, b〉 : Σx :A .B
EPair

Γ `θ a : (Σx :A1 .A2)@θ′

Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a `θ b : B

Γ ` B : ?σ

Γ `θ pcasez a of 〈x , y〉 ⇒ b : B
EPCase

Γ `θ a : [µ x .A/x]A

Γ ` µ x .A : ?σ

Γ `θ roll a : µ x .A
ERoll

Γ `P a : µ x .A

Γ ` [µ x .A/x]A : ?σ

Γ `P unroll a : [µ x .A/x]A
EUnroll

Figure 5.5: PCCθ Typing: Datatypes

77

Γ ` A : k

Γ `P a : A Γ `P b : B

Γ ` a = b : ?τ
TEq

Γ `L b : b1 = b2 Γ ` A : [b1/x]k

Γ ` [b2/x]k

Γ ` A : [b2/x]k
TConv

Γ ` A : k1 Γ ` B : k2

Γ ` A = B : ?τ
TEqT

Γ `L b : B1 = B2 Γ ` A : [B1/x]k

Γ ` [B2/x]k

Γ ` A : [B2/x]k
TConvT

Γ `θ a : A

a V∗ c b V∗ c

Γ `θ1 a : A Γ `θ2 b : B

Γ `L refl : a = b
ERefl

Γ `L b : b1 = b2 Γ `θ a : [b1/x]A

Γ ` [b2/x]A : ?σ

Γ `θ a : [b2/x]A
EConv

AV∗ C B V∗ C

Γ ` A : k1 Γ ` B : k2

Γ `L trefl : A = B
EReflT

Γ `L b : B1 = B2 Γ `θ a : [B1/x]A

Γ ` [B2/x]A : ?σ

Γ `θ a : [B2/x]A
EConvT

Γ `L a1 : B1 = B2 Γ `θ a : A

hd (B1) = hf1 hd (B2) = hf2 hf1 6= hf2

Γ ` A : ?σ Γ ` B : ?σ

Γ `θ′ a : B
EContra

Head Forms
hf ::= HArrComp | HArrPoly | HAt θ | HNat | HSum | HSigma | HEq | HEqT | HMu

hd (A) = hf

hd ((x : A)→ B) = HArrComp
HArrComp

hd ((x : k)→ B) = HArrPoly
HArrPoly

hd (A@θ) = HAt θ
HAt

hd (Σx :A .B) = HSigma
HSigma

hd (Nat) = HNat
HNat

hd (A + B) = HSum
HSum

hd (µ x .A) = HMu
HMu

hd (a = b) = HEq
HEq

hd (A = B) = HEqT
HEqT

Figure 5.6: PCCθ Typing: Equality

78

Γ `θ a : A

Γ `θ a : (A@θ′) = (B@θ′)

Γ ` A = B : ?τ

Γ `θ a : A = B
EAtInv

Γ `θ a : ((x : A1)→ A2) = ((x : B1)→ B2)

Γ ` A1 = B1 : ?τ

Γ `θ a : A1 = B1
EArrInv1

Γ `θ a : ((x : k1)→ A2) = ((x : k2)→ B2)

Γ ` V : k1

Γ ` [V /x]A2 = [V /x]B2 : ?τ

Γ `θ a : [V /x]A2 = [V /x]B2
EArrInvT2

Γ `θ a : ((x : A1)→ A2) = ((x : B1)→ B2)

Γ `θ′ v : A1

Γ ` [v/x]A2 = [v/x]B2 : ?τ

Γ `θ a : [v/x]A2 = [v/x]B2
EArrInv2

Γ `θ a : (Σx :A1 .A2) = (Σx :B1 .B2)

Γ ` A1 = B1 : ?τ

Γ `θ a : A1 = B1
ESigmaInv1

Γ `θ a : (Σx :A1 .A2) = (Σx :B1 .B2)

Γ `θ′ v : A1

Γ ` [v/x]A2 = [v/x]B2 : ?τ

Γ `θ a : [v/x]A2 = [v/x]B2
ESigmaInv2

Γ `θ a : (A1 + A2) = (B1 + B2)

Γ ` A1 = B1 : ?τ

Γ `θ a : A1 = B1
ESumInv1

Γ `θ a : (A1 + A2) = (B1 + B2)

Γ ` A2 = B2 : ?τ

Γ `θ a : A2 = B2
ESumInv2

Γ `θ a : (µ x .A) = (µ x .B)

Γ ` ([µ x .A/x]A) = ([µ x .B/x]B) : ?τ

Γ `θ a : ([µ x .A/x]A) = ([µ x .B/x]B)
EMuInv

Figure 5.7: PCCθ Typing: Injectivity Axioms

79

result in detail. For this reason, we have written explicit proofs for many of the basic
lemmas below. As we will see in Chapter 6, the unmarked equality in PCCθ can
cause surprising problems, so it is important to explicitly check as much as possible.
Despite this, many of the early lemmas will be stated without proof, both because the
proofs are uninteresting and because writing out proofs for everything is infeasible.1

5.2.1 Reduction Basics

We begin with simple results about the reduction relations for PCCθ. These lemmas
are all proved by a straightforward structural induction, so we omit the details. In
principle, dozens of lemmas about reduction are needed for the proofs in later sections.
For readability, we have stated only the lemmas that are actually used in proofs that
appear in detail below.

Lemma 5.2.1 (Parallel reduction inversion for @). If A@θ V∗ B@θ then AV∗ B .

Lemma 5.2.2 (Parallel reduction inversion for arrows). If (x : A1) → A2 V∗ (x :
B1)→ B2 then A1 V∗ B1 and A2 V∗ B2.

Lemma 5.2.3 (Application evaluation inversion). Suppose b a j v . Then there
exist i1, i2, i3 ∈ N such that 1 + i1 + i2 + i3 = j and a i2 v ′ and either

• b i1 λx :A.b ′ for some b′ such that [v ′/x]b ′ i3 v ,

• or b i1 rec f (x :A).b ′ for some b′ such that [v ′/x][rec f (x :A).b ′/f]b ′ i3 v .

Lemma 5.2.4 (pcase evaluation inversion). Suppose pcasez a of 〈x , y〉 ⇒ b j

v . Then there exist i1, i2 ∈ N such that 1 + i1 + i2 = j and a i1 〈v1, v2〉 and
[v1/x][v2/y][refl/z]b i2 v .

Lemma 5.2.5 (Term substitution preserves head forms). If hd (A) = hf , then for
any v and x, hd ([v/x]A) = hf .

Lemma 5.2.6. For any v, x and v′, [v′/x]v is a value.

Lemma 5.2.7 (Term substitution preserves mobility). If Mob (A) then Mob ([a/x]A).

Lemma 5.2.8 (V preserves valuehood). If v V a then a is a value.

Lemma 5.2.9 (V preserves valuehood of types). If V V A then A is a value.

Lemma 5.2.10 (V∗ preserves head forms). If hd (A) = hf and A V∗ B then
hd (B) = hf .

1The mechanized proof for the LFθ system from Chapter 4, for example, involves approximately
400 individual lemmas and theorems. So, even stating every lemma needed would be a monumental
task.

80

Lemma 5.2.11. Suppose a1 V a2. Then,

• [a1/x]b V [a2/x]b for any b, and

• [a1/x]B V [a2/x]B for any B, and

• [a1/x]k V [a2/x]k for any k.

Lemma 5.2.12. Suppose A1 V A2. Then,

• [A1/x]b V [A2/x]b for any b, and

• [A1/x]B V [A2/x]B for any B, and

• [A1/x]k V [A2/x]k for any k.

Lemma 5.2.13. Suppose a1 V∗ a2. Then,

• [a1/x]b V∗ [a2/x]b for any b, and

• [a1/x]B V∗ [a2/x]B for any B, and

• [a1/x]k V∗ [a2/x]k for any k.

Lemma 5.2.14. Suppose A1 V∗ A2. Then,

• [A1/x]b V∗ [A2/x]b for any b, and

• [A1/x]B V∗ [A2/x]B for any B, and

• [A1/x]k V∗ [A2/x]k for any k.

Lemma 5.2.15. For any value v and variable x,

• If a V∗ b then [v/x]a V∗ [v/x]b, and

• If AV∗ B then [v/x]AV∗ [v/x]B , and

• If k1 V∗ k2 then [v/x]k1 V∗ [v/x]k2.

For types, it will be convenient to generalize this last lemma slightly to the case
where the type is not a value itself but does reduce to a value. We obtain a similar
result, since in any case of the original reduction that made use of the fact that x is
a value, we may insert some extra reduction steps to reduce the substituted type to
a value.

Lemma 5.2.16. Suppose B V∗ V for some type B and type value V . Then, for
any variable x,

• If a1 V∗ a2 then [B/x]a1 V∗ [V /x]a2, and

81

• If A1 V∗ A2 then [B/x]A1 V∗ [V /x]A2, and

• If k1 V∗ k2 then [B/x]k1 V∗ [V /x]k2.

Lemma 5.2.17 (Confluence). If AV∗ A1 and AV∗ A2, then there is some B such
that A1 V∗ B and A2 V∗ B .

Lemma 5.2.18 (is a subrelation of V).

• If a b, then a V b.

• If A B , then AV B .

Lemma 5.2.19 (∗ andV∗ agree on normalization). If AV∗ V then there is some
value V ′ such that A ∗ V ′.

5.2.2 Typing Basics

In this section, we prove several preliminaries about the typing relation that are
necessary for the substitution, inversion, and preservation results to come. These
lemmas are mostly proved by mutual induction on the three typing judgements, so we
state all three parts together. Several of them (weakening, substitution) additionally
have two versions: one for terms and one for types.

Lemma 5.2.20 (Term variable weakening). Suppose Γ ` B : ?σ and x /∈ dom(Γ1,Γ2).

• If Γ1,Γ2 `θ a : A then Γ1, x : B ,Γ2 `θ a : A.

• If Γ1,Γ2 ` A : k then Γ1, x : B ,Γ2 ` A : k .

• If Γ1,Γ2 ` k then Γ1, x : B ,Γ2 ` k .

Proof. By mutual induction on the three typing derivations.

Lemma 5.2.21 (Type variable weakening). Suppose Γ ` k and x /∈ dom(Γ1,Γ2).

• If Γ1,Γ2 `θ a : A then Γ1, x : k ,Γ2 `θ a : A.

• If Γ1,Γ2 ` A : k then Γ1, x : k ,Γ2 ` A : k .

• If Γ1,Γ2 ` k then Γ1, x : k ,Γ2 ` k .

Proof. By mutual induction on the three typing derivations.

Lemma 5.2.22 (Context regularity). For any Γ, θ, a, A, and k ,

• If Γ `θ a : A then ` Γ.

• If Γ ` A : k then ` Γ.

82

• If Γ ` k then ` Γ.

Proof. By mutual induction on the three typing derivations. In the case of TMu,
it is also necessary to observe that, if ` Γ, x : k , then ` Γ. This is immediate by
inversion of the definition of ` Γ.

Lemma 5.2.23 (Context inversion for term variables). If ` Γ1, x : A,Γ2, then Γ1 `
A : ?σ.

Proof. By induction on the derivation of ` Γ1, x : A,Γ2.

Lemma 5.2.24 (Context inversion for type variables). If ` Γ1, x : k ,Γ2, then Γ1 ` k .

Proof. By induction on the derivation of ` Γ1, x : k ,Γ2.

Lemma 5.2.25 (Regularity). For any Γ, θ, a, A and k,

• If Γ `θ a : A then Γ ` A : ?σ.

• If Γ ` A : k then Γ ` k or k = ?σ.

Proof. By mutual induction on the derivations D :: Γ `θ a : A and E :: Γ ` A :
k . In almost all cases, the desired result is available immediately as an induction
hypothesis or premise of the typing rule. In a few cases, it is also necessary to employ
TMonoPoly. The remaining cases are straightforward.

• D =
(x : A) ∈ Γ ` Γ

Γ `θ x : A
EVar

We must show that Γ ` A : ?σ. We know that Γ has the form Γ1, x : A,Γ2 for
some Γ1 and Γ2. By Lemma 5.2.23, it follows that Γ1 ` A : ?σ. The desired result
then follows by weakening (Lemma 5.2.20).

• D =
` Γ

Γ `L Z : Nat
EZero

We must show Γ ` Nat : ?σ, which is immediate by TNat and TMonoPoly.

• D =

a V∗ c b V∗ c

Γ `θ1 a : A Γ `θ2 b : B

Γ `L refl : a = b
ERefl

We must show that Γ ` a = b : ?σ. By TMonoPoly, it will be enough to
show that Γ ` a = b : ?τ . By TEq, it is enough to show that a and b have types
in the programmatic fragment. This follows from the two typing hypotheses of
ERefl, using ESub when θ1 or θ2 is L.

83

• D =

AV∗ C B V∗ C

Γ ` A : k1 Γ ` B : k2

Γ `L trefl : A = B
EReflT

We must show that Γ ` A = B : ?σ. By TMonoPoly, it is enough to show
that Γ ` A = B : ?τ . By TTEq, this follows directly from the two kinding
hypotheses of EReflT.

• D =

D′
Γ `θ a : A

Γ `P a : A@θ
EBoxP

We must show that Γ ` A@θ : ?σ. By TAt, it is is enough to show that
Γ ` A : ?σ, which is precisely the induction hypothesis for D′.

• EBoxL and EBoxLV are similar to the previous case.

• D =
(x : k) ∈ Γ ` Γ

Γ ` x : k
TVar

We must show that Γ ` k . We know that Γ has the form Γ1, x : k ,Γ2 for some
Γ1 and Γ2. By Lemma 5.2.24, it follows that Γ1 ` k . The desired result then
follows by weakening (Lemma 5.2.21).

• D =

Γ ` A : s Mob (A)

Γ, x : A ` B : s

Γ ` (x : A)→ B : s
TArrComp

We must show that either Γ ` s or s is ?σ. But s is either ?τ or ?σ. In the
latter case the result is immediate. If s is ?τ , then by rule KSort it will be enough
to show ` Γ, which follows by context regularity (Lemma 5.2.22).

• TSigma, TSum and TAt are similar to the previous case.

Lemma 5.2.26 (?σ is untyped). There is no derivation of Γ ` ?σ.

Proof. By inspection of the inference rules for Γ ` k .

Lemma 5.2.27 (Context conversion for terms). Suppose Γ1 `L p : b1 = b2 and
Γ1 ` [b2/y]B : ?σ.

• If Γ1, x : [b1/y]B ,Γ2 `θ a : A then Γ1, x : [b2/y]B ,Γ2 `θ a : A.

• If Γ1, x : [b1/y]B ,Γ2 ` A : k then Γ1, x : [b2/y]B ,Γ2 ` A : k .

• Γ1, x : [b1/y]B ,Γ2 ` k then Γ1, x : [b2/y]B ,Γ2 ` k .

84

Proof. By mutual induction on the three typing derivations. The only interesting
case is the one for term variables:

• D =

(z : A) ∈ Γ1, x : [b1/y]B ,Γ2 ` Γ1, x : [b1/y]B ,Γ2

Γ1, x : [b1/y]B ,Γ2 `θ z : A
EVar

Either z = x or not. If not, the result immediate. So suppose z = x. Then
A is [b1/y]B and we must show that Γ1, x : [b2/y]B ,Γ2 `θ z : [b1/y]B . But
Γ1, x : [b2/y]B ,Γ2 `θ z : [b2/y]B by EVar, and the result follows by EConv.

Lemma 5.2.28 (Value boxing). If Γ `θ′ v : A then Γ `θ v : A@θ′, for any θ and θ′.

Proof. We break down the possible logicalities individually:

• If θ = P, this is an instance of EBoxP.

• If θ = θ′ = L, this is an instance of EBoxL.

• If θ = L and θ′ = P, this is an instance of EBoxLV.

Lemma 5.2.29. If ` Γ1, x : A,Γ2 then Mob (A).

Proof. By induction on the derivation of ` Γ1, x : A,Γ2.

5.2.3 Substitution

The substitution lemmas for PCCθ are unsurprising. There are two lemmas—one for
substituting terms and one for substituting types.

Lemma 5.2.30 (Term Substitution). Suppose Γ1 `θ
′
v : B .

• If Γ1, x : B ,Γ2 `θ a : A, then Γ1, [v/x]Γ2 `θ [v/x]a : [v/x]A.

• If Γ1, x : B ,Γ2 ` A : k , then Γ1, [v/x]Γ2 ` [v/x]A : [v/x]k .

• If Γ1, x : B ,Γ2 ` k , then Γ1, [v/x]Γ2 ` [v/x]k .

Proof. By mutual induction on the three derivations D :: Γ1, x : B ,Γ2 `θ a : A,
E :: Γ1, x : B ,Γ2 ` A : k and F :: Γ1, x : B ,Γ2 ` k . Most cases are immediate by
induction. In typing rules with a value restriction, the additional observation that
substituting a value into a value yields a value is necessary (Lemma 5.2.6). A few
cases are (slightly) more interesting:

85

• D =

D′
Γ1, x : B ,Γ2 `L a1 : B1 = B2 Γ1, x : B ,Γ2 `θ1 a : A

hd (B1) = hf1 hd (B2) = hf2 hf1 6= hf2
Γ1, x : B ,Γ2 ` A : ?σ Γ1, x : B ,Γ2 ` A′ : ?σ

Γ1, x : B ,Γ2 `θ2 a : A′
EContra

We must show that Γ1, [v/x]Γ2 `θ2 [v/x]a : [v/x]A′. This is almost immediate
by an application of EContra, using the induction hypotheses for the premises
above. However, observe that the induction hypothesis for D′ yields Γ1, [v/x]Γ2 `L

[v/x]a1 : ([v/x]B1) = ([v/x]B2), so we must show that [v/x]B1 and [v/x]B2 have
different head forms. But by Lemma 5.2.5, hd ([v/x]B1) = hf1, and hd ([v/x]B2) =
hf2. The required result follows from the hypothesis that hf1 6= hf2.

• D =

E ′
Γ1, x : B ,Γ2 ` [v ′/y]A2 = [v ′/y]B2 : ?τ

Γ1, x : B ,Γ2 `θ a : (Σy :A1 .A2) = (Σx :B1 .B2)

Γ1, x : B ,Γ2 `θ
′
v ′ : A1

Γ1, x : B ,Γ2 `θ a : [v ′/y]A2 = [v ′/y]B2

ESigmaInv2

We must show that Γ1, [v/x]Γ2 `θ [v/x]a : [v/x][v ′/y]A2 = [v/x][v ′/y]B2.
Intuitively, the induction hypotheses and ESigmaInv2 itself should provide this
result, but neither our goal nor the IH for E ′ have quite the right syntactic form
for that inference rule—the substitution for y is in the wrong place.

To make progress, observe that [v/x][v ′/y]A2 = [[v/x]v ′/y][v/x]A2, since we
me assume y to be fresh for v. A similar equality holds for B2. Additionally,
[v/x]v ′ is a value by Lemma 5.2.6. Having observed this, the IH for E ′ may be
rewritten as:

Γ1, [v/x]Γ2 ` [[v/x]v ′/y][v/x]A2 = [[v/x]v ′/y][v/x]B2 : ?τ

The desired result then follows by ESigmaInv2 and the other induction hypothe-
ses.

• Cases EArrInv2, EMuInv, EAppPoly, EAppComp, TAppTLC, TAppDep,
EPair, ERoll, EUnroll, EConv, EConvT, TConv, and TConvT require
similar substitution juggling but are otherwise straightforward.

• Cases ERefl and EReflT require Lemma 5.2.15 but are otherwise straightfor-
ward.

• D =
(y : A) ∈ Γ1, x : B ,Γ2 ` Γ1, x : B ,Γ2

Γ1, x : B ,Γ2 `θ y : A
EVar

Either x = y or not.

86

– Suppose x = y. Then A = B, since the ` Γ judgement ensures no variables
are repeated in a context. We must show that Γ1, [v/x]Γ2 `θ v : [v/x]B . We
know by assumption that Γ1 `θ

′
v : B . Since ` Γ1, x : B ,Γ2 and variables are

not repeated in well-formed contexts, [v/x]B = B. By weakening, we therefore
have Γ1, [v/x]Γ2 `θ

′
v : [v/x]B .

If θ = θ′, we are done. If θ is P and θ′ is L, the result follows by TSub. If θ
is L and P, the result follows by EMVal, since Lemmas 5.2.29 and 5.2.7 yield
Mob (B).

– Suppose x 6= y. We must show that Γ1, [v/x]Γ2 `θ y : [v/x]A. We know the
binding y : A occurs in Γ1 or Γ2. If it occurs in Γ2, rule EVar yields the
desired result immediately. If it occurs in Γ1 then x does not occur free in A,
since variables are not repeated in contexts. Thus [v/x]A = A, and the result
follows by EVar.

• TVar is similar (but simpler, since it cannot be the case that x = y).

Lemma 5.2.31 (Type Substitution). Suppose Γ1 ` V : k ′.

• If Γ1, x : k ′,Γ2 `θ a : A, then Γ1, [V /x]Γ2 `θ [V /x]a : [V /x]A.

• If Γ1, x : k ′,Γ2 ` A : k , then Γ1, [V /x]Γ2 ` [V /x]A : [V /x]k .

• If Γ1, x : k ′,Γ2 ` k , then Γ1, [V /x]Γ2 ` [V /x]k .

Proof. The proof is similar to the previous lemma.

Interestingly, it is also the case that non-value types may be substituted, as long
as they do reduce to a value. Intuitively, this is because the only value restrictions
on types occur in the reduction relations, and the typing relations do not depend on
the particular number steps a reduction takes.

Lemma 5.2.32 (Type substitution). Suppose Γ1 ` B : k ′ and B V∗ V .

• If Γ1, x : k ′,Γ2 `θ a : A, then Γ1, [B/x]Γ2 `θ [B/x]a : [B/x]A.

• If Γ1, x : k ′,Γ2 ` A : k , then Γ1, [B/x]Γ2 ` [B/x]A : [B/x]k .

• If Γ1, x : k ′,Γ2 ` k , then Γ1, [B/x]Γ2 ` [B/x]k .

Proof. Most cases are identical to the type substitution result (Lemma 5.2.31), since
there are no value restrictions on types, except in the operational semantics. In the
two cases that refer to the operational semantics (TRefl and TReflT), Lemma
5.2.16 justifies the substitution of a non-value type.

87

5.2.4 Inversion and Preservation

In this section, we prove the inversion and preservation lemmas for PCCθ. While the
statement of some of these lemmas is somewhat unusual, all of the novel aspects have
been motivated and explained in Chapter 4. So, we focus here on detailed proofs
rather than exposition of the technique. We also include several facts about PCCθ’s
notion of equality which could not be proved until after inversion for equality types.

Lemma 5.2.33 (Inversion for term equality). If Γ ` a = b : k , then Γ `θ1 a : A and
Γ `θ2 b : B for some θ1, θ2, A and B.

Proof. By induction on the derivation of Γ ` a = b : k .

Lemma 5.2.34 (Inversion for type equality). If Γ ` A = B : k , then Γ ` A : k1 and
Γ ` B : k2 for some k1 and k2.

Proof. By induction on the derivation of Γ ` A = B : k .

Lemma 5.2.35 (Type equality is reflexive). If Γ ` A : k , then Γ `L trefl : A = A.

Proof. Immediate by EReflT, since AV∗ A.

Lemma 5.2.36 (Type equality is symmetric). If Γ `L p : A = B then Γ `L p : B = A.

Proof. By regularity (Lemma 5.2.25) and inversion for type equality (Lemma 5.2.34),
we have Γ ` A : k1 and Γ ` B : k2 for some k1, and k2. It follows that Γ `L trefl : A =
A, because equality is reflexive (Lemma 5.2.35). The result then follows by TConvT,
since A = A may be written [A/x](x = A).

Lemma 5.2.37 (Term equality is reflexive). If Γ `θ a : A, then Γ `L refl : a = a.

Proof. Immediate by ERefl, since a V∗ a.

Lemma 5.2.38 (Term equality is symmetric). If Γ `L p : a = b then Γ `L p : b = a.

Proof. By regularity (Lemma 5.2.25) and inversion for term equality (Lemma 5.2.33),
we have Γ `θ1 a : A and Γ `θ2 b : B for some θ1, θ2,A, and B . It follows that
Γ `L refl : a = a, because equality is reflexive (Lemma 5.2.37). The result then
follows by TConv, since a = a may be written [a/x](x = a).

Lemma 5.2.39 (@ equality construction). Suppose Γ `L p : A = B . If Γ ` A : s1

and Γ ` B : s2 then Γ `L refl : (A@θ) = (B@θ).

Proof. By TAt, Γ ` A@θ : s1. Since equality is reflexive (Lemma 5.2.35), Γ `L refl :
A@θ = A@θ. The result then follows by TConvT.

88

Lemma 5.2.40 (Inversion for @-types). If Γ ` A@θ : k , then k is a sort s and
Γ ` A : s .

Proof. By induction on the derivation E :: Γ ` A@θ : k . Most cases are ruled
out because the subject does not have the correct form. Of the remaining cases,
the premises of TAt satisfy the lemma directly, and TMonoPoly is immediate by
induction (and another use of TMonoPoly). The two conversion cases remain:

• E =
Γ `L b : b1 = b2

E ′
Γ ` A@θ : [b1/x]k Γ ` [b2/x]k

Γ ` A@θ : [b2/x]k
TConv

Here, the IH for E ′ yields that [b1/x]k is s for some sort s, and Γ ` A : s . But
if [b1/x]k = s, then it must be the case that k = s, since b1 cannot be a sort. It
follows that [b2/x]k is s, as desired.

• Case TConvT is similar.

Lemma 5.2.41 (Inversion for computational arrow types). If Γ ` (x : A) → B : k ,
then Mob (A) and k is a sort s such that Γ ` A : s and Γ, x : A ` B : s .

Proof. Similar to inversion for @-types (Lemma 5.2.40).

Lemma 5.2.42 (Inversion for Σ-types). If Γ ` Σx :A .B : k then Mob (A) and k is
a sort s such that Γ ` A : s and Γ, x : A ` B : s .

Proof. Similar to inversion for @-types (Lemma 5.2.40).

Lemma 5.2.43 (Inversion for dependent arrow kinds). If Γ ` (x : A) → k then
Γ ` A : ?σ and Γ, x : A ` k .

Proof. By inspection of the Γ ` k judgement.

Lemma 5.2.44 (Inversion for type-level computation arrow kinds). If Γ ` (x : k1)→
k2 then Γ ` k1 and Γ, x : k1 ` k2.

Proof. By inspection of the Γ ` k judgement.

Because PCCθ includes no notion of kind equality, it is most convenient to state
inversion for type-level functions directly in the form that will be needed for preser-
vation (i.e., to explicitly mention the substitution of a value into the body of the
function).

Lemma 5.2.45 (Inversion for type-level functions). Suppose Γ ` λx : k .B : (x :
k1)→ k2. Then, for any V , if Γ ` V : k1, then Γ ` [V /x]B : [V /x]k2

89

Proof. By induction on the derivation E :: Γ ` λx : k .B : (x : k1)→ k2. Most cases do
not apply because the conclusion does not have the correct form. Case TLamTLC is
immediate by the substitution lemma for types (Lemma 5.2.31). There are only two
interesting cases:

• E =
Γ `L p : b1 = b2

E ′
Γ ` λx : k .B : [b1/y]k ′ Γ ` [b2/y]k ′

Γ ` λx : k .B : [b2/y]k ′
TConv

Observe first that the conclusion of this rule assigns the kind [b2/y]k ′, but by
assumption this is equal to (x : k1) → k2, so it must be the case that k ′ = (x :
k ′1)→ k ′2 for some kinds k ′1 and k ′2, since b2 is not a kind.

Let some V be given such that Γ ` V : [b2/y]k ′1. We must show that Γ `
[V /x]B : [V /x][b2/y]k ′2. Since equality is symmetric (Lemma 5.2.38), we may use
TConv to observe that Γ ` V : [b1/y]k ′1. It then follows by the IH for E ′ that
Γ ` [V /x]B : [V /x][b1/y]k ′2.

Since we may pick x and y such that they do not appear free in V or b1, it is
the case that [V /x][b1/y]k ′2 = [b1/y][V /x]k ′2. Thus, by another use of TConv,
we obtain Γ ` [V /x]B : [b2/y][V /x]k ′2. And since [b2/y][V /x]k ′2 = [V /x][b2/y]k ′2,
this concludes the case.

• Case TConvT is similar.

Lemma 5.2.46 (Inversion for term-level λs). Suppose Γ `θ λx : B1.b : B . Then
either:

(1) Γ `L p : B = (x : B1)→ B2 for some p and B2 such that Γ, x : B1 `θ b : B2,

(2) or, Γ `L p : B = (...(((x : B1) → B2)@θ1)...)@θn for some p,B2, and θ1,...θn
such that Γ, x : B1 `θ1 b : B2.

Proof. By induction on on the derivation D :: Γ `θ λx :B1.b : B . Many cases are ruled
out because the subject of the derivation does not have the right form, and several
others are immediate by induction. We consider the remaining cases individually:

• D =

Γ `L a1 : A1 = A2

D′
Γ `θ′ λx :B1.b : A

hd (A1) = hf1 hd (A2) = hf2 hf1 6= hf2
Γ ` A : ?σ Γ ` B : ?σ

Γ `θ λx :B1.b : B
EContra

In this case, we will use EContra to construct the necessary derivations to
satisfy condition (1). We begin by observing that the IH for D′ yields, in either

90

case, two derivations: one has the form Γ, x : B1 `θ
′
b : B ′2 for some θ′ and B ′2,

and the other is the proof of an equality which, via regularity and inversion for
equality types and @-types (Lemmas 5.2.25, 5.2.34, and 5.2.40), yields a proof of
Γ ` (x : B1)→ B ′2 : k for some kind k.

In satisfying condition (1), we pick Z for p and B ′2 for B2. We must prove two
things:

– Γ `L Z : B = (x : B1)→ B ′2.
This will follow from a use of EContra using the same contradictory

equality. The three remaining hypotheses of EContra are that Z is a well-
typed term in context Γ, that its type has kind ?σ, and that B = (x : B1) →
B ′2 has kind ?σ. The first two requirements are simple by EZero, TNat,
TMonoPoly, and regularity (Lemma 5.2.25).

To show Γ ` B = (x : B1) → B ′2 : ?σ, observe that, by rules TEqT and
TMonoPoly, it is enough to show that B and (x : B1)→ B ′2 are well-kinded
in context Γ. The former is a premise of the use of EContra above, and we
already observed that the latter is a consequence of the IH for D′ in either
case.

– Γ, x : B1 `θ b : B ′2.
We already observed that, for some θ′, Γ, x : B1 `θ

′
b : B ′2 is a consequence

of the IH in either case. Since we know there is a contradiction in the system,
rule EContra may be used directly to “switch fragments” to θ, as long as
Γ, x : B1 ` B2 : ?σ. But we already observed that Γ ` (x : B1) → B ′2 : k , so
this follows from inversion for arrow types (Lemma 5.2.41) and possibly a use
of TMonoPoly.

• D =

D′
Γ `θ λx :B1.b : (A1@θ′) = (A2@θ′) Γ ` A1 = A1 : ?τ

Γ `θ λx :B1.b : A1 = A2

EAtInv

In this case, the IH for D′ yields either a proof that an equality type is equal
to an arrow type or a proof that an equality type is equal to an @-type. In either
case this is an internal contradiction, since equality, arrow and @-types all have
different head forms. With a contradiction in hand, this case proceeds similarly
to the previous case, EContra.

• Cases EArrInv1, EArrInv2, ETArrInv2, ESumInv1, ESumInv2, ESig-
maInv1, ESigmaInv2 and EMuInv are similar to EAtInv.

• D =

D′
Γ `θ′ λx :B1.b : B@θ Γ ` B : ?σ

Γ `θ λx :B1.b : B
EUnboxVal

91

The IH for D′ yields two cases. In case (1), we have B@θ′ is provably equal
to an arrow type. This is a contradiction in the system, and we may reason as in
the case above for EContra.

Otherwise we have Γ `L p : B@θ = (...(((x : B1) → B2)@θ1)...)@θn for some
p,B2, and θ1,...θn such that Γ, x : B1 `θ1 b : B2. Either θ = θn or not. If not, we
have a contradiction in the system and may conclude as in the case for EContra
above.

If it is the case that θ = θn , then by rule EAtInv we obtain Γ `L p : B =
(...(((x : B1) → B2)@θ1)...)@θn−1. Now, if n − 1 > 0, this satisfies condition (2).
Otherwise, n was 1, in which we actually have Γ `L p : B = (x : B1) → B2, and
we have satisfied condition (1) (since θ1 = θ).

• D =

Γ, x : B1 `L b : B2 Γ ` (x : B1)→ B2 : ?σ

Γ `L λx :B1.b : (x : B1)→ B2

ELamComp

Condition (1) is immediately satisfied, observing that type equality is reflexive
(Lemma 5.2.35).

• D =

D′
Γ `P v : B Mob (B)

Γ `L v : B
EMVal

The IH for D′ yields two cases. In the first case, we know that B is provably
equal to an arrow type. But if we consider the possible derivations of Mob (B), we
find B must have a head form that is not an arrow. Thus, there is a contradiction
in the system and we may proceed as in the case for EContra above.

In the second case, the result is immediate since condition (2) does not mention
the logicality θ from the typing derivation.

• D =
Γ `L b : b1 = b2

D′
Γ `θ λx :B1.b : [b1/y]B Γ ` [b2/y]B : ?σ

Γ `θ λx :B1.b : [b2/y]B
EConv

We consider the two cases of the IH for D′ individually:

(1) Suppose the IH yields that Γ `L p : [b1/y]B = (x : B1)→ B2 for some p and
B2 such that Γ, x : B1 `θ b : B2. Then to satisfy condition (1), it will be
enough to show that Γ `L p : [b2/y]B = (x : B1) → B2. But we may pick y
to be free for (x : B1)→ B2 so that [b2/y]B = (x : B1)→ B2 is the same as
[b2/y](B = (x : B1) → B2). So the desired equality follows directly from a
use of EConv on the previous proof that Γ `L p : [b1/y]B = (x : B1)→ B2.

(2) Similar to (1).

• Case EConvT is similar to EConv.

92

• D =

D′
Γ `L λx :B1.b : B

Γ `L λx :B1.b : B@θ
EBoxL

We consider the two possibilities for D′’s IH individually.

(1) Suppose the IH yields that Γ `L p : B = (x : B1)→ B2 for some p andB2 such
that Γ, x : B1 `L b : B2. By Lemma 5.2.39, Γ `L refl : B@θ = ((x : B1) →
B2)@θ, so condition (2) is satisfied if we can show that Γ, x : B1 `θ b : B2,
which we already know if θ is L, and follows by TSub otherwise.

(2) Similar to (1).

• Cases EBoxP and EBoxLV are similar to EBoxL.

Lemma 5.2.47 (Inversion for λ-expressions at arrow types). Suppose Γ `θ λx :B ′1.b :
(x : B1)→ B2 and Γ `θ v : B1. Then Γ `θ [v/x]b : [v/x]B2.

Proof. According to the inversion lemma for λ expressions (Lemma 5.2.46), there are
two possibilities. We consider them individually.

(1) Suppose the lemma yields that Γ `L p : (x : B1) → B2 = (x : B ′1) → B ′2 for
some p and B ′2 such that Γ, x : B ′1 `θ b : B ′2. By rule EArrInv1, we have
Γ `L p : B1 = B ′1, so by EConvT we know Γ `θ v : B ′1. Then substitution
(Lemma 5.2.30) yields Γ `θ [v/x]b : [v/x]B ′2. Rule EArrInv2 provides a proof
that Γ `L p : [v/x]B2 = [v/x]B ′2, allowing us to conclude the case by rule
TConvT.

(2) Suppose instead that the inversion lemma yields that Γ `L p : (x : B1)→ B2 =
(...(((x : B′1)→ B′2)@θ1)...)@θn for some p and B ′2 such that Γ, x : B ′1 `θ1 b : B ′2.
In this case we have an equality between two types with different head forms—a
contradiction in the system. We may therefore use EContra to obtain Γ `θ
v : B ′1, and by substitution (Lemma 5.2.30), we find that Γ `θ1 [v/x]b : [v/x]B ′2.
We conclude by using this and EContra again to derive Γ `θ [v/x]b : [v/x]B2

as desired.

Lemma 5.2.48 (Inversion for recursive functions). Suppose Γ `θ rec f (x :B1).b : B .
Then either

(1) Γ `L p : B = (x : B1) → B2 for some p and B2 such that Γ, f : (x : B1) →
B2, x : B1 `θ b : B2,

93

(2) or Γ `L p : B = (...(((x : B1)→ B2)@θ1)...)@θn for some p,B2, and θ1,...θn such
that Γ, f : (x : B1)→ B2, x : B1 `θ1 b : B2.

Proof. Similar to inversion for lambdas (Lemma 5.2.46).

Lemma 5.2.49. Suppose Γ `θ rec f (x :B ′1).b : (x : B1)→ B2 and Γ `θ v : B1. Then
Γ `θ [v/x][rec f (x :B ′1).b/f]b : [v/x]B2.

Proof. Similar to inversion for lambdas at arrow types (Lemma 5.2.47).

Lemma 5.2.50 (Inversion for pairs). Suppose Γ `θ 〈a1, a2〉 : B . Then either:

(1) Γ `L p : B = Σx : A1 .A2 for some p,A1 and A2 such that Γ `θ a1 : A1 and
Γ `θ a2 : [a1/x]A2,

(2) or, Γ `L p : B = (...((Σx : A1 .A2)@θ1)...)@θn for some p,A1, A2, and θ1,...θn
such that Γ `θ1 a1 : A1 and Γ `θ1 a2 : [a1/x]A2.

Proof. Similar to inversion for lambdas (Lemma 5.2.46).

Lemma 5.2.51 (Inversion for pairs at Σ-types). If Γ `θ 〈v1, a2〉 : Σx :A1 .A2, then
Γ `θ v1 : A1 and Γ `θ a2 : [v1/x]A2.

Proof. Similar to inversion for lambdas at arrow types (Lemma 5.2.47). The require-
ment that the first element of the pair is a value is necessary because we must use
substitution to show that [v1/x]A2 is a well-formed type.

Theorem 5.2.52 (Preservation for parallel reduction).

• If Γ `θ a : A and a V a ′ then Γ `θ a ′ : A.

• If Γ ` A : k and AV A′ then Γ ` A′ : k .

• If Γ ` k and k V k ′ then Γ ` k ′.

Proof. By mutual induction on the three typing derivations D :: Γ `θ a : A, E ::
Γ ` A : k and F :: Γ ` k . Many cases are an immediate consequence of the
induction hypotheses. We consider the more interesting cases explicitly. In each case,
we examine the possible ways for the subject of the derivation to step via parallel
reduction (ignoring PRefl, since the proof is trivial in that case).

• D =

D1

Γ `θ b : (x : A)→ B
D2

Γ `θ a : A
E

Γ ` [a/x]B : ?σ

Γ `θ b a : [a/x]B
EAppComp

There are three possible ways for b a to take a step in the parallel reduction
relation. We consider them individually.

94

– Suppose b a V b ′ a ′ by PApp1, so b V b ′ and a V a ′. We must show that
Γ `θ b ′ a ′ : [a/x]B .

By Lemma 5.2.11, [a/x]B V [a ′/x]B . Thus, the IH for E yields that
Γ ` [a ′/x]B : ?σ. Putting this together with EAppComp and the IHs for D1

and D2, we obtain Γ `θ b ′ a ′ : [a ′/x]B .
By ERefl, Γ `L refl : a ′ = a, since a V∗ a ′ and a ′ V∗ a ′. Thus, by

EConv, Γ `θ b ′ a ′ : [a/x]B , as desired.

– Suppose b has the form λx :A′.b1, a is a value, and (λx :A′.b1) a V [a ′/x]b ′ by
PBeta, so b1 V b ′ and a V a ′. We must show that Γ `θ [a ′/x]b ′ : [a/x]B .

Now, by Lemma 5.2.8, a′ is a value, and by the IH for D2 we have Γ `θ a ′ :
A. Similarly, since λx :A′.b1 V λx :A′.b ′ by PLam1, the IH for D1 yields that
Γ `θ λx : A′.b ′ : (x : A) → B . Thus, by inversion for λ-expressions at arrow
types (Lemma 5.2.47), we have Γ `θ [a ′/x]b ′ : [a ′/x]B .

Since a and a′ are both well typed, a V∗ a ′ and a ′ V∗ a ′, TRefl yields
Γ `L refl : a ′ = a. Thus, by TConv, we have Γ `θ [a ′/x]b ′ : [a/x]B as desired.

– Suppose b has the form rec f (x :A′).b1, a is a value, and (rec f (x :A′).b1) a V
[a ′/x][rec f (x :A′).b ′/f]b ′ by PFBeta, so b1 V b ′ and a V a ′.

Now, by Lemma 5.2.8, a′ is a value, and by the IH for D2 we have Γ `θ
a ′ : A. Similarly, since rec f (x : A′).b1 V rec f (x : A′).b ′ by PFun1,
the IH for D1 yields that Γ `θ rec f (x : A′).b ′ : (x : A) → B . Thus,
by inversion for recursive functions at arrow types (Lemma 5.2.49), we have
Γ `θ [a ′/x][rec f (x :A′).b ′/f]b ′ : [a ′/x]B .

Since a and a′ are both well typed, a V∗ a ′ and a ′ V∗ a ′, TRefl yields
Γ `L refl : a ′ = a. Thus, by TConv, we have Γ `θ [a ′/x][rec f (x :A′).b ′/f]b ′ :
[a/x]B as desired.

• Case EAppPoly is similar to EAppComp.

• D =

D1

Γ `θ a : (Σx :A1 .A2)@θ′
D2

Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a `θ b : B
Γ ` B : ?σ

Γ `θ pcasez a of 〈x , y〉 ⇒ b : B
PCase

There are two possible ways for pcasez a of 〈x , y〉 ⇒ b to take a step in the
V relation. We consider them individually.

– Suppose (pcasez a of 〈x , y〉 ⇒ b)V (pcasez a ′ of 〈x , y〉 ⇒ b ′) by PPCase1,
so a V a ′ and b V b ′.

By the IHs for D1 and D2, we have

Γ `θ a ′ : (Σx :A1 .A2)@θ′

95

and:
Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a `θ b ′ : B

This is almost enough to apply PCase again and conclude, except that the
second derivation mentions a in the context rather than a′. But Γ, x : A1, y :
A2@θ′ `L refl : a = a ′ by TRefl, so by context conversion (Lemma 5.2.27) we
obtain

Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a ′ `θ b ′ : B
as needed.

– Suppose instead that a is 〈v1, v2〉 and (pcasez 〈v1, v2〉 of 〈x , y〉 ⇒ b) V
[v ′1/x][v ′2/y][refl/z]b ′ by PCaseP, so v1 V v ′1, v2 V v ′2 and b V b ′.

We must show that Γ `θ [v ′1/x][v ′2/y][refl/z]b ′ : B . By the IH for D2, we
know:

Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = 〈v1, v2〉 `θ b ′ : B
Note that x, y and z do not appear free in B due to the assumption Γ `
B : ?σ of the typing rule. So the desired result will follow by substitution
(Lemma 5.2.30) if we can verify that the three substituted terms have the
appropriate types for the context.

We begin by observing that by the IH for D1 and rule PPair1, Γ `θ
〈v ′1, v ′2〉 : (Σx : A1 .A2)@θ′. By EUnboxVal and inversion for pairs at Σ
types (Lemma 5.2.51), we have Γ `θ′ v ′1 : A1 and Γ `θ′ v ′2 : [v ′1/x]A2. So one
application of substitution yields:

Γ, y : [v ′1/x]A2@θ′, z : 〈v ′1, y〉 = 〈v1, v2〉 `θ [v ′1/x]b ′ : B

And a second application of substitution (along with Lemma 5.2.28) yields:

Γ, z : 〈v ′1, v ′2〉 = 〈v1, v2〉 `θ [v ′2/y][v ′1/x]b ′ : B

By rule TRefl (and using PPair1 to construct the appropriate reduction
proof), Γ `L refl : 〈v ′1, v ′2〉 = 〈v1, v2〉, so we obtain, via a third application of
the substitution lemma:

Γ `θ [refl/z][v ′2/y][v ′1/x]b ′ : B

Now, we may assume by the bound variable convention that x, y and z to
not occur free in v2′ or v1′. So, [refl/z][v ′2/y][v ′1/x]b ′ = [v ′1/x][v ′2/y][refl/z]b ′,
concluding the case.

• Cases ENCase and ESCase are similar to EPCase.

• E =

E1

Γ ` B : (x : k1)→ k2

E2

Γ ` A : k1

F
Γ ` [A/x]k2

Γ ` B A : [A/x]k2

TAppTLC

There are two ways for B A to take a step in the parallel reduction relation.
We consider each individually.

96

– Suppose B A V B ′ A′ by PTAppT1, so B V B ′ and A V A′. By the IHs
for E1 and E2 we have Γ ` B ′ : (x : k1) → k2 and Γ ` A′ : k1. And by
the IH for F (and Lemma 5.2.12), Γ ` [A′/x]k2. So TAppTLC yields that
Γ ` B ′ A′ : [A′/x]k2.

By TReflT, Γ `L trefl : A′ = A, since A′ V∗ A′ and A V A′. Thus, by
TConvT, Γ ` B ′ A′ : [A/x]k2 as desired.

– Suppose instead that B is λx : k ′1.B1, A is a value, and B A V [A′/x]B ′ by
PTBetaT, so B1 V B ′ and A V A′. We must show that Γ ` [A′/x]B ′ :
[A′/x]k2.

By the IHs for E1 and E2, we have Γ ` λx : k ′1.B
′ : (x : k1) → k2 and

Γ ` A′ : k1, respectively. Additionally, by Lemma 5.2.9, A′ is a value. Thus,
by inversion for type-level lambdas (Lemma 5.2.45), we have Γ ` [A′/x]B ′ :
[A′/x]k2, as desired.

• Case TAppDep is similar to TAppTLC.

Theorem 5.2.53 (Preservation).

• If Γ `θ a : A and a a ′ then Γ `θ a ′ : A.

• If Γ ` A : k and A A′ then Γ ` A′ : k .

Proof. This is an immediate consequence of preservation for parallel reduction (The-
orem 5.2.52) and the fact that is a subrelation of V (Lemma 5.2.18).

5.3 Levels and Polymorphism
The interpretation’s handling of arrow types requires a careful tracking of which types
and kinds are polymorphic and which are monomorphic. We will define functions
up(A) and up(k) to check if a type or kind “uses polymorphism”. We track the use of
polymorphism with the flag:

π ::= τ |σ

Where τ indicates that polymorphism is not used and σ the opposite. We have an
ordering, τ < σ, and will frequently use max(π1, π2).

The definition of up is relatively simple. Informally, when we reach an arrow type
we check to see if its domain is a type or a kind to determine if it is polymorphic.
For all other terms, we simply check the subterms on which the interpretation will be
called.

up(A)

97

up(x) = τ

up((x : A)→ B) = max(up(A), up(B))

up((x : k)→ B) = σ

up(A@θ) = up(A)

up(A + B) = max(up(A), up(B))

up(Σx :A .B) = max(up(A), up(B))

up(µ x .A) = up(A)

up(λx : A.B) = up(B)

up(λx : k .B) = up(B)

up(B a) = up(B)

up(B A) = max(up(B), up(A))

up() = τ

up(k)

up(s) = τ

up((x : A)→ k2) = max(up(A), up(k2))

up((x : k1)→ k2) = σ

Terms themselves never “use polymorphism” in this sense, since they can’t be used
as types, but it will be convenient in the proof of a few lemmas to have a definition
of up(a):

up(a)

up(a) = τ

Importantly, up(A) should only return σ for polymorphic types and kinds. In
particular, if Γ ` A : ?τ , then we should have up(A) = τ .

Lemma 5.3.1 (Monotypes don’t “use polymorphism”). If Γ ` A : k and Γ ` k , then
up(A) = τ .

Proof. By induction on the derivation E :: Γ ` A : k .
Cases TVar, TNat, TEq, and TTEq are immediate by the definition of up.

Cases TArrComp, TSigma, TSum, TMu and TAt are immediate by the definition
of up and induction. Cases TArrPoly and TMonoPoly do not apply because k
is ?σ, so the assumption Γ ` k contradicts Lemma 5.2.26. We consider the remaining
cases individually:

98

• E =

E1

Γ ` B : (x : k1)→ k2

E2

Γ ` A : k1 Γ ` [A/x]k2

Γ ` B A : [A/x]k2

TAppTLC

By definition, up(B A) = max(up(B), up(A)). So it will be enough to show
that up(B) = up(A) = τ . The IHs for E1 and E2 give us exactly this if we can
show Γ ` (x : k1)→ k2 and Γ ` k1.

By regularity (Lemma 5.2.25) and D1, we have Γ ` (x : k1) → k2 as desired.
By inversion, since the only rule that applies is KArrTLC, we find also Γ ` k1.

• E =

E1

Γ ` B : (x : A)→ k2

E2

Γ `L a : A Γ ` [a/x]k2

Γ ` B a : [A/x]k2

TAppDep

By definition, up(B a) = up(B), so it will be enough to show that up(B) = τ .
The IH for E1 gives us exactly this, if we can show Γ ` (x : A) → k2. But by
regularity (Lemma 5.2.25) for E1, Γ ` (x : A)→ k2 as desired.

• E =

E1

Γ `L b : b1 = b2

E2

Γ ` A : [b1/x]k Γ ` [b2/x]k

Γ ` A : [b2/x]k
TConv

We must show that up(A) = τ . By the IH for E2, it will be enough to show
that Γ ` [b1/x]k . By regularity (Lemma 5.2.25) and E2, we know that either
Γ ` [b1/x]k or [b1/x]k = ?σ. So, it will be enough to show that [b1/x]k 6= ?σ.

By assumption, we know that Γ ` [b2/x]k . By Lemma 5.2.26, it therefore
cannot be the case that k = ?σ. Thus, [b1/x]k 6= ?σ as desired.

• Case TConvT is similar to TConv.

Lemma 5.3.2 (Term substitution preserves up).

• For any A and a, up(A) = up([a/x]A).

• For any k and a, up(k) = up([a/x]k).

Proof. By mutual induction on A and k.

Lemma 5.3.3 (Type substitution preserves up). Suppose Γ ` B : k and Γ ` k .

• For any A, up(A) = up([B/x]A).

• For any k, up(k) = up([B/x]k).

99

Proof. By mutual induction on A and k. In the variable case for A, observe that, by
Lemma 5.3.1, up(B) = τ .

Lemma 5.3.4 (Reduction preserves up).

• If Γ ` A : k and AV A′, then up(A) = up(A′).

• If Γ ` k and k V k ′, then up(k) = up(k ′).

Proof. By mutual induction on the derivations of Γ ` A : k and Γ ` k , examining the
possible ways A or k can step in each case. Most cases are immediate by induction.
Case TAppTLC requires Lemma 5.3.3, regularity (Lemma 5.2.25), and inversion for
arrow types (Lemma 5.2.44) to see that the argument must be a monotype.

Lemma 5.3.5. For any A and B, min(up((x : A)→ B), up(A)) = up(A).

Proof. By definition up((x : A) → B) = max(up(A), up(B)). So min(up((x : A) →
B), up(A)) = min(max(up(A), up(B)), up(A)), and a simple case analysis shows this is
up(A) as desired.

Lemma 5.3.6. For any A and B, min(up((x : A)→ B), up(B)) = up(B).

Proof. By definition, up((x : A) → B) = max(up(A), up(B)). So min(up((x : A) →
B), up(B)) = min(max(up(A), up(B)), up(B)), and a simple case analysis shows this
is up(B) as desired.

100

5.4 The Interpretation
The interpretation is defined as four mutually recursive functions:

• VθπJAKjρ is the “value” interpretation of types.

• CθπJAKjρ is the “computation” interpretation of types.

• VπJkKjρ is the “value” interpretation of kinds.

• CπJkKjρ is the “computation” interpretation of kinds.

The intent is that the value interpretations describe which values belong to each type
or kind, while the computation interpretations handle arbitrary terms or types. We
use Ω to range over V and C.

The interpretations take several arguments: a polymorphism flag π, a step count k,
an environment ρ, and a term A. The “polymorphism” flag keeps track of whether the
type or kind currently being interpreted is permitted to be polymorphic or not. This
flag is required to make the definition well founded. It may be σ for “polymorphism
allowed” or τ or “monomorphic”. In the case of the type interpretations, there is also
a logicality argument θ, which indicates whether we are describing terms of this type
in the logical or programmatic fragments.

Environments ρ carry information about the free variables in the derivation and
correspond to the derivation’s context.

ρ ::= ∅ | ρ[x 7→ v] | ρ[x 7→ (A, I)]

For each variable in the context, ρ carries one or two pieces of data. First, the
interpretation always carries an expression that is intuitively the value of the variable.
For a technical reason that will arise in the definition of the interpretation of function
applications, we require the expressions associated with term variables to be values,
while for type variables we allow any type. This term or type is used to fill the variable
in when substitute the environment into another expression. For type variables, the
environment also carries a “type” interpretation I (i.e., the kind of thing computed
by the interpretation function itself). In particular, I will be a function from natural
numbers and logicalities to set-theoretic objects. This is necessary since we will not
know, at the time when we extend the environment, the step index or fragment at
which the new binding will be used.

The intention is that I should be the interpretation of A. This may make it seem
as though I is superfluous, since we have in A the information necessary to reconstruct
it. However, keeping I in the context is necessary to define the interpretation as a
well-founded function. Put another way, though we will always maintain the invariant
that I is the interpretation of A, we cannot show this until after the interpretation
is defined.

101

We define several pieces of notation relating to ρ. We write ρ a or ρ (a) for the
term obtained by the simultaneous substitution of the values and types in ρ for the
variables of a. That is, if the binding [x 7→ v] (or [x 7→ (A, I)]) appears in ρ, then v
(or A) will be substituted for all the free occurrences of x in a. The substitutions ρA
and ρ k are defined similarly.

5.4.1 Type of the Interpretation

If we were performing the normalization proof in a proof assistant, the interpretation
would return an object in Type Theory. On paper, it is more convenient to interpret
our language into Set Theory. The interpretation of a kind always returns a set of
types. The interpretation of a type constructor can return different kinds of objects:

• The interpretation of a proper type is a set of terms.

• The interpretation of a type function is a set-theoretic function.

Before we can define the interpretation, we need to describe these two possibilities
more formally. In particular, we will define for each kind k a set Cand(k) such that if
Γ ` A : k then Cand(k) describes the types of things the interpretation of interpreta-
tion of A may be. The possibilities are described by the following grammar:

U ::= UBase |UTArr (x : A) U2 |UKArr (x : k) U2

This grammar describes a “universe”, characterizing the types of things the interpre-
tation may return. Roughly UBase indicates the interpretation will return a set of
values, while UTArr (x : A) U2 and UKArr (x : k) U2 indicate the interpretation will
return a set-theoretic function. Here, the former is for type-level functions whose ar-
guments are terms and the latter for type-level functions whose arguments are types.
We associate each kind with a universe:

Cand(s) = UBase

Cand((x : A)→ k2) = UTArr (x : A) (Cand(k2))

Cand((x : k1)→ k2) = UKArr (x : k1) (Cand(k2))

We will define an interpretation of these universes into set theory, formalizing this
intuition. First, we introduce convenient notations to indicate sets of term and type
values. We write ValθΓ(A) for the set of values of type A at logicality θ in context Γ.
We write TypΓ(k) for the types of kind k in context Γ. That is:

ValθΓ(A) = {v |Γ `θ v : A}
TypΓ(k) = {A |Γ ` A : k}

102

Additionally, we write CValθ(A) and CTyp(k) for the closed values and types, so
that:

CValθ(A) = Valθ· (A) = {v | · `θ v : A}
CTyp(k) = Typ·(k) = {A | · ` A : k}

Finally, we define the collections of all closed values that typecheck and all closed
types that kindcheck:

VAL =
⋃
A,θ

(CValθ(A))

TYP =
⋃
k

(CTyp(k))

For a convenient interpretation into set theory, we overapproximate the domains
of the interpretations of type-level functions. In particular, they will accept any
values (or types), and no relation will be demanded between type arguments and
set arguments. However, we only actually care about their behavior on the “well-
formed” subset of their inputs, an idea we will make formal when we define a notion
of equivalence on interpretations.

Our intuition is that, if Γ ` A : k , then the interpretation of A should be in the
set [Cand(k)].

[UBase] = P(VAL)

[UTArr (x : A) U2] = {∅} ∪ (VAL→ [U2])

[UKArr (x : k) U2] = {∅} ∪ ((TYP× [Cand(k)](θ×N))→ [U2])

Here we use the notation [Cand(k)](θ×N) to indicate the function space (({L,P}×N)→
[Cand(k)]). So the interpretation of a type-level function whose domain as a kind is
a set-theoretic function that takes another set-theoretic function as an argument. As
we will see below, this is necessary because, at the time when we interpret a type-level
function, we will not know at what logicality or step-index its argument will needed.

The over-approximation of interpretation universes conveniently allows us to ig-
nore the term and type components of kinds:

Lemma 5.4.1 (Cand universes ignore terms).
For any kind k, [Cand(k)] = [Cand([a/x]k)].

Proof. By induction on k.

Lemma 5.4.2 (Cand universes ignore types).
For any kind k, [Cand(k)] = [Cand([A/x]k)].

Proof. By induction on k.

103

Lemma 5.4.3 (Cand universes ignore environments).
For any kind k and environment ρ, [Cand(k)] = [Cand(ρ k)].

Proof. By induction on k.

Lemma 5.4.4 (Cand term substitution). For any a, [a/x]Cand(k) = Cand([a/x]k).

Proof. By induction on k.

Lemma 5.4.5 (Cand type substitution). For any A, [A/x]Cand(k) = Cand([A/x]k).

Proof. By induction on k.

The following slightly unusual lemma is an example of the type of syntax-oriented
result that would be difficult to prove with a collapsed syntax.

Lemma 5.4.6. If Γ ` λx : k ′1.B : (x : k1)→ k2, then [Cand(k ′1)] = [Cand(k1)].

Proof. By induction on the derivation E :: Γ ` λx : k ′1.B : (x : k1) → k2. Due to the
syntactic restrictions on the conclusion of the derivation, only three cases can apply.
Case TLamTLC is immediate because k ′1 and k1 are the same.

• E =
Γ `L a : b1 = b2

E ′
Γ ` λx : k ′1.B : [b1/x]k Γ ` [b2/x]k

Γ ` λx : k ′1.B : [b2/x]k
TConv

Here, we know that [b2/x]k is (x : k1) → k2 by the statement of the the-
orem. So, it must be the case that k is (x : k ′′1) → k ′′2 for some k ′′1 and k ′′2
such that [b2/x]k ′′1 = k1 and [b2/x]k ′′2 = k2. The IH for E ′ therefore yields
that [Cand([b1/x]k ′′1)] = [Cand(k ′1)]. But because Cand universes ignore terms
(Lemma 5.4.1), we know that [Cand([b1/x]k ′′1)] = [Cand([b2/x]k ′′1)] = [Cand(k1)],
concluding the case.

• Case TConvT is similar.

5.4.2 Definition of the Interpretation

As described above, we will define interpretations for both types and kinds. The kind
interpretation is step indexed, but only so that it has a count to pass to the type in-
terpretation. It is conceptually cleaner to consider three interpretations instead—one
for monomorphic types, one for polymorphic types, and one for kinds. However, since
the first two have quite a bit of overlap, we distinguish them with the polymorphism
flag π instead of writing them separately.

In most of the recursive calls, the polymorphism flag has the form min(π, up(A))
where π is the flag that was passed in and A is the type being interpreted. This

104

accomplishes two goals. First, the π flag needs to descend for the well foundedness
of the interpretation. Second, we wish to maintain the invariant that whenever we
interpret a type A, we use the polymorphism flag up(A).

We will use the notation V{L,P}π JAK[0..j]
ρ to indicate the following function:

(θ ∈ {L,P}, i ∈ N) 7→

{
VθπJAKiρ when i ≤ j

VθπJAKjρ when i > j

This notation will be used when extending the context, since we will not know at
what logicality or step index the new binding will be used. We will, however, know
that the step index is no larger than the current step index, justifying the maximum
bound in this definition (and helping to keep the definition of the interpretation well
founded, later).

We are now prepared to define the interpretation. We begin with the value inter-
pretation of types. This is a set-theoretic function defined by recursion. Intuitively,
the metric which descends in every recursive call is the lexicographically ordered
triple (π, j, A). We will give a more precise proof that the definition is well founded
in Section 5.5.

Vθπ JxKjρ =

{
I(θ, j) when ρ = ρ1[x 7→ (V , I)] ρ2

∅ otherwise

VL
π J(x : A)→ BKjρ =

{λx :A′.b | · `L λx :A′.b : ρ ((x : A)→ B)

and ∀i ≤ j, ∀v ∈ VL
min(π,up(A))JAKiρ,

[v/x]b ∈ CL
min(π,up(B))JBKiρ[x 7→v]}

VP
π J(x : A)→ BKjρ=

{λx :A′.b | · `P λx :A′.b : ρ ((x : A)→ B)

and ∀i < j, ∀v ∈ VP
min(π,up(A))JAKiρ,

[v/x]b ∈ CP
min(π,up(B))JBKiρ[x 7→v]}

∪ {rec f (x :A′).b | · `P rec f (x :A′).b : ρ ((x : A)→ B)

and ∀i < j, ∀v ∈ VP
min(π,up(A))JAKiρ,

[v/x][rec f (x :A′).b/f]b ∈ CP
min(π,up(B))JBKiρ[x 7→v]}

VL
σ J(x : k)→ BKjρ =

{λx :k ′.b | · `L λx :k ′.b : ρ ((x : k)→ B)

and ∀i ≤ j, ∀V ∈ Vup(k)JkKiρ,

[V /x]b ∈ CL
up(B)JBKi

ρ[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

}

VL
τ J(x : k)→ BKjρ = ∅

105

VP
σ J(x : k)→ BKjρ =

{λx :k ′.b | · `P λx :k ′.b : ρ ((x : k)→ B)

and ∀i < j, ∀V ∈ Vup(k)JkKiρ,

[V /x]b ∈ CP
up(B)JBKi

ρ[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

}

∪ {rec f (x :k ′).b | · `P rec f (x :k ′).b : ρ ((x : A)→ B)

and ∀i < j, ∀V ∈ Vup(k)JkKiρ,

[v/x][rec f (x :k ′).b/f]b ∈ CP
up(B)JBKi

ρ[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

}

VP
σ J(x : k)→ BKjρ = ∅

Vθπ JA@θ′Kjρ = Vθ′min(π,up(A))JAKjρ
Vθπ JNatKjρ = {Sn Z |n ∈ N}
Vθπ JA + BKjρ = {inl v | · ` ρ (A + B) : ?σ and v ∈ Vθmin(π,up(A))JAKjρ}

∪ {inl v | · ` ρ (A + B) : ?σ and v ∈ Vθmin(π,up(B))JBKjρ}
Vθπ JΣx :A .BKjρ = {〈v1, v2〉 | · ` ρ (Σx :A .B) : ?σ and v1 ∈ Vθmin(π,up(A))JAKjρ

and v2 ∈ Vθmin(π,up(B))JBKjρ[x 7→v1]}

Vθπ Jµ x .AKjρ = {roll v | · `θ roll v : ρ (µ x .A)

and ∀i < j, v ∈ Vθmin(π,up([µ x .A/x]A))J[µ x .A/x]AKiρ}
Vθπ Ja1 = a2K

j
ρ = {refl | · ` ρ (a1 = a2) : ?τ and ∃b, ρ a1 V

∗ b and ρ a2 V
∗ b}

Vθπ JA1 = A2K
j
ρ = {refl | · ` ρ (A1 = A2) : ?τ and ∃b, ρA1 V

∗ B and ρA2 V
∗ B}

Vθπ Jλx : k1.BKjρ = (A ∈ TYP, I ∈ [Cand(k1)](θ×N)) 7→ VθπJBKjρ[x 7→(A,I)]

Vθπ Jλx : A.BKjρ = (v ∈ VAL) 7→ VθπJBKjρ[x 7→v]

Vθπ JB AKjρ =


VθπJBKjρ (ρA,V{L,P}τ JAK[0..j]

ρ)

If ρA ∗ V
and (ρA,V{L,P}τ JAK[0..j]

ρ) is in the domain of VθπJBKjρ
∅ otherwise

Vθπ JB aKjρ =

{
VθπJBKjρ v If ρ a ∗ v and v is in the domain of VθπJBKjρ
∅ otherwise

The definition above is primarily a standard extension of the interpretation from
Chapter 4 to handle polymorphism and type-level computation, in the style of term
models for languages like the Calculus of Constructions [64, 40, 26]. A few cases merit
additional attention.

The case for variables is relatively unsurprising, recalling that the environment
ρ is intended to contain, for each type variable, a function from step -indices and

106

logicalities to the interpretation of the corresponding type at those arguments.
The interpretation of functions whose domain and range are both types is identical

to the interpretation of functions from Section 4.3.1, except that PCCθ lacks natural-
number recursion so there are fewer cases and that we have added the polymorphism
flag π. As described above, when recursively interpreting the type A with an input
flag of π, we use the flag min(π, up(A)). This ensures that the flag is descending.

The situation is slightly more complicated in the case for polymorphic function
types. First, we have four cases—one for each combination of the logicality θ and
the polymorphism flag π. A polymorphic function is in the interpretation if it “sends
related arguments to related results”. But, since the argument to the function is a
type, when we extend the environment with the argument we must provide its inter-
pretation. Since the argument type is essentially arbitrary, this recursive call would
break the well foundedness of the interpretation if it were not for the polymorphism
flag. So, we only interpret polymorphic function types if the input polymorphism flag
is σ, and in the recursive call for the function’s argument we switch the flag to τ ,
ensuring well foundedness.

Type-level functions are interpreted as set-theoretic functions. When the func-
tion’s domain is a kind, its set-theoretic interpretation takes as arguments both a
type and function which, given a step index and logicality, produces interpretations
of the right form. Intuitively, this function should always return the interpretation of
the type argument at the appropriate index. However, stating that explicitly would
break the well foundedness of the interpretation. This case of the interpretation is
the reason we have annotated the domains of functions in PCCθ. Without knowing
the domain of the type-level function in the system, there is no way to state an ap-
propriate domain for its interpretation in type theory. An alternative would be to
define the interpretation by induction on kinding derivations, rather than types. We
will describe some problems with this approach in Chapter 6.

There are two cases that handle applications of type-level functions. One for
normal type-level computation, and one for dependently-typed functions. In both
cases, we check whether the function’s argument terminates and return the empty
set as a “dummy” answer if not. When we prove the fundamental theorem of the
interpretation we’ll know that the argument must terminate, so the dummy case will
not arise.

In the case of a dependent application, the argument a evaluates to a value v
and we simply apply the interpretation of the function to v. In the case of type-
level computation, the argument is a type A which evaluates to V . Here we apply
the interpretation of the function to A instead of V . The reason has to do with
the ordering of two lemmas we will soon prove about the interpretation. The first
(Lemma 5.7.1) says that interpreting an open type with an environment yields the
same result as if we first substitute in the environment and interpret the resulting
close type. The second (Lemma 5.7.4) says that if A V A′, then A and A′ have the
same interpretation. The second lemma implies that it does not matter whether we

107

apply the interpretation of the function to A or V . However, we need to prove the
other lemma first, and for it we must know that the function is applied to a type
and the interpretation of that type. This is the reason we allow non-values in the
environment, in the case of types.

The remaining cases of the value interpretation of types closely mirror the inter-
pretations from our previous proofs. We now define the computation interpretation
for types, which is similarly unsurprising:

CL
π JAKjρ = {a | · `L a : ρA and a ∗ v ∈ VL

πJAKjρ}
CP
π JAKjρ = {a | · `L a : ρA and ∀i ≤ j, if a j v , then v ∈ VP

π JAK(j−i)
ρ }

We must also define an interpretation of kinds. Since there are no kind-level
functions, this interpretation will always return a set of type values. Since the system
does not include a distinction between logical and programmatic types, no logicality
argument is needed. As in the type interpretation, we use the polymorphism flag to
handle function types whose domain is a kind.

Vπ JsKjρ = {V | · ` V : s}
Vπ J(x : A)→ k2K

j
ρ =

{λx : A′.B | · ` λx : A′.B : ρ ((x : A)→ k2)

and ∀i ≤ j, ∀v ∈ VL
min(π,up(A))JAKiρ,

[v/x]B ∈ Cmin(π,up(k2))Jk2Kiρ[x 7→v]}
Vσ J(x : k1)→ k2K

j
ρ =

{λx : k ′1.B | · ` λx : k ′1.B : ρ ((x : k1)→ k2)

and ∀i ≤ j, ∀V ∈ Vup(k1)Jk1Kiρ,
[V /x]B ∈ Cup(k2)Jk2Kiρ[x 7→(V ,V{L,P}

τ JV K[0..i]∅)]
}

Vτ J(x : k1)→ k2K
j
ρ = ∅

Cπ JkKjρ = {A | · ` A : ρ k and A ∗ V ∈ VπJkKjρ}

5.5 Basic Facts About the Interpretation and Envi-
ronments

Predictably, a wide variety of (mostly uninteresting) lemmas are needed for the main
proof of the interpretation’s soundness. In this section, we consider the basic proper-
ties of the preceding definitions. We reserve the two most interesting lemmas about
the interpretation for Section 5.7.

108

Theorem 5.5.1 (The interpretation is well-defined). The above definitions specify
(well-founded) functions.

Proof. Intuitively, the interpretation is well-defined by lexicographic induction on
the triple (π, j, A/k). Here, we write A/k to indicate the type or kind argument to
the appropriate interpretation, which is sensible since types and kinds are mutually
defined. We could also model this as nested recursive functions, where at one level
we have two mutually recursive definitions.

However, it is also the case that the computational interpretation is allowed to
call the value interpretation at the same arguments it was passed. Thus, instead we
proceed by induction on the quadruple (π, j, A/k,Ω) where Ω is either C or V with
V < C.

Simple inspection of each case of the definitions above reveals that this metric
always descends in a recursive call.

Lemma 5.5.2 (Environment substitution preserves head forms). If hd (A) = hf ,
then hd (ρA) = hf or any ρ.

Proof. By examination of the definition of head forms.

The next two lemmas say that the types in the interpretation of a non-polymorphic
kind should not be polymorphic. They are the semantic equivalent of Lemma 5.3.1.

Lemma 5.5.3. If D :: Γ ` k and A ∈ CπJkKjρ, then up(A) = τ .

Proof. By the definition of the interpretation, we have · ` A : ρ k . By Lemma 5.3.1,
it will therefore be enough to show that · ` ρ k . By regularity (Lemma 5.2.25) and
the derivation of · ` A : ρ k , we have that either · ` ρ k or ρ k = ?σ. But if ρ k = ?σ,
then k = ?σ, contradicting the assumption that Γ ` k (by Lemma 5.2.26).

Lemma 5.5.4. If D :: Γ ` k and V ∈ VπJkKjρ, then up(V) = τ .

Proof. Consider the possible cases of k :

• k = s.

Then by D and Lemma 5.2.26, s is ?τ . By the definition of the interpretation,
· ` V : ?τ , so by Lemma 5.3.1, up(V) = τ as desired.

• k = (x : A)→ k2.

By the definition of the interpretation, we have some derivation of · ` V :
ρ ((x : A)→ k2). Since ρ ((x : A)→ k2) 6= ?σ, regularity (Lemma 5.2.25) gives us
that · ` ρ ((x : A)→ k2). So, by Lemma 5.3.1, up(V) = τ as desired.

• k = (x : k1)→ k2.

Similar to the previous case.

109

Many of the properties we’d like to prove about the interpretation are not obvious
in the variable case, because we use an arbitrary set from the environment. To handle
this, for each lemma we define a new judgement that captures the idea that each
binding in the environment has the properties we need. It is tempting to combine
these judgements into one larger judgement that captures every property we need to
know about the environment at once. However, such a judgement would be difficult
to work with, because when extending the environment we will typically only be able
to verify that our extension maintains the property we are currently working with.

For the next lemma, we will need to know that, for each type variable x : k, the
environment contains a mapping [x 7→ (A, I)] such that I(θ, j) ∈ [Cand(k)] for any θ
and j . We formalize this in the relation EnvCand(ρ,Γ).

EnvCand(∅, ·)
ECandN

EnvCand(ρ,Γ)

EnvCand(ρ[x 7→ v], (Γ, x : A))
ECandCT

EnvCand(ρ,Γ)

∀θ j , I(θ, j) ∈ [Cand(k)]

EnvCand(ρ[x 7→ (A, I)], (Γ, x : k))
ECandCK

Lemma 5.5.5 (The interpretation respects Cand). If E :: Γ ` A : k and
EnvCand(ρ,Γ) then VθπJAKjρ ∈ [Cand(k)].

Proof. By induction on E .

• E =
(x : k) ∈ Γ ` Γ

Γ ` x : k
TVar

In this case, we know from the definitions of the interpretation and
EnvCand(ρ,Γ) that ρ = ρ1[x 7→ (V , I)] ρ2 and that, for any θ and j , I(θ, j) ∈
[Cand(k)]. But by the definition of the interpretation, VθπJxKjρ = I(θ, j), concluding
the case.

• E =

E1

Γ ` A : s
E2

Γ, x : A ` B : s Mob (A)

Γ ` (x : A)→ B : s
TArrComp

In this case, [Cand(k)] = [Cand(s)] = [UBase] = VAL. So, it will be enough
to show that VθπJAKjρ is a set of values that typecheck, which is immediate by the
definition of the interpretation.

• Cases TArrPoly, TMonoPoly, TNat, TSigma, TSum, TMu, TEq, TEqT,
and TAt are similar to the previous case.

110

• E =

E1

Γ, x : k1 ` B : k2 Γ ` (x : k1)→ k2

Γ ` λx : k1.B : (x : k1)→ k2

TLamTLC

We must show:

VθπJλx : k1.BKjρ ∈ [Cand((x : k1)→ k2)]

= [UKArr (x : k1) (Cand(k2))]

= {∅} ∪ ((TYP× [Cand(k1)](θ×N))→ [Cand(k2)])

By definition, we have:

Vθπ Jλx : k1.BKjρ = (A ∈ TYP, I ∈ [Cand(k1)](θ×N)) 7→ VθπJBKjρ[x 7→(A,I)]

This function has the required domain by definition. The IH for D1 gives
us that VθπJBKjρ[x 7→(V ,I)] ∈ [Cand(k2)] (observing that the requirements to extend
EnvWt are trivially satisfied by the function’s domain).

• Case TLamDep is similar to (but simpler than) the previous case.

• E =

E1

Γ ` B : (x : k1)→ k2

E2

Γ ` A : k1 Γ ` [A/x]k2

Γ ` B A : [A/x]k2

TAppTLC

We must show that VθπJB AKjρ ∈ [Cand([A/x]k2)]. By definition, we have:

Vθπ JB AKjρ =


VθπJBKjρ (ρA,V{L,P}τ JAK[0..j]

ρ)

If ρA ∗ V
and (ρA,V{L,P}τ JAK[0..j]

ρ) is in the domain of VθπJBKjρ
∅ otherwise

The IH for D1 gives us that:

VθπJBKjρ ∈ [Cand((x : k1)→ k2)]

= [UKArr (x : k1) (Cand(k2))]

= {∅} ∪ ((TYP× [Cand(k1)](θ×N))→ [Cand(k2)])

Now, if the latter case of the definition of VθπJB AKjρ applies, the result is
immediate because ∅ is in [U] for any U . So, we may assume that VθπJBKjρ is a
function and that (V,V{L,P}τ JAK[0..j]

ρ) is in its domain. It follows from the IH that
VθπJB AKjρ ∈ [Cand(k2)].

By Lemma 5.4.2, [Cand(k2)] = [Cand([A/x]k2)], concluding the case.

111

• Case TAppDep is similar to the previous case.

• E =

E1

Γ `L b : B1 = B2

E2

Γ ` A : [B1/x]k Γ ` [B2/x]k

Γ ` A : [B2/x]k
TConvT

We must show that VθπJAKjρ ∈ [Cand([B2/x]k)]. By the IH for E2, we have
VθπJAKjρ ∈ [Cand([B1/x]k)]. By Lemma 5.4.2, [Cand([B1/x]k)] = [Cand(k)] =
[Cand([B2/x]k)], concluding the case.

• Case TConv is similar to the previous case.

For the next lemma, we will need to know that each term or type in the environ-
ment has the expected type or kind and that types in the environment are normalizing.
We define a new judgement which captures these facts.

EnvTyp(∅, ·)
ETypN

EnvTyp(ρ,Γ)

· `L v : ρA

EnvTyp(ρ[x 7→ v], (Γ, x : A))
ETypCT

EnvTyp(ρ,Γ)

· ` A : ρ k

AV∗ V

EnvTyp(ρ[x 7→ (A, I)], (Γ, x : k))
ETypCK

We begin with two basic facts about well-typed environments:

Lemma 5.5.6 (Environment substitution preserves term values). If Γ `θ v : A and
EnvTyp(ρ,Γ), then ρ v is a value.

Proof. By induction on the typing derivation. In the variable case, the definition of
EnvTyp(ρ,Γ) ensures ρ x is a value.

Lemma 5.5.7 (Environment substitution). If EnvTyp(ρ,Γ), then the following all
hold:

• If Γ `θ a : A then · `θ ρ a : ρA.

• If Γ ` A : k then · ` ρA : ρ k .

• If Γ ` k then · ` ρ k .

Proof. By induction on the proof of EnvTyp(ρ,Γ), using Lemmas 5.2.30 and 5.2.32.

112

Another convenient fact about well-typed environments is that substituting them
into a type or kind does not change whether it uses polymorphism:

Lemma 5.5.8. Suppose EnvTyp(ρ1 ρ2 ρ3,Γ) and ` Γ.

• For any A, up(A) = up(ρ2 A).

• For any k, up(k) = up(ρ2 k).

Proof. By induction on ρ2.
For value bindings, the result is immediate by induction and Lemma 5.3.2.
When ρ2 has the form ρ′2[x 7→ (B , I)], observe that EnvWT(ρ1 ρ2 ρ3,Γ) means that

· ` B : ρ1 ρ
′
2 k
′ for some k′ such that Γ = Γ1, x : k ′,Γ2. The proof of ` Γ ensures

that Γ1 ` k ′ and thus, by environment substitution (Lemma 5.5.7, · ` ρ1 ρ
′
2 k
′. By

Lemma 5.3.3, up([B/x]ρ′2 A) = up(ρ′2 A). The result then follows by induction.

Lemma 5.5.9 (The interpretation models mobility). If Mob (A) then ΩL
πJAKjρ =

ΩP
πJAKjρ.

Proof. By induction on the pair (A,Ω), so that the IH will be available for smaller
types A or when A remains constant but Ω is C and we want the IH for V .

When Ω is C, the result holds immediately by the definition of the interpretation
and the induction hypothesis for (A,V).

In the case when Ω is V , we consider the possible forms of A. Most cases are
ruled out because there is no derivation that the appropriate form is mobile. The
cases for Nat, a = b, A = B , and A@θ are immediate because the definition of the
interpretation does not mention the given logicality. Only two cases remain:

• Suppose A = Σx :A1 .A2. We know Mob (A1) and Mob (A2) by inversion on the
proof of Mob (Σx :A1 .A2). The result follows immediately by induction and the
definition of the interpretation.

• The case where A = A1 + A2 is similar to the previous case.

Lemma 5.5.10 (Interpretation Weakening and Strengthening). Suppose
dom(ρ2) ∩ dom(ρ1 ρ3) = ∅ and let some type A and kind k be given.

• If fvs(A) ⊆ dom(ρ1 ρ2) then Ωθ
πJAKjρ1 ρ3 = Ωθ

πJAKjρ1 ρ2 ρ3 .

• If fvs(k) ⊆ dom(ρ1 ρ2) then ΩπJkKjρ1 ρ3 = ΩπJkKjρ1 ρ2 ρ3 .

Proof. By induction on the (lexicographically-ordered) triple (j, A/k,Ω). Note that
we leave π and ρ2 general, so that the IH will apply for any instantiation of these
arguments.

113

If Ω is C, the theorem is immediate by the definition of the interpretation and the
induction hypothesis for V .

If Ω is V , we consider the possible forms of A and k individually. Most cases are
immediate by the definition of the interpretation and an invocation of the appropriate
IH. Some cases, like TEqT, are slightly more complicated because the environment
is also substituted into a term, type or kind in a typing or reduction assumption. In
these cases the relevant term type or kind is always a subexpression of A (or k), so
it is sufficient to observe that substituting ρ1 ρ3 into the expression is the same as
substituting in ρ1 ρ2 ρ3, since the variables in ρ2’s domain do not appear free in A (or
k). We spell out the variable case in slightly greater detail:

• Case: A = x .
By assumption, x cannot be in the domain of ρ2. Thus, an interpretation for x

appears in ρ1 ρ3 iff it appears in ρ1 ρ2 ρ3, and it is the same in either environment.

5.5.1 Universe-Indexed Properties of the Interpretation

Several properties about the interpretation which were quite straightforward to state
and prove in a system without type-level computation become somewhat more com-
plicated in the present setting. For example, in the case of the interpretation from
Chapter 3, it’s quite easy to see that if v is in the interpretation of A, then · `θ v : A.
To prove a similar lemma for PCCθ, we must generalize its statement to account for
the possibility that the interpretation of A is set-theoretic function rather than a set
of values.

We now define a more general version of this property by recursion on universes.

Definition 5.5.11. We define the property WTθ(U ,A, I) as follows:

• WTθ(UBase,A, I) iff I ∈ VAL and, if v ∈ I, then · `θ v : A.

• WTθ(UTArr (x : B) U ,A, I) iff I = ∅, or

– I : (VAL→ [U]), and
– ∀v ∈ CValL(B), WTθ([v/x]U ,A v , I v)

• WTθ(UKArr (x : k) U ,A, I) iff I = ∅, or

– I : (TYP× [Cand(k)](θ×N))→ [U]

– and,
∀B ∈ CTyp(k), ∀I ′ ∈ [Cand(k)](θ×N),

B V∗ V

→ ∀j,∀θ′,WTθ′(Cand(k),B , I ′(θ′, j))
→ WTθ([B/x]U ,A B , I(B , I ′))

114

It is not immediately obvious that this is well-defined. To see that it is, we define
two size functions:

sizek(s) = 0
sizek((x : A)→ k2) = 1 + sizek(k2)

sizek((x : k1)→ k2) = 1 + sizek(k1) + sizek(k2)

sizeU(UBase) = 0
sizeU(UTArr (x : A) U2) = 1 + sizeU(U2)

sizeU(UKArr (x : k1) U2) = 1 + sizek(k1) + sizeU(U2)

It is simple to show that sizek(k) = sizeU(Cand(k)) and that substituting a term
or type into kinds or universes does not change their sizes. We will use these facts
implicitly when performing induction on the size of a kind of universe in the future,
to avoid getting bogged down in notation and lemmas. With these lemmas in hand,
we see that the above definition for WTθ(U ,A, I) is well founded because sizeU(U)
decreases in each recursive call.

It’s important to note that, unlike the definition of [U], the definition of
WTθ(U ,A, I) makes use of the types and kinds within U . For this reason, we will be
careful about free variables when reasoning about a universe.

Before we can prove that the interpretation always produces sets in the WT rela-
tion, we must prove a few properties of the relation itself.

Lemma 5.5.12. If WTθ(Cand(k),A, I), then I ∈ [Cand(k)].

Proof. By examining the definition of WT for each of the three possible forms for
k.

Lemma 5.5.13. If · ` A : k and AV A′ then
WTθ(Cand(k),A, I)↔ WTθ(Cand(k),A′, I).

Proof. By induction on sizek(k). Consider the possible cases of k.

• Suppose k is s .

We must show that v ∈ CValθ(A) ↔ v ∈ CValθ(A′). Observe that · ` A′ : k
by preservation (Theorem 5.2.52). So · `L refl : A = A′, and the result follows by
EConvT.

• Suppose k is (x : B1)→ k2, so Cand(k) is UTArr (x : B1) (Cand(k2)).

Consider first the → direction. If I = ∅, the result is immediate, so suppose
instead that:

– I : (VAL→ [Cand(k2)]), and

115

– ∀v ∈ CValL(B1), WTθ([v/x]Cand(k2),A v , I v)

Let v ∈ CValL(B1) be given. By the definition of WT, it’s enough to show that
WTθ([v/x](Cand(k2)),A′ v , I v).

Now, sizek([v/x]k2) < sizek((x : B1) → k2) and A v V A′ v , so the de-
sired result will follow by induction if we can show that · ` A v : [v/x]k2. By
TAppDep, it’s enough to show that Γ ` [v/x]k2. This follows by regularity
(Lemma 5.2.25), inversion for dependent arrow kinds (Lemma 5.2.43) and substi-
tution (Lemma 5.2.30).

The ← case is similar.

• Suppose k is (x : k1)→ k2, so Cand(k) is UKArr (x : k1) Cand(k2).

We consider only the→ direction—the other direction is similar. If I = ∅, the
result is immediate, so suppose instead that:

– I : (TYP× [Cand(k)](θ×N))→ [U]

– and
∀B ∈ CTyp(k1),∀I ′ ∈ [Cand(k1)](θ×N),

B V∗ V

→ ∀j,∀θ′,WTθ′(Cand(k1),B , I ′(θ′, j))
→ WTθ([B/x]Cand(k2),A B , I(B , I ′))

Now let some B ∈ CTyp(k1) and I ′ ∈ [Cand(k1)](θ×N) be given such that
B V∗ V , and for any j and θ′, WTθ′(Cand(k),B , I ′(θ′, j)).

We must show that WTθ([B/x]Cand(k2),A′ B , I(B , I ′)). But we know
WTθ([B/x]Cand(k2),A B , I(B , I ′)) and A B V A′ B , so the result will fol-
low by IH if we can show that · ` A B : [B/x]k2. This follows by regular-
ity (Lemma 5.2.25), inversion for arrow kinds (Lemma 5.2.44) and substitution
(Lemma 5.2.32).

Lemma 5.5.14. If · ` A : k and AV∗ A′ then
WTθ(Cand(k),A, I)↔ WTθ(Cand(k),A′, I).

Proof. By induction on the proof of AV∗ A′, using Lemma 5.5.13.

Lemma 5.5.15. Suppose · `L b : B1 = B2. If · ` [B1/y]k and · ` [B2/y]k , then
WTθ(Cand([B1/y]k),A, I)↔ WTθ(Cand([B2/y]k),A, I).

Proof. By induction on sizek(k). If k = s, the result is immediate. In the remaining
cases we show only the← direction. Since equality is symmetric (Lemma 5.2.36), the
other direction follows immediately.

116

• Suppose k is (x : A1)→ k2.

So we may assume that WTθ(UTArr (x : [B2/y]A1) (Cand([B2/y]k2)),A, I). If
I = ∅, the result is immediate, so suppose instead that

– I : (VAL→ [Cand([B2/y]k2)]), and

– ∀v ∈ CValL([B2/y]A1), WTθ([v/x]Cand([B2/y]k2),A v , I v).

Observe that [Cand([B2/y]k)] = [Cand([B1/y]k)] by Lemma 5.4.2, so
I : VAL → [Cand([B1/y]k2)] as well. Now let v ∈ CValL([B1/y]A1) be given.
We must show WTθ([v/x]Cand([B1/y]k2),A v , I v).

But using Lemma 5.4.4 and since v,B1 and B2 are closed, we have
[v/x]Cand([B1/y]k2) = Cand([B1/y][v/x]k2), and similarly for B2. So the IH for
[v/x]k2 will yield the desired result if we can show that v ∈ CV alL([B2/y]A1).
But this follows directly from EConvT, concluding the case.

• The case where k is (x : k1)→ k2 is similar.

We are now almost ready to prove that the interpretation always returns a set in
the appropriate WT relation, but first we must define a judgement that lifts WT over
the context:

EnvWT(∅, ·)
EWTNil

EnvWT(ρ,Γ)

· `L v : ρA

EnvWT(ρ[x 7→ v], (Γ, x : A))
EWTConsT

EnvWT(ρ,Γ)

· ` A : ρ k AV∗ V

∀j ,∀θ,WTθ(Cand(ρ k),A, I(θ, j))

EnvWT(ρ[x 7→ (A, I)], (Γ, x : k))
EWTConsK

Lemma 5.5.16. If EnvWT(ρ,Γ) then EnvCand(ρ,Γ).

Proof. By induction on the proof of EnvWT(ρ,Γ), using Lemma 5.5.12 in the EWT-
ConsK case.

We will use the above fact implicitly in the lemma below, whenever EnvCand(ρ,Γ)
is a prerequisite to another lemma.

Lemma 5.5.17 (The interpretation is well typed). If Γ ` A : k and EnvWT(ρ,Γ),
then WTθ(Cand(ρ k), ρA,VθπJAKjρ).

117

Proof. By induction on the derivation E :: Γ ` A : k .

• E =
(x : k) ∈ Γ ` Γ

Γ ` x : k
TVar

Since EnvWT(ρ,Γ), we know that ρ = ρ1[x 7→ (B , I)] ρ2 for some ρ1, ρ2, B and
I such that WTθ(Cand(ρ1 k),B , I(θ, j)).

We must show that WTθ(Cand(ρ k), ρ x ,VθπJxKjρ). By the definition of the in-
terpretation, that is WTθ(Cand(ρ k),B , I(θ, j)). So it will be enough to show
that ρ1 k = ρ1[x 7→ (B , I)] ρ2 k , which is true since ` Γ by context regularity
(Lemma 5.2.22).

• The cases for TArrComp, TArrPoly, TNat, TMu, TRefl, and TReflT
are immediate because k = s and the interpretation is explicitly defined as a set
of values of the appropriate type.

• E =

E1

Γ, x : k1 ` B : k2 Γ ` (x : k1)→ k2

Γ ` λx : k1.B : (x : k1)→ k2

TLamTLC

We must show that WTθ(Cand((x : ρ k1) → ρ k2), λx : k1.B ,VθπJλx : k1.BKjρ).
By definition:

Vθπ Jλx : k1.BKjρ = (A ∈ TYP, I ∈ [Cand(k1)](θ×N)) 7→ VθπJBKjρ[x 7→(A,I)]

By Lemmas 5.5.5 and 5.4.3, this function is either the empty set (in which case
we are done) or has the type (TYP× [Cand(ρ k1)](θ×N))→ [Cand(ρ k2)].

So let some A ∈ CTyp(ρ k1) and I ∈ [Cand(ρ k1)](θ×N) be given such that
A V∗ V for some V , and WTθ(Cand(ρ k1),A, I(θ′, j ′)) for any θ′ and j′. By the
definition of WT (and reducing the set-theoretic function above), it is enough to
show that

WTθ([A/x]Cand(ρ k2), (λx : ρ k1.ρB) A,VθπJBKjρ[x 7→(A,I)])

Now, by EWTConsK, EnvWT(ρ[x 7→ (A, I)], (Γ, x : k1)). So the IH for E ′ yields
that

WTθ(Cand(ρ [A/x]k2), ρ [A/x]B ,VθπJBKjρ[x 7→(A,I)])

But Cand(ρ [A/x]k2) = [A/x]Cand(ρ k2) by Lemma 5.4.5. But ρ [A/x]B V∗

ρ [V /x]B and (λx : ρ k1.ρB) A V∗ ρ [V /x]B , so the desired result will follow
from two uses of Lemma 5.5.14 if we can show that · ` ρ [A/x]B : ρ [A/x]k2 and
· ` (λx : ρ k1.ρB) A : ρ [A/x]k2. The former is immediate by Lemma 5.5.7, and
the latter follows by TAppTLC and Lemma 5.5.7.

• Case TLamDep is similar, but simpler.

118

• E =

E1

Γ ` B : (x : k1)→ k2

E2

Γ ` A : k1 Γ ` [A/x]k2

Γ ` B A : [A/x]k2

TAppTLC

We must show that WTθ(Cand(ρ [A/x]k2), ρ (B A),VθπJB AKjρ).

Now, if VθπJB AKjρ = ∅, the result is immediate because WTθ(U ,A′, ∅) for any U
and A′. So we may assume the other case of the interpretation of type-level appli-
cations applies, which means that ρA ∗ V for some V and (ρA,V{L,P}τ JAK[0..j]

ρ)
is in the domain of VθπJBKjρ. We have:

VθπJB AKjρ = VθπJBKjρ(ρA,V{L,P}τ JAK[0..j]
ρ)

The IH for E1 gives us that WTθ(Cand(ρ ((x : k1) → k2)), ρB ,VθπJBKjρ). Since
we know the interpretation of B is non-empty (it’s a function with a non-empty
domain), this IH expands to:

– VθπJBKjρ : (TYP× [Cand(ρ k1)](θ×N))→ [Cand(ρ k2)]

– and:
∀A′ ∈ CTyp(ρ k1), ∀I ∈ [Cand(ρ k1)](θ×N),

A′ V∗ V

→ ∀j,∀θ′,WTθ′(Cand(ρ k1),A′, I ′(θ′, j))
→ WTθ([A′/x]Cand(ρ k2), (ρB) A′,VθπJBKjρ(A′, I))

But observe that ρA and V{L,P}τ JAK[0..j]
ρ satisfy the requirements for A′ and I

here, since ρA parallel reduces to a value, and using the IH for E2. Thus, we may
instantiate E1’s IH to obtain:

WTθ([ρA/x]Cand(ρ k2), ρ (B A),VθπJBKjρ(ρA,V{L,P}τ JAK[0..j]
ρ))

And since [ρA/x]Cand(ρ k2) = Cand(ρ [A/x]k2) by Lemma 5.4.5, this concludes
the case.

• Case TAppDep is similar, but simpler.

• Cases TMonoPoly, TAt, TSum and TSigma are straightforward by induction.

• E =

E1

Γ `L b : B1 = B2

E2

Γ ` A : [B1/x]k Γ ` [B2/x]k

Γ ` A : [B2/x]k
TConvT

In this case, we must show that WTθ(Cand(ρ [B2/x]k), ρA,VθπJAKjρ). The IH
for D2 yields that WTθ(Cand(ρ [B1/x]k), ρA,VθπJAKjρ). Lemma 5.5.15 bridges the
gap.

119

In practice, we only need the special case of this lemma where k is a sort s:

Lemma 5.5.18. Suppose Γ ` A : s and EnvWT(ρ,Γ). Then VθπJAKjρ ⊆ CValθ(ρA).

Proof. By Lemma 5.5.17, unfolding the definition of WT.

Another essential lemma that must be generalized due to the presence of type-
level computation is downward closure. In previous chapters, we were able to state
downward closure as, roughly, if i ≤ j then VθπJAKjρ ⊆ VθπJAKiρ. The use of ⊆ here is
problematic in the case where A is a type-level function. The solution is to generalize
⊆ as follows:

Definition 5.5.19. Define the property I1 vU I2 by recursion on the size of U , as
follows:

• I1 vU I2 iff I1, I2 ∈ VAL and I1 ⊆ I2.

• I1 vUTArr (x :A1) U2 I2 iff I1 = I2 = ∅, or

– I1, I2 : (VAL→ [U]), and

– ∀v ∈ CValL(A1), I1 v[v/x]U2 I2

• I1 vUKArr (x :k1) U2 I2 iff I1 = I2 = ∅, or

– I1, I2 : (TYP× [Cand(k1)](θ×N))→ [U2]

– and:
∀B ∈ CTyp(k1),∀I ′1, I ′2 ∈ [Cand(k1)](θ×N),

B V∗ V

→ ∀i1 ≤ i2, ∀θ′, I ′1(θ′, i2) vCand(k1) I ′2(θ′, i1)

→ I1(B , I ′1) v[B/x]U2 I2(B , I ′2)

The following lemma about this definition will be useful in the TConvT case of
the downward closure lemma:

Lemma 5.5.20. Suppose · `L b : B1 = B2. If · ` [B1/y]k and · ` [B2/y]k , then
(I1 vCand([B1/y]k) I2)↔ (I1 vCand([B2/y]k) I2).

Proof. By induction on sizek(k), similar to Lemma 5.5.15.

Predictably, we need a judgement that lifts the relevant uses of this relation over
an environment.

120

∅ v·DC ∅
EDCNil

ρ1 vΓ
DC ρ2

· `L v : ρ1 A

ρ1[x 7→ v] v(Γ,x :A)
DC ρ2[x 7→ v]

EDCConsT

ρ1 vΓ
DC ρ2

· ` A : ρ1 k AV∗ V

∀i1 ≤ i2,∀θ, I1(θ, i2) vCand(ρ k) I2(θ, i1)

ρ1[x 7→ (A, I1)] vΓ
DC ρ2[x 7→ (A, I2)]

EDCConsK

Lemma 5.5.21 (Downward closure). Suppose Γ ` A : k and ρ1 vΓ
DC ρ2. If j1 ≤ j2,

then VθπJAKj2ρ1 v
Cand(ρ k) VθπJAKj1ρ2 .

Proof. By induction on the derivation E :: Γ ` A : k . Most cases are straightforward
by the definition of the interpretation and induction. We show two cases in more
detail:

• E =

E1

Γ ` B : (x : k1)→ k2

E2

Γ ` A : k1 Γ ` [A/x]k2

Γ ` B A : [A/x]k2

TAppTLC

We must show that VθπJB AKj2ρ1 v
Cand(ρ1 [A/x]k2) VθπJB AKj1ρ2 . By the IH for E1, we

know that either the interpretation of B at both j1 and j2 is the empty set, in which
case we are done, or that in both cases it has the type (TYP× [Cand(ρ k1)](θ×N))→
[Cand(ρ k2)] and:

∀A′ ∈ CTyp(ρ k1), ∀I ′1, I ′2 ∈ [Cand(ρ k1)](θ×N),

A′ V∗ V

→ ∀i1 ≤ i2,∀θ′, I ′1(θ′, i2) vCand(k1) I ′2(θ′, i1)

→ VθπJBKj2ρ1(A
′, I ′1) v[A′/x]Cand(ρ k2) VθπJBKj1ρ1(A

′, I ′2)

We’d like to show that ρA, V{L,P}τ JAK[0..j2]
ρ and V{L,P}τ JAK[0..j1]

ρ satisfy the re-
quirements of A′, I ′1 and I ′2 above. We may assume that ρA ∗ V for some V ,
since otherwise the interpretation of BA is always the empty set, in which case
we are done. The requirements on I ′1 and I ′2 mean we must show that:

∀i1 ≤ i2,∀θ′,Vθ
′

τ JAKmin(j2,i2)
ρ1

vCand(ρ1 k1) Vθ′τ JAKmin(j1,i1)
ρ2

This will follow by the IH for E2 if we can show that min(j1, i1) ≤ min(j2, i2). Since
we know i1 ≤ i2 and j1 ≤ j2, this holds by a simple arithmetic case analysis.

So, instantiating the E1 IH above, we find that:

VθπJBKj2ρ1(A,V
{L,P}
τ JAK[0..j2]

ρ1
) v[ρA/x]Cand(ρ1 k2) VθπJBKj1ρ1(A,V

{L,P}
τ JAK[0..j1]

ρ2
)

121

But [ρA/x]Cand(ρ1 k2) = Cand(ρ1 [A/x]k2), so it will be enough to show that:

VθπJB AKj2ρ1 = VθπJBKj2ρ1(A,V
{L,P}
τ JAK[0..j2]

ρ1
)

and
VθπJB AKj1ρ2 = VθπJBKj1ρ1(A,V

{L,P}
τ JAK[0..j1]

ρ2
)

This follows the definition of the interpretation, the observation we have already
made about the type of B’s interpretation, and Lemma 5.5.5.

• E =

E1

Γ `L b : B1 = B2

E2

Γ ` A : [B1/x]k Γ ` [B2/x]k

Γ ` A : [B2/x]k
TConvT

By induction and Lemma 5.5.20.

In practice, we only need the special case of this lemma where k is a sort s and
there is only one environment:

Lemma 5.5.22 (Downward closure for proper types). Suppose Γ ` A : s and ρ vΓ
DC

ρ. If j1 ≤ j2, then Ωθ
πJAKj2ρ ⊆ Ωθ

πJAKj1ρ .

Proof. By the definition of the interpretation and Lemma 5.5.21, unfolding the defi-
nition of vU .

Lemma 5.5.23 (Downward closure for kinds). For any kind k and environment ρ,
if j1 ≤ j2 then ΩπJkKj2ρ ⊆ ΩπJkKj1ρ .

Proof. By examining the definition of the interpretation for each of the possible forms
of k.

Another similar lemma about previous systems said that the logical interpretation
of a type is a subset of its programmatic interpretation, modeling the idea that logical
terms may always be used in the programmatic fragment, but not vice versa. We will
reuse the v relation to state this lemma for PCCθ. Following the pattern established
thus far, we first define a judgement that lifts this property over environments:

∅ v·LP ∅
ELPNil

ρ1 vΓ
LP ρ2

· `L v : ρ1 A

ρ1[x 7→ v] v(Γ,x :A)
LP ρ2[x 7→ v]

ELPConsT

ρ1 vΓ
LP ρ2

· ` A : ρ1 k AV∗ V

∀i , I1(L, i) vCand(ρ k) I2(P, i)

ρ1[x 7→ (A, I1)] vΓ
LP ρ2[x 7→ (A, I2)]

ELPConsK

122

Lemma 5.5.24 (The value interpretation models subsumption). Suppose Γ ` A : k
and ρ1 vΓ

LP ρ2. Then, for any π and j , VL
πJAKjρ1 v

Cand(ρ1 k) VP
π JAKjρ2 .

Proof. Let E :: Γ ` A : k be given. We proceed by induction on the lexicographically
ordered pair (π, E). Most cases are straightforward by induction. We show one in
more detail:

• D =

F1

Γ ` k
E2

Γ, x : k ` B : ?σ

Γ ` (x : k)→ B : ?σ
TArrPoly

Here, according to the definition of vUBase, we must show that VL
πJ(x : k) →

BKjρ1 ⊆ V
P
π J(x : k) → BKjρ2 . If π is τ , then both interpretations are the empty

set and the case is trivial. So, suppose π = σ. Unfolding the definition of the
interpretation, we see it is sufficient to show that:

{λx :k ′.b | · `L λx :k ′.b : ρ1 ((x : k)→ B)

and ∀i ≤ j, ∀V ∈ Vup(k)JkKiρ1 ,

[V /x]b ∈ CL
up(B)JBKi

ρ1[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

}

⊆ {λx :k ′.b | · `P λx :k ′.b : ρ2 ((x : k)→ B)

and ∀i < j, ∀V ∈ Vup(k)JkKiρ2 ,

[V /x]b ∈ CP
up(B)JBKi

ρ2[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

So let some λx : k ′.b in the former set be given. Since the two environments
share the same term and type bindings, ρ1 ((x : k)→ B) = ρ2 ((x : k)→ B), and
thus λx :k ′.bn satisfies the typing requirement of the second set by TSub.

So, let some i ≤ j and V ∈ Vup(k)JkKiρ be given. Since λx :k ′.b is in the former
set, we know that [V /x]b ∈ CL

up(B)JBKi
ρ[x 7→(V ,V{L,P}

τ JV K[0..i]∅)]
. Unfolding the definition

of the computational interpretation, we have:

[V /x]b ∗ v ∈ VL
up(B)JBKi

ρ[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

We must show that, if [V /x]b i ′ v for some i′ ≤ i, then:

v ∈ VP
up(B)JBKi

′

ρ[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

This will follow from downward closure (Lemma 5.5.22) if we can show:

v ∈ VP
up(B)JBKi

ρ[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

This in turn will follow from the IH for (up(B), E2), if we can show that:

ρ1[x 7→ (V ,V{L,P}τ JV K[0..i]
∅)] vΓ,x :k

LP ρ2[x 7→ (V ,V{L,P}τ JV K[0..i]
∅)]

123

This follows from ELPConsK if we can show that, for any i′ ≤ i:

VL
τ JV Ki

′

∅ vCand(ρ1 k) VP
τ JV Ki

′

∅

But we know by Lemma 5.5.18 that there is some derivation E ′ :: · ` V : ρ1 k . So,
this is exactly the IH for (τ, E ′).

Lemma 5.5.25 (The computational interpretation models subsumption). Suppose
Γ ` A : s and ρ vΓ

LP ρ. Then, for any π and j , CL
πJAKjρ ⊆ CP

π JAKjρ.

Proof. By Lemma 5.5.24 and the definition of the interpretation.

5.6 A Notion of Equivalence for Interpretations
Simple set-theoretic equality is often insufficient for reasoning about the equivalence
of interpretations, for reasons similar to those that necessitated “universe-indexed”
versions of lemmas in the previous section. We have interpreted type-level functions
as set theoretic functions with very large domains:

Vθπ Jλx : k1.BKjρ = (A ∈ TYP, I ∈ [Cand(k1)](θ×N)) 7→ VθπJBKjρ[x 7→(A,I)]

This was convenient for defining the interpretation, but it is inconvenient for
proving facts about the interpretation. The issue is that this function’s domain is
much larger than the actual class of arguments for which we care about its behavior.
First, we only care about types A that appear in the interpretation of ρ k1, but the
domain allows all closed types. Second, this function will only be called in the very
specific case that I is the interpretation of A (i.e., V{L,P}π JAK[0..j]

ρ), but the domain
allows any set-theoretic object I from the universe of possible interpretations of types
of kind k1.

The solution is to define a better notion of equivalence which only demands that
the set-theoretic functions agree when applied to sensible arguments. We write I1

∼=U
j

I2 to indicate that I1 and I2 are equivalent set-theoretic objects such that I1, I2 ∈ [U].

Definition 5.6.1 (Equivalence of interpretations). We define the relation I1
∼=U

j I2

recursively by the following three cases:

• I ∼=UBase
j I iff I ∈ P(VAL).

• I1
∼=UTArr (x :A) U2

j I2 iff I1 = I2 = ∅ or

– I1, I2 : VAL→ [U2],

124

– and
∀v1, v2 ∈ CValL(A)

v1 V∗ v ′ ∧ v2 V∗ v ′

→ I1 v1
∼=[v ′/x]U2

j I2 v2

• I1
∼=UKArr (x :k1) U2

j I2 iff I1 = I2 = ∅ or

– I1, I2 : (TYP× [Cand(k1)](θ×N))→ [U2]

– and,
∀B1, B2 ∈ CTyp(k1),∀I ′1, I ′2 ∈ [Cand(k1)](θ×N)

B1 V∗ V ∧ B2 V∗ V

→ ∀i ≤ j,∀θ, I ′1(θ, i) ∼=Cand(k1)
i Vθτ JB1Ki∅

→ ∀i ≤ j,∀θ, I ′2(θ, i) ∼=Cand(k1)
i Vθτ JB2Ki∅

→ ∀i ≤ j,∀θ, I ′1(θ, i) ∼=Cand(k1)
i I ′2(θ, i)

→ ∀i ≤ j, I1(B1, I ′1) ∼=[V /x]U2

i I2(B2, I ′2)

Like our previous universe-indexed definitions, we can see that this property is
well defined by recursion on sizeU(U).

While we refer to ∼=U
k as an “equivalence relation”, it is not actually reflexive for

every I ∈ [U]. In particular, for functions I in [UTArr (x : A1) U2] or [UKArr (x :
k1) U2], the relation is only reflexive when I does not distinguish between inputs that
are equivalent. When I is the output of the interpretation, this is always the case.
However, it will take a bit more effort to prove this formally.

In the meantime, we can at least observe that ∼=U
j is symmetric and transitive.

These two lemmas may be proved directly by induction on sizeU(U), examining the
definition of the relation in each of the three cases.

Lemma 5.6.2 (∼= is symmetric). For any U and j, if I1
∼=U

j I2, then I2
∼=U

j I1.

Lemma 5.6.3 (∼= is transitive). For any U and j, if I1
∼=U

j I2 and I2
∼=U

j I3, then
I1
∼=U

j I3.

We may also prove that this equivalence respects provable type and term equal-
ities. Both of these lemmas are proved by induction on sizeU(U), examining the
definition of the equivalence for each possible form of U .

Lemma 5.6.4. If · `L a : b1 = b2 then (I1
∼=[b1/x]U

j I2)↔ (I1
∼=[b2/x]U

j I2).

Lemma 5.6.5. If · `L a : B1 = B2 then (I1
∼=[B1/x]U

j I2)↔ (I1
∼=[B2/x]U

j I2).

To prove many of the lemmas about our new equivalence, we must extend it
to environments. Roughly speaking, two environments are equivalent just if the
interpretations contained in them are:

125

∅ ∼=·j ∅
EEqNil

ρ1
∼=Γ

j ρ2

v1 V
∗ v v2 V

∗ v
· `L v1 : ρ1 A · `L v2 : ρ2 A

ρ1[x 7→ v1] ∼=Γ,x :A
j ρ2[x 7→ v2]

EEqConsT

ρ1
∼=Γ

j ρ2

B1 V
∗ V B2 V

∗ V
· ` B1 : ρ1 k · ` B2 : ρ2 k

∀i ≤ j , ∀θ, I1(θ, i) ∼=Cand(ρ1 k)
i Vθτ JB1Kj∅

∀i ≤ j ,∀θ, I2(θ, i) ∼=Cand(ρ1 k)
i Vθτ JB2Kj∅

∀i ≤ j ,∀θ, I1(θ, i) ∼=Cand(ρ1 k)
i I2(θ, i)

ρ1[x 7→ (B1, I1)] ∼=Γ,x :k
j ρ2[x 7→ (B2, I2)]

EEqConsK

Unsurprisingly, we need a few lemmas about this relation.

Lemma 5.6.6 (∼=Γ
j is downward closed). If ρ1

∼=Γ
j ρ2 and i ≤ j then ρ1

∼=Γ
i ρ2.

Proof. By induction on the proof of ρ1
∼=Γ

j ρ2.

Lemma 5.6.7. If Γ ` A : s and ρ1
∼=Γ

j ρ2, then · `θ a : ρ1 A iff · `θ a : ρ2 A.

Proof. The value and type bindings in ρ1 and ρ2 are assumed to be well typed and
corresponding value or type bindings are provably equal, since they reduce to the
same value. Thus, this lemma may be proved in either direction by inducting on
the typing derivation and using TConv or TConvT when a variable is encountered
(though it must first be generalized to handle open contexts).

Lemma 5.6.8. If ` Γ and ρ1
∼=Γ

j ρ2 then EnvTyp(ρ1,Γ) and EnvTyp(ρ2,Γ).

Proof. By induction on the proof of ρ1
∼=Γ

j ρ2.

5.7 Main Interpretation Lemmas
In this section, we will prove the two most complicated and important lemmas about
the interpretation (along with several corollaries). The first is that bindings from
the environment ρ may be substituted into the type or kind being interpreted with-
out changing its interpretation. The second is that reduction does not change the
interpretation of a type or kind.

These lemmas are difficult to prove, for several reasons. First, we must work with
the complicated notion of equivalence defined above. Second, the lemmas must be
proved by induction over metrics similar to the one we used to prove the interpretation
was well founded. To make this inductive structure clear, we state both lemmas in a

126

somewhat stilted way, being careful to quantify the elements of the relevant quadruple
at the front.

While these results are quite involved, most of the challenging theoretical work
was in setting up our definitions appropriately. The proofs are primarily exercises in
checking that our definitions line up appropriately and identifying a few key lemmas.

Lemma 5.7.1 (Environment Shifting). Let some π and j be given. Suppose we
have a proof E :: Γ ` A : k or a proof F :: Γ ` k , and let some Ω be given. If
ρ1 ρ2 ρ3

∼=Γ
j ρ1 ρ2 ρ

′
3, then:

• If we have a proof E :: Γ ` A : k and π = up(A), then:

– If Ω = V , then VθπJAKjρ1 ρ2 ρ3 ∼=
Cand(ρ1 ρ2 ρ3 k)
j VθπJρ2 AKjρ1 ρ′3 .

– If Ω = C and k = s , then CθπJAKjρ1 ρ2 ρ3 = CθπJρ2 AKjρ1 ρ3 .

• If we have a proof F :: Γ ` k and π = up(k), then

Ωup(k)JkKjρ1 ρ2 ρ3 = Ωup(ρ2 k)Jρ2 kKjρ1 ρ′3 .

Proof. By lexicographic induction on the quadruple (π, j,D/E ,Ω). It is sensible to
consider D and E as one argument to the same induction since they are mutually
defined, though it is equivalent to prove this theorem by four nested inductions where
the third is by mutual induction on these derivations.

Note that, by Lemmas 5.5.8 and 5.6.8, up(A) = up(ρ2 (A)) in the cases where
E :: Γ ` A : k , and up(k) = up(ρ2 (k)) in the cases where F :: Γ ` k . We will use
these facts repeatedly and implicitly in the remainder of the proof, to avoid getting
bogged down with dozens of references to these two lemmas.

We begin with the cases where Ω = C. There are three:

• Suppose E :: Γ ` A : s and Ω = C and θ = L. We must show that:

{a | · `L a : ρ1 ρ2 ρ3 A and a ∗ v ∈ VL
πJAKjρ1 ρ2 ρ3}

= {a | · `L a : ρ1 ρ
′
3 ρ2 A and a ∗ v ∈ VL

πJρ2 AKjρ1 ρ′3}

Now ρ1 ρ2 ρ
′
3 A = ρ1 ρ

′
3 ρ2 A, and, by 5.6.7 · `L a : ρ1 ρ2 ρ3 A iff · `L a :

ρ1 ρ2 ρ
′
3 A. So, it is enough to show that VL

πJAKjρ1 ρ2 ρ3 = VL
πJρ2 AKjρ1 ρ′3 . This is

exactly the IH for (π, j, E ,V).

• The case when E :: Γ ` A : s and Ω = C and θ = P is similar, except that the use
of the IH also requires us to observe that ∼=Γ

j is downward closed (Lemma 5.6.6).

• The case when F :: Γ ` k and Ω = C is similar.

For the cases where Ω = V , we consider the possible derivations of E or F .

127

• E =
(x : k) ∈ Γ ` Γ

Γ ` x : k
TVar

We must show that VθπJxKjρ1 ρ2 ρ3 ∼=
Cand(ρ1 ρ2 ρ3 k)
j VθπJρ2 xKjρ1 ρ′3 . Either x ∈

dom(ρ2) or not:

– Suppose x ∈ dom(ρ2). So ρ2 = ρ21[x 7→ (B , I)] ρ22 for some B and I.
By the definition of the interpretation, it is enough to show that:

I(θ, j) ∼=Cand(ρ1 ρ2 ρ3 k)
j VθπJBKjρ1 ρ′3

Now, since ρ1 ρ21[x 7→ (B , I)] ρ22 ρ3
∼=Γ

j ρ1 ρ21[x 7→ (B , I)] ρ22 ρ
′
3, we know that

I(θ, j) ∼=Cand(ρ1 ρ21 k)
j Vθτ JBKj∅ and that · ` B : ρ1 ρ21 k by the definition of ∼=Γ

j .
Since ρ1 ρ21 k is closed, Cand(ρ1 ρ21 k) = Cand(ρ1 ρ2 ρ3 k). So, to conclude the
case it will be enough to show that:

Vθτ JBKj∅ = VθπJBKjρ1 ρ′3
But π = up(x) = τ . The result then follows by Lemma 5.5.10, since B is
closed.

– Suppose instead that x /∈ dom(ρ2).
By Lemma 5.5.10, VθπJxKjρ1 ρ2 ρ3 = VθπJxKjρ1 ρ3 , so it will be enough to show

that VθπJxKjρ1 ρ3 ∼=
Cand(ρ1 ρ2 ρ3 k)
j VθπJxKjρ1 ρ′3 . But, by the definition of the inter-

pretation and since ρ1 ρ2 ρ3
∼=Γ

j ρ1 ρ2 ρ
′
3, we know that VθπJxKjρ1 ρ3 = I1 and

VθπJxKjρ1 ρ3 = I2 for some I1 and I2 such that I1
∼=Cand(ρ′ k)

j I2 where ρ′ is some
initial prefix of ρ1 ρ2 ρ3 that contains all the variables of k . This concludes the
case, since therefore Cand(ρ′ k) = Cand(ρ1 ρ2 ρ3 k).

• E =

F1

Γ ` k
E2

Γ, x : k ` B : ?σ

Γ ` (x : k)→ B : ?σ
TArrPoly

Here Cand(ρ1 ρ2 ρ3 k) = Cand(?σ) = UBase. Additionally, π = up((x : k) →
B) = σ, so the IH will be available for any π′. We will consider only the case
where θ = L, as the other is similar. Recall:

VL
σ J(x : k)→ BKjρ1 ρ2 ρ3 =

{λx :k ′.b | · `L λx :k ′.b : ρ1 ρ2 ρ3 ((x : k)→ B)

and ∀i ≤ j, ∀V ∈ Vup(k)JkKiρ1 ρ2 ρ3 ,

[V /x]b ∈ CL
up(B)JBKi

ρ1 ρ2 ρ3[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

}

Now ρ1 ρ
′
3 ρ2 ((x : k) → B) = ρ1 ρ2 ρ

′
3 ((x : k) → B), and by Lemma 5.6.7,

· `L λx :k ′.b : ρ1 ρ2 ρ3 ((x : k)→ B) iff · `L λx :k ′.b : ρ1 ρ2 ρ
′
3 ((x : k)→ B). So, it

will be enough to show that, for any i ≤ j:

128

1) Vup(k)JkKiρ1 ρ2 ρ3 = Vup(ρ2 k)Jρ2 kKjρ1 ρ′3
2) For any V ∈ Vup(k)JkKiρ1 ρ2 ρ3 :

CL
up(B)JBKi

ρ1 ρ2 ρ3[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

= CL
up(ρ2 B)Jρ2 BKi

ρ1 ρ′3[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

First, observe that 1) is exactly the IH for (up(k), i,F1,V) (using Lemma 5.6.6
to satisfy the requirement that ρ1 ρ2 ρ3

∼=Γ
i ρ1 ρ2 ρ

′
3).

For 2), we begin by showing that, for any V ∈ Vup(k)JkKiρ1 ρ2 ρ3 ,

ρ1 ρ2 ρ3[x 7→ (V ,V{L,P}τ JV K[0..i]
∅)] ∼=Γ,x :k

i ρ1 ρ2 ρ
′
3[x 7→ (V ,V{L,P}τ JV K[0..i]

∅)]

To show this by EEqConsK, we must show that · ` V : ρ1 ρ2 ρ3 k and · ` V :
ρ1 ρ2 ρ

′
3 k and that for any θ and i ′ ≤ i , Vθτ JV Ki ′∅ ∼=

Cand(ρ1 ρ2 ρ3 k)
i ′ Vθτ JV Ki ′∅ . But we

know by Lemma 5.5.17 that there is some derivation E ′ of · ` V : ρ1 ρ2 ρ3 k . It
follows by Lemma 5.6.7 that · ` V : ρ1 ρ2 ρ

′
3 k . And that Vθτ JV Ki ′∅ is related to

itself is precisely the IH for (τ, i′, E ′,V).

Since these two environments are equivalent, 2) follows as the IH for
(up(B), i, E2, C).

• The case for TArrComp is similar, but simpler.

• E =

E1

Γ, x : k1 ` B : k2 Γ ` (x : k1)→ k2

Γ ` λx : k1.B : (x : k1)→ k2

TLamTLC

We must show that:

VθπJλx : k1.BKjρ1 ρ2 ρ3 ∼=
Cand(ρ1 ρ2 ρ3 ((x :k1)→k2))
j VθπJλx : ρ2 k1.ρ2 BKjρ1 ρ′3

Expanding the definition of our equivalence and the interpretation, we find that
it is sufficient to show that:

∀A1, A2 ∈ CTyp(ρ1 ρ2 ρ3 k1),∀I ′1, I ′2 ∈ [Cand(ρ1 ρ2 ρ3 k1)](θ×N)

A1 V∗ V ∧ A2 V∗ V

→ ∀i ≤ j,∀θ, I ′1(θ, i) ∼=Cand(ρ1 ρ2 ρ3 k1)
i Vθτ JA1Ki∅

→ ∀i ≤ j,∀θ, I ′2(θ, i) ∼=Cand(ρ1 ρ2 ρ3 k1)
i Vθτ JA2Ki∅

→ ∀i ≤ j,∀θ, I ′1(θ, i) ∼=Cand(ρ1 ρ2 ρ3 k1)
i I ′2(θ, i)

→ ∀i ≤ j, VθπJBKjρ1 ρ2 ρ3[x 7→(A1,I′1)]

∼=[V /x]Cand(ρ1 ρ2 ρ3 k2)
i VθπJρ2 BKjρ1 ρ′3[x 7→(A2,I′2)]

So let some A1, A2, I ′1 and I ′2 be given that satisfy the assumptions above,
and suppose i ≤ j. By EEqConsK and Lemma 5.6.6, we have ρ1 ρ2 ρ3[x 7→
(A1, I ′1)] ∼=Γ,x :k1

i ρ1 ρ2 ρ
′
3[x 7→ (A2, I ′2)]. Since π = up(λx : k1.B) = up(B) by

definition, the IH for (π, i, E1,V) yields the desired result.

129

• The case for TLamDep is similar, but simpler.

• E =

E1

Γ ` B : (x : k1)→ k2

E2

Γ ` A : k1 Γ ` [A/x]k2

Γ ` B A : [A/x]k2

TAppTLC

Observing that up(B) ≤ up(B A) by definition, the IH for (up(B), j, E1,V)
yields that:

Vθup(B)JBKjρ1 ρ2 ρ3 ∼=
Cand(ρ1 ρ2 ρ3 ((x :k1)→k2))
j Vθup(B)Jρ2 BKjρ1 ρ′3

It follows by the definition of the equivalence that either both interpretations are
the empty set or they are both set-theoretic functions of type:

(TYP× [Cand(ρ1 ρ2 ρ3 k1)](θ×N))→ [Cand(ρ1 ρ2 ρ3 k1)]

In the former case, the desired result is immediate since ∅ ∼=U
j ∅ for any U and j.

So suppose they are both functions.

By confluence (Lemma 5.2.17) and because ρ1 ρ2 ρ3
∼=Γ

j ρ1 ρ2 ρ
′
3, either

ρ1 ρ2 ρ3 A and ρ1 ρ2 ρ
′
3 A parallel reduce to a common value V or neither paral-

lel reduces to a value at all. In the later case, the interpretation of B A is the
empty set, so assume we have V . Then, by Lemma 5.5.5 and the definition of the
interpretation, it is sufficient to show that:

Vθup(B)JBKjρ1 ρ2 ρ3(ρ1 ρ2 ρ3 A,V{L,P}τ JAK[0..j]
ρ1 ρ2 ρ3

)

∼=Cand(ρ1 ρ2 [A/x]k2)
j Vθup(B)Jρ2 BKjρ1 ρ′3(ρ1 ρ

′
3 ρ2 A,V{L,P}τ Jρ2 AK[0..j]

ρ1 ρ′3
)

This is precisely the conclusion of the IH for E1 if we can show that:

1) ∀i ≤ j,∀θ,Vθτ JAKiρ1 ρ2 ρ3 ∼=
Cand(ρ1 ρ2 ρ3 k1)
i Vθτ Jρ1 ρ2 ρ3 AKi∅

2) ∀i ≤ j,∀θ,Vθτ Jρ2 AKiρ1 ρ′3
∼=Cand(ρ1 ρ2 ρ3 k1)

i Vθτ Jρ1 ρ
′
3 ρ2 AKi∅

3) ∀i ≤ j,∀θ,Vθτ JAKiρ1 ρ2 ρ3 ∼=
Cand(ρ1 ρ2 ρ3 k1)
i Vθτ Jρ2 AKiρ1 ρ′3

Note that the way we split the environment into ρ1, ρ2, and ρ3 is not fixed by
the IH. We will show each of these using the IH for E2.

1) This is directly an instance of the IH for (τ, i, E2,V), using Lemma 5.6.6 and
picking the “ρ2” in our use of the IH to be ρ1 ρ2 ρ3.

2) This is slightly trickier, but observe that we may use the IH for E2 with the
environment split in two different ways to obtain:

Vθτ JAKiρ1 ρ2 ρ′3
∼=Cand(ρ1 ρ2 ρ′3 k1)

i Vθτ Jρ2 AKiρ1 ρ′3

130

and
Vθτ JAKiρ1 ρ2 ρ′3

∼=Cand(ρ1 ρ2 ρ′3 k1)
i Vθτ Jρ1 ρ2 ρ

′
3 AKi∅

The desired result then follows by the symmetry and transitivity of ∼=
(Lemmas 5.6.2 and 5.6.3.

3) Similar to 1).

• Case TAppDep is similar to the previous case, but simpler.

• The remaining cases are relatively straightforward by induction. Cases TConv
and TConvT require the use of Lemmas 5.6.4 and 5.6.5, respectively.

Lemma 5.7.2 (∼= is reflexive). Suppose ρ ∼=Γ
j ρ
′.

• If Γ ` A : k then Ωθ
πJAKjρ ∼=

Cand(ρ k)
j Ωθ

πJAKjρ′ .

• If Γ ` k then ΩπJkKjρ ∼=
Cand(ρ k)
j ΩπJkKjρ′ .

Proof. A direct consequence of Lemma 5.7.1, picking ρ1 = ρ2 = ∅, and ρ3 = ρ and
ρ′3 = ρ′.

Before we can prove the lemma relating the interpretation and reduction, we
need one simple fact about environments and substitution. Because we have allowed
types that are not values into our environments, it is not the case that the result
of substituting an environment into a type value yields a type value. However, our
well-formedness judgements on environments (like EnvWT and ∼=Γ

j) require all bound
types to reduce to a value. Thus, we can prove the following weaker result:

Lemma 5.7.3. If EnvWT(ρ,Γ), then for any value V , there is another value V ′ such
that ρV V∗ V ′.

Proof. By induction on the structure of values, observing in the variable case that
EnvWT(ρ,Γ) ensures that any type variable bound by ρ parallel reduces to a value.

We are now prepared to prove that taking a step of parallel reduction does not
change the interpretation of a type or kind.

Lemma 5.7.4 (The interpretation respects reduction). Let some π and j be given.
Suppose we have a proof E :: Γ ` A : k or a proof F :: Γ ` k , and let some Ω be
given. If ρ1

∼=Γ
j ρ2, then:

• If we have a proof E :: Γ ` A : k and π = up(A), then, if AV B , then

– If Ω = V , then Vθup(A)JAKjρ1 ∼=
Cand(ρ1 k)
j Vθup(A)JBKjρ2 .

131

– If Ω = C and k = s , then Cθup(A)JAKjρ1 = Cθup(A)JBKjρ2 .

• If we have a proof F :: Γ ` k and π = up(k), then, if k V k ′, then

Ωup(k)JkKjρ1 = Ωup(k)Jk ′Kjρ2 .

Proof. As in the previous proof, we proceed by lexicographic induction on the quadru-
ple (π, j,D/E ,Ω).

Note that, by Lemma 5.3.4 up(A) = up(B) in the cases where E :: Γ ` A : k , and
up(k) = up(k ′) in the cases where F :: Γ ` k . We will use these facts repeatedly and
implicitly in the remainder of the proof, to avoid getting bogged down with dozens
of references to these two lemmas.

Now, Ω is either C or V . The cases where Ω = C are immediate by induction. For
the cases where Ω = V , we consider the possible derivations of E or F .

The cases for KSort, TVar and TNat are immediate because the subject can
step only to itself, and by Lemma 5.7.2, the equivalence relation is reflexive (for
the interpretations of types and kinds in the appropriate typing relations). In the
remaining cases we ignore PTRefl and PKRefl when describing the possible ways
a type or kind may take a step of parallel reduction, since the argument is always the
same.

• F =

F1

Γ ` k1

F2

Γ, x : k1 ` k2

Γ ` (x : k1)→ k2

KArrTLC

Inverting the definition of parallel reduction, we see that if (x : k1) → k2

steps, it must be to some (x : k ′1) → k ′2 such that k1 V k ′1 and k2 V k ′2. Since
π = up((x : k1)→ k2), we know it is σ. Recall the definition of the interpretation
for this case:

Vσ J(x : k1)→ k2K
j
ρ1 =

{λx : k ′1.B | · ` λx : k ′1.B : ρ1 ((x : k1)→ k2)

and ∀i ≤ j, ∀V ∈ Vup(k1)Jk1Kiρ1 ,
[V /x]B ∈ Cup(k2)Jk2Kiρ1[x 7→(V ,V{L,P}

τ JV K[0..i]∅)]
}

We can see that it will be enough to show that Vup(k1)Jk1Kiρ1 = Vup(k ′
1)Jk ′1Kiρ2 ,

and that for any V in this set:

Cup(k2)Jk2Kiρ1[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

= Cup(k2)Jk ′2K
i

ρ2[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

The former is precisely the IH for F1. The latter will follow from the IH for
F2 if we can show that:

ρ1[x 7→ (V ,V{L,P}τ JV K[0..i]
∅)] ∼=Γ,x :k1

j ρ2[x 7→ (V ,V{L,P}τ JV K[0..i]
∅)]

132

By the definition of the interpretation of kinds, we know that · ` V : ρ k1. The
desired result follows by EEqConsK, observing that the equivalence relation is
reflexive for well-kinded types (Lemma 5.7.2).

• Cases KArrDep, TArrComp, TArrPoly, TMonoPoly, TSigma, TSum,
TMu and TAt are similarly straightforward.

• E =

E1

Γ, x : k1 ` B : k2 Γ ` (x : k1)→ k2

Γ ` λx : k1.B : (x : k1)→ k2

TLamTLC

By inversion on the reduction relation, λx : k1.B must step to some λx : k1.B
′

such that B V B ′. We must show that:

VθπJλx : k1.BKjρ1 ∼=
Cand(ρ1 ((x :k1)→k2))
j VθπJλx : k1.B

′Kjρ2

Expanding the definition of our equivalence and the interpretation, we find that
it is sufficient to show that:

∀A1, A2 ∈ CTyp(ρ1 k1),∀I ′1, I ′2 ∈ [Cand(ρ1 k1)](θ×N)

A1 V∗ V ∧ A2 V∗ V

→ ∀i ≤ j,∀θ, I ′1(θ, i) ∼=Cand(ρ1 k1)
i Vθτ JA1Ki∅

→ ∀i ≤ j,∀θ, I ′2(θ, i) ∼=Cand(ρ1 k1)
i Vθτ JA2Ki∅

→ ∀i ≤ j,∀θ, I ′1(θ, i) ∼=Cand(ρ1 k1)
i I ′2(θ, i)

→ ∀i ≤ j, VθπJBKjρ1[x 7→(A1,I′1)]

∼=[V /x]Cand(ρ1 k2)
i VθπJBKjρ2[x 7→(A2,I′2)]

So let some A1, A2, I ′1 and I ′2 be given that satisfy the assumptions above, and
suppose i ≤ j. By EEqConsK and Lemma 5.6.6, we have ρ1[x 7→ (A1, I ′1)] ∼=Γ,x :k1

i

ρ2[x 7→ (A2, I ′2)]. Since π = up(λx : k1.B) = up(B) by definition, the IH for
(π, i, E1,V) yields the desired result.

• Case TLamComp is similar.

• E =

E1

Γ ` B : (x : k1)→ k2

E2

Γ ` A : k1 Γ ` [A/x]k2

Γ ` B A : [A/x]k2

TAppTLC

The type B A may step in two ways. Consider each separately:

– Suppose B AV B ′ A′ by PTAppT1. We know that B V B ′ and AV A′.
Observing that up(B) ≤ up(B A) by definition, the IH for (up(B), j, E1,V)

yields:
Vθup(B)JBKjρ1 ∼=

Cand(ρ1 ((x :k1)→k2))
j Vθup(B ′)JB

′Kjρ2
It follows by the definition of the equivalence that either both interpretations
are the empty set, or they are both set-theoretic functions of type (TYP ×

133

[Cand(ρ1 k1)](θ×N)) → [Cand(ρ1 k1)]. In the former case, the desired result is
immediate since ∅ ∼=U

j ∅ for any U and j. So suppose they are both functions.
By confluence (Lemma 5.2.17) and because ρ1

∼=Γ
j ρ2, either ρ1 A and ρ2 A

′

parallel reduce to a common value V or neither parallel reduces to a value at
all. In the later case, the interpretation of B A is the empty set, so assume we
have V . Then, by Lemma 5.5.5 and the definition of the interpretation, it is
sufficient to show that:

Vθup(B)JBKjρ1(ρ1 A,V{L,P}τ JAK[0..j]
ρ1

)

∼=Cand(ρ1 [A/x]k2)
j Vθup(B)JBKjρ2(ρ2 A

′,V{L,P}τ JA′K[0..j]
ρ2

)

This is precisely the conclusion of the IH for E1 if we can show that:

1) ∀i ≤ j,∀θ,Vθτ JAKiρ1 ∼=
Cand(ρ1 k1)
i Vθτ Jρ1 AKi∅

2) ∀i ≤ j,∀θ,Vθτ JA′Kiρ2 ∼=
Cand(ρ1 k1)
i Vθτ Jρ2 A

′Ki∅
3) ∀i ≤ j,∀θ,Vθτ JAKiρ1 ∼=

Cand(ρ1 k1)
i Vθτ JA′Kiρ2

The first two of these are an instance of environment shifting (Lemma
5.7.1), while the third is precisely the IH for E2.

– Suppose instead that B A steps by PTBetaT. We we know that B is λx :
k ′1.B1 for some k ′1 and B1, that A is a value, and we have:

B1 V B ′1

AV A′

B AV [A′/x]B ′1

We must show that VθπJ(λx : k ′1.B1) AKjρ1 ∼=
Cand(ρ1 [A/x]k2)
j VθπJ[A′/x]B ′1Kjρ2 . By

definition, we know that:

Vθπ J(λx : k ′1.B1) AKjρ1 =


VθπJ(λx : k ′1.B1)Kjρ1 (ρ1 A,V{L,P}τ JAK[0..j]

ρ1)

If ρ1 A ∗ V and (ρ1 A,V{L,P}τ JAK[0..j]
ρ1) is

in the domain of VθπJλx : k ′1.B1Kjρ1
∅ otherwise

The first question is which of these cases applies. We know A is a value since
the step occurred by PTBetaT, so by Lemmas 5.7.3 and 5.2.19 ρ1 A ∗ V
for some V . To see that the pair mentioned in the case here is in the domain
of the appropriate function, unfold the definition of the interpretation again
to obtain:

Vθπ Jλx : k ′1.B1K
j
ρ1

= (A ∈ TYP, I ∈ [Cand(k ′1)](θ×N)) 7→ VθπJB1Kjρ1[x 7→(A,I)]

134

So to see that the first case above applies, it will be enough to show that, for
any θ′ and i , Vθ′τ JAKiρ1 ∈ [Cand(k ′1)]. But since the interpretation respects Cand

(Lemma 5.5.5) we know that Vθ′τ JAKiρ1 ∈ [Cand(ρ1 k1)] for any θ′ and i. And
by Lemma 5.4.6, [Cand(ρ1 k1)] = [Cand(ρ1 k

′
1)].

So, the first case of the definition of the interpretation for application ap-
plies. We know by Lemma 5.3.1 and regularity (Lemma 5.2.25) that π =
up(B A) = up(A) = up(B) = τ . So, we must show that:

Vθτ JB1Kj
ρ1[x 7→(ρ1 A,V{L,P}

τ JAK[0..j]ρ1
)]
∼=Cand(ρ1 [A/x]k2)

j Vθτ J[A′/x]B ′1K
j
ρ2
.

Now, the IH for (τ, j, E1,V) will yield:

Vθτ JB1Kj
ρ1[x 7→(ρ1 A,V{L,P}

τ JAK[0..j]ρ1
)]
∼=Cand(ρ1 [A/x]k2)

j Vθτ JB ′1K
j

ρ2[x 7→(ρ2 A′,V{L,P}
τ JA′K[0..j]ρ2

)]

If we can show that:

1) ∀i ≤ j,∀θ,Vθτ JAKiρ1 ∼=
Cand(ρ1 k1)
i Vθτ Jρ1 AKi∅

2) ∀i ≤ j,∀θ,Vθτ JA′Kiρ2 ∼=
Cand(ρ1 k1)
i Vθτ Jρ2 A

′Ki∅
3) ∀i ≤ j,∀θ,Vθτ JAKiρ1 ∼=

Cand(ρ1 k1)
i Vθτ JA′Kiρ2

The first two of these are an instance of environment shifting (Lemma 5.7.1),
while the third is precisely the IH for (τ, i, E2,V).

To conclude, observe that:

Vθτ JB ′1K
j

ρ2[x 7→(ρ2 A′,V{L,P}
τ JA′K[0..j]ρ2

)]

∼=Cand(ρ2 [A′/x]k2)
j Vθτ J(ρ2[x 7→ (ρ2 A

′,V{L,P}τ JA′K[0..j]
ρ2)])B ′1K

j
∅ (Lemma 5.7.1)

∼=Cand(ρ2 [A′/x]k2)
j Vθτ Jρ2 [A′/x]B ′1K

j
∅ (Substitution)

∼=Cand(ρ2 [A′/x]k2)
j Vθτ J[A′/x]B ′1Kjρ2 (Lemma 5.7.1)

But by Lemma 5.6.4, Lemma 5.6.5, and the definition of ∼=Γ
j , we know that

∼=Cand(ρ1 [A/x]k2)
j and ∼=Cand(ρ2 [A′/x]k2)

j are the same relation. The desired result
then follows by the transitivity of the equivalence relation (Lemma 5.6.3).

• Case TAppDep is similar (but simpler).

• E =

Γ `P a1 : A Γ `P a2 : B

Γ ` a1 = a2 : ?τ
TEq

By inversion on the definition ofV, we can see that if a1 = a2 steps it must be
to a ′1 = a ′2 for some a ′1 and a ′2 such that a1 V a ′1 and a2 V a ′2. According to the

135

definition of the interpretation and our equivalence relation, we must show that:

{refl | · ` ρ1 (a1 = a2) : ?τ and ∃b, ρ1 a1 V∗ b and ρ1 a2 V∗ b}
= {refl | · ` ρ2 (a ′1 = a ′2) : ?τ and ∃b, ρ2 a

′
1 V

∗ b and ρ2 a
′
2 V

∗ b}

Now, by preservation (Theorem 5.2.52) and environment substitution
(Lemma 5.5.7), both ρ1 (a1 = a2) and ρ2 (a ′1 = a ′2) have kind ?τ . So, it will
be enough to show that ρ1 a1 and ρ1 a2 reduce to a common term iff ρ2 a

′
1 and

ρ2 a
′
2 do.

This will follow from confluence if we can show that ρ1 a1 and ρ2 a
′
1 reduce to

a common term, and that ρ1 a2 and ρ2 a
′
2 reduce to a common term. We consider

only the first pair—the other is similar.

By induction on the proof of ρ1
∼=Γ

j ρ2, we find that ρ1 a
′
1 and ρ2 a

′
1 reduce

to a common term. But by repeated application of Lemmas 5.2.15 and 5.2.16,
we know that ρ1 a1 V∗ ρ1 a

′
1. Thus, ρ1 a1 and ρ2 a

′
1 reduce to a common term as

required.

• Case TEqT is similar to the previous case.

5.8 The Fundamental Theorem, Normalization, and
Consistency

We are almost prepared to prove the main soundness theorem for the interpretation.
As we have done for several other lemmas in this chapter, we begin by defining a
relation on environments. In particular, the main soundness result will only hold
if the environment maps variables to terms or types in the interpretations of the
appropriate types and kinds. Intuitively, if ρ |=j Γ, then ρ is a model of Γ.

∅ |=j ·
EnvNil

· `L v : ρA

v ∈ VL
up(A)JAKjρ

ρ |=j Γ

ρ[x 7→ v] |=j Γ, x : A
EnvConsT

· ` A : ρ k

A ∈ Cup(k)JkKjρ
ρ |=j Γ j ≤ j ′

ρ[x 7→ (A,V{L,P}τ JAK[0..j ′]
∅)] |=j Γ, x : k

EnvConsK

136

We need several lemmas about this relation. To begin, recall that we have pre-
viously defined a number of other relations between environments and context (like
EnvTyp(ρ,Γ)). We have defined ρ |=j Γ to be a subrelation of each of the previous
relations. This means we can use it as evidence for, for example, EnvTyp(ρ,Γ) or
EnvCand(ρ,Γ). To avoid getting bogged down in notation in the proofs below, we
will usually elide the step of reasoning that converts from a proof of ρ |=j Γ to one of
these other relations when referring a lemma that depends on them.

Lemma 5.8.1. If ρ |=j Γ then EnvTyp(ρ,Γ).

Proof. By induction on the proof of ρ |=j Γ.

Lemma 5.8.2. If ρ |=j Γ then ρ ∼=Γ
j ρ.

Proof. By induction on the proof of ρ |=j Γ, using Lemma 5.7.2.

Lemma 5.8.3. If ρ |=j Γ then ρ vΓ
DC ρ.

Proof. By induction on the proof of ρ |=j Γ, using Lemma 5.5.21 in the EnvConsK
case.

Lemma 5.8.4. If ρ |=j Γ then ρ vΓ
LP ρ.

Proof. By induction on the proof of ρ |=j Γ, using Lemma 5.5.24 in the EnvConsK
case.

We will also need a version of the downward closure lemma for this new environ-
ment soundness judgement:

Lemma 5.8.5 (Downward Closure for Environments). If j1 ≤ j2 and ρ |=j2 Γ, then
ρ |=j1 Γ.

Proof. By induction on the proof of ρ |=j2 Γ, using Lemmas 5.5.22 and 5.5.23.

The next four lemmas essentially capture the variable case of the main soundness
theorem.

Lemma 5.8.6 (Environment inversion (terms, V)). Suppose ρ |=j Γ and ` Γ. If
(x : A) ∈ Γ, then ρ x ∈ Vθup(A)JAKjρ.

Proof. By induction on the derivation of ρ |=j Γ. The case EnvNil does not apply.
We consider the remaining two cases individually:

• Suppose the derivation goes by EnvConsT:

137

· `L v : ρ′ B

v ∈ VL
up(B)JBKjρ′

ρ′ |=j Γ

ρ′[y 7→ v] |=j Γ, y : B
EnvConsT

Either x = y or not.

– Suppose x = y. Then B in the rule instance above is A from the theorem
statement, and ρ x is v. So the second premise of the rule reads:

ρ x ∈ VL
up(A)JAKjρ′

This differs from our desired conclusion in two ways. First, θ may not be L.
But since ` Γ, we know that Mob (A), and thus by Lemma 5.5.9, we have

ρ x ∈ Vθup(A)JAKjρ′

Second, ρ′ is not quite ρ. But since ` Γ, we know x does not appear free
in A. Thus, by the weakening/strengthening lemma for the interpretation
(Lemma 5.5.10), we have ρ x ∈ Vθup(A)JAKjρ as desired.

– Suppose x 6= y. Observe that ρ x = ρ′ x since x 6= y. Thus, the IH gives us
that ρ x ∈ Vθup(A)JAKjρ′ .

The weakening/strengthening lemma for the interpretation (Lemma 5.5.10)
gives us that Vθup(A)JAKjρ = Vθup(A)JAKjρ′ , concluding the case.

• The case for EnvConsK is similar to the previous subcase, since the last binding
on the environment is not a term variable.

Lemma 5.8.7 (Environment type inversion (terms, C)). Suppose ρ |=j Γ and ` Γ.
If (x : A) ∈ Γ, then ρ x ∈ Cθup(A)JAKjρ.

Proof. By Lemma 5.8.6, we have ρ x ∈ Vθup(A)JAKjρ. By the definition of the interpre-
tation, it will therefore be enough to show that · `θ ρ x : ρA. But this follows by
Lemma 5.5.7, observing that Γ `θ x : A by TVar.

Lemma 5.8.8 (Environment inversion (types, C)). If ρ |=j Γ and (x : k) ∈ Γ then
ρ x ∈ Cup(k)JkKjρ.

Proof. Similar to the proof of Lemma 5.8.6, but simpler since there is no logicality to
consider.

138

We are now ready to prove the fundamental theorem of the interpretation. This
demonstrates that the interpretation is a good model of what can be typed in the
system. As we will see later, it implies that everything in the logical fragment nor-
malizes.

Theorem 5.8.9 (Fundamental Theorem of the Interpretation). Suppose ρ |=j Γ.

• If D :: Γ `θ1 a : A, then ρ a ∈ Cθ1up(A)JAKjρ.

• If E :: Γ ` A : k , then ρA ∈ Cup(k)JkKjρ.

Proof. By mutual induction on the derivations D and E . Note that, in particular,
we leave ρ and j general so that we may instantiate them however we choose when
applying an IH. Consider the possible forms of each derivation.

• D =

D1

Γ `L a1 : B1 = B2

hd (B1) = hf1 hd (B2) = hf2 hf1 6= hf2
Γ `θ2 a : A Γ ` A : ?σ Γ ` B : ?σ

Γ `θ1 a : B
EContra

In this case we will find a contradiction.

The IH for D1 and the definition of the interpretation yield that there exists
some term B3 such that ρB1 V∗ B3 and ρB2 V∗ B3.

One of the derivation’s hypotheses yields B1 and B2 both have head forms and
that they are not the same. By Lemmas 5.5.2 and 5.2.10 we find that B3 has the
same head form as B1. But by the same reasoning, B3 must have the same head
form as B2. This is a contradiction, since it implies B1 and B2 have the same
head forms.

• D =

D1

Γ `θ1 a : (A1@θ2) = (A2@θ2) Γ ` A1 = A2 : ?τ

Γ `θ1 a : A1 = A2

EAtInv

We consider the cases for θ1 separately.

– Suppose θ1 = L. Unfolding the definition of the interpretation, we must show
ρ a ∗ refl and that ρA1 and ρA2 parallel reduce to a common type.

The IH for derivation D1 and the definition of the interpretation give us
that ρ a ∗ refl (as desired) and that there exists some type B such that
ρ (A1@θ2) V∗ B and ρ (A2@θ2) V∗ B . By Lemma 5.2.10, B must have the
form B ′@θ2 for some B′. Thus, by Lemma 5.2.1, A1 V∗ B ′ and A2 V B ′,
concluding this case.

139

– Suppose θ1 = P. Unfolding the definition of the interpretation, we must show
that if ρ a i v for some i ≤ j, then v = refl, and ρA1 and ρA2 parallel reduce
to a common type.

So, suppose ρ a i v for some i ≤ j. Unfolding the IH for D1 therefore
gives us that v = refl (as desired) and that ρ (A1@θ2) and ρ (A2@θ2) parallel
reduce to a common type. The result then follows by the same reasoning as
in the previous subcase.

• Cases ESumInv1, ESumInv2, EArrInv1 and ESigmaInv1 are similar to the
previous case.

• D =

D1

Γ `θ1 a : ((x : A1)→ A2) = ((x : B1)→ B2)
Γ `θ2 v : A1 Γ ` [v/x]A2 = [v/x]B2 : ?τ

Γ `θ1 a : [v/x]A2 = [v/x]B2

EArrInv2

We consider the cases for θ1 separately.

– Suppose θ1 = L. Unfolding the definition of the interpretation, we must show
ρ a ∗ refl and that ρ [v/x]A2 and ρ [v/x]B2 parallel reduce to a common type.

The IH for the derivation D1 and the definition of the interpretation give
us that ρ a ∗ refl (as desired) and that there exists some type A such that
ρ ((x : A1) → A2) V∗ A and ρ ((x : B1) → B2) V∗ A. By Lemma 5.2.10, A
must have the form (x : A′1) → A′2. Thus, by Lemma 5.2.2, ρA2 V∗ A′2 and
ρB2 V∗ A′2.

By Lemma 5.2.15, it follows that [ρ v/x]ρA2 V∗ [ρ v/x]A′2 and
[ρ v/x]ρB2 V∗ [ρ v/x]A′2. But [ρ v/x]ρA2 = ρ [v/x]A2 and [ρ v/x]ρB2 =
ρ [v/x]B2. So ρ [v/x]A2 and ρ [v/x]B2 parallel reduce to a common expression,
as desired.

– Suppose θ1 = P. Unfolding the definition of the interpretation, we must show
that if ρ a i v for some i ≤ j, then v = refl, and ρ [v/x]A2 and ρ [v/x]B2

parallel reduce to a common type.
So suppose ρ a i v for some i ≤ j. Unfolding the IH for D1 therefore

gives us that v = refl (as desired) and that ρ ((x : A1)→ A2) and ρ ((x : B1)→
A2) parallel reduce to a common type. The result then follows by the same
reasoning as in the previous subcase.

• Cases ESigmaInv2, and EMuInv are similar to the previous case.

• D =
(x : A) ∈ Γ ` Γ

Γ `θ x : A
EVar

This case is immediate by Lemma 5.8.7.

140

• D =
(x : k) ∈ Γ ` Γ

Γ ` x : k
TVar

This case is immediate by lemma 5.8.8.

• D =

D1

Γ `θ2 v : A@θ1 Γ ` A : ?σ

Γ `θ1 v : A
EUnboxVal

By Lemma 5.5.6, ρ v is a value. Thus, by the definition of the interpretation
for either case of θ1, it is enough to show that ρ v ∈ Vθ1up(A)JAKjρ.

The IH for D1 and the definition of the interpretation yield that ρ v ∈
Vθ2up(A@θ1)JA@θ1Kjρ. The definitions of the interpretation and up for @-types yield
Vθ2up(A@θ1)JA@θ1Kjρ = Vθ1up(A)JAKjρ, so ρ v ∈ V

θ1
up(A)JAKjρ as desired.

• D =

D1

Γ `θ1 b : (x : A)→ B
D2

Γ `θ1 a : A Γ ` [a/x]B : ?σ

Γ `θ1 b a : [a/x]B
EAppComp

We consider the cases for θ1 separately.

– Suppose θ1 is L. We must show that ρ (b a) ∗ v ∈ VL
up([a/x]B)J[a/x]BKjρ.

The IH for D2 gives us that ρ a ∗ v ′ ∈ VL
up(A)JAKjρ. The IH for D1 gives

us that ρ b ∗ λx :A′.b ′ such that · `L λx :A′.b : (x : A)→ B and

∀i ≤ j, ∀v′ ∈ VL
min(up((x :A)→B),up(A))JAKiρ,

[v ′/x]b ′ ∈ CL
min(up((x :A)→B),up(B))JBKiρ[x 7→v ′]

Now, Lemmas 5.3.5 and 5.3.6 show that min(up((x : A) → B), up(A)) =
up(A) and min(up((x : A) → B), up(B)) = up(B). Thus, combining the two
IHs yields:

[v ′/x]b ′ ∈ CL
up(B)JBKjρ[x 7→v ′]

By the definition of the interpretation, we therefore have:

ρ (b a) ∗ [v ′/x]b ′ ∗ v ∈ VL
up(B)JBKjρ[x 7→v ′]

So, it will be enough to show that VL
up(B)JBKjρ[x 7→v ′] = VL

up([a/x]B)J[a/x]BKjρ.
Combining several lemmas achieves this result:

VL
up([a/x]B)J[a/x]BKjρ = VL

up(B)J[a/x]BKjρ (Lemma 5.3.2)
= VL

up(B)J[ρ a/x]ρBKj∅ (Lemma 5.7.1)
= VL

up(B)J[v
′/x]ρBKj∅ (Lemma 5.7.4)

= VL
up(B)JBKjρ[x 7→v ′] (Lemma 5.7.1)

141

Note that Lemmas 5.7.4 and 5.7.1 actually state a result in terms of ∼=Cand(k)
j

where k is the kind of the type being interpreted. However, here we know
Γ ` [a/x]B : ?σ by a hypotheses of EAppComp, so k is ?σ, in which case ∼= is
defined to be set equality.

These lemmas have several prerequisites which are largely straightforward
to dispatch. We note in particular that the final use of Lemma 5.7.1 requires
us to observe that Γ, x : A ` B : s and that ρ[x 7→ v ′] ∼=Γ,x :A

j ρ[x 7→ v ′]. The
former follows by a use of regularity (Lemma 5.2.25) with D1, and inversion
for arrow types (Lemma 5.2.41). For the latter, by Lemma 5.8.2 it is enough
to show that ρ[x 7→ v ′] |=j Γ, x : A. This is true by EnvConsT, the first
hypothesis of which holds by substitution (Lemma 5.5.7) and preservation
(Lemma 5.2.53), and the rest of which we have already satisfied.

– Suppose instead that θ1 is P. We must show that, if ρ (b a) i v for some
i ≤ j, then v ∈ VP

up([a/x]B)J[a/x]BK(j−i)
ρ .

So, suppose ρ (b a) i v . The inversion lemma for reduction of application
(5.2.3) has two cases, depending on whether ρ b evaluates to a lambda or a
recursive function. We show only the case for recursive functions—the other
is similar but simpler.

In this case, the lemma yields ρ b i1 rec f (x : A′).b ′ and ρ a i2 v ′

for some b′ and a′ such that [v ′/x][rec f (x : A′).b ′/f]b ′ i3 v . Additionally,
1 + i1 + i2 + i3 = i.

The IH for D2 therefore yields v′ ∈ VP
up(A)JAK(j−i2)

ρ . The IH for D1 gives us
that:

∀i′ < (j − i1), ∀v′ ∈ VP
min(up((x :A)→B),up(A))JAKi

′

ρ ,

[v ′/x][rec f (x :A′).b ′/f]b ′ ∈ CP
min(up((x :A)→B),up(B))JBKi

′

ρ[x 7→v ′]

By downward closure (Lemma 5.5.22), we have:

v′ ∈ VP
up(A)JAK(j−i2−i1−1)

ρ

Additionally, Lemmas 5.3.5 and 5.3.6 show that min(up((x : A)→ B), up(A))
= up(A) and min(up((x : A)→ B), up(B)) = up(B). Thus, combining the two
IHs yields:

[v ′/x][rec f (x :A′).b ′/f]b ′ ∈ CP
up(B)JBK(j−i2−i1−1)

ρ[x 7→v ′]

By the definition of the interpretation and recalling that [v ′/x][rec f (x :
A′).b ′/f]b ′ i3 v , we therefore have:

v ∈ VP
up(B)JBK(j−(1+i1+i2+i3))

ρ[x 7→v ′]

So, recalling that i = 1 + i1 + i2 + i3, it will be enough to show that:

VP
up(B)JBK(j−i)

ρ[x 7→v ′] = VP
up([a/x]B)J[a/x]BK(j−i)

ρ

142

But, after observing that ρ |=j−i Γ by downward closure for environments
Lemma 5.8.5, this follows by the same reasoning as in the previous subcase.

• Cases EAppPoly, TAppTLC and TAppDep are similar.

• D =

D1

Γ, x : k `L b : B Γ ` (x : k)→ B : ?σ

Γ `L λx :k .b : (x : k)→ B
ELamPoly

In this case, we must show that ρ (λx : k .b) ∈ CL
up((x :k)→B)J(x : k) → BKjρ.

Unfolding the definition of the interpretation, we find that we must show:

∀i ≤ j, ∀V ∈ Vup(k)JkKiρ, [V /x]ρ b ∈ CL
up(B)JBKi

ρ[x 7→(V ,V{L,P}
τ JV K[0..i]∅)]

So let some i ≤ j and V ∈ Vup(k)JkKiρ be given. By the IH for D1, it will be
enough to show that ρ[x 7→ (V ,V{L,P}τ JV K[0..i]

∅)] |=i Γ, x : A. By EnvConsK, it
will be enough to show that · ` V : ρ k and V ∈ Cup(k)JkKiρ. The former holds
by Lemma 5.5.18, and the latter follows by the definition of the computational
interpretation, since we already know V is in the value interpretation of the same
kind.

• Cases ELamComp, ERecComp, ERecPoly, TLamTLC and TLamDep are
similar

• D =

D1

Γ `L a : A

Γ `P a : A
ESub

The IH for D1 yields ρ a ∈ CL
up(A)JAKjρ. By regularity (Lemma 5.2.25), we know

that Γ ` A : ?σ. The result follows by Lemma 5.5.25.

• The case for EMVal is straightforward by induction and Lemma 5.5.9.

• Cases EZero, ESucc, EPair, EInl, EInr, ERoll, ERefl and EReflT are
straightforward by induction and the definition of the interpretation.

•

D1

Γ `θ a : (Σx :A1 .A2)@θ′
D2

Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a `θ b : B
Γ ` B : ?σ

Γ `θ pcasez a of 〈x , y〉 ⇒ b : B
EPCase

We show only the case for θ = P. The other case is similar, but simpler.
We must show that if pcasez ρ a of 〈x , y〉 ⇒ ρ b j ′ v for some j′ ≤ j, then
v ∈ VP

π JBKj−j ′ρ .

143

So suppose pcasez ρ a of 〈x , y〉 ⇒ ρ b j ′ v . They by Lemma 5.2.4, there are
some i1 and i2 such that 1 + i1 + i2 = j′ and:

ρ a i1 〈v1, v2〉 and [v1/x][v2/y][refl/z]b i2 v

We must show that:
v ∈ VP

up(B)JBKj−j
′

ρ

Now, by the induction hypothesis for D1 and the definition of the interpretation,
we have:

v1 ∈ Vθ
′

up(A1)JA1Kj−j1ρ and v2 ∈ Vθ
′

up(A2)JA2Kj−j1ρ[x 7→v1]

Now, by regularity (Lemma 5.2.25), inversion for @-types (Lemma 5.2.40) and
inversion for Σ-types (Lemma 5.2.42, we have Mob (A1). It follows by Lemma 5.5.9
and the definition of the interpretation for @-types that:

v1 ∈ VL
up(A1)JA1Kj−j1ρ and v2 ∈ VL

up(A2)JA2@θ′Kj−j1ρ[x 7→v1]

So, by two applications of EnvConsT and downward closure for environments
(Lemma 5.8.5), we have:

ρ[x 7→ v1][y 7→ v2] |=j−j1 Γ, x : A1, y : A2@θ′

Additionally, by the definition of the interpretation, we have that:

refl ∈ VL
τ J〈x , y〉 = aKj−j1ρ[x 7→v1][y 7→v2]

So it follows again by EnvConsT that and downward closure for environments
that:

ρ[x 7→ v1][y 7→ v2][z 7→ refl] |=j−j1−j2 Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a

Thus, the IH for D2 and downward closure (Lemma 5.5.22) yield:

v ∈ VP
up(B)JBKj−(1+j1+j2)

ρ[x 7→v1][y 7→v2][z 7→refl]

But 1 + j1 + j2 = j′, and we know that x, y and z are not free in B by the typing
hypotheses to D. So by Lemma 5.5.10 we obtain the desired result.

• Cases ENCase, ESCase, and EUnroll are similar.

• D =

D1

Γ `L b : b1 = b2

D2

Γ `θ1 a : [b1/x]A Γ ` [b2/x]A : ?σ

Γ `θ1 a : [b2/x]A
EConv

144

We must show that ρ a ∈ Cθ1up([b2/x]A)J[b2/x]AKjρ. The IH for D2 yields ρ a ∈
Cθ1up([b1/x]A)J[b2/x]AKjρ. So it will be enough to show that:

Cθ1up([b2/x]A)J[b2/x]AKjρ = Cθ1up([b1/x]A)J[b2/x]AKjρ

Now, by the IH for D1 and the definition of the interpretation, there is some
expression b such that ρ b1 V∗ b and ρ b2 V∗ b. Also, observe that, by Lem-
mas 5.3.2, 5.3.3 and 5.5.8, up(A) = up([b1/x]A) = up([b2/x]A) = up(ρ [b1/x]A) =
up(ρ [b2/x]A). We will refer to this polymorphism flag as π below.

So, we may prove the desired equality as follows:

Cθ1π J[b2/x]AKjρ = Cθ1π Jρ [b2/x]AKj∅ (Lemma 5.7.1)
= Cθ1π Jρ [b/x]AKj∅ (Lemma 5.7.4)
= Cθ1π Jρ [b1/x]AKj∅ (Lemma 5.7.4)
= Cθ1π J[b1/x]AKjρ (Lemma 5.7.1)

To justify the uses of Lemma 5.7.1, we must show that Γ ` [b1/x]A : s and
Γ ` [b2/x]A : s , which both follow from regularity (Lemma 5.2.25), with D
and D2. The uses of Lemma 5.7.4 have several prerequisites. First, we must
show that ρ [b1/x]A and ρ [b2/x]A are well-kinded, which follows from regularity
(Lemma 5.2.25) and environment substitution (Lemma 5.5.7). Additionally, we
must show that ρ [b2/x]A V∗ ρ [b/x]A and ρ [b1/x]A V∗ ρ [b/x]A. This follows
by Lemmas 5.2.13, 5.2.15 and 5.2.16.

• Cases EConvT, TConv, and TConvT are similar.

• D =

D1

Γ `P v : A

Γ `L v : A@P
EBoxP

We must show that ρ v ∈ CL
up(A@P)JA@PKjρ. According to the definition of the

interpretation and up, it will be enough to show that ρ v ∈ VP
up(A)JAKjρ. This

follows immediately by the IH for D2 and the definition of the interpretation.

• D =

D1

Γ `L a : A

Γ `L a : A@θ
EBoxL

We must show that ρ a ∈ CL
up(A@L)JA@θKjρ. If θ is L, this follows immediately

by the IH for D2 and the definition of the interpretation and up.

So suppose instead that θ is P. Since up(A@θ) = up(A), we will use the latter
exclusively. The IH for D2 yields there is some v such that ρ a ∗ v ∈ VL

up(A)JAKjρ.

145

We must show that if ρ a i v for some i ≤ j, then v ∈ VP
up(A)JAK(j−i)

ρ . But be-
cause the value interpretation models subsumption (Lemma 5.5.24), we know v ∈
VP

up(A)JAKjρ, and the result then follows by downward closure
(Lemma 5.5.22).

• D =

D1

Γ `θ1 a : A

Γ `P a : A@θ1

EBoxP

If θ = P, the result is immediate by the definition of the interpretation and
the induction hypothesis for D1. So suppose θ = L.

By the definition of the interpretation and up, we must show that if ρ a i v
for some i ≤ j, then v ∈ VL

up(A)JAK(j−i)
ρ . But by the IH for D1, we know that

v ∈ VL
up(A)JAKjρ, so the result follows by downward closure (Lemma 5.5.22).

• E =

Γ ` k

Γ, x : k ` B : ?σ

Γ ` (x : k)→ B : ?σ
TArrPoly

.

In this case, we must show that ρ ((x : k) → B) ∈ CτJ?σKjρ. By the definition
of the interpretation, it is enough to show that ρ ((x : k) → B) is a closed type
value of kind ?σ. This is immediate by Lemma 5.5.7 and the definition of type
values.

• Cases TArrComp, TNat, TSigma, TSum, TMu, TEq, and TEqT are similar
to the previous case.

• E =

E1

Γ ` A : ?τ

Γ ` A : ?σ
TMonoPoly

In this case, according to the definition of the interpretation, we must show
that ρA ∗ V and · ` V : ?σ, which follows immediately by the IH for E1 and a
use of TMonoPoly.

• Case TAt is similar to the previous case.

Normalization for closed terms is a direct corollary of the fundamental theorem
of the interpretation.

Corollary 5.8.10 (Normalization).

• If · `L a : A then there is a value v such that a ∗ v .

146

• If · ` A : k then there is a type value V such that A ∗ V .

Proof. Since ∅ |=j · for any j by EnvNil, Theorem 5.8.9 yields a ∈ CL
up(A)JAKj∅ in

the first case and A ∈ Cup(k)JkKj∅ in the second case. In both cases, unfolding the
definition of computational interpretation directly yields the desired result.

The fundamental theorem also implies the consistency of the system, i.e., that
there are uninhabited types.

Corollary 5.8.11 (Consistency). There is no term a such that · `L a : Z = S Z.

Proof. Suppose for a contradiction that · `L a : Z = S Z. By EnvNil and Theo-
rem 5.8.9, a ∈ CL

τ JZ = S ZKj∅ for any j. Unfolding the definition of the interpretation,
we find this implies that there is some term b such that Z V∗ b and S Z V∗ b. But
examination of the definition of parallel reduction reveals that Z and S Z step only to
themselves, and b cannot be both—a contradiction.

In fact, as in LFθ, we can prove a more general result for both the term and type
equalities. This will be convenient in the proof of progress:

Corollary 5.8.12 (Soundness of term equality).
If · `L a : b1 = b2, then there exists some b such that b1 V∗ b and b2 V∗ b.

Corollary 5.8.13 (Soundness of type equality).
If · `L a : A1 = A2, then there exists some A such that A1 V∗ A and A2 V∗ A.

Proof. By Theorem 5.8.9 and the definition of the interpretation.

5.9 Progress
Just as we saw in the case of LFθ, the proof of PCCθ’s progress lemma must wait until
after we have demonstrated the consistency of the propositional equality. The reason
is that the canonical forms lemmas would otherwise get stuck in the TConvT and
TContra cases. Because of the unmarked @-type elimination rule EUnboxVal,
the lemmas must be generalized a bit before we can prove them. Unlike in previous
systems, where we generalized the canonical forms lemmas with respect to a syntactic
equality, the presence of type level computation demands that we generalize with
respect to convertibility or propositional equality (which we now know are the same
in closed contexts).

Lemma 5.9.1 (Generalized canonical forms for Nat). Suppose · `θ v : A and · `L b :
A = Nat or · `L b : A = (...((Nat)@θ1)...)@θn for some θ1, ..., θn . Then either v = Z
or v = S v ′ for some value v′.

147

Proof. By induction on the derivation D :: · `θ v : A. Some cases do not apply
because their subject is not a value. The EVar case is ruled out because the context
is empty. We consider the remaining cases:

• SupposeD goes by TContra. Then there is a closed logical proof of some equality
A1 = A2 such that A1 and A2 have distinct head forms. But by Corollary 5.8.13,
A1 and A2 reduce to a common type—a contradiction, since reduction preserves
head forms (Lemma 5.2.10), and that no type has two distinct head forms.

• If D goes by TZero or TSucc, the result is immediate as the subject has the
desired form.

• If D goes by TUnboxVal or TMVal, the result follows directly from the appro-
priate induction hypothesis.

• If D goes by TInl, then for some B1 and B2 we have either a derivation of

· `L b : (B1 + B2) = Nat

or of:

· `L b : (B1 + B2) = (...((Nat)@θ1)...)@θn

In either case, this is an equality between two types with different head forms. We
may now obtain a contradiction by observing that Corollary 5.8.13 implies both
sides of the relevant equality reduce to a common type, that reduction preserves
head forms (Lemma 5.2.10), and no type has two distinct head forms.

• Cases EAtInv, EArrInv1, EArrInv2, EArrInvT2, ESumInv1, ESumInv2,
ESigmaInv1, ESigmaInv2, EMuInv, ELamComp, ELamPoly, ERecComp,
ERecPoly, EPair, EInr, ERoll, ERefl, and EReflT are similar to the
previous case, since they all assign a type that has a head form that is not HNat
or HAt θ for some θ.

• D =

· `L b : b1 = b2

D′
· `θ v : [b1/x]A

· ` [b2/x]A : ?σ

· `θ v : [b2/x]A
TConv

The IH for D′ yields the desired result, if we can show that [b1/x]A is provably
equal to Nat or (...((Nat)@θ1)...)@θn .

Note that, by Lemma 5.8.12, there is some a such that b1 V∗ a and b2 V∗ a.
By Lemma 5.2.13, this means that [b1/x]AV∗ [a/x]A and [b2/x]AV∗ [a/x]A.

So, by two uses of EReflT we have:

· `L trefl : [b1/x]A = [a/x]A and · `L trefl : [a/x]A = [b2/x]A

148

So, by EConvT, we have:

· `L trefl : [b1/x]A = [b2/x]A

And since we know that [b2/x]A is provably equal to a type of the appropriate
form, another use of EConvT yields the desired result.

• Case TConvT is similar to the previous case.

Lemma 5.9.2 (Canonical forms for Nat). If · `θ v : Nat then either v = Z or v = S v ′

for some value v′.

The other canonical forms lemmas are simple to prove with a similar generaliza-
tion. We omit the details. The progress theorem is then an easy induction on the
typing derivation:

Theorem 5.9.3 (Progress). If · `θ a : A, then either a is a value or there exists a ′
such that a a ′.

149

Chapter 6

Difficulties Scaling Up

There’s a monkey in the basement.
How did the monkey get there?
There’s a monkey in the basement.
Where did the monkey come from?
Where did the monkey come from?
Where did the monkey come from?

The Monkey Song
The Mountain Goats

This thesis attempts to solve two somewhat unrelated problems with existing
dependently typed languages. The combination of these two features in Theta is
something of an accident.

The research presented here is an outgrowth of the Trellys project. Trellys is a col-
laborative research initiative to design a new, practical dependently typed language.
Early Trellys languages had all the features of Theta and more. However, their
metatheory proved intractable. Over time, the Trellys project splintered into smaller
languages that solved more specific problems and added different restrictions to aid
the metatheory. One such language is closely related to λθ [15], whose metatheory
we explored in Chapter 3. This language stripped away every feature except the two
fragments, and explored them in a simply typed setting.

When it came time to scale up, the simplest way to add dependent types was to add
a primitive notion of equality [14], as we did with LFθ in Chapter 4. We chose to use
the generous, untyped and unmarked notion of equality that is described in this thesis
(hereafter “Trellys equality”), inspired in large part by Guru [54], as a step towards
the broader Trellys goal. Since the metatheory of LFθ proved tractable and the
Trellys equality did not introduce substantial metatheoretic complications, we were
optimistic that the language and corresponding metatheory would scale gracefully to
a complete core language with polymorphism and dependent types. Unfortunately,
Trellys equality turns out to have problematic interactions with these features, when
attempting to analyze it with standard metatheoretic techniques. At the same time as

150

we were discovering this, we realized that the metatheory of large dependently typed
core languages like Theta is not as well understood as we thought, even without the
fragments and the unusual equality.

Thus, the system PCCθ of Chapter 5 represents a kind of compromise. It develops
new techniques to handle Trellys equality in the presence of type-level computation
and polymorphism, but scales back on features like an infinite universe hierarchy
and collapsed syntax, which are not completely explored even in the literature of
Coq and Agda. We are proud of this achievement, but feel that it is also important
to document the difficulties in bridging the gap between PCCθ and Theta from a
metatheoretic perspective. We will also explain some features we have considered but
left out of Theta itself.

The goal of the present chapter, therefore, is to illustrate what makes the metathe-
ory of full Theta interesting and challenging, highlighting the problems introduced
by Trellys equality. It is important to emphasize that this is primarily a story of
failed proof techniques and not of failed languages. We are not aware of any actual
problems with Theta or the other languages we consider (except for the example
in Section 6.2). Instead, this chapter will focus on what we have learned about the
limits of known proof techniques, in the hope that other researchers tackling similar
problems can learn from our efforts.

6.1 Programmatic Types
There is one feature we would like to include in Theta, but whose metatheory is so
unusual we have left it out: programmatic types. In Theta and implicitly in PCCθ,
types are required to check in the logical fragment. This restriction does not exist
in LFθ, where instead the requirement is only that when a type is used in a given
fragment, it must also check in that fragment.

Allowing programmatic terms to have programmatic types could be a useful fea-
ture. In the present systems, everything at type level and above must be defined using
terminating recursion. Of course, the same arguments for the convenience of being
allowed to program without this restriction apply regardless of whether we are writing
terms or types, so it would nice to relax it. Sometimes potentially non-terminating
types are explicitly useful—for example, we have used them in the context of generic
programming in Agda by ignoring the termination checker [63].

However, allowing general recursion at the type level introduces substantial prob-
lems for the metatheory. In particular, the interpretation of types used in our normal-
ization proofs must itself be a well-founded recursive function. Recursive functions
cannot be interpreted directly in the way we have interpreted lambdas. It is tempt-
ing to think that the step-indexing technique we have used to handle recursive types
could handle recursive functions at the type-level, but this is a misunderstanding of
the technique, which captures a partial correctness property by counting reduction
of terms, not of types. Indeed, it is not even clear what kind of partial correctness

151

property we would want for the interpretation itself.

6.2 Extensionality
One advantage of our unmarked equality is that, in principle, we may add any (consis-
tency) equality axioms we would like without creating stuck terms or ruining “canon-
icity”. By contrast, when we add an equality axiom to Coq or Agda, it must be used
explicitly via pattern matching or a conv eliminator, creating a term that cannot re-
duce. The equality inversion rules (like EAtInv) in PCCθ are examples of convenient
reasoning principles that do not interfere with reduction.

Since our equality has an extensional flavor, it is natural to consider adding an
explicit axiom of functional extensionality. That is, to add a term of type:

(A B : Type) → (f g : A → B) → ((x:A) → f x = g x) → f = g

However, this axiom is actually inconsistent with full Theta.
The reason has to do with the unmarked function domains. Consider the functions

\y.0 and \y.1. These functions can be given many types in Theta because their
domain is unspecified and the argument is not used in the body. One such type is
(Nat = Bool) → Nat. According to the extensionality axiom listed above, to show
these two functions are equal, it would be enough to show that:

(x:Nat = Bool) → ((\y.0) x) = ((\y.1) x)

But this type is actually inhabited by the term \x.contra, since anything may be
proved from a contradictory equality via TContra.

Thus, with functional extensionality, it would be possible to obtain a proof of
\y.0 = \y.1. Of course, these functions can also be given a type with an inhab-
ited domain, like Nat → Nat. So, this equality would imply, for example, that
((\y.0) 2) = ((\y.1) 2). Thus, by TRefl and TConv, we could show 0 = 1.

As far as we are aware, this contradiction only arises when a function is given a
domain type that implies a contradiction. This suggests a potential solution: allow
functional extensionality to be used only for functions whose domain is inhabited in
the logical fragment. For example, we could rewrite the axiom above to:

(A B : Type) → (a : A@L) → (f g : A → B) → ((x:A) → f x = g x) → f = g

The extra premise a : A@L should rule out situations like the one above, since Nat =

Bool is not inhabited in the logical fragment. Exploring the metatheory in the pres-
ence of such an axiom is an interesting direction for future work.

6.3 Infinite Universe Hierarchy
In full Theta, we have included an infinite hierarchy of universes Type `. Such a
hierarchy poses a substantial challenge for a normalization proof. The chief problem

152

is that the introduction of such a hierarchy destroys our ability to identify the level
of an expression just by examining it.

By way of context, recall the Calculus of Constructions, where there are only two
universe levels ? and �, such that ? : �. In this system, it is possible to prove a
“classification” result of the following form:

If Γ ` A : B, then exactly one of the following holds:

• B is �. In this case, we call A a kind.

• Γ ` B : �. In this case, we call A a Γ-constructor (or a Γ-type in the
special case where B is ?).

• Γ ` B : ?. In this case, we call A a Γ-term.

One convenient fact about this hierarchy is that it is possible to distinguish
whether an expression A is a term, constructor, or kind simply by examining A itself
(given a context to distinguish term variables from type variables). In particular, in
the Calculus of Constructions we can easily show that the only “kinds” in the sense
of the above definition are ? and arrow-types that end in ?.

This fact is exploited in most proofs of normalization for CC. One key use is
in defining the possible interpretations for types (e.g., the function Cand(k) from
Chapter 5). Since types have kinds and kinds have a clear structure, we may define
the possible interpretations of types by induction on the structure of kinds rather
than considering arbitrary expressions.

But in a type system with an infinite hierarchy of universes, there is no “top level”
like � that gives us a foothold into characterizing the possible forms of types. Indeed,
lambdas and applications live at every level, so defining Cand(k) is challenging.

Most existing normalization proofs skirt this problem in one of two ways. The
proofs for systems that include datatypes and large eliminations include only one
universe level, much like the Calculus of Constructions. These proofs include Werner’s
proof of normalization for a fragment of the Calculus of Inductive Constructions [64]
and Goguen’s proof of normalization for a fragment of UTT [28]. This is also the
approach we have taken in Chapter 5.

On the other hand Luo’s proof of normalization for the Extended Calculus of
Constructions (ECC) includes a full predicative hierarchy [40]. Luo solves the prob-
lem of defining candidates by proving a quasi-normalization theorem before the main
normalization theorem. This quasi-normalization result implies that expressions at
the type level can be reduced to head forms, and thus the definition of candidates
need not consider applications. Quasi-normalization is achieved by defining an in-
tricate metric on types which Luo calls the “j-degree” of a type. It counts, roughly,
the number of quantifications that occur at type level j in the type. Since a given
expression can only use a finite part of the infinite hierarchy, it is then enough to
show normalization for ECCj, the system with only j levels. Since the top level of

153

ECCj will have a structure much like the kind-level of CC, the standard techniques
apply.

Unfortunately, a quasi-normalization approach will not work in our system. Luo’s
system includes a standard conversion rule for β-equality:

Γ ` a : A A ∼=β B

Γ ` a : B
TConv

In order to handle this rule, Luo must show that j-degrees are preserved by conversion.
That is, if A ∼=β B, then A and B have the same j-degree. Since Theta has a similar
unmarked use of propositional equality, we would need to show that if Γ `L a : B1 =
B2, then B1 and B2 have the same j-degree. But this is not provable before we know
the system is consistent—in general B1 and B2 may be completely unrelated.

6.4 Collapsed Syntax
Another major distinction between PCCθ and Theta is that the syntax of Theta is
collapsed, while the syntax of PCCθ is stratified into terms, types and kinds. In some
systems, this is a small distinction and it is simple to prove that well-typed terms in
the collapsed syntax can be translated directly into a stratified syntax. However, this
is not the case for Theta.

To illustrate why, let us consider what Theta would look like with if restricted to
one universe level (like the Calculus of Constructions). For simplicity, we omit data
types and induction.

s ::= ?τ | ?σ | �

a, b, A, B ::= s | (x : A)→ B | a = b | A@θ

| x | λx . b | rec f x .b | b a | refl | abort | contra |

Because we wish to consider only predicative polymorphism, we divide the standard
sort ? into ?τ for monomorphic types and ?σ for polymorphic types, as we did in
Chapter 5. Sort ?τ has type �, but ?σ does not. This restriction, combined with the
rule for arrow types, achieves predicative polymorphism. As in pure type systems,
we use a set of “rules” R to classify the allowed arrow types.

R = {(�,�), (?σ,�), (�, ?σ), (?σ, ?σ), (?τ , ?τ)}

` Γ

Γ `L ?τ : �
TStar

Γ `θ A : ?τ

Γ `θ A : ?σ
TTauSig

Γ `L A : s1 (s1, s2) ∈ R
Γ, x :LA `L B : s2 Mob (A)

Γ `L (x : A)→ B : s2

TArr

The rules R are standard except for the split sort ?. In particular, the first rule
allows type-level computation (functions from types to types), the second rule allows

154

dependent types (functions from terms to types), the third rule allows polymorphism
(functions from types to terms), and the last two rules allow standard term-level
functions. We see that, since ?σ does not have the type �, it cannot be used as the
domain of a function. Since polymorphic function types themselves have kind ?σ,
they do not quantify over themselves, and the polymorphism is predicative.

It is not difficult to see that Trellys equality introduces challenges in translating the
well-typed terms of this language into a stratified language like PCCθ. For example,
consider the equality type a = b. In Theta, equalities like 3 = Bool are well-typed,
and even inhabited in the programmatic fragment. But in PCCθ equalities must be
between two terms or two types, so there is no way to translate this type. More, the
presence of equalities like Nat = ?τ directly ruins the “classification” theorem from
the previous section that we were attempting to regain by removing the universe
hierarchy.

A natural approach to solving this problem is restricting the typing rules which
create ambiguity in the levels of the system. For example, we might try adding restric-
tions to Theta’s rule TEq to demand that equalities are always between expressions
on the same “level”. There are two problems with this approach. First, formulating
such restrictions is surprisingly challenging (the reader is encouraged to try). Second,
and more troubling, such an approach would break type safety. In particular, the
arrow types (x : A)→ B and (x : A′)→ B ′ may be on the same level even when A
and A′ are not. And as we saw in Chapter 4, type safety requires us to be able to
show A = A′ whenever (x : A)→ B = (x : A′)→ B ′.

Despite these problems, because the use of the sorts ?σ and � is carefully re-
stricted, it is possible to set up the system so that the valid kinds may be distin-
guished. That is, in the system sketched here, if Γ `θ A : �, then we can show A
comes from the following grammar:

k ::= ?τ | (x : B)→ k | k@θ

However, being able to characterize the kinds of the system turns out to be insufficient
for the normalization proof—we also need the ability to distinguish between terms
and types. Recall that the interpretation in Section 5.4 is indexed by an environment
ρ which handles term variables and type variables differently. Term variables are
mapped to a value, while type variables are mapped to a pair of a type and the
interpretation of that type (roughly). In the presence of equalities like Nat = ?τ , it
may be the case that, for example, Bool has the type Nat. Thus, the interpretation
runs the risk of treating a term like a type or vice versa. This creates a problem
for lemmas involving environments, which need to know the difference (for example,
Lemma 5.7.1).

155

6.5 Function Domains
Another difference between the language PCCθ and core Theta is that function
domains are annotated. This change makes it substantially easier to state the type
interpretation used in the proof of normalization. In particular, recall the definition
of the interpretation for type-level lambdas:

Vθπ Jλx : k1.BKjρ = (A ∈ TYP, I ∈ [Cand(k1)](θ×N)) 7→ VθπJBKjρ[x 7→(A,I)]

We interpret the lambda as a set-theoretic function. Here, we have given the set-
theoretic function a domain that refers to the domain type of the lambda. It is
surprisingly difficult to formulate an appropriate domain for this function without
the kind k1. One cannot simply use the set of all possible interpretations, since then
the function being defined here will not be in that set.

One approach we considered in depth was to define the interpretation on typing
derivations rather than expressions. Even if we removed the domain annotation from
lambda expressions, the typing rule would still specify the domain:

Γ, x : k1 ` B : k2

Γ ` (x : k1)→ k2

Γ ` λx : k1.B : (x : k1)→ k2

TLamTLC

There are, however, several problems with working with derivations instead of
expressions. First, it substantially complicates the metatheory, which is already
somewhat complex. More pressingly, it is difficult to define an interpretation over
derivations which has the necessary properties. To see why, recall the statement of
the fundamental theorem of our interpretation:

Theorem. Suppose ρ |=j Γ.

• If Γ `θ1 a : A, then ρ a ∈ Cθ1up(A)JAKjρ.

• If Γ ` A : k, then ρ k ∈ Cup(k)JkKjρ.

Consider the first clause of this theorem. If the interpretation is defined on typing
derivations, we must come up with a derivation of Γ ` A : k to use in the statement of
the first clause. If we attempt to use a particular derivation, we will get stuck because
the interpretations of polymorphic function types necessarily quantify over arbitrary
derivations. So we must state the theorem to say that ρ a is in the interpretation
of any derivation of Γ ` A : k. Unfortunately, the details of such a proof require a
coherence lemma of the form:

Lemma. If D,D′ :: Γ ` A : k, then the interpretations of D and D′ are the same.

156

This kind of lemma is standard when defining interpretations over typing deriva-
tions. However, because of the unmarked TConv and TContra rules in our system,
there does not appear to be any appropriate interpretation of derivations that satisfies
it.

It is worth pointing out that the problems described here only require us to anno-
tate the domains of type-level lambdas whose domain is a kind. We have chosen to
add domain annotations to other function forms in PCCθ as well for uniformity, but
they are not needed for the normalization proof.

6.6 Large Eliminations
One feature that appears quite straightforward to add to PCCθ is large eliminations.
For example, recall that system’s rule for pattern matching on pairs:

Γ `θ a : (Σx :A1 .A2)@θ′

Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a `θ b : B

Γ ` B : ?σ

Γ `θ pcasez a of 〈x , y〉 ⇒ b : B
EPCase

This rule appears only at the term level. However, it would be convenient to be
allowed to pattern match at the type level as well. We could add a type form
pcasez a of 〈x , y〉 ⇒ B and a corresponding inference rule:

Γ `L a : (Σx :A1 .A2)@θ′

Γ, x : A1, y : A2@θ′, z : 〈x , y〉 = a ` B : k

Γ ` k

Γ ` pcasez a of 〈x , y〉 ⇒ B : k
TPCase

We require the scrutinee a to check in the logical fragment to preserve normalization
of the type level, but otherwise the rule closely resembles its term-level counterpart.
This new type form is a large elimination because it eliminates a term at the type
level. But the rule TConv is already a kind of large elimination—it eliminates
equality proofs at the type level. The machinery that is needed in the normalization
proof to deal with this is already included in our proofs (primarily the environment ρ
which maps terms to values). Thus, we could interpret this new type form as follows,
in the logical fragment:

Vθπ Jpcasez a of 〈x , y〉 ⇒ BKjρ =

{
VθπJBKjρ[x 7→v1][y 7→v2][z 7→refl] If ρ a ∗ 〈v1, v2〉
∅ otherwise

It seems likely that, with the interpretation shown here, not much would need to
change in the existing normalization proof for PCCθ.

157

Chapter 7

Related work

Shuffled up Sixth Street in the rain.
Kept my head down as I looked past the people.
And in the department store, I found what I was looking for.
This is the church, this is the crucible.

Wizard Buys a Hat
The Mountain Goats

This thesis attempts to solve two major problems with existing dependently typed
languages. Unsurprisingly, both problems have been analyzed by other authors in
the past. In this chapter, we examine some of the most closely related alternate
approaches.

7.1 Other Approaches to Recursion and Partiality
Many authors have considered language features to model partiality and recursion
in a consistent dependent type theory. Some of these techniques have even been
implemented in existing dependently typed languages, with varying degrees of success.

7.1.1 Partiality Monad

Capretta proposed representing potentially non-terminating computations using a
coinductive partiality monad [12]. This technique can be used in existing languages
like Coq and Agda, which already support coinduction [20]. For example, Agda’s
partiality monad has been used to present subtyping for recursive types [24] and
represent potentially infinite parsing trees [23].

In both Coq and Agda, coinduction is supported via the addition of several prim-
itive operators. The Agda standard library includes the following specification:

postulate
∞ : ∀ {a} (A : Set a) → Set a

158

] : ∀ {a} {A : Set a} → A →∞ A
[: ∀ {a} {A : Set a} →∞ A → A

Here, Set is Agda’s Type and a is a universe level, similar to ` in PCCθ. Intuitively,
the ∞ type constructor creates a “suspended computation” of the appropriate type,
while] and [are “delay” and “force” operators, respectively. For example, we may
define infinite streams and a map function over them as follows:
data Stream (A : Set 0) : Set 0 where
Cons : A →∞ (Stream A) → Stream A

map : {A B : Set 0} → (A → B) → Stream A → Stream B
map f (Cons x xs) = Cons (f x) (] (map f ([xs)))

There are several differences between this approach and the one outlined in this
document. Coinduction is a very general method for representing infinite data, which
we do not consider. On the other hand, corecursive definitions are required to be
“productive”. For example, the following stream definition is rejected by Agda:
loop : {A : Set 0} → Stream A
loop = loop

Productivity is approximated by the “guard condition”, which requires every core-
cursive call to be “guarded” by a coinductive constructor. Thus, while corecursion
is excellent for modeling specific cases of non-termination (like streams), it is not
well-suited for modeling functions whose termination behavior we simply do not yet
understand, or functions that we wish to prove terminating extrinsically.

Additionally, the PCCθ approach has advantage that terminating and potentially
partial functions are defined and reasoned about in the same way. As we can see above,
working with coinduction in Agda requires the use of an alternate set of primitives,
which demand their own operational semantics and require corresponding reasoning
principles to be built into the language.

7.1.2 Non-Constructive Fixpoint semantics.

The work of Bertot and Komendantsky [8] describes a way to embed general recursive
functions into Coq that does not use coinduction. They define a datatype partial A
that is isomorphic to the usual Maybe A but is understood as representing a lifted
CPO A⊥, and use classical logic axioms to provide a fixpoint combinator fixp. When
defining a recursive function the user must prove continuity side-conditions. Since
recursive functions are defined nonconstructively they cannot be reduced directly, so
instead one must reason about them using the fix-point equation.

7.1.3 Partial Types

Nuprl has at its core an untyped lambda calculus, capable of defining a general fixed
point combinator for recursive computations. In the core type theory, all expressions

159

must be proven terminating when used. Constable and Smith [19] integrated po-
tentially nonterminating computations through the addition of a type A of partial
terms of type A. The fixpoint operator then has type (A → A) → A. However,
to preserve the consistency of the logic, the type A must be restricted to admissible
types. Crary [22] provides an expressive axiomatization of admissible types, but these
conditions lead to significant proof obligations, especially when using Σ-types.

Smith [53] provides an example which shows that Nuprl needs this restriction.
Writing a↓ for “a terminates”, define a Σ-type T of functions which are not total, and
recursively define a p which inhabits T .

Total (f : N→ N)
def
= (n : N)→ (f n)↓

T
def
= Σ(f : N→ N).Total f → False

(p : T)
def
= fix (λp.〈g, λh.—〉)

g
def
= λx.if x = 0 then 0 else π1(p)(x− 1)

Here the dash is an (elided) proof which sneakily derives a contradiction using π2(p)
and the hypothesis h that g is total. On the other hand, a separate induction shows
that π1(p) is total; it returns 0 for all arguments. This is a contradiction.

PCCθ has almost all the ingredients for this paradox. Instead of a recursively
defined pair we can use a recursive function Unit → T , and we can encode a ↓ as
Σ(y : A).a = y. What saves us is that the proof in the second component of p uses
the following reasoning principle: if π1(p) terminates, then p terminates. In Nuprl
a ↓ is a primitive predicate and this inversion principle is built in. But using our
encoding, a function (π1(p) ↓) → (p ↓) would have to magically guess the second
component of a pair knowing only the first component. If we assume this function
as an axiom we can encode the paradox and derive inconsistency, so our consistency
proof for PCCθ shows that there is no way to write such a function.

7.1.4 Hoare Type Theory.

HTT [48, 56] is another embedding of general programs into a type theory like Coq.
It goes beyond nontermination to also handle memory effects. Instead of a unary
type constructor A, it adds the indexed type {P}x :A{Q} representing an effectful
computation returning A and with pre- and postconditions P and Q. The assertions
P and Q can use all of Coq, so the type of a computation can specify its behav-
ior precisely. However, computations cannot be evaluated during typechecking (the
fixpoint combinator and memory access primitives are implemented as Coq axioms
with types but no reduction rules). Thus, as we observed with coinduction, poten-
tially non-terminating expressions must be reasoned about with a whole new set of
primitives.

160

7.1.5 Terminating Sublanguages

There are other dependently-typed languages which allow general recursion but iden-
tify a sublanguage of terminating expressions. Aura [34] and F∗ [57] do this using
the kind system: expressions whose type has kind Prop are checked for normaliza-
tion. Types can contain values but not non-value expressions, so there is no way to
write separate proofs about programs. There also is no facility to treat program-
matic values as proofs, e.g. a logical case expression cannot destruct a value from the
nonterminating fragment.

ATS [16], Guru [54], and Sep3 [35] are dependently-typed languages where the
logical and programmatic fragments are syntactically separate—in effect rejecting
the rule TSub. One of the gains of this separation is that the logical language can
be made CBN even though the programmatic one is CBV, avoiding the need for
thunking. To do inductive reasoning, the Sep3 language adds an explicit “terminates”
predicate.

Idris [11] is a full-spectrum dependently typed programming language that per-
mits non-total definitions. Internally, it applies a syntactic test to check if function
definitions are structurally decreasing, and programmers may ask whether particular
definitions have been judged total. The typechecker will only reduce expressions that
have been proved terminating, again precluding separate equational reasoning about
partial programs. Idris’ metatheory has not been studied formally.

7.1.6 The “Later” Modality

Nakano [47] introduced the “later” modality to define a total language with guarded
recursive types. Intuitively, a term of type •A (pronounced “later A”) will be usable as
a term of type A in the future. The recursive type µ x .A then unfolds to [•µ x .A/x]A
rather than [µ x .A/x]A. Using this modality, he is able to give the type (•A →
A) → A to the Y combinator. This type allows programmers to define a variety of
recursive functions while still ensuring that the language is normalizing. Nakano uses
a step-indexed realizability interpretation to prove the normalization property for his
language, suggesting deep connections with the present work.

The later modality has been used by subsequent authors to design languages for
a variety of purposes. Krishnaswami and Benton use it define a total language for
functional reactive programming [37, 36]. Birkedal et al. [9] study the topos of trees,
which they observe can model an extension of Nakano’s calculus to a full dependent
type theory with guarded recursion. While these authors do not consider languages
with partiality and their settings have substantial differences from our own, their
success in extending step-indexing and closely related techniques to model recursion
in larger languages demonstrates the versatility of the technique.

161

7.2 Modal Type Systems for Distributed Computa-
tion

Modal logics allow one to reason from multiple perspectives, called “possible worlds”.
It is tempting to view the language presented here as such a system, where the possible
worlds are θ, the logical and computational fragments of the language.

One way to define a modal logic is to make the world explicit, for example using
a judgement Γ `θ A, stating that under the assumptions in Γ, the proposition A is
true at the world θ. Each assumption in the context is tagged with the world where
it holds:

(θ, A) ∈ Γ

Γ `θ A
In such as system, the at modality [33], internalizes the typing judgment into a

proposition, with introduction form

Γ `θ′ A
Γ `θ A@θ′

and elimination form:
Γ `θ A@θ′ Γ, (θ′, A) `θ C

Γ `θ C
Our mobile rule is similar to the perspective-shifting rule, called get, from

ML5 [46, 45].
Γ `θ′ A A mobile

Γ `θ A
This rule, shown above, allows a class of propositions to be directly translated between
worlds. Here, mobile means almost the same thing as it does in PCCθ—in fact, ML5
inspired our choice of the name “mobile” for types whose values can freely move
between the fragments. For example, base types (such as strings and integers) and
the at modality (A@θ) are always mobile, sums (A + B) are mobile only when their
components (A and B) are mobile, but implications are never mobile.

One difference between our system and modal logics is our treatment of implica-
tion (i.e. function types). The functions in our system are required to have a “mobile”
domain. Non-mobile types must be annotated with a fragment using the @ construc-
tor. In modal logics, the domain and range of implications are in the same world.
Such an approach is incompatible with our subsumption rule:

Γ `L a : A

Γ `P a : A
TSub

Suppose A were a function type B1 → B2 with no tag on the domain. When we
defined such a function in the logical fragment, the function’s body could make use
of the fact that its argument checks logically. If the subsumption rule were used to
transport the function to the programmatic fragment, it could be applied to terms
that check only programmatically, potentially violating assumptions of its body.

162

7.3 Equality in Dependent Type Theory
Many previous authors have observed that the derived intensional equality in lan-
guages like Coq and Agda is restrictive and inconvenient to work with in practice. In
this section we will examine other solutions to this problem.

7.3.1 John Major Equality

One problem with the traditional notion of equality is that it is homogeneous—both
sides of an equality must have the same type. It is also possible to define a similar
but heterogeneous notion of equality, known as “John Major” equality or JMEq [41]:

data JMEq : {A B : Type} → A → B → Type where
refl : {A : Type} → (a : A) → JMEq a a

Unfortunately, while JMEq allows the programmer to state any equality, these equali-
ties can only be used when both sides have the same type. For example, in Coq, the
derived elimination principle for JMEq has (roughly) the following type:

(A : Type) → (x y : A) → (P : A → Set) → P x → JMeq x y → P y

This restriction on the elimination of equality proofs is often inconvenient. Massaging
goals into a form where the equalities are usable often requires special tricks and
idioms (see e.g. [17], Chapter 10).

7.3.2 Extensional Type Theory

Intensional type theories like Coq and Agda have two notions of equality. The defi-
nitional equality, which is typically β- or βη− convertibility, is automatically used by
the type system (much like PCCθ equality), but cannot be explicitly manipulated by
programmers:

A =β B

A ≡ B
DefEq

Γ ` a : A A ≡ B

Γ ` a : B
Conv

As we have seen, these languages also include a notion of propositional equality (which
is often simply defined as a datatype). Propositional equality may be explicitly ma-
nipulated by the programmer, but its uses are marked in the syntax.

Γ ` a : A

Γ ` refl : Eq A a a
PropEq

Γ ` a : [b1/x]A Γ ` p : Eq B b1 b2

Γ ` conv a by p : [b2/x]A
PropConv

On the other hand, in extensional type theories like Nuprl [18] the use of propo-
sitional equality is computationally irrelevant and unmarked in the syntax. This is
achieved by reflecting propositional equality back into the definitional equality.

Γ ` a : Eq A B1 B2

B1 ≡ B2

Extensional

163

This approach has some similarities with PCCθ. In particular, in extensional type
theory, uses of conversion do not clutter terms. On the other hand, the extensional
equality in languages like Nuprl is still defined in terms of a standard notion of
propositional equality, with the associated limitations (for example, Nuprl’s equality
is homogeneous). The equational theory of extensional type theories is also somewhat
different from PCCθ. For example, in Nuprl one can prove extensionality, which is
incompatible with our language.

7.3.3 Observational Type Theory

Observational Type Theory [4] combines aspects of intensional and extensional type
theory. Like intensional type theory, OTT distinguishes definitional and propositional
equality. The propositional equality is then extended with a set of axioms which
provide extensional reasoning principles. These axioms are equipped with operational
semantics so that they do not block reduction. So, while conversion is still marked in
terms, it is possible to prove equalities like (a = conv a by b).

Thus, the goals of OTT are very similar to our motivation for PCCθ’s equality.
Both are heterogeneous notions of equality whose eliminations “clutter” terms less
than the usual Coq or Agda equality. However, the two approaches are very different.
While OTT attemps to achieve a more convenient equality by enhancing the type
system with extensional axioms, the PCCθ approach is to remove as much typing
information as possible from terms.

7.3.4 Guru

Guru [54] includes a very operational notion of equality and was a major inspiration
for PCCθ, as described in Chapter 6. Like PCCθ, Guru can eliminate equalities
where the two sides have different types. Equalities are proved as in PCCθ without
any type-directed rules. However, unlike PCCθ, Guru’s equality formation rule does
not require that the equated expressions are even well-typed. This can be annoying
in practice, because simple programmer errors are not caught by the type system.

7.3.5 GHC Core

GHC Core [55, 62] is similar to our language in not having separate notions of defini-
tional and propositional equality. Instead, all type equivalences—which are implicit
in Haskell source—must be justified by the typechecker by explicit proof terms. GHC
lacks a consistent sublanguage corresponding to our logical fragment, so proofs are
evaluated at runtime to ensure they are valid.

164

7.4 Step-indexed logical relations
Our proof technique draws heavily from previous work on step-indexed logical rela-
tions. The idea to approximate models of programming languages up to a number
of remaining execution steps originated in the work of Appel and McAllester on
foundational proof-carrying code [5]. They observed that the step indices allowed a
natural interpretation of recursive types. Subsequently, Ahmed extended this tech-
nique to languages involving impredicative polymorphism, mutable state and other
features [2, 1].

Hobor, Dockins and Appel have proposed a general theory of indirection which
captures many of the common use-cases for step-indexed models [32]. They provide
a general framework for applying these approximation techniques to resolve certain
types of apparent circularity (similar to the problems with recursive types described
above). In a recent draft [25], Dockins and Hobor have used this framework to
provide a Hoare logic of total correctness for a small language with function pointers
and semantic assertions. This work is closely related to the present development,
but with different goals: they prove the soundness of a logic which can reason about
termination, while we prove that every term in the logical fragment of our language
terminates.

We first introduced the hybrid, partially step-indexed technique in the context of
a simply typed language that resembles λθ [15]. In subsequent work, we extended
this technique to handle dependent types in a setting similar to LFθ [14].

165

Chapter 8

Conclusion

Our love is like Jesus, but worse.
Though you seal the cave up where you’ve lain its body,
It rises.
It rises.

Going to Marrakesh
The Extra Glenns

This thesis introduces a new dependently typed core language, PCCθ. The goal
of PCCθ is to solve two problems with existing dependently typed languages: the
requirement of normalization makes programming with recursive functions difficult,
and the standard notion of equality is insufficiently expressive and often inconvenient
to work with. To solve the first problem, PCCθ directly allows non-termination via
general recursion, but identifies a terminating sublanguage, the “logical fragment”.
The type system of the logical fragment is consistent and may be used to reason
about any PCCθ program, even those that are potentially non-terminating. To solve
the second problem, PCCθ includes a new built-in notion of equality. This equality
is heterogeneous and its uses are unmarked so they do not clutter expressions. Addi-
tionally, PCCθ expressions include no typing annotations, so types do not get in the
way of equalities.

At the outset of this project, we believed that most challenging parts of the
metatheory of PCCθ would relate to the inclusion of general recursion and the re-
lated interacting fragments. To study this, we created the language λθ, a simply
typed variant. To prove normalization for the logical fragment of λθ we developed
the technique of “partially step-indexed logical relations”. Having demonstrated that
the metatheory of a language with PCCθ-like logical and programmatic fragments
is tractable, we added a PCCθ-like notion of equality to λθ to create the depen-
dently typed language LFθ. The proof techniques we had previously developed scaled
gracefully to this larger system. In both cases, the metatheory has been completely
mechanized.

166

Bridging the gap between LFθ and full PCCθ proved more challenging. In partic-
ular, PCCθ includes type-level computation and polymorphism. As we described in
Chapter 6, these features interact in surprisingly subtle ways with PCCθ’s unmarked
equality, creating substantial metatheoretic complications. Despite this, we were able
to prove normalization for PCCθ, which combines our solutions to the problems of
non-termination and equality reasoning with dependent types, type-level computa-
tion, and polymorphism. We used the techniques developed for λθ and LFθ, along
with some new tricks, to show that terms in the logical fragment of PCCθ normalize
and that its type system is consistent.

It is natural to consider the plausibility of using the novel aspects of PCCθ in a
practical dependently typed language. Our solution to the problem of incorporating
general recursion with dependent types seems like a relatively simple and safe addi-
tion to standard systems. Non-termination does introduce some problems for type
inference, since comparing expressions becomes undecidable, but in practice this is
not substantially different from the problem of comparing expressions when one might
take a very long time to terminate. Since the fragments can be used independently,
programmers who are satisfied with current dependently typed languages could work
strictly in the logical fragment with minimal additional overhead. Additionally, pro-
grammers more familiar with languages like Haskell could program strictly in the
programmatic fragment, and the ability to reason about their code would be avail-
able to them in the same language. Thus, such a system could be an excellent way
to introduce more programmers to dependent types gradually.

The adoption of PCCθ’s equality seems trickier. First, extensional equality in-
troduces substantial complications for type inference. Since uses of the propositional
equality are not marked in terms, the type checker must decide where to insert them.
In practice, some kind of annotation regime would likely be necessary. These prob-
lems are currently being explored by Vilhelm Sjöberg [51], and will be considered in
depth in his upcoming thesis. A second concern is that the metatheory is murkier for
a system with PCCθ’s equality that includes standard features like a collapsed syn-
tax or a universe hierarchy. In practice, existing systems like Coq and Agda include
features whose metatheory has not been studied in combination (or, in the case of
Agda, at all), and we are not aware of any problems in Theta, the extended version
of PCCθ. Still, we hope to continue studying the theory of Theta itself to gain
additional confidence in the consistency of its logical fragment.

We believe that the solutions proposed in this thesis succeed in making depen-
dently typed languages more usable. If PCCθ is not precisely the dependently typed
core language of the future, it certainly represents a useful step along the way.

167

Appendix A

Reduction Relations

For readability, we omitted the complete specification of parallel reduction in Chap-
ter 4 and of several reduction relations in Chapter 5. Here we provide the missing
details.

A.1 Parallel Reduction for LFθ

a V b

a V a
PRefl

a1 V a ′1

ncasez Z of {Z ⇒ a1; S x ⇒ a2}V [refl/z]a ′1
PCaseZ

v V v ′ a2 V a ′2

ncasez S v of {Z ⇒ a1; S x ⇒ a2}V [refl/z][v ′/x]a ′2
PCaseS

v1 V v ′1 v2 V v ′2 b V b ′

pcasez 〈v1, v2〉 of {(x , y)⇒ b}V [refl/z][v ′2/y][v ′1/x]b ′
PCasePair

v V v ′ a1 V a ′1

scasez inl v of {inl x ⇒ a1; inr x ⇒ a2}V [refl/z][v ′/x]a ′1
PCaseInl

v V v ′ a2 V a ′2

scasez inr v of {inl x ⇒ a1; inr x ⇒ a2}V [refl/z][v ′/x]a ′2
PCaseInr

168

v V v ′ a V a ′

(rec f x .a) v V [v ′/x][rec f x .a ′/f]a ′
PFun

v V v ′ a V a ′

(λx .a) v V [v ′/x]a ′
PLam

v V v ′ a V a ′

(ind f x .a) v V [v ′/x][λy .λz .(ind f x .a ′) y/f]a ′
PInd

v V v ′

unroll (roll v)V v ′
PUnroll

a V a ′

rec f x .a V rec f x .a ′
PFun1

a V a ′

λx .a V λx .a ′
PLam1

a V a ′

ind f x .a V ind f x .a ′
PInd1

a V b

S a V S b
PSucc1

a V a ′ a1 V a ′1 a2 V a ′2

ncasez a of {Z ⇒ a1; S x ⇒ a2}V ncasez a ′ of {Z ⇒ a ′1; S x ⇒ a ′2}
PNCase1

a V b

inl a V inl b
PInl1

a V b

inr a V inr b
PInr1

a V a ′ b V b ′

〈a, b〉V 〈a ′, b ′〉
PPair1

a V a ′ a1 V a ′1 a2 V a ′2

scasez a of {inl x ⇒ a1; inr x ⇒ a2}V scasez a ′ of {inl x ⇒ a ′1; inr x ⇒ a ′2}
PSC1

a V a ′ b V b ′

pcasez a of {(x , y)⇒ b}V pcasez a ′ of {(x , y)⇒ b ′}
PPCase1

a V b

roll a V roll b
PRoll1

a V b

unroll a V unroll b
PUnroll1

a V a ′ b V b ′

a b V a ′ b ′
PApp1

AV A′ B V B ′

(x :A)→ B V (x :A′)→ B ′
PArr1

169

AV A′

A@θ V A′@θ
PAt1

AV A′ B V B ′

A + B V A′ + B ′
PSum1

AV A′ B V B ′

Σx :A.B V Σx :A′.B ′
PSigma1

a V a ′ b V b ′

a = b V a ′ = b ′
PEq1

AV A′

µx .AV µx .A′
PMu1

a V∗ b

a V∗ a
MPRefl

a V b

b V∗ b ′

a V∗ b ′
MPStep

A.2 Reduction for PCCθ

A.2.1 Deterministic reduction

a b

ncasez Z of {Z ⇒ a1; S x ⇒ a2} [refl/z]a1

SCaseZ

ncasez S v of {Z ⇒ a1; S x ⇒ a2} [refl/z][v/x]a2

SCaseS

pcasez 〈v1, v2〉 of 〈x , y〉 ⇒ b [v1/x][v2/y][refl/z]b
SCaseP

scasez inl v of {inl x ⇒ a1; inr x ⇒ a2} [refl/z][v/x]a1

SCaseL

scasez inr v of {inl x ⇒ a1; inr x ⇒ a2} [refl/z][v/x]a2

SCaseR

170

(λx :A.b) v [v/x]b
SBeta

(λx :k .b) V [V /x]b
SBetaT

(rec f (x :A).b) v [v/x][rec f (x :A).b/f]b
SFBeta

(rec f (x :k).b) V [V /x][rec f (x :k).b/f]b
SFBetaT

unroll (roll v) v
SUnroll

a a ′

S a S a ′
SSucc1

a a ′

a b a ′ b
SApp1

b b ′

v b v b ′
SApp2

a a ′

a B a ′ B
SAppT1

B B ′

v B v B ′
SAppT2

a a ′

ncasez a of {Z ⇒ a1; S x ⇒ a2} ncasez a ′ of {Z ⇒ a1; S x ⇒ a2}
SNCase1

a b

inl a inl b
SInl1

a b

inl a inl b
SInl1

a a ′

scasez a of {inl x ⇒ a1; inr x ⇒ a2} scasez a ′ of {inl x ⇒ a1; inr x ⇒ a2}
SSC1

a a ′

〈a, b〉 〈a ′, b〉
SPair1

b b ′

〈v , b〉 〈v , b ′〉
SPair2

a a ′

pcasez a of 〈x , y〉 ⇒ b pcasez a ′ of 〈x , y〉 ⇒ b
SPCase1

a a ′

roll a roll a ′
SRoll1

a a ′

unroll a unroll a ′
SUnroll1

171

A B

(λx : A.B) v [v/x]B
TSBeta

(λx : k .B) V [V /x]B
TSBetaT

A A′

A b A′ b
TSApp1

b b ′

V b V b ′
TSApp2

A A′

A B A′ B
TSAppT1

B B ′

V B V B ′
TSAppT2

a j b

a 0 a
MSRefl

a b

b j b ′

a 1+j b ′
MSStep

A.2.2 Parallel reduction

a V b

a V a
PRefl

a1 V a ′1

ncasez Z of {Z ⇒ a1; S x ⇒ a2}V [refl/z]a ′1
PCaseZ

v V v ′ a2 V a ′2

ncasez S v of {Z ⇒ a1; S x ⇒ a2}V [v ′/x][refl/z]a ′2
PCaseS

v V v ′ a1 V a ′1

scasez inl v of {inl x ⇒ a1; inr x ⇒ a2}V [v ′/x][refl/z]a ′1
PCaseInl

v V v ′ a2 V a ′2

scasez inr v of {inl x ⇒ a1; inr x ⇒ a2}V [v ′/x][refl/z]a ′2
PCaseInr

172

v1 V v ′1 v2 V v ′2 b V b ′

pcasez 〈v1, v2〉 of 〈x , y〉 ⇒ b V [v ′1/x][v ′2/y][refl/z]b ′
PCaseP

v V v ′ b V b ′

(λx :A.b) v V [v ′/x]b ′
PBeta

V V V ′ b V b ′

(λx :k .b) V V [V ′/x]b ′
PBetaT

v V v ′ a V a ′

(rec f (x :A).a) v V [v ′/x][rec f (x :A).a ′/f]a ′
PFBeta

V V V ′ a V a ′

(rec f (x :k).a) V V [V ′/x][rec f (x :k).a ′/f]a ′
PFBetaT

v V v ′

unroll (roll v)V v ′
PUnroll

b V b ′

λx :A.b V λx :A.b ′
PLam1

b V b ′

λx :k .b V λx :k .b ′
PLamT1

a V a ′

rec f (x :A).a V rec f (x :A).a ′
PFun1

a V a ′

rec f (x :k).a V rec f (x :k).a ′
PFunT1

a V a ′ b V b ′

a b V a ′ b ′
PApp1

a V a ′ B V B ′

a B V a ′ B ′
PAppT1

a V a ′

S a V S a ′
PSucc1

a V a ′ b1 V b ′1 b2 V b ′2

ncasez a of {Z ⇒ b1; S x ⇒ b2}V ncasez a ′ of {Z ⇒ b ′1; S x ⇒ b ′2}
PNCase1

a V a ′ b1 V b ′1 b2 V b ′2

scasez a of {inl x ⇒ b1; inr x ⇒ b2}V scasez a ′ of {inl x ⇒ b ′1; inr x ⇒ b ′2}
PSC1

173

a V a ′ b V b ′

pcasez a of 〈x , y〉 ⇒ b V pcasez a ′ of 〈x , y〉 ⇒ b ′
PPCase1

a V a ′

inl a V inl a ′
PInl1

a V a

inr a V inr a ′
PInr1

a V a ′ b V b ′

〈a, b〉V 〈a ′, b ′〉
PPair1

a V a ′

roll a V roll a ′
PRoll1

a V a ′

unroll a V unroll a ′
PUnroll1

AV B

AV A
PTRefl

v V v ′ B V B ′

(λx : A.B) v V [v ′/x]B ′
PTBeta

V V V ′ B V B ′

(λx : k .B) V V [V ′/x]B ′
PTBetaT

B V B ′

λx : A.B V λx : A.B ′
PTLam1

B V B ′

λx : k .B V λx : k .B ′
PTLamT1

AV A′ B V B ′

(x : A)→ B V (x : A′)→ B ′
PTArr1

k V k ′ B V B ′

(x : k)→ B V (x : k ′)→ B ′
PTArrT1

AV A′ b V b ′

A b V A′ b ′
PTApp1

AV A′ B V B ′

A B V A′ B ′
PTAppT1

AV A′

A@θ V A′@θ
PTAt1

AV A′ B V B ′

A + B V A′ + B ′
PTSum1

AV A′ B V B ′

Σx :A .B V Σx :A′ .B ′
PTSigma1

AV A′

µ x .AV µ x .A′
PTMu1

174

a V a ′ b V b ′

a = b V a ′ = b ′
PTEq1

AV A′ B V B ′

A = B V A′ = B ′
PTEqT1

k1 V k2

k1 V k2

PKRefl

AV A′ k2 V k ′2

(x : A)→ k2 V (x : A′)→ k ′2
PKArr1

k1 V k ′1 k2 V k ′2

(x : k1)→ k2 V (x : k ′1)→ k ′2
PKArrT1

a V∗ b

a V∗ a
MPRefl

a V b

b V∗ b ′

a V∗ b ′
MPStep

AV∗ B

AV∗ A
MPTRefl

AV B

B V∗ B ′

AV∗ B ′
MPTStep

175

Bibliography

[1] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton
University, 2004.

[2] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quan-
tified types. In ESOP ’06: Proceedings of the 15th European Symposium on
Programming, 2006.

[3] Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent
types matter. Manuscript, available online, April 2005.

[4] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational
equality, now! In PLPV ’07: Proceedings of the 2007 workshop on Program-
ming Languages meets Program Verification, pages 57–68. ACM, 2007.

[5] Andrew W. Appel and David McAllester. An indexed model of recursive types
for foundational proof-carrying code. ACM Transactions on Programming Lan-
guages and Systems, 23(5):657–683, 2001.

[6] Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, pages 117–309. Oxford University Press, 1992.

[7] B. Barras and B. Bernardo. The Implicit Calculus of Constructions as a Pro-
gramming Language with Dependent Types. In Roberto M. Amadio, editor,
Foundations of Software Science and Computational Structures, 11th Interna-
tional Conference, FOSSACS 2008, volume 4962 of Lecture Notes in Computer
Science, pages 365–379. Springer, 2008.

[8] Yves Bertot and Vladimir Komendantsky. Fixed point semantics and partial
recursion in coq. In Proceedings of the 10th international ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, PPDP ’08, pages
89–96, New York, NY, USA, 2008. ACM.

[9] Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian
Stovring. First steps in synthetic guarded domain theory: Step-indexing in the
topos of trees. In LICS 2011, pages 55–64, June 2011.

176

[10] Edwin Brady and Kevin Hammond. Correct-by-construction concurrency: Using
dependent types to verify implementations of effectful resource usage protocols.
Fundamenta Informaticae, 102(2):145–176, 2010.

[11] Edwin C. Brady. Idris—systems programming meets full dependent types.
In PLPV’11: Programming languages meets program verification, pages 43–54.
ACM, 2011. ISBN 978-1-4503-0487-0.

[12] Venanzio Capretta. General recursion via coinductive types. Logical Methods in
Computer Science, 1(2):1–18, 2005.

[13] Chris Casinghino. Combining proofs and programs: Digital appendix.
2014. Available from http://www.seas.upenn.edu/~ccasin/papers/
thesis-appendix.tgz.

[14] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining proofs
and programs in a dependently typed language. In POPL, 2014, pages 33–45.

[15] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Step-indexed normal-
ization for a language with general recursion. In James Chapman and Paul Blain
Levy, editors, MSFP ’12: Proceedings of the Fourth Workshop on Mathematically
Structured Functional Programming, volume 76 of Electronic Proceedings in The-
oretical Computer Science, pages 25–39. Open Publishing Association, 2012.

[16] Chiyan Chen and Hongwei Xi. Combining programming with theorem proving.
In Proceedings of the tenth ACM SIGPLAN international conference on Func-
tional programming, ICFP ’05, pages 66–77, New York, NY, USA, 2005. ACM.
ISBN 1-59593-064-7.

[17] Adam Chlipala. Certified Programming with Dependent Types, 2011. URL http:
//adam.chlipala.net/cpdt/.

[18] Robert Constable and the PRL group. Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, 1986.

[19] Robert L. Constable and Scott Fraser Smith. Partial objects in constructive type
theory. In Proceedings of the Second Annual Symposium on Logic in Computer
Science, LICS ’87, pages 183–193, 1987.

[20] Thierry Coquand. Infinite objects in type theory. In Proceedings of the interna-
tional workshop on Types for proofs and programs, pages 62–78, Secaucus, NJ,
USA, 1994. Springer-Verlag New York, Inc. ISBN 3-540-58085-9.

[21] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Compututation, 76(2-3):95–120, 1988.

177

http://www.seas.upenn.edu/~ccasin/papers/thesis-appendix.tgz
http://www.seas.upenn.edu/~ccasin/papers/thesis-appendix.tgz
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

[22] Karl Crary. Type Theoretic Methodology for Practical Programming Languages.
PhD thesis, Cornell University, 1998.

[23] Nils Anders Danielsson. Total parser combinators. In ICFP, 2010, pages 285–
296, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3.

[24] Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declaratively. In
Claude Bolduc, Jules Desharnais, and BÃľchir Ktari, editors, Mathematics of
Program Construction, volume 6120 of Lecture Notes in Computer Science, pages
100–118. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-13320-6.

[25] Robert Dockins and Aquinas Hobor. A theory of termination via indirection. In
Amal Ahmed, Nick Benton, Lars Birkedal, and Martin Hofmann, editors, Mod-
elling, Controlling and Reasoning About State, number 10351 in Dagstuhl Semi-
nar Proceedings, Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany.

[26] Herman Geuvers. A short and flexible proof of Strong Normalization for the
Calculus of Constructions. In TYPES ’94, volume 996 of LNCS, pages 14–38,
1995.

[27] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[28] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis,
University of Edinburgh, 1994.

[29] Georges Gonthier. A computer-checked proof of the four-colour theo-
rem. 2005. Available at http://research.microsoft.com/~gonthier/
4colproof.pdf.

[30] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Co-
hen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, et al. A machine-checked proof of the odd order theorem. In
Interactive Theorem Proving, pages 163–179. Springer, 2013.

[31] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40:194–204, 1993.

[32] Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A theory of indirection
via approximation. In POPL, 2010, pages 171–185, 2010.

[33] Limin Jia and David Walker. Modal proofs as distributed programs (extended
abstract). In ESOP’04: European Symposium on Programming, volume 2986 of
LNCS, pages 219–233. Springer, 2004.

178

http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colproof.pdf

[34] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko,
Joseph Schorr, and Steve Zdancewic. AURA: A programming language for au-
thorization and audit. In ICFP ’08: Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, pages 27–38, 2008.

[35] Garrin Kimmell, Aaron Stump, Harley D. Eades III, Peng Fu, Tim Sheard,
Stephanie Weirich, Chris Casinghino, Vilhelm Sjöberg, Nathan Collins, and
Ki Yung Ahn. Equational reasoning about programs with general recursion
and call-by-value semantics. In PLPV ’12: Proceedings of the Sixth Workshop
on Programming Languages Meets Program Verification, 2012.

[36] Neelakantan Krishnaswami and Nick Benton. A semantic model for graphical
user interfaces. In ICFP, 2011, pages 45–57, New York, NY, USA, 2011. ACM.

[37] Neelakantan Krishnaswami and Nick Benton. Ultrametric semantics of reactive
programs. In LICS, 2011, pages 257–266, June 2011.

[38] Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[39] Daniel R. Licata and Robert Harper. Positively dependent types. In PLPV ’09:
Proceedings of the 3rd Workshop on Programming Languages Meets Program
Verification, pages 3–14, New York, NY, USA, 2008. ACM.

[40] Zhaohui Luo. Computation and reasoning: a type theory for computer science.
Oxford University Press, New York, NY, USA, 1994.

[41] Conor McBride. Elimination with a Motive. In Types for Proofs and Programs:
International Workshop (TYPES 2000), volume 2277 of LNCS, pages 197–216.
Springer, 2002.

[42] Conor McBride and James McKinna. The view from the left. Journal of Func-
tional Programming, 14(1):69–111, 2004.

[43] Alexandre Miquel. The implicit calculus of constructions - extending pure type
systems with an intersection type binder and subtyping. In TLCA ’01: Proceed-
ing of 5th international conference on Typed Lambda Calculi and Applications,
volume 2044 of LNCS, pages 344–359. Springer, 2001.

[44] Jamie Morgenstern and Daniel R. Licata. Security-typed programming within
dependently-typed programming. In International Conference on Functional
Programming, 2010.

[45] Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon,
January 2008. URL http://tom7.org/papers/. Available as technical report
CMU-CS-08-126.

179

http://tom7.org/papers/

[46] Tom Murphy, VII, Karl Crary, and Robert Harper. Type-safe distributed pro-
gramming with ML5. In Trustworthy Global Computing 2007, 2007.

[47] Hiroshi Nakano. A modality for recursion. In LICS, 2000, pages 255–, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

[48] Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and
Lars Birkedal. Ynot: dependent types for imperative programs. In ICFP ’08: In-
ternational Conference on Functional Programming, pages 229–240. ACM, 2008.

[49] Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007.

[50] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[51] Vilhelm Sjöberg and Stephanie Weirich. Programming up to congruence. In
submission, 2014.

[52] Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins, Harley
D. Eades III, Peng Fu, Garrin Kimmell, Tim Sheard, Aaron Stump, and
Stephanie Weirich. Irrelevance, heterogeneous equality, and call-by-value depen-
dent type systems. In James Chapman and Paul Blain Levy, editors, MSFP ’12:
Proceedings of the Fourth Workshop on Mathematically Structured Functional
Programming, volume 76 of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 112–162. Open Publishing Association, 2012.

[53] Scott Fraser Smith. Partial Objects in Type Theory. PhD thesis, Cornell Uni-
versity, 1988.

[54] Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Timothy Simp-
son. Verified programming in guru. In PLPV ’09: Proceedings of the 3rd work-
shop on Programming Languages meets Program Verification, pages 49–58, 2009.

[55] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton-Jones, and Kevin
Donnelly. System f with type equality coercions. In TLDI 07: Proceedings of
the 2007 ACM SIGPLAN international workshop on Types in Languages Design
and Implementation, pages 53–66. ACM, 2007.

[56] Kasper Svendsen, Lars Birkedal, and Aleksandar Nanevski. Partiality, state and
dependent types. In Typed Lambda Calculi and Applications (TLCA’11), volume
6690 of LNCS, pages 198–212. Springer, 2011.

[57] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhar-
gavan, and Jean Yang. Secure Distributed Programming with Value-dependent
Types. In ICFP ’11: Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, pages 285–296. ACM, 2011.

180

[58] William W. Tait. Intensional interpretations of functionals of finite type i. The
Journal of Symbolic Logic, 32(2):pp. 198–212, 1967.

[59] The Coq Development Team. The Coq Proof Assistant Reference Manual, Ver-
sion 8.3. LogiCal Project, 2010. Available at http://coq.inria.fr/V8.3/
refman/.

[60] Wendy Verbruggen, Edsko de Vries, and Arthur Hughes. Polytypic properties
and proofs in Coq. In WGP ’09: Proceedings of the 2009 ACM SIGPLAN
Workshop on Generic Programming, pages 1–12, New York, NY, USA, 2009.
ACM.

[61] Wendy Verbruggen, Edsko de Vries, and Arthur Hughes. Formal polytypic pro-
grams and proofs. Journal of Functional Programming, 20:213–270, 2010.

[62] Dimitrios Vytiniotis and Simon Peyton-Jones. Practical aspects of evidence-
based compilation in System FC, 2011. Unpublished.

[63] Stephanie Weirich and Chris Casinghino. Arity-Generic Datatype-Generic Pro-
gramming. In PLPV ’10: Proceedings of the 4th Workshop on Programming
Languages Meets Program Verification, 2010.

[64] Benjamin Werner. Une théorie des constructions inuductives. PhD thesis, Uni-
versité Paris VII, 1994.

[65] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115:38–94, 1992.

181

http://coq.inria.fr/V8.3/refman/
http://coq.inria.fr/V8.3/refman/

	1 Introduction
	1.1 Dependent Types and General Recursion
	1.2 Dependent Types and Equality
	1.2.1 Traditional Intensional Equality
	1.2.2 The PCC-Theta Approach to Equality

	1.3 Contributions and Outline

	2 The Theta Language
	2.1 Syntax and Operational Semantics
	2.2 Typing
	2.2.1 Variables, Universes and Functions
	2.2.2 The Fragments
	2.2.3 Equality
	2.2.4 Datatypes

	2.3 Examples
	2.3.1 Example: Vector Append
	2.3.2 Example: Comparison and Course-of-Values Induction
	2.3.3 Example: Merge Sort

	2.4 Conclusion

	3 Partially Step-Indexed Logical Relations for Normalization
	3.1 Language Definition
	3.1.1 The Typing Judgement
	3.1.2 Operational Semantics

	3.2 Syntactic Metatheory
	3.2.1 Canonical Forms and Progress
	3.2.2 Substitution, Inversion and Preservation

	3.3 Adapting the Girard–Tait Method
	3.3.1 First Attempt: Ignoring the Programmatic Fragment
	3.3.2 Second Attempt: Partial Correctness for the Programmatic Fragment
	3.3.3 A Step-Indexed Interpretation
	3.3.4 Normalization

	4 Adding Dependent Types
	4.1 The LF-Theta Language
	4.1.1 Typing Basics
	4.1.2 Reasoning About Equality

	4.2 Preservation and a Problem for Progress
	4.2.1 Getting Stuck on Progress
	4.2.2 Substitution and Inversion
	4.2.3 Preservation

	4.3 Normalization
	4.3.1 The Interpretation
	4.3.2 The Proof

	4.4 Progress

	5 Adding Polymorphism and Type-Level Computation
	5.1 The PCC-Theta Language
	5.2 Syntactic Metatheory
	5.2.1 Reduction Basics
	5.2.2 Typing Basics
	5.2.3 Substitution
	5.2.4 Inversion and Preservation

	5.3 Levels and Polymorphism
	5.4 The Interpretation
	5.4.1 Type of the Interpretation
	5.4.2 Definition of the Interpretation

	5.5 Basic Facts About the Interpretation and Environments
	5.5.1 Universe-Indexed Properties of the Interpretation

	5.6 A Notion of Equivalence for Interpretations
	5.7 Main Interpretation Lemmas
	5.8 The Fundamental Theorem, Normalization, and Consistency
	5.9 Progress

	6 Difficulties Scaling Up
	6.1 Programmatic Types
	6.2 Extensionality
	6.3 Infinite Universe Hierarchy
	6.4 Collapsed Syntax
	6.5 Function Domains
	6.6 Large Eliminations

	7 Related work
	7.1 Other Approaches to Recursion and Partiality
	7.1.1 Partiality Monad
	7.1.2 Non-Constructive Fixpoint semantics.
	7.1.3 Partial Types
	7.1.4 Hoare Type Theory.
	7.1.5 Terminating Sublanguages
	7.1.6 The ``Later'' Modality

	7.2 Modal Type Systems for Distributed Computation
	7.3 Equality in Dependent Type Theory
	7.3.1 John Major Equality
	7.3.2 Extensional Type Theory
	7.3.3 Observational Type Theory
	7.3.4 Guru
	7.3.5 GHC Core

	7.4 Step-indexed logical relations

	8 Conclusion
	A Reduction Relations
	A.1 Parallel Reduction for LF-Theta
	A.2 Reduction for PCC-Theta
	A.2.1 Deterministic reduction
	A.2.2 Parallel reduction

	Bibliography

