Programming up to Congruence

Vilhelm Sjöberg  Stephanie Weirich
University of Pennsylvania
{vilhelm,sweirich}@cis.upenn.edu

Abstract

This paper presents a dependently-typed programming language that uses an adaptation of a congruence closure algorithm for proof and type inference. While most dependently-typed languages automatically use equalities that follow from $\beta$-reductions but do not automatically use known assumptions from the context, our language does the opposite. It uses assumptions but does not automatically reduce expressions.

Our work includes the specification of the language via a bidirectional type system, which works “up-to-congruence,” and an algorithm for elaborating expressions in this language to an explicitly typed core language. We prove that our elaboration algorithm is complete with respect to the source type system, and always produces well typed terms in the core language. This algorithm has been implemented in the ZOMBIE language, which includes general recursion, irrelevant arguments, heterogeneous equality and datatypes.

Categories and Subject Descriptors D.3.1 [Programming Languages]: Formal Definitions and Theory

Keywords Dependent types; Congruence closure

1. Introduction

The ZOMBIE language aims to provide a smooth path from ordinary functional programming to dependently typed programming [9]. However, one significant difference between Haskell and Agda is that in the latter, programmers must show that every function terminates. Such proofs often require delicate reasoning, especially when they must be done in conjunction with the function definition. In contrast, ZOMBIE includes arbitrary nontermination, relying on the type system to track whether an expression has been typechecked in the normalizing fragment of the language.

Prior work on ZOMBIE [9, 24] has focused on the metatheory of the core language—type safety for the entire language and consistency for the normalizing fragment—and provides a solid foundation. However, it is not feasible to write programs directly in the core language, because the terms get cluttered with type annotations and type conversion proofs. This paper addresses the other half of the design: crafting a programmer-friendly surface language, which elaborates into the core.

The reason that elaboration is important in this context is that core ZOMBIE has a weak definition of equivalence. Most dependently-typed languages define terms to be equal when they are (at least) $\beta$-convertible. However, the presence of nontermination makes this definition awkward. To check whether two types are $\beta$-equivalent the type checker has to evaluate expressions inside them, which becomes problematic if expressions may diverge—what if the type checker gets stuck in an infinite loop? Existing languages fix an arbitrary global cut off for how many steps of evaluation the typechecker is willing to do (Cayenne [3]), or only reduce expressions that have passed a conservative termination test (Idris [8]). Core ZOMBIE, somewhat radically, omits automatic $\beta$-conversion completely. Instead, $\beta$-equality is available only through explicit conversion.

Because ZOMBIE does not include automatic $\beta$-conversion, it provides an opportunity to explore an alternative definition of equivalence in a surface language design.

Congruence closure, also known as the theory of equality with uninterpreted function symbols, is a basic operation in automatic theorem provers for first-order logic (particularly SMT solvers, such as Z3 [12]). Given some context $\Gamma$ which contains assumptions of the form $a = b$, the congruence closure of $\Gamma$ is the set of equations which are deducible by reflexivity, symmetry, transitivity, and changing subterms.

Although algorithms for congruence closure are well-known [14, 19, 23] this reasoning principle has seen little use in dependently-typed programming languages. The problem is not lack of opportunity. Dependently-typed languages feature propositional equality, written $a \equiv b$—a type whose inhabitants assert the equality of the two expressions. The elimination form for this type coerces its argument from type $\{a/x\} A$ to type $\{b/x\} A$. Programs that use propositional equality build such proofs (using assumptions in the context, and various lemmas) and specify where and how they should be eliminated. Congruence closure can assist with both of these tasks, by automating the construction of these proofs and determining the “motive” for their elimination.

However, the adaption of this first-order technique to the higher-order logics of dependently-typed languages is not straightforward. The combination of congruence closure and full $\beta$-reduction makes the equality relation undecidable. As a result, most dependently-typed languages take the conservative approach of only incorporating congruence closure as a meta-operation, such as Coq’s congruence tactic. While this tactic can assist with the creation of equality proofs, such proofs must still be explicitly eliminated. Proposals to use equations from the context automatically [1, 25, 26] have done so in addition to $\beta$-reduction, which makes it hard to characterize exactly which programs will typecheck, and also

[Copyright notice will appear here once ‘preprint’ option is removed.]
leaves open the question of how expressive congruence closure is in isolation.

In this work we define the ZOMBIE surface language to be fully “up to congruence”, i.e. types which are equated by congruence closure can always be used interchangeably, and then show how the elaborator can implement this type system.

Designing a language around an elaborator—an unavoidably complicated piece of software—raises the risk of making the language hard to understand. Programmers could find it difficult to predict what core term a given surface term will elaborate to, or they may have to think about the details of the elaboration algorithm in order to understand whether a program will successfully elaborate at all. We avoid these problems using two strategies. First, the syntax of the surface and the core language differ only by erasable annotations and the operational semantics ignores these annotations. Therefore the semantics of an expression is apparent just from looking at the source; the elaborator only adds annotations that can not change its behavior. Second, we define a declarative specification of the surface language, and prove that the elaborator is complete for the specification. As a result, the programmer does not have to think about the concrete elaboration algorithm.

We make the following contributions:

- We demonstrate how congruence closure is useful when programming, by showing examples in Agda, ZOMBIE, and ZOMBIE’s explicitly-typed core language (Section 2).
- We define a dependently typed core language where the syntax contains erasable annotations (Section 3).
- We define a typed version of the congruence closure relation (Section 4) which is compatible with our core language, including features (erasure, injectivity, and generalized assumption) suitable for a dependent type system.
- We specify the surface language using a bidirectional type system (Section 5) that uses this congruence closure relation as its definition of type equality.
- We define an elaboration algorithm of the surface language to the core language (Section 6) based on a novel algorithm for typed congruence closure (Section 7). We prove that our elaboration algorithm is complete for the surface language and produces well-typed core language expressions. Our typed congruence closure algorithm both decides whether two terms are in the relation and also produces core language equality proofs.
- We have implemented these algorithms in ZOMBIE, extending the ideas of this paper to a language that includes datatypes and pattern matching, a richer logical fragment, and other features. Congruence closure works well in this setting; in particular, it significantly simplifies the typing rules for case-expressions (Section 8). Our implementation is available. 1

For space reasons, the full specification of the type systems described in this paper and the details of the proofs are only included in the extended version. 2

2. Programming up to congruence

Consider this simple proof in Agda, which shows that zero is a right identity for addition.

\[ \mathsf{npluszero} : (n : \text{Nat}) \to n + 0 \equiv n \]
\[ \mathsf{npluszero\ zero} = \equiv \mathsf{refl} \]
\[ \mathsf{npluszero\ (\text{suc}\ m)} = \equiv \mathsf{cong}\ \text{suc}\ (\mathsf{npluszero\ m}) \]

The proof follows by induction on natural numbers. In the base case, \(\equiv \mathsf{refl}\) is a proof of \(0 + 0 \equiv 0\). In the next line, \(\equiv \mathsf{cong}\) translates a proof of \(m + 0 \equiv m\) (from the recursive call) to a proof of \(\mathsf{suc}(m + 0) \equiv \mathsf{suc}\ m\).

This proof relies on the fact that Agda’s propositional equality relation (\(\equiv\)) is reflexive and a congruence relation. The former property holds by definition, but the latter must be explicitly shown. In other words, the proof relies on the following lemma:

\[ \equiv \mathsf{cong} : \forall (A\ B) (m\ n : A) \to (f : A \to B) \to m \equiv n \to f\ m \equiv f\ n \]
\[ \equiv \mathsf{cong}\ f \equiv \mathsf{refl} = \equiv \mathsf{refl} \]

Now compare this proof to a similar result in ZOMBIE. The same reasoning is present: the proof follows via natural number induction, using the reduction behavior of addition in both cases.

\[ \mathsf{npluszero} : (n : \text{Nat}) \to (n + 0 = n) \]
\[ \mathsf{npluszero\ n} = \]
\[ \text{case}\ n\ [\mathsf{eq}\ of} \]
\[ \text{Zero} \to (\mathsf{join} : 0 + 0 = 0) \]
\[ \text{Suc}\ m \to \]
\[ \text{let } \_ = \mathsf{npluszero}\ m\ \text{in} \]
\[ (\mathsf{join} : (\text{Suc}\ m) + 0 = \text{Suc}\ (m + 0)) \]

Because ZOMBIE does not provide automatic \(\beta\)-equivalence, reduction must be made explicit above. The term \(\mathsf{join}\) explicitly introduces an equality based on reduction. However, in the successor case, the ZOMBIE type checker is able to infer exactly how the equalities should be put together.

For comparison, the corresponding ZOMBIE core language term includes a number of explicit type coercions:

\[ \mathsf{npluszero} : (n : \text{Nat}) \to (n + 0 = n) \]
\[ \mathsf{npluszero\ (n : \text{Nat}) =} \]
\[ \text{case}\ n\ [\mathsf{eq}\ of} \]
\[ \text{Zero} \to \mathsf{join}\ [\mathsf{eq} + 0 = \mathsf{eq}] \]
\[ \text{Suc}\ m \to \]
\[ \text{let } \_ = \mathsf{npluszero}\ m\ \text{in} \]
\[ (\mathsf{join} : (\text{Suc}\ m) + 0 = \text{Suc}\ (m + 0)) \]

Above, the expression \(\mathsf{a} \triangleright \mathsf{b}\) converts the type of the expression \(\mathsf{a}\), using the equality proof \(\mathsf{b}\). Equality proofs may be formed in a number of ways, either via co-reduction \(\mathsf{join}\ [\mathsf{eq} \triangleright \mathsf{a}\ b]\) or by congruence (if \(\mathsf{a}\) is a proof of \(\triangleright \mathsf{eq}\), then \(\mathsf{join} [\mathsf{eq}\mathsf{a}x\mathsf{A}]\ is a proof of \((\mathsf{b}x)\mathsf{A} = (\mathsf{c}x)\mathsf{A}\) ). In the base case, \(\mathsf{eq}\) is a proof that \(n = 0\), derived from pattern matching. That means that \(\mathsf{join} [\mathsf{eq} + 0 = \mathsf{eq}]\ is a proof that \((0 + 0 = 0) = (n + 0) = n\).

In the successor case, the proof derived from the recursive call \((n + 0 = m)\) must be lifted congruently through the equality derived from reduction.

For a larger example, consider unification of first-order terms (Figure 1). For this example, the term language is the simplest possible, consisting only of binary trees constructed by \(\mathsf{branch}\) and \(\mathsf{leaf}\) and possibly containing unification variables \(\mathsf{var}\) represented as natural numbers. We also use a type \(\mathsf{Substitution}\) of substitutions, which

---

1https://code.google.com/p/trellys/
2 Available as supplementary material.
{-# NO_TERMINATION_CHECK #-}

unify : (t1 t2 : Term) \rightarrow Unify t1 t2
unify leaf leaf = match empty refl
unify leaf (branch t2 t3) = nomatch
unify (branch t1 t2) leaf = nomatch
unify (branch t11 t12) (branch t21 t22)
with unify t11 t21
... | nomatch = nomatch
... | match s p with unify (ap s t12) (ap s t22)
... | nomatch = nomatch
... | match s' q = match (compose s' s)
  (trans (apCompose (branch t11 t12))
  (trans (cong₂ (\ t1 t2 \rightarrow
    branch (ap s' t1) t2) p q)
  (sym (apCompose (branch t21 t22)))))
unify t1 (var x) with (x is \in\ t1)
... | no q = match (singleton x t1)
  (trans (singleton-\notin\ t x t q)
  (varSingleton x t))
... | yes _ = nomatch
unify (var x) t2 with unify t2 (var x)
... | nomatch = nomatch
... | match s p = match s (sym p)

prog unify : (t1 t2 : Term) \rightarrow Unify t1 t2
rec unify t1 = \ t2 . case t1, t2 of
  leaf, leaf \rightarrow match empty_
  leaf, branch _ _ \rightarrow nomatch
  branch _ _, leaf \rightarrow nomatch
  branch t11 t12, branch t21 t22 \rightarrow
case (unify t11 t21, t22) of
    nomatch \rightarrow nomatch
    match s p \rightarrow case (unify (ap s t12) (ap s t22)) of
      nomatch \rightarrow nomatch
      match s' p' \rightarrow
        unfold (ap s' (ap s t1)) in
        unfold (ap s' (ap s t2)) in
        let _ = apCompose s' s t1 in
        let _ = apCompose s' s t2 in
        match (compose s' s)
          _ , var x \rightarrow case (isin x t1) of
            no q \rightarrow
            let _ = varSingleton x t1 in
            let _ = singletonNotIn t1 x t1 q in
            match (singleton x t1)
              yes _ \rightarrow nomatch
            var x, _ \rightarrow case (unify t2 (var x)) of
              nomatch \rightarrow nomatch
              match s p \rightarrow match s _

Figure 1. First-order unification in Agda (left) and in ZOMBIE (right)

log snoc_inv : (xs ys : List A) \rightarrow (z : A) \rightarrow (snoc xs z) = (snoc ys z) \rightarrow xs = ys
ind snoc_inv xs = \ ys z pf . case xs [xeq], ys of
  Cons x xs' , Cons y ys' \rightarrow
    let _ = (smartjoin : (snoc xs z) = Cons x (snoc xs' z)) in
    let _ = (smartjoin : (snoc ys z) = Cons y (snoc ys' z)) in
    let _ = snoc_inv xs' [ord xeq] ys' z _ in
    ...

snoc-inv : \forall xs ys z \rightarrow (snoc xs z \equiv snoc ys z) \rightarrow xs \equiv ys
snoc-inv (x : xs') (\ y :: ys') \rightarrow with (snoc xs' z) | (snoc ys' z) | inspect (snoc xs' z) | inspect (snoc ys' z) |
  (\ y :: ys') (\ y :: ys') z refl | .s2 | s2 | [ p ] | [ q ] with (snoc-inv xs' ys' z (trans p (sym q)))

Figure 2. Pattern matching can be tricky in Agda

are built by the functions singleton and compose, and applied to terms by ap.

Proving that unify terminates is difficult because the termination metric involves not just the structure of the terms but also the number of unassigned unification variables. (For example, see McBride [18]). To save development effort, a programmer may elect to prove only a partial correctness property: if the function terminates then the substitution it returns is a unifier.

In other words, if the unify function returns, it either says that the terms do not match, or produces a substitution s and a proof that s unifies them. We write the data structure in ZOMBIE as follows (the Agda version is similar):

data Unify (t1 : Term) (t2 : Term) : Type where
  nomatch
  match of (s : Substitution) (pf : ap s t1 = ap s t2)

Comparing the Agda and ZOMBIE implementations, we can see the effect of programming up-to-congruence instead of up-to-β. When the unifier returns match, it needs to supply a proof of equality. The Agda version explicitly constructs the proof using equational reasoning, which involves calling congruence lemmas sym, trans and cong₂ from the standard library. The ZOMBIE version leaves such proof arguments as just an underscore, meaning that it can be inferred from the equations in the context. For that purpose, it introduces equalities to the context with unfold (for β-reductions, see Section 8.2) and with calls to relevant lemmas.

Figure 2 demonstrates how congruence closure makes ZOMBIE’s version of dependently-typed pattern matching (i.e smart case) both simple and powerful. The figure compares (parts of) inductive

Programming up to Congruence

3 2014/7/9
\(x, y, f, g, h \in \text{expression variables}\)

**expressions**

\[
\begin{align*}
\text{a, b, A, B} &::= \text{Type} \mid x \\
&\mid (x : A) \rightarrow B \mid \text{rec } f_A \cdot x.a \mid a \ b \\
&\mid \bullet(x : A) \rightarrow B \mid \text{rec } f_A \bullet_x.a \mid a \bullet_b \\
&\mid a = b \mid \text{join}_\Sigma \mid a_{0,b}
\end{align*}
\]

**strategies**

\[
\Sigma ::= \sim_p \ i \ j \ a = b \\
\mid \{ \sim_\psi / x_1 \} \ldots \{ \sim_\psi / x_i \} \ c : B \\
\mid \text{injdom } a \mid \text{injrng } a \ b \mid \text{injeq } i \ a
\]

**values**

\[
v ::= \text{Type} \mid x \\
\mid (x : A) \rightarrow B \mid \text{rec } f_A \cdot x.a \\
\mid \bullet(x : A) \rightarrow B \mid \text{rec } f_A \bullet_x.a \\
\mid a = b \mid \text{join}_\Sigma \mid v_{0,b}
\]

---

**Figure 3. Syntax**

proofs in ZOMBIE and Agda of an inversion lemma about the \(\text{snoc}\) operation, which appends an element to the end of a list. When both lists are nonempty, the proof argument can be used to derive that \(x = y\) (using the injectivity of \(\text{Cons}\)), and the recursive call shows that \(x a^+ = y a^+\). Congruence closure both puts these together in a proof of \(\text{Cons } x x a^+ = \text{Cons } y y a^+\) and supplies the necessary proof for the recursive call.

Proving the property in Agda using pattern matching, on the other hand, is a “quite fun” puzzle.\(^3\) Here, the equivalence between \(x\) and \(y\) cannot be observed until \(\text{(snoc } xa^+ z)\) and \(\text{(snoc } xa^+ z)\) are named. The so-called “inspect on steroids” trick provides the equalities \((p : \text{snoc } xa^+ z = s2)\) and \((q : \text{snoc } ya^+ z = s2)\) that are necessary to constructing the fourth argument for the recursive call. Although this development is not long, it is not at all straightforward, requiring advanced knowledge of Agda idioms.

3. **Annotated core language**

We now turn to the theory of the system. We begin by describing the target of the elaborator: our annotated core language. This language is a small variant of the dependently-typed call-by-value language defined in prior work [24]. It corresponds to a portion of ZOMBIE’s core language, but to keep the proofs tractable we omit ZOMBIE’s recursive datatypes and its replace its terminating sublanguage [9] with syntactic value restrictions.

The syntax is shown in Figure 3. Terms, types and the sort Type are collapsed into one syntactic category. We use the notation \(\{a/x\}B\) to denote the capture-avoiding substitution of \(a\) for \(x\) in \(B\).

Type annotations, such as \(A\) in \(\text{rec } f_A \cdot x.a\), are optional and may be omitted from expressions. Annotations are subscripted in Figure 3. The meta-operator \([\cdot]a\) removes these annotations. Expressions that contain no typing annotations are called erased.

An expression that includes all annotations is called a core or annotated expression. The core typing judgment, written \(\Gamma \vdash a : A\) and described below, requires that all annotations be present. In this case, the judgment is syntax-directed and trivially decidable. In contrast, type checking for erased terms is undecidable.

The only role of annotations is to ensure decidable type checking. They have no effect on the semantics. In fact, the operational semantics, written \(a \sim_{\text{cbv}} b\), is defined only for erased terms and extended to terms with annotations via erasure. This operational semantics is a small-step, call-by-value evaluation relation.

Figure 4 shows the typing rules of the core language typing judgment \(\Gamma \vdash a : A\). Additionally, the judgment \(\Gamma \vdash \Gamma\) (elided from the figure) states that each type in \(\Gamma\) is well-formed.

Recursive functions are defined using expressions \(\text{rec } f \cdot x.a.\), with the typing rule \(\text{TRec}\). Such expressions are values, and applications step by the rule \((\text{rec } f \cdot x.a) v \sim_{\text{cbv}} \{v/x\} (\text{rec } f \cdot x.a(f) a)\). If the function makes no recursive calls we also use the syntactic sugar \(\lambda x. a\). When a function has a dependent type (TDAPP) then its argument must be a value (this restriction is common for languages with nontermination [16, 28]).

**Irrelevance** In addition to the normal function type, the core language also include \textit{computationally irrelevant} function types \(\bullet(x : A) \rightarrow B\), which are inhabited by irrelevant functions \(\text{rec } f_A \bullet_x.b\) and eliminated by irrelevant applications \(a \bullet_b\). Many expressions in a dependently typed program are only used for type checking, but do not affect the runtime behavior of the program, and these can be marked irrelevant.

Our treatment of irrelevance follows ICC* [5]. Because the treatment of irrelevant functions closely mirrors that of normal functions, we omit the typing rules in this version of the paper. We include this feature in the formalism to show that, besides being generally useful, irrelevance works well with congruence closure. Given that we already handle erasable annotations, we can support full irrelevance for free.

**Equality** The typing rules at the bottom of Figure 4 deal with propositional equality, a primitive type. The formation rule \(\text{TEQ}\) states \(a = b\) is a well-formed type whenever \(a\) and \(b\) are two well-typed expressions. There is no requirement that they have the same type (that is to say, our equality type is heterogeneous).

Propositional equality is eliminated by the rule \(\text{TCast}\): given a proof, \(v\) of an equation \(A = B\) we can change the type of an expression from \(A\) to \(B\). Since our equality is heterogeneous, we need to check that \(B\) is in fact a type. We require the proof to be a value in order to rule out divergence. A full-scale language could use a more ambitious termination analysis. (Indeed, our ZOMBIE implementation does so.) However, the congruence proofs generated by our elaborator are syntactic values, so for the purposes of this paper, the simple value restriction is enough. The proof term \(v\) in a type cast is an erasable annotation with no operational significance, so the typechecker considers equalities like \(a = a_{0,b}\) to be trivially true, and the elaborator is free to insert coercions using congruence closure proofs anywhere.

The rest of the figure shows introduction rules for equality. Equality proofs do not carry any information at runtime, so they all use the same term constructor \(\text{join}\), but with different (erasable) annotations, \(\Sigma\).

The rule \(\text{TOInp}\) introduces equations which are justified by the operational semantics. It states that join is a proof of \(a = b\) when the erasures of \(a\) and \(b\) reduce to a common expression \(c\), using the parallel reduction relation \(a \sim_p b\). Because ZOMBIE requires programmers to explicitly indicate expressions that should be reduced, ZOMBIE source programs include this term. Note that without normalization, we need a cutoff for how long to evaluate, so programmers must specify the number of steps \(i, j\) of reduction

---

\(^3\)Posed by Eric Mertens on #agda.
The driving idea behind our surface language is that the program-rule checks that the ascribed type proofs of these lemmas are in Sjöberg et al. [24].

Finally, the rule \(TCC_{ASSUMPTION}\) is a bit stronger than the classic rule from first order logic. In the first-order logic setting, this rule can be inferred by congruence closure. In this section we exactly specify which proofs can be inferred, by defining the typed congruence closure relation \(\Gamma \vdash a = b\) shown in Figure 5.

Like the usual congruence closure relation for first-order terms, the rules in Figure 5, specify that this relation is reflexive, symmetric and transitive. It also includes rules for using assumptions in the context and congruence by changing subterms. However, we make a few changes:

First, we add typing premises (in \(TCC_{REFL}\) and \(TCC_{ERASURE}\)) to make sure that the relation only equates well-typed and fully-annotated core language terms. In other words,

\[\Gamma \vdash a = b, \quad \Gamma \vdash a : A\]

If \(a \neq b\) and \(a \neq b\), then \(\Gamma \vdash a = b\) and \(\Gamma \vdash b : B\).

Next, we adapt the congruence rule so that it corresponds to the \(TISUBST\) rule of the core language. In particular, the rule \(TCC_{CONGRUENCE}\) includes an explicit erasure step so that the two sides of the equality can differ in their erasable portions.

Furthermore, we extend the relation in several ways. We automatically use computational irrelevance, in the rule \(TCC_{ERASURE}\). This makes sure that the programmer can ignore all annotations when reasoning about programs. Also, we reason up to injectivity of datatypes constructors (as in rules \(TCC_{INDOM}\), \(TCC_{INNRG}\), and \(TCC_{INIEQ}\)). As mentioned in Section 3 these rules are valid in the core language, and we will see in Section 6 that there is good reason to make the congruence closure algorithm use them automatically.

Finally, the rule \(TCC_{ASSUMPTION}\) is a bit stronger than the classic rule from first order logic. In the first-order logic setting, this rule

\[\vdash a \neq b\] and \(\vdash a : A\) for all \(b \neq a\). The former would allow (in ZOMBIE this defaults to 1000 if these numbers are elided).

The rule \(TISUBST\) states that equality is a congruence. The simplest use of the rule is to change a single subexpression, using a proof \(v\).

The use of the proof is marked with a tilde in the \(\Sigma\) annotation; for example, if \(\Gamma \vdash v : y = 0\) then we can prove the equality

\[\Gamma \vdash \text{join}_{\Sigma \vdash t : a = b} : a = b\]

One can also eliminate different equality proofs in one use of the rule. The syntax of subst includes a type annotation \(B\), and the last premise of the \(TISUBST\) rule checks that the ascribed type \(B\) matches what one gets after substituting the given equalities into the template \(c\). This annotation adds flexibility because the check is only up-to-erasable: if needed the programmer can give the left- and right-hand side of \(B\) different annotations to make both sides well-typed.

Finally, the rules \(TINIEQ\), \(TINIDOM\), and \(TINIWRG\) state that the equality type and arrow type constructors are injective. The figure elides similar rules for irrelevant arrow types.) Making type constructors injective is unconventional for a dependent language. It is incompatible with e.g. Homotopy Type Theory, which proves \(\text{Nat} \rightarrow \text{Void} = \text{Bool} \rightarrow \text{Void}\). However, in our language we need arrow injectivity to prove type preservation, because type casts do not block reduction [24]. We also add injectivity for the equality type constructor (\(TINIEQ\)). This is not required for type safety, but it is justified by the meta-theory, so it is safe to add. Injectivity is important for the surface language design, see Section 6.

The core language satisfies the usual properties for type systems. For the the proofs in Section 6 we rely on the fact that is satisfies weakening, substitution (restricted to values), and regularity. It also satisfies preservation, progress, and decidable type checking. The proofs of these lemmas are in Sjöberg et al. [24].

4. Congruence closure

The driving idea behind our surface language is that the programmer should never have to explicitly write a type cast \(a_v : v\) if the proof \(v\) can be inferred by congruence closure. In this section we exactly specify which proofs can be inferred, by defining the typed congruence closure relation \(\Gamma \vdash a = b\) shown in Figure 5.
is defined as just the closure over equations in the context:

\[
\frac{\Gamma \vdash a : A}{\Gamma \vdash a = a} \quad \frac{\Gamma \vdash a = b}{\Gamma \vdash b = a} \quad \frac{\Gamma \vdash a = b}{\Gamma \vdash b = a} \quad \frac{\Gamma \vdash a = b}{\Gamma \vdash b = c} \quad \frac{\Gamma \vdash a = b}{\Gamma \vdash a = c} \\
\frac{|a| = |b|}{\Gamma \vdash a = b} \quad \frac{\Gamma \vdash a : A}{\Gamma \vdash b : B} \quad \frac{\Gamma \vdash a = b}{\Gamma \vdash a = b} \quad \frac{x : A \in \Gamma}{\Gamma \vdash A = (a = b)} \quad \frac{\Gamma \vdash a = b}{\Gamma \vdash a = b} \\
\frac{\Gamma \vdash A = B : \text{Type}}{\forall k. \Gamma \vdash a_k = b_k} \quad \frac{|A = B| = |(a_1/x_1) \ldots (a_n/x_n)| c}{\Gamma \vdash A = B} \quad \frac{\Gamma \vdash A = B}{\Gamma \vdash ((x : A_1) \to B_1) = ((x : A_2) \to B_2)} \quad \frac{\Gamma \vdash A_1 = A_2}{\Gamma \vdash B_1 = B_2} \\
\frac{\Gamma \vdash (a_1 = a_2) = (b_1 = b_2)}{\Gamma \vdash a_k = b_k} \quad \frac{\Gamma \vdash A_1 = A_2}{\Gamma \vdash B_1 = B_2} \\
\]

**Figure 5.** Typed congruence relation closure

The rules `ICAST` and `CCAST` in Figure 6 specify that checking and inference work “up-to-congruence.” At any point in the typing derivation, the system can replace the inferred or checked type with something congruent. The notation \( \Gamma \vdash^c A = B \) lifts the congruence closure judgment from Section 4 to the partially annotated surface language. These two rules contain kinding premises to maintain well-formedness of types. The invariant maintained by the type system is that (in a well-formed context \( \Gamma \)) any synthesized type is guaranteed to be well-typed, while it is the caller’s responsibility to ensure that any time the checking judgment is used the input type is well-formed.

The rule for checking functions (`CREFL`) is almost identical to the corresponding rule in the core language, with just two changes. First, the programmer can omit the types \( A_1 \), and \( A_2 \), because in a bidirectional system they can be deduced from the type the expression is checked against. Second, the new premise `injrng` slightly restricts the use of this rule in order to ensure that typing respects CC-equivalence of contexts; we return to this issue in Section 6. This premise also appears in the rule for dependent application (IDAPP).

Equations that are provable via congruence closure are available via the checking rule, `CREFL`. In this case the proof term is just `join`, written as an underscore in the concrete syntax. Because this is a checking rule, the equation to be proved does not have to be written down explicitly if it can be inferred from the context.

The rule `IJJOIN` proves equations using the operational semantics. We saw this rule used in the apiluzeug example, written `join : 0 + 0 = 0` in the concrete syntax. Note that the programmer must explicitly write down the terms that should be reduced. The rule `IJJOIN` is a synthesizing rule in order to ensure that the typing rules are effectively implementable. Although the type system works “up to congruence” the operational semantics do not. So the expression itself needs to contain enough information to tell the typechecker which member of the equivalence class should be reduced—it cannot get this information from the checking context. (In practice, having to explicitly write this annotation can be annoying. The `ZOMBIE` implementation includes a feature `smartjoin` which can help—see Section 8.2).

It is also interesting to note the rules that do not appear in Figure 6. For example, there is no rule or surface syntax corresponding to `TCAST`, because this feature can be written as a user-level function. Similarly, the rather involved machinery for rewriting subterms and erased terms (rule `TJSUBST`) can be entirely omitted, since it is subsumed by the congruence closure relation. The programmer only needs to introduce the equations into the context and they will be used automatically.

---

**5. Surface language**

Next, we give a precise specification of the surface language, which shows how type inference can use congruence closure to infer casts of the form \( a_v \). Note that this process involves determining both the location of such casts and the proof of equality \( v \).

Figure 6 defines a bidirectional type system for a partially annotated language. This type system is defined by two (mutually defined) judgments: `type synthesis`, written \( \Gamma \vdash a : A \), and `type checking`, written \( \Gamma \vdash a \leftarrow A \). Here \( \Gamma \) and \( a \) are always inputs, but \( A \) is an output of the synthesizing judgment and an input of the checking judgment.

Most rules of this type system are standard for bidirectional systems [22], including the rules for inferring the types of variables (`IVAR`), the well-formedness of types (`IJEQ`, `ITYPE`, and `IPI`), non-dependent application (`IAPP`), and the mode switching rules `CINF` and `IANNOT`. Any term that has enough annotations to synthesize a type \( A \) also checks against that type (`CINF`). Conversely, some terms (e.g. functions) require a known type to check against, and so if the surrounding context does not specify one, the programmer must add a type annotation (`IANNOT`).
Finally we note that the surface language does not satisfy some of the usual properties of type systems. In particular, it does lack a general weakening lemma because the injrng relation cannot be weakened. Similarly, it does not satisfy a substitution lemma because the \( \text{injrng} \) of the usual properties of type systems. In particular, it lacks a proof for the operational semantics.) In both of these cases, the situations where weakening and substitution fail are rare and there are straightforward workarounds for programmers. Furthermore, these properties do hold for fully annotated expressions, so there are no restrictions on the output of the elaborator.

6. Elaboration

We implement the declarative system using an elaborating type-checker, which translates a surface language expression to an expression in the core language, if it type checks.

We formalize the algorithm that the elaborator uses as two inductively defined judgments, written \( \Gamma' \vdash a \ll a' : A' \) (\( \Gamma' \) and \( a' \) are inputs) and \( \Gamma' \vdash a \ll A \sim a' \) (\( \Gamma', a, \) and \( A' \) are inputs). The variables with primes (\( \Gamma', a', \) and \( A' \)) are fully annotated expressions in the core language, while \( a \) is the surface language term being elaborated. The elaborator deals with each top-level definition in the core language, while \( a \) is the program separately, and the context \( \Gamma' \) is an input containing the types of the previously elaborated definitions.

The job of the elaborator is to insert enough annotations in the term to create a well-typed core expression. It should not otherwise change the term. Stated more formally,

**Theorem 1** (Elaboration soundness).

1. If \( \Gamma' \vdash a \ll a' : A \) and \( |a| = |a'| \).
2. If \( \Gamma' \vdash A : \text{Type} \) and \( \Gamma' \vdash a \ll A \sim a' \), then \( \Gamma' \vdash a' : A \) and \( |a| = |a'| \).

Furthermore, the elaborator should accept those terms specified by the declarative system. If the type system of Section 5 accepts a program, then the elaborator should succeed (and produce an equivalent type in inference mode).
Theorem 2 (Elaboration completeness).

1. If $\Gamma \vdash a \Rightarrow A$ and $\Gamma \vdash \theta \Rightarrow \Gamma' \vdash A \Leftarrow A'$, then
   $\Gamma' \vdash a \Rightarrow a' : A''$ and $\Gamma' \vdash A' \Rightarrow A''$.
2. If $\Gamma \vdash a \Leftarrow A$ and $\Gamma \vdash \theta \Rightarrow \Gamma' \vdash A \Leftarrow A'$, then
   $\Gamma' \vdash a \Leftarrow a' : A''$.

Designing the elaboration rules follows the standard pattern of turning a declarative specification into an algorithm: remove all rules that are not syntax directed (in this case CAST and CCAST), and generalize the premises of the remaining rules to create a syntax-directed system that accepts the same terms. At the same time, the uses of congruence closure relation $\Gamma \vdash a \Rightarrow A$ and $\Gamma \vdash \theta \Rightarrow \Gamma' \vdash A \Leftarrow A'$ must be replaced by appropriate calls to the congruence closure algorithm.

We specify this algorithm using the following (partial) functions:

\[ \Gamma \vdash A \sim B \sim v, \text{ which checks } A \text{ and } B \text{ for equality and produces core-language proof } v. \]

\[ \Gamma \vdash A \Rightarrow B \sim v, \text{ which checks whether } A \text{ is equal to some type } B \text{ and produces type } v \text{ and proof } v. \]

\[ \Gamma \vdash A \Rightarrow (B_1 \sim B_2) \sim v, \text{ which is similar to above, except for equality types.} \]

For example, consider the rule for elaborating function applications:

\[ \begin{array}{c}
\Gamma \vdash a \Rightarrow a' : A_1 \\
\Gamma \vdash A_1 \Rightarrow \gamma (x : A) \Rightarrow B \sim v_1 \\
\Gamma \vdash v \Leftarrow A \sim v' \\
\Gamma \vdash \text{inj} \left( x : A \right) \Rightarrow B \text{ for } v'
\end{array} \]

\[ \Gamma \vdash a \Leftarrow a' : A_1 \vdash B \sim v \quad \quad \text{EDAPP} \]

In the corresponding declarative rule (DAPP) the applied term $a$ must have an arrow type, but this can be arranged by implicitly using ICAST to adjust $a$’s type. Therefore, in the algorithmic system, the corresponding condition is that the type of $a$ should be equal to an arrow type $(x : A) \rightarrow B$ modulo the congruence closure. Operationally, the typechecker will infer some type $A_1$ for $a$, then run the congruence closure algorithm to construct the set of all expressions that are equal to $A_1$, and then check if the set contains some expression which is an arrow type. The elaborated core term uses the produced proof of $A_1 = (x : A) \rightarrow B$ in a cast to change the type of $a$.

At this point there is a potential problem: what if $A_1$ is equal to more than one arrow type? For example, if $A_1 = (x : A) \rightarrow B = (x : A') \rightarrow B$, then the elaborator has to choose whether to check $b$ against $A$ or $A'$. A priori it is quite possible that only one of them will work; for example the context $\Gamma$ may contain an inconsistent equation like Nat $\rightarrow$ Nat $= \text{Bool} \rightarrow$ Nat. We do not wish to introduce a backtracking search here, because that could make type checking too slow.

This kind of mismatch in the domain type can be handled by extending the congruence closure algorithm. Note that things are fine if $\Gamma \vdash A = A'$, since then it does not matter if $A$ or $A'$ is chosen. So the issue only arises if $\Gamma \vdash (x : A) \rightarrow B = (x : A') \rightarrow B$ and not $\Gamma \vdash A = A'$. Fortunately, type constructors are injective in the core language (Section 3). Including injectivity as part of the congruence closure judgment (by the rule TCCINJDOM) ensures that it does not matter which arrow type is picked.

We also have to worry about a mismatch in the codomain type, i.e. the case when $\Gamma \vdash A_1 = (x : A) \rightarrow B$ and $\Gamma \vdash A_1 = (x : A') \rightarrow B'$ for two different types. At first glance it seems as if we could use the same solution. After all, the core language includes a rule for injectivity of the range of function types (rule TINJNG). There is an important difference between this rule and TINJDOM, however, which is the handling of the bound variable $x$ in the codomain $B$—the rule says that this can be closed by substituting any value for it. As a result, we cannot match this rule in the congruence closure relation, because the algorithm would have to guess that value.

Instead, we restrict the declarative language to forbid this problematic case. That is, the programmer is not allowed to write a function application unless all possible return types for the function are equal. Operationally, the typechecker will search for all arrow types equal to $A_1$ and check that the the codomains with $v$ substituted are equal in the congruence closure.

In the fully-annotated core language we express this relation with the rule IRPI, and then lift this operation to partially annotated terms by rule EIRPI (Figure 6). Note that in cases when an application is forbidden by this check, the programmer can avoid the problem by proving the required equation manually and ensuring that it is available in the context.

On the checking side, the mode-change rule ECINF now needs to prove that the synthesized and checked types are equal.

\[ \Gamma \vdash a \Rightarrow a' : A \quad \Gamma \vdash A \Rightarrow B \sim v_1 \]

\[ \Gamma \vdash a \Leftarrow B \sim a' \sim v_1 \quad \text{ECINF} \]

This rule corresponds to a direct call to the congruence closure algorithm, producing a proof term $v_1$. Note that the inputs are fully elaborated terms—in moving from the declarative to the algorithmic type system, we replaced the undecidable condition $\Gamma \vdash A = B$ with a decidable one.

Finally, the rule ECREFL elaborates checkable equality proofs (written as underscores in the concrete ZOMBIE syntax).

\[ \Gamma \vdash A \Rightarrow (a = b) \sim v_1 \]

\[ \Gamma \vdash a \Rightarrow b \sim v \]

\[ \Gamma \vdash \text{join} \Leftarrow A \sim \text{check system } v_1 \quad \text{ECREFL} \]

As in the rule for application, the typechecker does a search through the equivalence class of the ascribed type $A$ to see if it contains any equations. If there is more than one equation it does not matter which one gets picked, because the congruence relation includes injectivity of the equality type constructor (TCCINJEQ).

7. Implementing congruence closure

Algorithms for congruence closure in the first-order setting are well studied, and our work builds on them. However, in our type system the relation $\Gamma \vdash : a = b$ does more work than “classic” congruence closure: we must also handle erasure, terms with bound variables, (dependently) typed terms, the injectivity rules, the “assumption up to congruence” rule, and we must generate proof terms in the core language.

Our implementation proves an equation $a = b$ in three steps. First, we erase all annotations from the input terms and explicitly mark places where the congruence rule can be applied, using an operation called labeling. Then we use an adapted version of the congruence closure algorithm by Nieuwenhuis and Oliveras [20]. Our version of their algorithm has been extended to also handle injectivity and “assumption up to congruence”, but it ignores all the checks that the terms involved are well-typed. Finally, we take the untyped proof of equality, and process it into a proof that $a$ and $b$ are also related by the typed relation. The implementation is factored in this way because the congruence rule does not necessarily preserve well-typedness, so the invariants of the algorithm are easier to maintain if we do not have to track well-typedness at the same time.
7.1 Labeling terms

In $\Gamma \vdash a = b$, the rule TCC\textsc{congruence} is stated in terms of substitution. But existing algorithms expect congruence to be applied only to syntactic function applications: from $a = b$ conclude $f_a = f_b$. To bridge this gap, we preprocess equations into (erased) labeled expressions. A label $F$ is an erased language expression with some designated holes (written $\_\_\_\_$) in it, and a labeled expression is a label applied to zero or more labeled expressions, i.e. a term in the following grammar.

$$a ::= F a_1$$

Typically a label will represent just a single node of the abstract syntax tree. For example, a wanted equation $f x = f y$ will be processed into $(-\_\_) f x = (-\_\_) f y$, where the label $(-\_\_)$ means this is an application. However, for syntactic forms involving bound variables, it can be necessary to be more coarse-grained. For example, given $a = b$ our implementation can prove $rec f x . a + x = rec f x . b + x$, which involves using $rec f x . + x$ as a label. In general, to process an expression $a$ into a labeled term, the implementation will select the largest subexpressions that do not involve any bound variables.

Applying the labeling step simplifies the congruence closure problems in several ways. We do not need to consider erasure, congruence is only used on syntactic label applications, and all the different injectivity rules are handled generically. We use the notation $\Gamma \vdash^L a = b$ to mean that $a$ and $b$ are CC-equivalent as labeled terms.

7.2 Untyped congruence closure

Next, we use an algorithm based on Nieuwenhuis and Oliveras [20] to decide the $\Gamma \vdash^L a = b$ relation. The algorithm first “flattens” the problem by allocating constants $c_i$ (i.e. fresh names) for every subexpression in the input. After this transformation every input equation has either the form $c_1 = c_2$ or $c = F(c_1, c_2)$, that is, it is either an equation between two atomic constants or between a constant and a label $F$ applied to constants. Then follows the main loop of the algorithm, which is centered around three data-structures: a queue of input equations, a union-find structure and a lookup table. In each step of the loop, we take off an equation from the queue and update the state accordingly. When all the equations have been processed the union-find structure represents the congruence closure.

The union-find structure tracks which constants are known to be equal to each other. When the algorithm sees an input equation $c_1 = c_2$ it merges the corresponding union-find classes. This deals with the reflexivity, symmetry and transitivity rules. The lookup table is used to handle the congruence rule. It maps applications $F(c_1, c_2)$ to some canonical representative $c$. If the algorithm sees an input equation $c = F(c_1, c_2)$, then $c$ is recorded as the representative. If the table already had an entry $c'$, then we deduce a new equation $c = c'$ which is added to the queue.

In order to adapt this algorithm to our setting, we make three changes. First, we adapt the lookup tables to include the richer labels corresponding to the many syntactic categories of our core language. (Nieuwenhuis and Oliveras only use a single label meaning “application of a unary function.”)

Second, we deal with injectivity rules in a way similar to the implementation of Coq’s congruence tactic [10]. Certain labels are considered injective, and in each union-find class we identify the set of terms that start with an injective label. If we see an input equation $e = F(c_1, c_2)$ and $F$ is injective we record this in the class of $e$. Whenever we merge two classes, we check for terms headed by the same $F$; e.g. if we merge a class containing $F(c_1, c_2)$ with a class containing $F(c_1', c_2')$, we deduce new equations $c_1 = c_1'$ and $c_2 = c_2'$ and add those to the queue.

Third, our implementation of the extended assumption rule works much like injectivity. With each union-find class we record two new pieces of information: whether any of the constants in the class (which represent types of our language) are known to be inhabited by a variable, and whether any of the constants in the class represents an equality type. Whenever we merge two classes we check for new equations to be added to the queue.

The extended version of the paper contains a precise description of our algorithm, and also gives a formal proof of its correctness:

**Lemma 3.** The algorithm described above is a decision procedure for the relation $\Gamma \vdash^L a = b$.

7.3 Typing restrictions and generating core language proofs

Along the pointers in the union-find structure, we also keep track of the evidence that showed that two expressions are equal. The syntax of the evidence terms is given by the following grammar. An evidence term $p$ is either an assumption $x$ (with a proof $p$ that $x$’s type is an equation), reflexivity, symmetry, transitivity, injectivity, or an application of congruence annotated with a label $A$.

$$p, q ::= x \_p | \text{refl} \_p | p^{-1} | p \_p | \text{inj} \_p \_p | \text{cong} \_p \_p \ldots$$

Next we need to turn the evidence terms $p$ into proof terms in the core calculus. This is nontrivial, because the Nieuwenhuis-Oliveras algorithm does not track types. Not every equation which is derivable by untyped congruence closure is derivable in the typed theory; for example, if $f : \text{Bool} \rightarrow \text{Bool}$, then from the equation $(a : \text{Nat}) = (b : \text{Nat})$ we can not conclude $f a = f b$, because $f a$ is not a well-typed term. Worse still, even if the conclusion is well-typed, not every untyped proof is valid in the typed theory, because it may involve ill-typed intermediate terms. For example, let $\text{Id} : (A : \text{Type}) \rightarrow A \rightarrow A$ be the polymorphic identity function, and suppose we have some terms $a : A; b : B$, and know the equations $x : A = B$ and $y : a = b$. Then

$$(\text{cong}_{\text{Id}} \_p \_\text{refl}) \_p \_\text{refl}$$

is a valid untyped proof of $\text{Id} A a = \text{Id} B b$. But it is not a correct typed proof because it involves the ill-typed term $\text{Id} B a$:

$$x : A = B \quad a = a \quad \text{cong} \quad B = B \quad y : a = b \quad \text{cong} \quad \text{trans} \quad \text{Id} A a = \text{Id} B b$$

Corbineau [10] notes this as an open problem. Of course, the above proof is unnecessarily complicated. The same equation can be proved by a single use of congruence. Furthermore, the simpler proof does not have any issues with typing: every expression occurring in the derivation is either a subexpression of the goal or a subexpression of one of the equations from the context, so we know they are well-typed.

Our key observation is that this trick works in general. The only time a congruence proof will involve expressions which were not already present in the context or goal is when transitivity is applied to two derivations ending in congruence. We simplify such situations using the following $\text{CONTRANS}$ rule.

$$(\text{cong} \_p \_p \_p) ; (\text{cong} a q_1 \_q_1) \rightarrow \text{cong} a (p_1 ; q_1) \ldots (p_i ; q_i)$$
This rule is valid in general, and it does not make the proof larger. We also need rules for simplifying uses of injectivity and assumption-up-to-CC, such as:

\[
\begin{align*}
\text{inj}_i \left( \text{cong } A \mid p_1 \ldots p_n \right) & \equiv p_i \\
\text{cong } A \left( \pi_k \right) & \equiv \pi_k \left( \pi_i \right) \left( \pi_j \right)
\end{align*}
\]

The complete simplification relation \( \mapsto \) includes the above rules, some additional rules for pushing uses of symmetry \((\sim)\) past the other evidence constructors, and rules for rewriting subterms.

Any evidence term \( p \) can be simplified into a normalized evidence term \( p^* \). And given \( p^* \) it is easy to produce a corresponding proof term in the core language. The idea is that one can reconstruct the middle expression in every use of transitivity \((p ; q)\), because at least one of \( p \) and \( q \) will be specific enough to pin down exactly what equation it is proving.

Simplifying the evidence terms into this form also solves another issue, which arises because of the TCCERASURE rule. Because the input terms are preprocessed to delete annotations (Section 7.1), an arbitrary evidence term will not uniquely specify the annotations. Again, this issue only arises because of the cong-trans pair. Simplifying the evidence term resolves the issue, because in a simplified term every intermediate expression is pinned down.

Putting together the labeling step, the evidence simplification step and the proof term generation step we can relate typed and un-typed congruence closure. In the following theorem, the relation \( \mapsto \) allows the programmer to specify a maximum number of steps), and then introduces the corresponding equations into the context with fresh names. That is, it elaborates as:

\[
\begin{align*}
\text{let } _c = \left( \text{join } : a \equiv b' \right) \text{ in } \\
\text{let } _c = \left( \text{join } : a' \equiv a'' \right) \text{ in } \\
\text{body}
\end{align*}
\]

Second, many proofs requires an interleaving of evaluation and equations from the context, particularly in order to take advantage of equations introduced by smart case. One example is \texttt{npluszero} in Section 2. The case-expression needs to return a proof of \texttt{n+0 = n}. If we try to directly evaluate \texttt{n+0}, we would reach the stuck expression \texttt{case n of Zero -> 0; Succ m' -> Succ (m' + 0)}, so instead we used an explicit type annotation in the \texttt{Zero} branch to evaluate \texttt{0+0}. However, the context contains the equation \texttt{n = Zero}, which suggests that there should be another way to make progress.

To take advantage of such equations, we add some extra intelligence to the way unfold handles CBV-evaluation contexts, that is expressions of the form \( f \ a \) or \( \texttt{case b of \ldots} \). When encountering such an expression it will first recursively unfold the function \( f \), the argument \( a \), or the scrutinee \( b \) (as with ordinary CBV-evaluation), and add the resulting equations to the context. However, it will then examine the congruence equivalence class of these expressions to see if they contain any suitable values—any value \( v \) is suitable for \( a \), a function value \( \text{rec } f \ x.0 \) for \( f \), and a value headed by a data constructor for \( b \)—and then unfold the resulting expression \( \text{rec } f \ x.0 \ v \). (If there are several suitable values, one is selected arbitrarily). This way unfolding can make progress where ordinary CBV-evaluation gets stuck.

Using the same machinery we also provide a “smarter” version of \texttt{join}, which first unfolds both sides of the equation, and then checks that the resulting expressions are CC-equivalent. This lets us omit the type annotations from \texttt{npluszero}:
The unfold algorithm does not fully respect CC-equivalence, because it only converts into values. For example, suppose the context contains the equation \( f \ a = v \). Then unfold \( g \ (f \ a) \) will evaluated \( f \ a \) and add the corresponding equations to the context, but unfold \( g \ v \) will not cause \( f \ a \) to be evaluated. This gives the programmer more control over what expressions are run.

We have not studied the theory of the unfold algorithm, and indeed it is not a complete decision procedure for our propositional equality. If a subexpression of \( a \) does not terminate, unfold will spend all its reduction budget on just that subexpression (but this is OK, because the programmer decides what expression \( a \) to unfold). And if the context contains e.g. an equation between two unrelated function values, unfold will arbitrarily choose one of them (but it is hard to think of an example where this would happen). We have found unfold very helpful when writing examples.

9. Related work

The annotated core language in this paper is a slight variation on previous work [24], which in turn is a subset of the full language implemented by ZOMBIE [9]. In this version, in order to keep the formalism small we omit some features (uncatchable exceptions and general datatypes) and replace the application rule with a slightly less expressive value-dependent version. However, these omissions are not significant (the original system is still compatible with the “up to congruence” approach and is implemented in ZOMBIE). We also took the opportunity to simplify some typing rules, and to emphasize the role of erasable annotations.

Propositional Equality  The idea of using congruence closure is not limited to the particular version of propositional equality used by our core language, which has some nonstandard features (we discussed the motivations for them in [24]). Below, we discuss how those features interact with congruence closure and suggest how the algorithm could be adapted to other settings.

First, our equality is very heterogeneous, that is we can form and use equations between terms of different types. This has pros and cons: it can be convenient for the programmer to not worry about types, and the metatheory is simple, but it makes it hard to include type-directed \( \eta \)-rules. However, congruence closure will work just as well with a conventional homogeneous equality.

Second, we use an \( n \)-ary congruence rule, while most theories only allow eliminating one equation at a time. For congruence closure to work equality must be a congruence, e.g. given \( a = a' \) and \( b = b' \) we should be able to conclude \( f \ a \ b = f \ a' \ b' \). Our \( n \)-ary rule supports this in the most straightforward way possible. An alternative (used in some versions of ETT [11]) would be to use separate \( n \)-ary congruence rules for each syntactic form. Systems that only allow rewriting by one equation at a time require some tricks to avoid ill-typed intermediate terms (e.g. [6] Section 8.2.7).

Finally, in our system the elimination of propositional equality is erased, so equations like \( a_{\text{h}b} = a \) are considered trivially true. This is similar to Extensional Type Theory, but unlike Coq and Agda. Having such equations available is important, because the elaborator inserts casts automatically, without detailed control by the programmer. In Coq that would be problematic, because an inserted cast could prevent two terms from being equal. However, making the conversion erasable is not the only possible approach.

For example, in Observational Type Theory [2] the conversions are computationally relevant but the theory includes \( a_{\text{h}b} = a \) as an axiom. In that system one can imagine the elaborator would use the axiom to make the elaborated program type-check.

Stronger equational theories  The theory of congruence closure is one among a number of related theories. One can strengthen it in various ways by adding more reasoning rules, in order to get a more expressive programming language. However, doing so may endanger type inference, or even the decidability of type checking.

One obvious question is whether we could extend the relation \( \Gamma \vdash a = b \) to do both congruence reasoning and \( \beta \)-reduction at the same time. Unfortunately, this extension causes the relation to become undecidable. Another natural generalization is to allow rewriting by axiom schemes, i.e. instead of only using ground equations \( a = b \) from the context, also instantiate and use quantified formulas like \( \forall y z . a = b \). In general this generalization (the “word problem”) is also not decidable, e.g. it is easy to write down an axiom scheme for the equational theory of SKI-combinators. However, there are semi-decision procedures such as unifying completion [4] which form the basis of many automated theorem provers.

Even when preserving decidability one can still extend congruence closure to know about specific axioms schemes, such as for natural numbers with successor and predecessor [20] or lists [19] or injective data constructors [10].

Clearly one could design a programming language around a more ambitious theory than just congruence closure. Many languages, such as Dafny [17] and Dminor [7] call out to an off-the-shelf theorem prover in order to take advantage of all the theories that the prover implements. One reason we focus on a simple theory is that it makes unification easier, which seems to offer promising avenues for future work on type inference. Unification modulo congruence closure (rigid E-unification) is NP-complete [15]. This compares favorably with unification modulo \( \beta \) (higher-order unification) which is undecidable. Unification modulo other equational theories (E-unification) must be handled on a theory-by-theory basis, and it is not an operation exposed by most provers.

Simplifying congruence proofs  Our \textsc{CongTran}s simplification rule is quite natural, and in fact the same rule has been studied before for a different reason. For efficiency, users of congruence closure want to make proofs as small as possible by taking advantage of simplifications like \text{refl}: \( p \rightarrow p \) or \( p \rightarrow p^{-1} \); \( p \rightarrow \text{refl} [13, 27] \). However, users of cong can hide the opportunity for such simplifications. De Moura et al. define the same \textsc{CongTran}s rule and give the following example [13]. Given assumptions \( h_1 : a = b \), \( h_2 : b = d \), \( h_3 : c = b \), consider the proof term

\[
\text{cong} (f (h_1; h_3^{-1})); (\text{cong} (f (h_3; h_2))) : fa = fd
\]

We can get rid of the assumption \( h_3 \) by doing the rewrite

\[
\text{cong} (f (h_1; h_3^{-1})); (\text{cong} (f (h_3; h_2))) \rightarrow \text{cong} (f (h_1; h_3^{-1}; h_3; h_2)).
\]

Dependent programming with congruence closure  CoqMT [26] aims to make Coq’s definitional equality stronger by including additional equational theories, such as Presburger arithmetic, so that for example the types Vec 0 and Vec (0 × n) can be used interchangeably. The prototype implementation only looks at the types themselves, but the metatheory also considers using assumptions from the context. This is complicated because CoqMT still wants to consider types modulo \( \beta \)-convertibility, and in contexts with inconsistent assumptions like true = false one could write nonterminating expressions. Therefore CoqMT imposes restrictions on where
an assumption can be used. VeriML makes the definitional equality user-programmable [25], and as an example builds a “stack” combining congruence closure, β-reduction, and potentially other theorem proving.

Neither CoqMT or VeriML prove that their implementation is complete with respect to a declarative specification. For example, the VeriML application rule requires that the applied function has the type $T \rightarrow T'$ and then checks that $T'$ is definitionally equal to the type of the argument, but there is no attempt to also handle declarative derivations which require definitional equality to create an arrow type.

The Guru language includes a tactic `hypjoin` [21] similar to our `smartjoin` and `unfold`. However, instead of using equations from the context, the programmer has to write an explicit list of equations, and unlike `unfold` it normalizes the given equations.

10. Conclusion

We consider this paper as an application of automatic theorem proving to language design. Of course, in a higher-order logic, we always expect that the programmer will have to supply some proofs manually; the question is which ones. Intentional Type Theory recognizes that $\beta\eta$-equivalence in a normalizing language is decidable, so such equality proofs can be handled automatically as part of the definitional equality relation. This paper considers a different decidable equational theory, and proposes a language that is “the dual of ITT”: while conventional dependently-typed languages automatically use equalities that follow from $\beta$-reductions but do not automatically use assumptions from the context, our language uses assumptions but does not automatically reduce expressions.

We look forward to exploring the ramifications of this design decision more deeply in the context of a full programming language. Our ZOMBIE implementation provides a good baseline, but we would like to add more automation. In particular, the addition of rigid E-unification seems promising. Furthermore, we would like to explore ways in which $\beta$-reduction and congruence closure can co-exist—perhaps there is some way to achieve the benefits of each approach in the same context.

References
