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Abstract

Many programs operate reactively, patiently waiting for
user input, subsequently running for a while produc-
ing output, and eventually returning to a state where
they are ready to accept another input (or perhaps di-
verging). When a reactive program communicates with
multiple parties, we would like to be sure that it can be
given secret information from one without leaking it to
others.

In this paper, we explore various definitions of non-
interference for reactive programs and identify two
of special interest—one corresponding to termination-
insensitive noninterference for a standard sequential
language, the other to termination-sensitive noninter-
ference. We focus on the former and develop a proof
technique for showing that program behaviors are secure
according to this definition. To demonstrate the viabil-
ity of the approach, we define a simple reactive lan-
guage with an information-flow type system and apply
our proof technique to show that well-typed programs
are secure.

1 Introduction

Reactive programs—programs that alternate between
computing and interacting with one or more external
agents—are ubiquitous. Any program that computes
in response to events (the clicking of a GUI button,
the issuing of a command at a terminal, the receipt of
a network packet, the expiration of a timer, etc.) is re-
active. The ability for multiple agents to interact with
a single reactive program immediately raises questions
of security and privacy.

Web browsers and the client-side web applications
they host are prototypical cases of reactive programs.
Because they interact with both a local user and re-
mote, possibly untrusted, agents (e.g., web servers), it
is not surprising that significant effort has been spent

on making them secure [19, 15, 6, 7]. Despite signif-
icant progress on improving browser security, we still
rely on ad-hoc mechanisms such as the “same-origin
policy”1 to protect the integrity and confidentiality of
data processed by web applications. The fundamental
problem is that we lack the tools (both theoretical and
practical) to answer the question “What does it mean
for a browser running a web application to be secure?”

This paper focuses on the issue of confidentiality—
in particular, what it means to enforce information-
flow properties in a reactive system like a web browser.
Moreover, we are interested in using language-based
techniques for enforcing such properties in reactive pro-
grams, with the eventual goal of applying similar tech-
niques to JavaScript or other web scripting languages
with comparable event-handling capabilities. To this
end, we define a generic semantics of reactive compu-
tations.

Within the context of this computational model, we
make the following contributions. First, we frame the
question of reactive security so that we can give defini-
tions of noninterference paralleling the standard defi-
nitions of noninterference for sequential languages [21,
18]. Second, we explore this space of possible def-
initions and find that, from a practical standpoint,
there are two useful definitions: one corresponding to
termination-sensitive security in sequential languages
and one to termination-insensitive security. Third, we
establish a bisimulation-based technique for proving
the termination-insensitive definition of security. And
fourth, we illustrate this technique by using it to prove
the information security of a reactive extension of IMP,
the familiar language of imperative while-programs.

There has, of course, been a great deal of prior
work on using language-based techniques for enforc-
ing information-flow properties [20]. In particular, a
model of reactive programs was studied by Goguen and
Meseguer [4], but it is not a good fit when program-

1http://www.mozilla.org/projects/security

/components/same-origin.html
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ming with possibly diverging languages, nor for ones
that produce output incrementally. Focardi and Gorri-
eri [2] study security definitions for CCS, which is cer-
tainly reactive, but their definitions are designed specif-
ically with a view toward nondeterministic behavior,
while we are interested in the security of systems whose
real-world behavior is predictable. O’Neill, Clarkson,
and Chong [16], address “interactive” programs, which
can be viewed as a subset of the reactive programs we
have in mind; their notion of security corresponds to
a termination sensitive definition of information-flow,
whereas we focus here on a termination insensitive vari-
ant. More detailed comparisons and other related work
are discussed in Section 6.

2 Reactive Computation

Our model of reactive computation is inspired by
JavaScript2, the de facto standard for implementing
client-side components of web applications. JavaScript
code consists of handlers that wait for specific events.
In the JavaScript execution model, when an event trig-
gers a handler, the code of the handler executes to com-
pletion without any form of preemptive multitasking.
JavaScript’s core functionality is simple: it may update
the state of its internal environment; send messages on
the network (e.g., using XMLHttpRequest); install new
handlers to wait for new events, including responses to
its network requests; or update the DOM tree of the
HTML page being displayed.

Because JavaScript programs can produce many
outputs after handling a single input—in fact, they
may not terminate but just go on producing outputs
forever—it is natural to model their behavior as an au-
tomaton that takes small, bounded steps:

2.1 Definition: A reactive system mapping Input to
Output is a tuple

(ConsumerState,ProducerState, Input ,Output ,→)

where→ is a labeled transition system whose states are
State = ConsumerState ∪ProducerState and whose la-
bels are Act = Input ∪Output , subject to the following
constraints:

• for all C ∈ ConsumerState, if C
a→ Q, then a ∈

Input and Q ∈ ProducerState,

• for all P ∈ ProducerState, if P
a→ Q, then a ∈

Output ,

2http://www.ecma-international.org/publications

/files/ECMA-ST/Ecma-262.pdf

• for all C ∈ ConsumerState and i ∈ Input , there
exists a P ∈ ProducerState such that C

i→ P , and

• for all P ∈ ProducerState, there exists an o ∈
Output and Q ∈ State such that P

o→ Q.

A few observations about this definition are in order.
First, the definition implies that the system can always
make some kind of progress unless it is blocking on in-
put. However, this does not mean that it must always
return to an accepting state: it can get into a loop pro-
ducing outputs forever and never try to consume an-
other input. Second, it is impossible for two inputs to
be processed simultaneously. If an input arrives while
the system is busy producing outputs, we assume it
is transparently enqueued and processed later—our se-
curity properties are designed with asynchronous com-
munication in mind. Third, this definition does not
demand that reactive systems be deterministic.

We also need to explain how this definition models
the communication we have in mind. The senders and
recipients of inputs and outputs are not modeled ex-
plicitly: we assume there is a tag, such as a channel
name, encoded in each element of the sets Input and
Output that indicates its sender or receiver. More in-
terestingly, the definition requires every small step to
produce an output. This technical device does not con-
strain the model in practical terms because, when we
talk about security, we assume that different outputs
(and inputs) may be unobservable to different agents,
so we can easily model the act of a machine taking a
silent, internal step with a system transition having an
output that is unseen by all observers. This assump-
tion simplifies the definition of our system and allows
us to treat silent divergence uniformly, as a behavior
that is always relative to an observer. Similarly, there
is no harm in forcing the system to go to a producer
state after every input: if we wish to model a machine
that ignores an input entirely, the system may simply
produce a single invisible output and return to a con-
sumer state. This assumption guarantees that an infi-
nite stream of inputs will produce an infinite stream of
outputs, which turns out to reduce a surprising amount
of redundancy and clutter in some of our proofs.

Each state in a reactive system has a natural inter-
pretation as a (nondeterministic) transducer between
input streams and output streams. In this paper we
take “streams” to be finite or infinite sequences of ele-
ments: formally, this is the coinductive interpretation
of the grammar

S ::= [] | s :: S

where s ranges over stream elements. We use metavari-
ables I ∈ Stream Input and O ∈ Stream Output to
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range over streams of inputs i and outputs o, respec-
tively. The formal definition of how a a system state re-
lates input streams and output stream is quite straight-
forward.

2.2 Definition: Coinductively3 define Q(I) ⇒ O (Q
translates the input stream I to the output stream O)
with the following rules:

C([]) ⇒ []

C
i→ P P (I) ⇒ O

C(i :: I) ⇒ O

P
o→ Q Q(I) ⇒ O

P (I) ⇒ o :: O

2.3 Lemma: For every Q ∈ State and I ∈
Stream Input , there exists an O ∈ Stream Output such
that Q(I) ⇒ O.

Although, we make no formal assumption that such
transducers be deterministic, it will turn out that most
of the notions of security we explore imply that each
input stream is transduced to just one output stream.

In order to illustrate how a reactive system might
be programmed, we now introduce the syntax of a very
simplistic, imperative reactive programming language
(RIMP). The full semantics are given in Section 5; here
we rely on an intuitive explanation of RIMP’s opera-
tional model. Inputs in RIMP are natural numbers
tagged with their channels, where we let n range over
the set of natural numbers, and ch range over a set
of channels. Outputs are either a natural number sent
over a channel or a “tick.”

Input 3 i ::= ch(n)
Output 3 o ::= ch(n) | •

The syntax of programs, handlers, commands, and ex-
pressions is defined as follows:

p ::= · | h; p
h ::= ch(x){c}
c ::= skip

| c; c
| output ch(e)
| r := e
| if e then c else c
| while e {c}

e ::= x | n | r | e� e
� ::= + | − | = | <

3With a coinductive definition, we take a greatest fixed-point
interpretation of a set of inference rules. Intuitively, this simply
means that derivations need not be finite. For background on
coinductive reasoning, see the tutorial by Jacobs and Rutten [8].

A program consists of a collection of event handlers,
each of which accepts a message (a natural number)
on some channel and runs a simple imperative program
in response, after replacing the parameter x with the
message contents. The handler code may examine and
modify global state that is shared among all the han-
dlers, output messages on channels, branch and loop.
If the handler for an input terminates, the RIMP pro-
gram returns to a state in which it can handle another
input. Note that, since handlers share state, processing
an input may affect how later inputs are handled.

The global state, called the store, is a mapping from
variables r to natural numbers. We assume that each
variable in the shared global state is initialized to 0 at
the start of the program. A consumer state consists of
the program text and the shared global state. A pro-
ducer state additionally includes the command that is
currently being executed. If a producer state takes a
step that does not otherwise generate an output mes-
sage, we assume the label on that transition is •.

3 Security of Reactive Systems

Reactive systems may send messages to and receive
messages from multiple agents, which we will call prin-
cipals. The scenario of interest to us is when the princi-
pals would like to use the reactive system to communi-
cate private data to other principals who are authorized
to see it, while having a guarantee that unauthorized
principals will not learn anything about the secret in-
formation via their interactions with the system. We
assume there is a pre-order of security labels (L,≤) and
that all principals have a label corresponding to their
level of authorization. We also assume that messages
interchanged with the system have a label and that
there is a mechanism (such as cryptography) restricting
the observation of such communications to principals
having equal or higher labels.

Now we can state an informal definition of infor-
mation security: if an observer cannot draw a distinc-
tion between two streams of inputs given to a reactive
system starting in a particular state, then the same
observer must not be able to draw a distinction be-
tween the resulting streams of outputs. This is a natu-
ral generalization of standard definitions of noninterfer-
ence for imperative and functional languages [21, 18],
which say that, if the low-readable inputs to a program
are equivalent, then the low-readable outputs must be
equivalent when (and if) the program terminates. We
can formalize our notion of security in the following
way:

3.1 Definition: A state Q is secure if, whenever
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Q(I) ⇒ O and Q(I ′) ⇒ O′, it follows that, for all
l, I ≈l I ′ implies O ≈l O′.

The notation S ≈l S′ is meant to stand for a similar-
ity relation on streams parametrized by a label l—the
inability of an observer at level l to draw a distinc-
tion between S and S′. Defining this relation is where
things become interesting: it turns out that there are
multiple, natural notions of similarity between streams
relative to an observer who cannot see all of the ele-
ments, leading us to multiple notions of security.

Preliminaries To discuss these notions of security
precisely, we need a few auxiliary definitions. To de-
termine whether a stream element s is visible to an
observer l, we use the predicate visiblel(s). We assume
that the set of security labels L has a top element,
>, with visible>(s) for all s. In examples, we assume
there are labels > and ⊥ and channels ch> and ch⊥,
such that messages on channel ch> are invisible to an
observer at level ⊥.

We write fin(S) when S is finite and inf (S) when S
is infinite.

Finally, we need notations for identifying the next
stream element that is visible to an observer at level l
(if one exists), and for characterizing streams that have
no more elements visible to an observer at level l.

3.2 Definition: Inductively define S .l s :: S′ (S l-
reveals s followed by S′) with the following rules:

visiblel(s)
s :: S .l s :: S

¬ visiblel(s) S .l s′ :: S′

s :: S .l s′ :: S′

3.3 Definition: Coinductively define silent l(S) with
the following rules:

silent l([])
¬ visiblel(s) silent l(S)

silent l(s :: S)

Nonconflicting Security The coarsest version of
similarity, nonconflicting similarity, simply requires
that the observer cannot find two distinct stream el-
ements in corresponding positions in the streams:

3.4 Definition: Inductively define conflicting l(S, S′)
with the following rules:

S .l s :: S1 S′ .l s′ :: S′1 s 6= s′

conflicting l(S, S′)

S .l s :: S1 S′ .l s :: S′1 conflicting l(S1, S
′
1)

conflicting l(S, S′)

3.5 Definition: Define S ≈NC

l S′ (S is NC-similar
to S′ at l) to mean ¬ conflicting l(S, S′). Define

NC-security as Definition 3.1, instantiated with NC-
similarity.

It turns out that S is NC-similar to S′ at l if the
sequence of visible elements of one stream is a prefix
of the visible elements of the other, which may be a
more intuitive way to think about this relation. Non-
conflicting similarity is reflexive and symmetric, but
not transitive—we have [] ≈NC

l S for any l and S.

3.6 Example: The following program is not NC-
secure:

input ch>(x) {
output ch⊥(x);

}

This event handler has an explicit flow, and is deemed
insecure because the streams [ch>(0)] and [ch>(1)] are
NC-similar at ⊥ but the corresponding output streams
[ch⊥(0), •] and [ch⊥(1), •] are not NC-similar at ⊥.

3.7 Example: The following program is not NC-
secure:

input ch>(x) {
r := x;

}
input ch⊥(x) {
if r = 0 then
output ch⊥(0);

else
output ch⊥(1);

}

The second event handler in this example has an
implicit flow. It is deemed insecure because the
streams [ch>(0), ch⊥(0)] and [ch>(1), ch⊥(0)] are NC-
similar at ⊥ but the corresponding output streams
[•, •, •, ch⊥(0), •] and [•, •, •, ch⊥(1), •] and are not
NC-similar at ⊥.

It may not be immediately clear which • outputs
go with which inputs in the previous example, and the
reader may wonder at this point whether our formal-
ization of security has lost some of its strength by han-
dling the input and output streams separately rather
than as one interleaved stream. It turns out that this
particular instantiation of our security definition is, in
fact, rather weak in this regard.

3.8 Example: The following program is NC-secure:

input ch>(x) {
r := x;

}
input ch⊥(x) {
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if r = 0 then
output ch⊥(0);

else
output ch⊥(0);
output ch⊥(0);

}

Although this example looks much like the previous
one, it will map the input streams [ch>(0), ch⊥(0)]
and [ch>(1), ch⊥(0)] to the output streams
[•, •, •, ch⊥(0), •] and [•, •, •, ch⊥(0), •, ch⊥(0), •],
which are NC-similar at ⊥. We can see that the
program is NC-secure, in general, because the only
outputs it can produce are • and ch⊥(0), and any two
streams of these elements are NC-similar at ⊥. In
order to strengthen our notion of security to deal with
the synchronization behavior of inputs and outputs,
we need a more refined notion of similarity that
coincides with the obvious definition on finite streams
(i.e., dropping invisible items and comparing what
remains for equality).

Indistinguishable Security We modify the previ-
ous definition by allowing the observer to distinguish
finite silent streams from streams that still have observ-
able elements. We call this indistinguishable similarity.

3.9 Definition: Define distinguishablel(S, S′) induc-
tively with the following rules:

S .l s :: S1 silent l(S′) fin(S′)
distinguishablel(S, S′)

silent l(S) fin(S) S′ .l s :: S′1
distinguishablel(S, S′)

S .l s :: S1 S′ .l s′ :: S′1 s 6= s′

distinguishablel(S, S′)

S .l s :: S1 S′ .l s :: S′1
distinguishablel(S1, S

′
1)

distinguishablel(S, S′)

3.10 Definition: Define S ≈ID

l S′ (S is ID-similar
to S′ at l) to mean ¬ distinguishablel(S, S′). Define
ID-security as Definition 3.1, instantiated with ID-
similarity.

Note that we defined distinguishablel(S, S′) exactly
as we would define distinctness of finite streams if
we had to do so inductively, so its behavior on finite
streams is very predictable. It immediately renders
Example 3.8 insecure because, in general, if the high
inputs differ the output streams will not be equal after
dropping the • outputs. Although ID-similarity gives

an equivalence relation on finite streams, it is not tran-
sitive, in general, because of its subtle behavior on in-
finite streams. Observe that, if inf (S) and silent l(S),
then S ≈ID

l S′ for all l and S′. This observation leads
us to our next example.

3.11 Example: The following program is ID-secure.

input ch>(x) {
r := x;

}
input ch⊥(x) {
if r = 0 then
output ch⊥(0);

else
while 1 do skip;

}

The second event handler in this example creates a
termination channel. Observe that the input streams
[ch>(0), ch⊥(0), ch⊥(0)] and [ch>(1), ch⊥(0), ch⊥(0)]
are ID-similar at ⊥ and the corresponding out-
put streams [•, •, •, ch⊥(0), •, •, ch⊥(0), •] and
[•, •, •, •, . . .] are, in fact, also ID-similar at ⊥.
Termination-insensitive definitions of security are
quite common in language-based information-flow
because ruling out termination channels either re-
quires the elimination of too many useful, secure
programs, or else requires the use of static termination
checking. It is perhaps even a bit surprising that a
termination-insensitive definition of noninterference
for reactive programs exists at all.

Standard definitions of noninterference [21, 18] usu-
ally imply some sort of functional dependency between
the inputs and outputs of a program. The same is true
here (and this is a useful fact for proving subsequent
properties of our system).

3.12 Lemma: If a state Q is ID-secure, then for all I,
Q(I) ⇒ O and Q(I) ⇒ O′ implies O = O′.

To be precise, this does not mean a reactive system
must be deterministic in order to be ID-secure: state
transitions can be nondeterministic as long as they do
not affect the output behavior.

It is straightforward to demonstrate a relationship
between ID-similarity and NC-similarity.

3.13 Lemma: S ≈ID

l S′ implies S ≈NC

l S′.

More interesting is the fact that ID-security is
stronger than NC-security. (This is not as straightfor-
ward to show because ID-similarity appears contravari-
antly in the definition of security.)
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3.14 Lemma: If a transducer in a state Q is ID-
secure, then it is NC-secure.

From a practical standpoint, we don’t see any set-
ting where NC-security is preferable to ID-security. We
will see later that ID-security can be guaranteed with a
simple and flexible type system, and it is not clear how
one would weaken the type system to include programs
that are NC-secure but not ID-secure.

Coproductive Security ID-security is termination-
insensitive because it does not give the observer the
power to distinguish non-silent output streams from
silent but infinite ones. We can ensure that such
streams are always considered distinct with a direct
definition of similarity, called coproductive similarity,
that is akin to a weak bisimulation between the two
streams, where invisible elements correspond to inter-
nal τ actions.

3.15 Definition: Coinductively define S ≈CP

l S′ (S is
CP-similar to S′ at l) with the following rules:

silent l(S) silent l(S′)
S ≈CP

l S′

S .l s :: S1 S′ .l s :: S′1 S1 ≈CP

l S′1
S ≈CP

l S′

Define CP-security as Definition 3.1, instantiated with
CP-similarity.

Unlike the earlier definitions of similarity, this one is
an equivalence relation. It is easy to check that Exam-
ple 3.11 is not CP-secure, using the same input and out-
put pairs mentioned above. CP-security corresponds
closely to the definition of security for interactive pro-
grams given by O’Neill, Clarkson, and Chong [16].

The inductive definitions of NC-similarity and ID-
similarity resemble one another, so it is easy to estab-
lish their relationship; on the other hand, proving the
following lemma requires a bit more work.

3.16 Lemma: S ≈CP

l S′ implies S ≈ID

l S′.

What is the relationship between CP-security and
ID-security, though? Since CP-similarity appears both
covariantly and contravariantly in the definition of CP-
security, their relationship is not clear. The proof of
the following lemma rests on several auxiliary defini-
tions and lemmas, and additionally makes use of the
bisimulation-based technique we introduce in Section
4.

3.17 Lemma: If a state Q is CP-secure, then it is ID-
secure.

Coproductive-Coterminating Security Al-
though CP-security is quite strong, it is possible to go
a step further by defining similarity in such a way that
finite and infinite silent streams can be distinguished
(coproductive-coterminating similarity).

3.18 Definition: Coinductively define S ≈CPCT

l S′ (S
is CPCT-similar to S′ at l) with the following rules:

silent l(S) fin(S)
silent l(S′) fin(S′)

S ≈CPCT

l S′

silent l(S) inf (S)
silent l(S′) inf (S′)

S ≈CPCT

l S′

S .l s :: S1 S′ .l s :: S′1 S1 ≈CPCT

l S′1
S ≈CPCT

l S′

Here is an example of a program that is secure by
every other definition thus far but is not CPCT-secure.

3.19 Example: The following program is not CPCT-
secure:

input ch>(x) {
r := x;
if x = 0 then
while 1 do skip;

}

The definitions of CP-similarity and CPCT-
similarity aren’t too different; so the following results
shouldn’t be too surprising, although the latter one is
still not trivial.

3.20 Lemma: S ≈CPCT

l S′ implies S ≈CP

l S′.

3.21 Lemma: If a transducer in a state Q is CPCT-
secure, then it is CP-secure.

CPCT-security guarantees that a reactive system
can never make a choice between entering a input-
accepting state or silently diverging based on a high
input. However, this additional guarantee over CP-
security is unimportant in practice because such a
choice cannot leak information in a CP-secure system.
Consider a CP-secure machine that will silently diverge
upon receiving a high input of 0 but will immediately
return to a consumer state upon receiving a nonzero
high input. A low observer who wishes to determine if
the high input was nonzero can send a message to the
machine and wait for a response (we assume that there
is no other way to probe the system). Since a response
would never be given to the low observer if the high
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input were 0, CP-security guarantees that no response
will be given if the high input were 1. Therefore the
observer cannot learn anything about the value of the
high input. Thus CP-security is weaker than CPCT-
security only on paper. That being said, a type system
for ensuring CP-security may naturally ensure CPCT-
security just as one for ensuring NC-security naturally
ensures ID-security.

Summary We have presented four definitions of se-
curity based on four definitions of similarity. Of these,
two appear to be of practical interest: ID-security
and CP-security. Since enforcing CP-security through
language-based techniques takes us into a rather com-
plex design space that has already been partially ex-
plored by O’Neill, Clarkson, and Chong, we choose to
focus on ID-security. Although the type system we’ll
use to enforce this looks quite standard, we first need to
break down the definition of ID-security from a prop-
erty on the input/output behavior of a system to a
property on the states of a system.

4 A Method for Proving ID-Security

We now present a generic technique for proving the
ID-security of a state in a reactive system.

4.1 Definition: An ID-bisimulation on a reactive sys-
tem is a label-indexed family of binary relations on
states (written ∼l) with the following properties:

(a) if Q ∼l Q′, then Q′ ∼l Q;

(b) if C ∼l C ′ and C
i→ P and C ′ i→ P ′, then P ∼l P ′;

(c) if C ∼l C ′ and ¬ visiblel(i) and C
i→ P , then

P ∼l C ′;

(d) if P ∼l C and P
o→ Q, then ¬ visiblel(o) and

Q ∼l C;

(e) if P ∼l P ′, then either

• P
o→ Q and P ′ o′

→ Q′ implies o = o′ and
Q ∼l Q′, or else

• P
o→ Q implies ¬ visiblel(o) and Q ∼l P ′, or

else

• P ′ o′

→ Q′ implies ¬ visiblel(o′) and P ∼l Q′.

We will see below that, if Q ∼l Q for all l, then Q
is ID-secure. What we are accomplishing here is really
the same thing that Goguen and Meseguer were doing
with their “unwinding lemma” [4]: we are taking a
property of the input/output behavior of a system and

reframing it in terms of the states and transitions of
the system. What we end up with is more complex
because we are interested in a termination-insensitive
definition of security for systems that might diverge.

Others have investigated a variety of related
(bisimulation-based) methods for establishing security
properties [2]. However, the relations we have charac-
terized here are different from standard weak bisimula-
tions (taking our invisible inputs and outputs as anal-
ogous to internal τ actions). In one respect they are
stronger: considering the first of the three cases under
item (e), we see that, if one side can make a step with
an output o, then all steps taken by the other side must
produce the output o. On the other hand, the other
two cases permit one side to take a silent step by it-
self, which allows one side to get infinitely far ahead
of the other when this definition is used coinductively.
An ID-bisimulation differs from standard bisimulations
because it is tailored specifically to proving ID-security.

Before we can prove that this definition gives us the
property we want, we need to introduce one more def-
inition of similarity between streams.

4.2 Definition: Coinductively define S ≈VS

l S′ (S is
visibly l-similar to S′) with the following rules:

[] ≈VS

l []

¬ visiblel(s) S ≈VS

l S′

s :: S ≈VS

l S′

¬ visiblel(s) S ≈VS

l S′

S ≈VS

l s :: S′

visiblel(s) S ≈VS

l S′

s :: S ≈VS

l s :: S′

Observe that this is a natural relation to define be-
tween two streams with invisible elements. It is easy
to write down because it does not depend on auxiliary
definitions such as l-reveals. Does this relation give
rise to yet another definition of security? No, in fact,
it coincides exactly with ID-similarity.

4.3 Lemma: S ≈VS

l S′ iff S ≈ID

l S′.

Visible similarity is an important technical tool in
our development since it gives us a coinduction princi-
ple that can be used to prove the following key lemma.

4.4 Lemma: Suppose Q ∼l Q′ where Q(I) ⇒ O and
Q′(I ′) ⇒ O′. Then I ≈VS

l I ′ implies O ≈VS

l O′.

The previous two lemmas lead us directly to our
intended goal.

4.5 Theorem: If Q ∼l Q, then Q is ID-secure.
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5 RIMP

We now complete our technical development with a for-
mal presentation of the RIMP language, along with a
static type system that will ensure that well-typed pro-
grams are secure. We will prove this result by defining
a relation on program states and showing that it is
an ID-bisimulation for which well-typed programs are
related to themselves.

Operational Semantics We first define consumer
and producer states of the RIMP reactive system. A
consumer state, C, is a store paired with a program. A
producer state, P , also includes the currently executing
command and are tagged by the channel that triggered
the execution. Stores, µ, map global variables to the
natural numbers they contain.

C ::= (µ, p)
P ::= (µ, p, c)ch

The transition between states in the RIMP reactive
system is defined by the following four judgments of the
operational semantics, whose definitions appear below.

1. µ ` e ⇓ n, a big step evaluation of closed expres-
sions to numeric values, using the store to look up
variables.

2. (µ, c) o→ (µ′, c′), a small step execution of a closed
command paired with a store, where each step pro-
duces an output.

3. (p)(i) ⇓ c, the response to an input event, produc-
ing the command that will execute next.

4. Q
a→ Q′, the actual transitions of the reactive sys-

tem.

The evaluation of expressions is completely standard
for RIMP. We can use a big-step evaluation relation,
since expressions cannot diverge nor have side-effects.

5.1 Definition: Inductively define µ ` e ⇓ n with the
following rules:

µ ` n ⇓ n

µ ` r ⇓ µ(r)

µ ` e1 ⇓ n1 µ ` e2 ⇓ n2 n = n1 + n2

µ ` e1 + e2 ⇓ n

µ ` e1 ⇓ n1 µ ` e2 ⇓ n2 n = n1 − n2

µ ` e1 − e2 ⇓ n

µ ` e1 ⇓ n1 µ ` e2 ⇓ n2 n1 = n2

µ ` e1 = e2 ⇓ 1

µ ` e1 ⇓ n1 µ ` e2 ⇓ n2 n1 6= n2

µ ` e1 = e2 ⇓ 0

µ ` e1 ⇓ n1 µ ` e2 ⇓ n2 n1 < n2

µ ` e1 < e2 ⇓ 1

µ ` e1 ⇓ n1 µ ` e2 ⇓ n2 n1 6< n2

µ ` e1 < e2 ⇓ 0

The bulk of computation occurs when the com-
mands in a handler are executed. Each step of compu-
tation produces an output, o, although many of those
outputs will be the trivial output •, which is visible
only to the highest-security observer. The rules below
are standard except for the final rule, which produces
output.

5.2 Definition: Inductively define (µ, c) o→ (µ′, c′)
with the following rules:

(µ, (skip; c)) •→ (µ, c)

(µ, c1)
o→ (µ′, c′1)

(µ, (c1; c2))
o→ (µ′, (c′1; c2))

µ ` e ⇓ n

(µ, (r := e)) •→ (µ[r 7→ n], skip)

µ ` e ⇓ n n 6= 0

(µ, (if e then c1 else c2))
•→ (µ, c1)

µ ` e ⇓ 0

(µ, (if e then c1 else c2))
•→ (µ, c2)

µ ` e ⇓ n n 6= 0

(µ, (while e {c})) •→ (µ, (c; while e {c}))

µ ` e ⇓ 0

(µ, (while e {c})) •→ (µ, skip)

µ ` e ⇓ n

(µ, (output ch(e)))
ch(n)→ (µ, skip)

Next, we need a definition that pairs an input with
a program and builds the code that will be executed in
response to that event. This will require a substitution
of the message data for the parameter x in the body of
the event handler. We assume a standard definition of
substituting a value n for x in an expression e (written
e{n/x}), extended to commands in the obvious way.
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5.3 Definition: Inductively define (p)(i) ⇓ c with the
following rules:

(·)(i) ⇓ skip

(ch(x){c}; p)(ch(n)) ⇓ c{n/x}

(p)(ch ′(n)) ⇓ c ch 6= ch ′

(ch(x){c}; p)(ch ′(n)) ⇓ c

Finally, we give the labeled transition system cor-
responding to RIMP’s semantics. This system either
transitions a consumer state to a producer state by
looking up the appropriate handler, steps a producer
state to a new producer state (if there is computation
remaining), or steps a producer state to a consumer
state (if the handler has finished execution).

5.4 Definition: Define Q
a→ Q′ (where a ::= i | o)

with the following rules:

(p)(ch(n)) ⇓ c

(µ, p)
ch(n)→ (µ, p, c)ch

(µ, c) o→ (µ′, c′)

(µ, p, c)ch o→ (µ′, p, c′)ch

(µ, p, skip)ch •→ (µ, p)

We can easily show that these rules define a reac-
tive system, which is really just a matter of confirming
that the RIMP execution will never halt if inputs are
available.

Typing of RIMP Programs Now we give a static
type system to the RIMP language, whose purpose is
to identify a subset of programs that are secure.

We assume given a function lbl that associates a
label with every channel and with every variable and
define visiblel(ch(n)) to mean that lbl(ch) ≤ l, for both
inputs and outputs. Define visiblel(•) to hold iff l = >.

Expressions are typed with a single label, which can
be interpreted as an upper bound on the secrecy level
of the components of the expression. The typing judg-
ment for expressions is parametrized by a mapping Γ
from parameters to labels. (Even though we have only
one parameter x in this language, we write it this way
for consistency of notation with standard typing judg-
ments in more expressive languages.)

5.5 Definition: Inductively define Γ ` e : l with the
following rules:

Γ(x) ≤ l

Γ ` x : l Γ ` n : l

lbl(r) ≤ l

Γ ` r : l

Γ ` e1 : l1 Γ ` e2 : l2 l1, l2 ≤ l

Γ ` e1 � e2 : l

Commands are also typed with a single label, which
can be interpreted as a lower bound on the secrecy of
the effects that could occur during the execution of the
command. Traditionally, this label is called the label
of the “program counter,” so we use pc to range over
it. Again, we need a typing environment Γ for the
parameters that might be present in commands.

5.6 Definition: Inductively define Γ ` c : pc with the
following rules:

Γ ` skip : pc

Γ ` c1 : pc1 Γ ` c2 : pc2 pc ≤ pc1, pc2

Γ ` (c1; c2) : pc

Γ ` e : l l ≤ lbl(ch) pc ≤ lbl(ch)
Γ ` output ch(e) : pc

Γ ` e : l l ≤ lbl(r) pc ≤ lbl(r)
Γ ` (r := e) : pc

Γ ` e : l Γ ` c1 : pc1 Γ ` c2 : pc2

l ≤ pc1, pc2 pc ≤ pc1, pc2

Γ ` if e then c1 else c2 : pc

Γ ` e : l Γ ` c1 : pc1 l ≤ pc1 pc ≤ pc1

Γ ` while e {c} : pc

The typing judgment for programs simply requires
that each handler be well typed at the level of its chan-
nel, under the assumption that the message received is
secret at the level of the channel.

5.7 Definition: Inductively define ` p with the fol-
lowing rules:

` ·
x : lbl(ch) ` c : lbl(ch) ` p

` ch(x){c}; p

Finally, we may define a typing judgment for pro-
ducer and consumer states. Note that typing programs
does not depend on the store. The channel that trig-
gered a producer state also constrains the type of the
command in that state.

5.8 Definition: Define the judgment ` Q with the
following rules:

` p

` (µ, p)
` p ` c : lbl(ch)

` (µ, p, c)ch

9



We do not investigate decidability of typechecking
formally, but note that this type system is just a small
extension to a standard, termination-insensitive type
system for an IMP; nothing fancy is needed to deal
with RIMP’s reactivity. Thus, it should be completely
straightforward to write an algorithm to check the type
of terms.

These definitions have the standard type preserva-
tion property.

5.9 Lemma: If ` Q and Q
a→ Q′, then ` Q′.

The standard progress theorem for well-typed terms
is actually trivial here because by definition every term
can make progress in a reactive system.

Bisimulation on RIMP Programs We now turn
to defining a label-indexed family of binary rela-
tions on program states and showing that it is a ID-
bisimulation. This relation is built from relations on
stores, commands, and programs.

First, two stores are related at label l if the contents
visible to l are identical. This relation is an equivalence
relation.

5.10 Definition: Define two stores µ and µ′ to be
related at l (written µ ∼l µ′) if, for all r for which
lbl(r) ≤ l, we have µ(r) = µ′(r).

Next, to define when two commands are related, we
must first define a predicate highL(c) stating that the
effects of a command are visible only within a certain
upward-closed set L. In the following, we define the
downward closure of a set of labels L (written LH) as
{l | ∃l′ ∈ L. l ≤ l′}. Similarly, the upward closure of a
set of labels L (written LN) is {l | ∃l′ ∈ L. l′ ≤ l}. (We
write lH and lN for {l}H and {l}N.) L is the complement
of L.

5.11 Definition: Inductively define highL(c) with the
following rules:

L is upward-closed
highL(skip)

highL1
(c1) highL2

(c2)
highL1∪L2

(c1; c2)

lbl(ch) ∈ L L is upward-closed
highL(output ch(e))

lbl(r) ∈ L L is upward-closed
highL(r := e)

highL1
(c1) highL2

(c2)
highL1∪L2

(if e then c1 else c2)

highL(c)
highL(while e {c})

Now we can define when two commands are related
at a label. Intuitively, the commands must be identical,
except for subcommands whose effects are invisible to
an observer at level l.

5.12 Definition: Inductively define c ∼l c′ as follows:

skip ∼l skip

c1 ∼l c′1 c2 ∼l c′2
(c1; c2) ∼l (c′1; c′2)

` e : l′ l′ ≤ lbl(ch) ≤ l

output ch(e) ∼l output ch(e)

` e : l′ l′ ≤ lbl(r) ≤ l

(r := e) ∼l (r := e)

` e : l′ l′ ≤ l
c1 ∼l c′1 c2 ∼l c′2

if e then c1 else c2 ∼l

if e then c′1 else c′2

` e : l′ l′ ≤ l c ∼l c′

while e {c} ∼l while e {c}

highL(c) highL(c′) l 6∈ L

c ∼l c′

(This relation is symmetric and transitive; however,
it is not reflexive for untypeable commands. For exam-
ple, consider c = output ch(r) where lbl(r) 6≤ lbl(ch).)

Next we define when two programs are related. As
for commands, this is a partial equivalence relation.

5.13 Definition: Two programs p and p′ are related
at l (written p ∼l p′) if

• for all ch for which lbl(ch) ≤ l, if (p)(ch(n)) ⇓ c
and (p′)(ch(n)) ⇓ c′, then c ∼l c′, and

• for all ch for which lbl(ch) 6≤ l, if (p)(ch(n)) ⇓ c,
then high lH(c), and

• for all ch for which lbl(ch) 6≤ l, if (p′)(ch(n)) ⇓ c,
then high lH(c).

Finally, we define when two program states are re-
lated. A consumer state is related to a producer state
only when the outputs of the command in the pro-
ducer state are invisible and the stores and programs
are related. This relation is also a partial equivalence
relation.
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5.14 Definition: Two states Q and Q′ are related at
l (written Q ∼l Q′) with the following inductive defi-
nition:

µ ∼l µ′ p ∼l p′

(µ, p) ∼l (µ′, p′)

µ ∼l µ′ p ∼l p′ high lH(c)
(µ, p) ∼l (µ′, p′, c)ch

µ ∼l µ′ p ∼l p′ high lH(c)
(µ, p, c)ch ∼l (µ′, p′)

µ ∼l µ′ p ∼l p′ c ∼l c′

(µ, p, c)ch ∼l (µ′, p′, c′)ch

Security of RIMP Programs Now that we have
defined a label-indexed family of relations on program
states, we need to show that it is a ID-bisimulation.

A key lemma is that high commands step to high
commands and only produce invisible outputs.

5.15 Lemma: If highL(c) and (µ, c) o→ (µ′, c′), then
highL(c′) and, for all l 6∈ L, we have ¬ visiblel(o) and
µ ∼l µ′.

We use this lemma to verify the conditions of Defi-
nition 4.1 to show that ∼l is an ID-bisimulation. Since
we carefully constructed our binary relation, we can
also show that programs are related to themselves at
every label l if they are well typed.

5.16 Lemma: If ` p, then p ∼l p for all l.

Combining the previous lemma with Theorem 4.5
gives us the security result we claimed. This result
guarantees us that any well-typed program will be se-
cure when it is initialized with any store.

5.17 Theorem: If ` p, then (µ, p) is an ID-secure
transducer.

6 Related Work

There is a large body of research on using language-
based techniques to enforce information-flow proper-
ties; see Sabelfeld and Myers’ survey for an overview
[20]. Much of this prior work has concentrated
on batch-oriented, non-reactive programming models,
though there is also much work on studying concur-
rent systems in various formalisms (see for example,
the work by Pottier [17], or Mantel and Sabelfeld [9]).
RIMP’s event-handling model and interactive stream
semantics distinguish it from most of these approaches,
though its type system is similar to ones in the line

of work initiated by Volpano, Smith, and Irvine [21].
Askarov, Hunt, Sabelfeld, and Sands [1] gave one of the
first rigorous models of incremental output in sequen-
tial languages; our intention is to model incremental
output and incremental input.4 In what follows, we
describe the approaches nearest to our reactive pro-
gramming setting.

The prior research most closely related to ours is
O’Neill, Clarkson, and Chong’s work on interactive
programs [16] (hereafter “OCC”), which builds upon
Halpern and O’Neill’s Multiagent Systems Frame-
work [5]. The OCC paper focuses on a language with
explicit input operations that block waiting for desig-
nated principals to respond. This differs significantly
in technical detail from the input handlers in RIMP.
These authors define noninterference in terms of user
strategies, which are functions that map every history
of l-visible events to the next action for each princi-
pal at level l. This framework allows their security
definitions to consider the possibility of a high user re-
vealing information to a low user indirectly via choice
of strategy. In contrast, our definition of ID-security
rules out such communication by requiring the output
stream to be a function of the input stream. The OCC
work also considers nondeterministic systems, which
are ruled out by our definitions of security. We strongly
suspect that when restricted to the deterministic sub-
set of OCC, their definition of noninterference should
be effectively equivalent to our notion of CP-security.5

As a consequence, they are forced to use a very re-
strictive type system that prohibits looping on high
data, which is a form of termination-sensitive secu-
rity. In contrast, the ID-security enforced by RIMP
is termination-insensitive.

Focardi and Gorrieri [2] consider the security of la-
beled transition systems in general, so their definitions
could, in theory, be directly applied to our reactive sys-
tems. However, all of the definitions they study are tai-
lored to allow the systems to behave nondeterministi-
cally. Their definitions (some of which are based on sets
of traces, following on the work of McLean [12, 13, 14]
and McCullough [11], and other of which are based on
weak bisimulations) are fundamentally weaker than the
assertion that ID-similar input streams must produce
ID-similar output streams. Zakinthinos and Lee [22]
also consider security definitions as properties of sets of
traces (which, again, could be naturally applied to our
reactive systems). They compare the relative strengths

4However, their results on the weaknesses of termination-
insensitive definitions of security would apply equally well in our
setting.

5We have not established this claim formally because the tech-
nical details of mapping their formal model into ours are quite
complex.
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of several definitions from the literature. However, our
notion of ID-security, which we feel captures an impor-
tant notion of security, isn’t even a “security property”
according to Zakinthinos and Lee because it can’t be
expressed using their trace closure predicates.

Goguen and Meseguer’s seminal work [3, 4] gives
a computation model that looks somewhat similar to
our notion of reactive system and they study its secu-
rity properties. The key difference between their model
and ours is that they only allow a machine to take one
small step after each input, whereas our model permits
the transducer to generate many outputs or diverge
in response to a single input. Moreover, we have given
both a bisimulation-based proof technique and a sound
type system for enforcing ID-security.

Matos, et. al. [10] give a type system and a proof
of information-flow security for “reactive programs;”
however, their notion of reactive programs is really a
sequential language with some nonstandard program-
ming constructs. Their programs (deterministically)
run to completion without consuming any intermedi-
ate input or producing any intermediate output.

7 Conclusions and Future Work

In this paper, we have developed theoretical tools for
guaranteeing the information-flow security of programs
driven by event handling. This work involves technical
issues on multiple levels, and we have factored our de-
velopment so that pieces of our solution can be reused
in different settings.

First, we designed a general model of reactive com-
putation that is applicable to many systems that can
be thought of as “reactive.” Our model most closely
corresponds to languages that lack preemptive multi-
tasking, such as JavaScript. However, it does not pre-
clude the possibility of preemptive multitasking as part
of the system behavior. In that case, the model would
have to be instantiated with a particular scheduling al-
gorithm as part of the language semantics. It would be
interesting to address the security of such a language
in future work.

Second, we examined a spectrum of natural defini-
tions for the information-flow security of reactive sys-
tems. Each of these definitions is applicable to any
instantiation of our model of reactive behavior. We fur-
thermore identified two definitions of particular inter-
est: ID-security and CP-security, which correspond to
termination-insensitive and termination-sensitive non-
interference in the context of sequential languages. It
is somewhat surprising that there is a termination-
incentive definition since reactive programs are not in-
tended to ultimately halt with a final result. Moreover,

these two definitions do not share the weaknesses of
a possibilistic notion of security because they impose
functional behavior on the system.

Third, we designed a bisimulation-based proof tech-
nique for ensuring ID-security that decomposes the
end-to-end notion of security into properties of the be-
havior of the individual transitions of this system. Al-
though we demonstrated this technique using the sim-
ple RIMP language, this technique can be used to show
the security of any language that behaves in a reactive
manner. It should also be possible to design a similar,
equally generic, bisimulation-based proof technique for
ensuring CP-security, but we haven’t pursued this di-
rection because realistic CP-secure languages are diffi-
cult to design.

To demonstrate the viability of our proof technique
and give examples of the differences between the se-
curity definitions, we instantiated our model with the
RIMP language. Although event handling in RIMP
was designed to model that of JavaScript, there is fur-
ther work that must be done before we can apply our
ideas to the domain of web scripting languages: RIMP
does not include many features of JavaScript—in par-
ticular, timer events, first class functions, the ability
to dynamically add and remove handlers, or dynamic
evaluation of code. We would also need to address
a mechanism for making the DOM interface secure.
Additionally, the transfer structured data, especially
where parts of the structure have different security an-
notations is something that will have an impact on our
model because we currently require each stream ele-
ment to be tagged with a single security label. There
are also some practical issues to resolve, including an
account of backwards-compatibility. However, we be-
lieve that this paper forms a firm foundation to ad-
dressing the problem of implementing a secure lan-
guage for web programming and ultimately creating
secure web systems.
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