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ABSTRACT
DEPENDENT TYPES IN HASKELL: THEORY AND PRACTICE

Richard A. Eisenberg

Stephanie Weirich

Haskell, as implemented in the Glasgow Haskell Compiler (GHC), has been adding

new type-level programming features for some time. Many of these features—general-

ized algebraic datatypes (GADTs), type families, kind polymorphism, and promoted

datatypes—have brought Haskell to the doorstep of dependent types. Many depen-

dently typed programs can even currently be encoded, but often the constructions are

painful.

In this dissertation, I describe Dependent Haskell, which supports full dependent

types via a backward-compatible extension to today’s Haskell. An important contribu-

tion of this work is an implementation, in GHC, of a portion of Dependent Haskell,

with the rest to follow. The features I have implemented are already released, in

GHC 8.0. This dissertation contains several practical examples of Dependent Haskell

code, a full description of the differences between Dependent Haskell and today’s

Haskell, a novel dependently typed lambda-calculus (called Pico) suitable for use as

an intermediate language for compiling Dependent Haskell, and a type inference and

elaboration algorithm, Bake, that translates Dependent Haskell to type-correct Pico.

Full proofs of type safety of Pico and the soundness of Bake are included in the

appendix.
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Chapter 1

Introduction

Haskell has become a wonderful playground for type system experimentation. Despite
its relative longevity—at roughly 25 years old [45]—type theorists still turn to Haskell
as a place to build new type system ideas and see how they work in a practical
setting [5, 11, 15, 16, 32, 40, 46, 49, 51, 53, 66, 75, 76]. As a result, Haskell’s type
system has grown ever more expressive over the years. As the power of types in
Haskell has increased, Haskellers have started to integrate dependent types into their
programs [4, 30, 56, 60], despite the fact that today’s Haskell1 does not internally
support dependent types. Indeed, the desire to program in Haskell but with support
for dependent types influenced the creation of Cayenne [3], Agda [68], and Idris [9];
all are Haskell-like languages with support for full dependent types.

This dissertation closes the gap, by adding support for dependent types into Haskell.
In this work, I detail both the changes to GHC’s internal language, previously known
as System FC [87] but which I have renamed Pico, and the changes to the surface
language necessary to support dependent types. Naturally, I must also describe the
elaboration from the surface language to the internal language, including type inference
through my novel algorithm Bake. Along with the textual description contained
in this dissertation, I have also partially implemented these ideas in GHC directly;
indeed, my contributions were one of the key factors in making the current release of
GHC a new major version. It is my expectation that I will implement the internal
language and type inference algorithm described in this work in GHC in the near
future. Much of my work builds upon the critical work of Gundry [37]; one of my chief
contributions is adapting his work to work with the GHC implementation and further
features of Haskell.

1.1 Contributions
I offer the following contributions:

1Throughout this dissertation, a reference to “today’s Haskell” refers to the language implemented
by the Glasgow Haskell Compiler (GHC), version 8.0, released in 2016.
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• Chapter 3 includes a series of examples of dependently typed programming in
Haskell. Though a fine line is hard to draw, these examples are divided into two
categories: programs where rich types give a programmer more compile-time
checks of her algorithms, and programs where rich types allow a programmer to
express a more intricate algorithm that may not be well typed under a simpler
system.

Although no new results are presented in Chapter 3, these examples are a true
contribution of this dissertation. Dependently typed programs are still something
of a rarity, as evidenced by the success at publishing novel dependently typed
programs [8, 23, 61, 69]. This chapter extends our knowledge of dependently
typed programming by showing how certain programs might look in Haskell.
The two most elaborate examples are:

– a dependently typed database access library based on the design of Oury
and Swierstra [69] but with the ability to infer a database schema based
on how its fields are used, and

– a translation of Idris’s algebraic effects library [8] into Dependent Haskell
that allows for an easy-to-use alternative to monad transformer stacks.
With heavy use of singletons, it is possible to encode this library in today’s
Haskell due to my implementation work.

Section 3.3 then argues why dependent types in Haskell, in particular, are an
interesting and worthwhile subject of study.

• Dependent Haskell (Chapter 4) is the surface language I have designed in this
dissertation. This chapter is written to be useful to practitioners, being a user
manual of sorts of the new features. In combination with Chapter 3, this chapter
could serve to educate Haskellers on how to use the new features.

In some ways, Dependent Haskell is similar to existing dependently typed
languages, drawing no distinction between terms and types and allowing rich
specifications in types. However, it differs in several key ways from existing
approaches to dependent types:

1. Dependent Haskell has the Type : Type axiom, avoiding the need for an
infinite hierarchy of sorts [57, 80] used in other languages. (Section 4.4.1)

2. A key issue when writing dependently typed programs is in figuring out
what information is needed at runtime. Dependent Haskell’s approach is to
require the programmer to choose whether a quantified variable should be
retained (making a proper Π-type) or discarded (making a ∀-type) during
compilation.

3. In contrast to many dependently typed languages, Dependent Haskell is
agnostic to the issue of termination. There is no termination checker in the
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language, and termination is not a prerequisite of type safety. A drawback
of this approach is that some proofs of type equivalence must be executed
at runtime, as discussed in Section 4.4.5.

4. As elaborated in Chapter 6, Dependent Haskell retains important type
inference characteristics that exist in previous versions of Haskell (e.g., those
characteristics described by Vytiniotis et al. [99]). In particular, all programs
accepted by today’s GHC—including those without type signatures—are
also valid in Dependent Haskell.

• Pico (pronounced “Π-co”, never “peek-o”) is a new dependently typed λ-calculus,
intended as an internal language suitable as a target for compiling Dependent
Haskell. (Chapter 5) Pico allows full dependent types, has the Type : Type
axiom, and yet has no computation in types. Instead of allowing type equality
to include, say, βη-equivalence (as in Coq), type equality in Pico is just α-
equivalence. A richer notion of type equivalence is permitted through coercions,
which witness the equivalence between two types. In this way, Pico is a direct
descendent of System FC [11, 32, 87, 105, 107] and of the evidence language of
Gundry [37].
Pico supports unsaturated functions in types, while still allowing function
application decomposition in its equivalence relation.2 This is achieved by my
novel separation of the function spaces of type constants, which are generative and
injective, from the ordinary, unrestricted function space Allowing unsaturated
functions in types is a key step forward Pico makes over Gundry’s evidence
language [37]; it means that all expressions can be promoted to types, in contrast
to Gundry’s subset of terms shared with the language of types.
In Appendix C, I prove the usual preservation and progress theorems for Pico
as well as a type erasure theorem that relates the operational semantics of Pico
to that of a simple λ-calculus with datatypes and fix. In this way, I show that
all the fancy types really can be erased at runtime.

• The novel algorithm Bake (Chapter 6) performs type inference on the Depen-
dent Haskell surface language, providing typing rules and an elaboration into
Pico. I am unaware of a similarly careful study of type inference in the context
of dependent types. These typing rules contain an algorithmic specification of
Dependent Haskell, detailing which programs should be accepted and which
should be rejected. The type system is bidirectional and contains a novel treat-
ment for inferring types around dependent pattern matches, among a few other,
smaller innovations. I prove that the elaborated program is always well typed in
Pico.

• A partial implementation of the type system in this dissertation is available in
GHC 8.0. Chapter 7 discusses implementation details, including the current state

2I am referring to the left and right coercions of System FC here.
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of the implementation. It focuses on the released implementation of the system
from Weirich et al. [105]. Considerations about implementing full Dependent
Haskell are also included here.

• Chapter 8 puts this work in context by comparing it to several other dependently
typed systems, both theories and implementations. This chapter also suggests
some future work that can build from the base I lay down here.

Though not a new contribution, Chapter 2 contains a review of features available
in today’s Haskell that support dependently typed programming. This is included
as a primer to these features for readers less experienced in Haskell, and also as a
counterpoint to the features discussed as parts of Dependent Haskell.

This dissertation is most closely based upon my prior work with Weirich and
Hsu [105]. That paper, focusing solely on the internal language, merges the type and
kind languages but does not incorporate dependent types. I wrote the implementation
of these ideas as a component of GHC 8, incorporating Peyton Jones’s extensive
feedback. This dissertation work—particularly Chapter 6—also builds on a more
recent paper with Weirich and Ahmed [33], which develops the theory around type
inference where some arguments are visible (and must be supplied) and others are
invisible (and may be omitted). Despite this background, almost the entirety of this
dissertation is new work; none of my previous published work has dealt directly with
dependent types.

1.2 Implications beyond Haskell
This dissertation necessarily focuses quite narrowly on discussing dependent types
within the context of Haskell. What good is this work to someone uninterested in
Haskell? I offer a few answers:

• In my experience, many people both in the academic community and beyond
believe that a dependently typed language must be total in order to be type-safe.
Though Dependent Haskell is not the first counterexample to this mistaken
notion (e.g., [3, 12]), the existence of this type-safe, dependently typed, non-total
language may help to dispel this myth.

• This is the first work, to my knowledge, to address type inference with let-
generalization (of top-level constructs only, see Section 6.2.2) and dependent
types. With the caveat that non-top-level let declarations are not generalized,
I claim that the Bake algorithm I present in Chapter 6 is conservative over
today’s Haskell and thus over Hindley-Milner. See Section 6.8.2.

• Even disregarding let-generalization, Bake is the first (to my knowledge) thor-
ough treatment of type inference for dependent types. My bidirectional type
inference algorithm infers whether or not a pattern match should be treated
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as a dependent or a traditional match, a feature that could be ported to other
languages.

• Once Dependent Haskell becomes available, I believe dependent types will become
popular within the Haskell community, given the strong encouragement I have
received from the community and the popularity of my singletons library [29, 30].
Perhaps this popularity will inspire other languages to consider adding dependent
types, amplifying the impact of this work.

As the features in this dissertation continue to become available, I look forward to
seeing how the Haskell community builds on top of my work and discovers more and
more applications of dependent types.
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Chapter 2

Preliminaries

This chapter is a primer for type-level programming facilities that exist in today’s
Haskell. It serves both as a way for readers less experienced in Haskell to understand
the remainder of the dissertation and as a point of comparison against the Dependent
Haskell language I describe in Chapter 4. Those more experienced with Haskell may
easily skip this chapter. However, all readers may wish to consult Appendix A to learn
the typographical conventions used throughout this dissertation.

I assume that the reader is comfortable with a typed functional programming
language, such as Haskell98 or a variant of ML.

2.1 Type classes and dictionaries
Haskell supports type classes [102]. An example is worth a thousand words:

class Show a where
show :: a→ String

instance Show Bool where
show True = "True"
show False = "False"

This declares the class Show , parameterized over a type variable a, with one method
show . The class is then instantiated at the type Bool , with a custom implementation
of show for Bools. Note that, in the Show Bool instance, the show function can use
the fact that a is now Bool : the one argument to show can be pattern-matched against
True and False. This is in stark contrast to the usual parametric polymorphism of a
function show’ :: a→ String , where the body of show’ cannot assume any particular
instantiation for a.

With Show declared, we can now use this as a constraint on types. For example:

smooshList :: Show a⇒ [a ]→ String
smooshList xs = concat (map show xs)

6



The type of smooshList says that it can be called at any type a, as long as there
exists an instance Show a. The body of smooshList can then make use of the Show a
constraint by calling the show method. If we leave out the Show a constraint, then the
call to show does not type-check. This is a direct result of the fact that the full type
of show is really Show a ⇒ a → String . (The Show a constraint on show is implicit,
as the method is declared within the Show class declaration.) Thus, we need to know
that the instance Show a exists before calling show at type a.

Operationally, type classes work by passing dictionaries [39]. A type class dictionary
is simply a record containing all of the methods defined in the type class. It is as if we
had these definitions:

data ShowDict a = MkShowDict {showMethod :: a→ String }
showBool :: Bool → String
showBool True = "True"
showBool False = "False"

showDictBool :: ShowDict Bool
showDictBool = MkShowDict showBool

Then, whenever a constraint Show Bool must be satisfied, GHC produces the dictionary
for showDictBool . This dictionary actually becomes a runtime argument to functions
with a Show constraint. Thus, in a running program, the smooshList function actually
takes two arguments: the dictionary corresponding to Show a and the list [a ].

2.2 Families

2.2.1 Type families

A type family [15, 16, 32] is simply a function on types. (I sometimes use “type function”
and “type family” interchangeably.) Here is an uninteresting example:

type family F 1 a where
F 1 Int = Bool
F 1 Char = Double

useF 1 :: F 1 Int → F 1 Char
useF 1 True = 1.0
useF 1 False = (−1.0)

We see that GHC simplifies F 1 Int to Bool and F 1 Char to Double in order to type-check
useF 1.

F 1 is a closed type family, in that all of its defining equations are given in one
place. This most closely corresponds to what functional programmers expect from
their functions. Today’s Haskell also supports open type families, where the set of
defining equations can be extended arbitrarily. Open type families interact particularly
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well with Haskell’s type classes, which can also be extended arbitrarily. Here is a more
interesting example than the one above:

type family Element c
class Collection c where
singleton :: Element c → c

type instance Element [a ] = a
instance Collection [a ] where
singleton x = [x ]

type instance Element (Set a) = a
instance Collection (Set a) where
singleton = Set.singleton

Because the type family Element is open, it can be extended whenever a programmer
creates a new collection type.

Often, open type families are extended in close correspondence with a type class,
as we see here. For this reason, GHC supports associated open type families, using
this syntax:

class Collection’ c where
type Element’ c
singleton’ :: Element’ c → c

instance Collection’ [a ] where
type Element’ [a ] = a
singleton’ x = [x ]

instance Collection’ (Set a) where
type Element’ (Set a) = a
singleton’ = Set.singleton

Associated type families are essentially syntactic sugar for regular open type families.

Partiality in type families A type family may optionally be partial, in that it is
not defined over all possible inputs. This poses no problems in the theory or practice
of type families. If a type family is used at a type for which it is not defined, the type
family application is considered to be stuck. For example:

type family F 2 a
type instance F 2 Int = Bool

Suppose there are no further instances of F 2. Then, the type F 2 Char is stuck. It does
not evaluate, and is equal only to itself.

It is impossible for a Haskell program to detect whether or not a type is stuck, as
doing so would require pattern-matching on a type family application—this is not
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possible. This is a good design because a stuck open type family might become unstuck
with the inclusion of more modules, defining more type family instances. Stuckness is
therefore fragile and may depend on what modules are in scope; it would be disastrous
if a type family could branch on whether or not a type is stuck.

2.2.2 Data families

A data family defines a family of datatypes. An example shows best how this works:

data family Array a -- compact storage of elements of type a
data instance Array Bool = MkArrayBool ByteArray
data instance Array Int = MkArrayInt (Vector Int)

With such a definition, we can have a different runtime representation for Array Bool
than we do for Array Int, something not possible with more traditional parameterized
types.

Data families do not play a large role in this dissertation.

2.3 Rich kinds

2.3.1 Kinds in Haskell98

With type families, we can write type-level programs. But are our type-level programs
correct? We can gain confidence in the correctness of the type-level programs by
ensuring that they are well-kinded. Indeed, GHC does this already. For example, if we
try to say Element Maybe, we get a type error saying that the argument to Element
should have kind ?, but Maybe has kind ?→ ?.

Kinds in Haskell are not a new invention; they are precisely defined in the Haskell98
report [71]. Because type constructors in Haskell may appear without their arguments,
Haskell needs a kinding system to keep all the types in line. For example, consider the
library definition of Maybe:

data Maybe a = Nothing | Just a

The word Maybe, all by itself, does not really represent a type. Maybe Int and
Maybe Bool are types, but Maybe is not. The type-level constant Maybe needs to be
given a type to become a type. The kind-level constant ? contains proper types, like
Int and Bool . Thus, Maybe has kind ?→ ?.

Accordingly, Haskell’s kind system accepts Maybe Int and Element [Bool ], but
rejects Maybe Maybe and Bool Int as ill-kinded.

9



2.3.2 Promoted datatypes

The kind system in Haskell98 is rather limited. It is generated by the grammar
κ ::= ? |κ→ κ, and that’s it. When we start writing interesting type-level programs,
this almost-unityped limitation bites.

For example, previous to recent innovations, Haskellers wishing to work with
natural numbers in types would use these declarations:

data Zero
data Succ a

We can now discuss Succ (Succ Zero) in a type and treat it as the number 2. However,
we could also write nonsense such as Succ Bool and Maybe Zero. These errors do not
imperil type safety, but it is natural for a programmer who values strong typing to
also pine for strong kinding.

Accordingly, Yorgey et al. [107] introduce promoted datatypes. The central idea
behind promoted datatypes is that when we say

data Bool = False | True

we declare two entities: a type Bool inhabited by terms False and True; and a kind
Bool inhabited by types ’False and ’True.3 We can then use the promoted datatypes
for more richly kinded type-level programming.

A nice, simple example is type-level addition over promoted unary natural numbers:

data Nat = Zero | Succ Nat
type family a + b where

’Zero + b = b
’Succ a + b = ’Succ (a + b)

Now, we can say ’Succ ’Zero + ’Succ ( ’Succ ’Zero) and GHC will simplify the type to
’Succ ( ’Succ ( ’Succ ’Zero)). We can also see here that GHC does kind inference on
the definition for the type-level +. We could also specify the kinds ourselves like this:

type family (a :: Nat) + (b :: Nat) :: Nat where ...

Yorgey et al. [107] detail certain restrictions in what datatypes can be promoted.
A chief contribution of this dissertation is lifting these restrictions.

2.3.3 Kind polymorphism

A separate contribution of the work of Yorgey et al. [107] is to enable kind polymorphism.
Kind polymorphism is nothing more than allowing kind variables to be held abstract,

3The new kind does not get a tick ’ but the new types do. This is to disambiguate a promoted data
constructor ’X from a declared type X ; Haskell maintains separate type and term namespaces. The
ticks are optional if there is no ambiguity, but I will always use them throughout this dissertation.
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just like functional programmers frequently do with type variables. For example, here
is a type function that calculates the length of a type-level list at any kind:

type family Length (list :: [k ]) :: Nat where
Length ’[ ] = ’Zero
Length (x ’: xs) = ’Succ (Length xs)

Kind polymorphism extends naturally to constructs other than type functions.
Consider this datatype:

data T f a = MkT (f a)

With the PolyKinds extension enabled, GHC will infer a most-general kind ∀ k . (k →
?) → k → ? for T . In Haskell98, on the other hand, this type would have kind
(?→ ?)→ ?→ ?, which is less general.

A kind-polymorphic type has extra, invisible parameters that correspond to kind
arguments. When I say invisible here, I mean that the arguments do not appear
in Haskell source code. With the -fprint-explicit-kinds flag, GHC will print
kind parameters when they occur. Thus, if a Haskell program contains the type
T Maybe Bool and GHC needs to print this type with -fprint-explicit-kinds,
it will print T ?Maybe Bool , making the ? kind parameter visible. Today’s Haskell
makes an inflexible choice that kind arguments are always invisible, which is relaxed in
Dependent Haskell. See Section 4.2.3 for more information on visibility in Dependent
Haskell.

2.3.4 Constraint kinds

Bolingbroke introduced constraint kinds to GHC.4 Haskell allows constraints to be
given on types. For example, the type Show a⇒ a→ String classifies a function that
takes one argument, of type a. The Show a⇒ constraint means that a is required to
be a member of the Show type class. Constraint kinds make constraints fully first-class.
We can now write the kind of Show as ?→ Constraint. That is, Show Int (for example)
is of kind Constraint. Constraint is a first-class kind, and can be quantified over. A
useful construct over Constraints is the Some type:

data Some :: (?→ Constraint)→ ? where
Some :: c a⇒ a→ Some c

If we have a value of Some Show , stored inside it must be a term of some (existentially
quantified) type a such that Show a. When we pattern-match against the constructor
Some, we can use this Show a constraint. Accordingly, the following function type-
checks (where show :: Show a⇒ a→ String is a standard library function):

4http://blog.omega-prime.co.uk/?p=127
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showSomething :: Some Show → String
showSomething (Some thing) = show thing

Note that there is no Show a constraint in the function signature—we get the constraint
from pattern-matching on Some, instead.

The type Some is useful if, say, we want a heterogeneous list such that every
element of the list satisfies some constraint. That is, each element of [Some Show ] can
be a different type a, as long as Show a holds:

heteroList :: [Some Show ]
heteroList = [Some True, Some (5 :: Int), Some (Just ())]

printList :: [Some Show ]→ String
printList things = "[" ++ intercalate ", " (map showSomething things) ++ "]"

λ> putStrLn $ printList heteroList
[True, 5, Just ()]

2.4 Generalized algebraic datatypes
Generalized algebraic datatypes (or GADTs) are a powerful feature that allows term-
level pattern matches to refine information about types. They undergird much of the
programming we will see in the examples in Chapter 3, and so I defer most of the
discussion of GADTs to that chapter.

Here, I introduce one particularly important GADT: propositional equality. The
following definition appears now as part of the standard library shipped with GHC, in
the Data.Type.Equality module:

data (a :: k) :∼: (b :: k) where
Refl :: a :∼: a

The idea here is that a value of type τ :∼:σ (for some τ and σ) represents evidence
that the type τ is in fact equal to the type σ. Here is a use of this type, also from
Data.Type.Equality :

castWith :: (a :∼: b)→ a→ b
castWith Refl x = x

Here, the castWith function takes a term of type a :∼: b—evidence that a equals b—and
a term of type a. It can immediately return this term, x , because GHC knows that a
and b are the same type. Thus, x also has type b and the function is well typed.

Note that castWith must pattern-match against Refl . The reason this is necessary
becomes more apparent if we look at an alternate, entirely equivalent way of defining
(:∼:):
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data (a :: k) :∼: (b :: k) where
Refl :: (a ∼ b)⇒ a :∼: b

In this variant, I define the type using the Haskell98-style syntax for datatypes. This
says that the Refl constructor takes no arguments, but does require the constraint that
a ∼ b. The constraint (∼ ) is GHC’s notation for a proper type equality constraint.
Accordingly, to use Refl at a type τ :∼:σ, GHC must know that τ ∼ σ—in other
words, that τ and σ are the same type. When Refl is matched against, this constraint
τ ∼ σ becomes available for use in the body of the pattern match.

Returning to castWith, pattern-matching against Refl brings a ∼ b into the
context, and GHC can apply this equality in the right-hand side of the equation to
say that x has type b.

Operationally, the pattern-match against Refl is also important. This match is what
forces the equality evidence to be reduced to a value. As Haskell is a lazy language, it is
possible to pass around equality evidence that is ⊥. Matching evaluates the argument,
making sure that the evidence is real. The fact that type equality evidence must exist
and be executed at runtime is somewhat unfortunate. See Section 3.3.3 and Section
4.4.5 for some discussion.

2.5 Higher-rank types
Standard ML and Haskell98 both use, essentially, the Hindley-Milner (HM) type
system [20, 43, 63]. The HM type system allows only prenex quantification, where a
type can quantify over type variables only at the very top. The system is based on
types, which have no quantification, and type schemes, which do:

τ ::=α |H | τ1 τ2 types
σ ::=∀α.σ | τ type schemes

Here, I use α to stand for any of a countably infinite set of type variables and H to
stand for any type constant (including (→)).

Let-bound definitions in HM are assigned type schemes; lambda-bound definitions
are assigned monomorphic types, only. Thus, in HM, it is appropriate to have a function
length :: ∀ a. [a ]→ Int but disallowed to have one like bad :: (∀ a. a→ a→ a)→ Int:
bad ’s type has a ∀ somewhere other than at the top of the type. This type is of the
second rank, and is forbidden in HM.

On the other hand, today’s GHC allows types of arbitrary rank. Though a full
example of the usefulness of this ability would take us too far afield, Lämmel and
Peyton Jones [53] and Washburn and Weirich [103] (among others) make critical use
of this ability. The cost, however, is that higher-rank types cannot be inferred. For
this reason, this definition of higherRank

higherRank f = (f True, f ’x’)
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will not compile without a type signature. Without the signature, GHC tries to unify
the types Char and Bool , failing. However, providing a signature

higherRank :: (∀ a. a→ a)→ (Bool ,Char)

does the trick nicely.
Type inference in the presence of higher-rank types is well studied, and can be

made practical via bidirectional type-checking [24, 74].

2.6 Scoped type variables
A modest, but subtle, extension in GHC is ScopedTypeVariables, which allows a
programmer to refer back to a declared type variable from within the body of a
function. As dealing with scoped type variables can be a point of confusion for Haskell
type-level programmers, I include a discussion of it here.

Consider this implementation of the left fold foldl :

foldl :: (b → a→ b)→ b → [a ]→ b
foldl f z0 xs0 = lgo z0 xs0
where
lgo z [ ] = z
lgo z (x : xs) = lgo (f z x) xs

It can be a little hard to see what is going on here, so it would be helpful to add a
type signature to the function lgo, thus:

lgo :: b → [a ]→ b

Yet, doing so leads to type errors. The root cause is that the a and b in lgo’s type
signature are considered independent from the a and b in foldl ’s type signature. It
is as if we’ve assigned the type b0 → [a0 ] → b0 to lgo. Note that lgo uses f in its
definition. This f is a parameter to the outer foldl , and it has type b → a→ b. When
we call f z x in lgo, we’re passing z :: b0 and x :: [a0 ] to f , and type errors ensue.

To make the a and b in foldl ’s signature be lexically scoped, we simply need to
quantify them explicitly. Thus, the following gets accepted:

foldl :: ∀ a b. (b → a→ b)→ b → [a ]→ b
foldl f z0 xs0 = lgo z0 xs0
where
lgo :: b → [a ]→ b
lgo z [ ] = z
lgo z (x : xs) = lgo (f z x) xs

Another particular tricky point around ScopedTypeVariables is that GHC will not
warn you if you are missing this extension.
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2.7 Functional dependencies
Although this dissertation does not dwell much on functional dependencies, I include
them here for completeness.

Functional dependencies are GHC’s earliest feature introduced to enable rich type-
level programming [49, 88]. They are, in many ways, a competitor to type families.
With functional dependencies, we can declare that the choice of one parameter to a
type class fixes the choice of another parameter. For example:

class Pred (a :: Nat) (b :: Nat) | a→ b
instance Pred ’Zero ’Zero
instance Pred ( ’Succ n) n

In the declaration for class Pred (“predecessor”), we say that the first parameter, a,
determines the second one, b. In other words, b has a functional dependency on a.
The two instance declarations respect the functional dependency, because there are
no two instances where the same choice for a but differing choices for b are made.

Functional dependencies are, in some ways, more powerful than type families. For
example, consider this definition of Plus:

class Plus (a :: Nat) (b :: Nat) (r :: Nat) | a b → r , r a→ b
instance Plus ’Zero b b
instance Plus a b r ⇒ Plus ( ’Succ a) b ( ’Succ r)

The functional dependencies for Plus are more expressive than what we can do for
type families. (However, see the work of Stolarek et al. [86], which attempts to close
this gap.) They say that a and b determine r , just like the arguments to a type family
determine the result, but also that r and a determine b. Using this second declared
functional dependency, if we know Plus a b r and Plus a b’ r , we can conclude b = b’ .
Although the functional dependency r b → a also holds, GHC is unable to prove this
and thus we cannot declare it.

Functional dependencies have enjoyed a rich history of aiding type-level pro-
gramming [52, 59, 70]. Yet, they require a different paradigm to much of functional
programming. When writing term-level definitions, functional programmers think in
terms of functions that take a set of arguments and produce a result. Functional
dependencies, however, encode type-level programming through relations, not proper
functions. Though both functional dependencies and type families have their place in
the Haskell ecosystem, I have followed the path taken by other dependently typed
languages and use type-level functions as the main building blocks of Dependent
Haskell, as opposed to functional dependencies.
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Chapter 3

Motivation

Functional programmers use dependent types in two primary ways, broadly speaking:
in order to prevent erroneous programs from being accepted, and in order to write
programs that a simply typed language cannot accept. In this chapter, I will motivate
the use of dependent types from both of these angles. The chapter concludes with a
section motivating why Haskell, in particular, is ripe for dependent types.

As a check for accuracy in these examples and examples throughout this dissertation,
all the indented, typeset code is type-checked against my implementation every time
the text is typeset.

The code snippets throughout this dissertation are presented on a variety of
background colors. A white background indicates code that works in GHC 7.10 and
(perhaps) earlier. A light green background highlights code that newly works in
GHC 8.0 due to my implementations of previously published papers [33, 105]. A
light yellow background indicates code that does not work verbatim in GHC 8.0, but
could still be implemented via the use of singletons [30] and similar workarounds. A
light red background marks code that does not currently work in due to bugs. To my
knowledge, there is nothing more than engineering (and perhaps the use of singletons)
to get these examples working.

Beyond the examples presented here, the literature is accumulating a wide variety of
examples of dependently typed programming. Particularly applicable are the examples
in Oury and Swierstra [69], Lindley and McBride [56], and Gundry [37, Chapter 8].

3.1 Eliminating erroneous programs

3.1.1 Simple example: Length-indexed vectors

We start by examining length-indexed vectors. This well-worn example is still useful, as
it is easy to understand and still can show off many of the new features of Dependent
Haskell.
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3.1.1.1 Vec definition

Here is the definition of a length-indexed vector:

data Nat = Zero | Succ Nat -- first, some natural numbers
data Vec :: Type→ Nat → Type where
Nil :: Vec a ’Zero
(:>) :: a→ Vec a n→ Vec a ( ’Succ n)

infixr 5 :>

I will use ordinary numerals as elements of Nat in this text.5 The Vec type is parame-
terized by both the type of the vector elements and the length of the vector. Thus
True :> Nil has type Vec Bool 1 and ’x’ :> ’y’ :> ’z’ :> Nil has type Vec Char 3.

While Vec is a fairly ordinary GADT, we already see one feature newly introduced
by my work: the use of Type in place of ?. Using ? to classify ordinary types is
troublesome because ? can also be a binary operator. For example, should F ? Int be
a function F applied to ? and Int or the function ? applied to F and Int? In order to
avoid getting caught on this detail, Dependent Haskell introduces Type to classify
ordinary types. (Section 7.4 discusses a migration strategy from legacy Haskell code
that uses ?.)

Another question that may come up right away is about my decision to use Nats
in the index. Why not Integers? In Dependent Haskell, Integers are indeed available
in types. However, since we lack simple definitions for Integer operations (for example,
what is the body of Integer ’s + operation?), it is hard to reason about them in types.
This point is addressed more fully in Section 7.5. For now, it is best to stick to the
simpler Nat type.

3.1.1.2 append

Let’s first write an operation that appends two vectors. We already need to think
carefully about types, because the types include information about the vectors’ lengths.
In this case, if we combine a Vec a n and a Vec a m, we had surely better get a
Vec a (n+m). Because we are working over our Nat type, we must first define addition:

(+) :: Nat → Nat → Nat
Zero + m = m
Succ n + m = Succ (n + m)

Now that we have worked out the hard bit in the type, appending the vectors
themselves is easy:

5In contrast, numerals used in types in GHC are elements of a built-in type Nat that uses a more
efficient binary representation. It cannot be pattern-matched against.
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append :: Vec a n→ Vec a m→ Vec a (n ’+m)
append Nil w = w
append (a :> v) w = a :> (append v w)

There is a curiosity in the type of append : the addition between n and m is performed
by the operation ’+. Yet we have defined the addition operation +. What’s going on
here?

Haskell maintains two separate namespaces: one for types and one for terms. Doing
so allows declarations like data X = X , where the data constructor X has type X .
With Dependent Haskell, however, terms may appear in types. (And types may, less
frequently, appear in terms; see Section 3.1.3.2.) We thus need a mechanism for telling
the compiler which namespace we want. In a construct that is syntactically a type
(that is, appearing after a :: marker or in some other grammatical location that is
“obviously” a type), the default namespace is the type namespace. If a user wishes
to use a term-level definition, the term-level definition is prefixed with a ’. Thus,
’+ simply uses the term-level + in a type. Note that the ’ mark has no semantic
content—it is not a promotion operator. It is simply a marker in the source code to
denote that the following identifier lives in the term-level namespace.

The fact that Dependent Haskell allows us to use our old, trusty, term-level + in a
type is one of the two chief qualities that makes it a dependently typed language.

3.1.1.3 replicate

Let’s now write a function that can create a vector of a given length with all elements
equal. Before looking at the function over vectors, we’ll start by considering a version
of this function over lists:

listReplicate :: Nat → a→ [a ]
listReplicate Zero = [ ]
listReplicate (Succ n) x = x : listReplicate n x

With vectors, what will the return type be? It surely will mention the element
type a, but it also has to mention the desired length of the list. This means that
we must give a name to the Nat passed in. Here is how it is written in Dependent
Haskell:

replicate :: ∀ a. Π (n :: Nat)→ a→ Vec a n
replicate Zero = Nil
replicate (Succ n) x = x :> replicate n x

The first argument to replicate is bound by Π (n ::Nat). Such an argument is available
for pattern matching at runtime but is also available in the type. We see the value n
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used in the result Vec a n. This is an example of a dependent pattern match, and how
this function is well-typed is considered is some depth in Section 4.3.3.

The ability to have an argument available for runtime pattern matching and
compile-time type checking is the other chief quality that makes Dependent Haskell
dependently typed.

3.1.1.4 Invisibility in replicate

The first parameter to replicate above is actually redundant, as it can be inferred from
the result type. We can thus write a version with this type:

replicateInvis :: Π (n :: Nat). ∀ a. a→ Vec a n

Note that the type begins with Π (n :: Nat). instead of Π (n :: Nat)→. The use of the
. there recalls the existing Haskell syntax of ∀ a. , which denotes an invisible argument
a. Invisible arguments are omitted at function calls and definitions. On the other hand,
the → in Π (n :: Nat) → means that the argument is visible and must be provided
at every function invocation and defining equation. This choice of syntax is due to
Gundry [37]. Some readers may prefer the terms explicit and implicit to describe
visibility; however, these terms are sometimes used in the literature (e.g., [64]) when
talking about erasure properties. I will stick to visible and invisible throughout this
dissertation.

We can now use type inference to work out the value of n that should be used:

fourTrues :: Vec Bool 4
fourTrues = replicateInvis True

How should we implement replicateInvis, however? We need to use an invisibility
override. The implementation looks like this:

replicateInvis @Zero = Nil
replicateInvis @(Succ ) x = x :> replicateInvis x

The @ in those patterns means that we are writing an ordinarily invisible argument
visibly. This is necessary in the body of replicateInvis as we need to pattern match on the
choice of n. An invisibility override can also be used at call sites: replicateInvis @2 ’q’
produces the vector ’q’ :> ’q’ :> Nil of type Vec Char 2. It is useful when we do not
know the result type of a call to replicateInvis.6

6The use of @ here is a generalization of its use in GHC 8 in visible type application [33].
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3.1.1.5 Computing the length of a vector

Given a vector, we would like to be able to compute its length. At first, such an idea
might seem trivial—the length is right there in the type! However, we must be careful
here. While the length is indeed in the type, types are erased in Haskell. That length
is thus not automatically available at runtime for computation. We have two choices
for our implementation of length:

lengthRel :: Π n. ∀ a. Vec a n→ Nat
lengthRel @n = n

lengthIrrel :: ∀ n a. Vec a n→ Nat
lengthIrrel Nil = 0
lengthIrrel ( :> v) = 1 + lengthIrrel v

The difference between these two functions is whether or not they quantify n relevantly.
A relevant parameter, bound by Π, is one available at runtime.7 In lengthRel , the
type declares that the value of n, the length of the Vec a n is available at runtime.
Accordingly, lengthRel can simply return this value. The one visible parameter, of type
Vec a n is needed only so that type inference can infer the value of n. This value must
be somehow known at runtime in the calling context, possibly because it is statically
known (as in lengthRel fourTrues) or because n is available relevantly in the calling
function.

On the other hand, lengthIrrel does not need runtime access to n; the length is
computed by walking down the vector and counting the elements. When lengthRel is
available to be called, both lengthRel and lengthIrrel should always return the same
value. (In contrast, lengthIrrel is always available to be called.)

The choice of relevant vs. irrelevant parameter is denoted by the use of Π or ∀ in
the type: lengthRel says Π n while lengthIrrel says ∀ n. The programmer must choose
between relevant and irrelevant quantification when writing or calling functions. (See
Section 8.7 for a discussion of how this choice relates to decisions in other dependently
typed languages.)

We see also that lengthRel takes n before a. Both are invisible, but the order is
important because we wish to bind the first one in the body of lengthRel . If I had
written lengthRel ’s type beginning with ∀ a. Π n. , then the body would have to be
lengthRel @ @n = n.

3.1.1.6 Conclusion

These examples have warmed us up to examine more complex uses of dependent types
in Haskell. We have seen the importance of discerning the relevance of a parameter,
invisibility overrides, and dependent pattern matching.

7This is a slight simplification, as relevance still has meaning in types that are erased. See Section
4.2.2.
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3.1.2 A strongly typed simply typed λ-calculus interpreter

It is straightforward to write an interpreter for the simply typed λ-calculus (STLC)
in Haskell. However, how can we be sure that our interpreter is written correctly?
Using some features of dependent types—notably, generalized algebraic datatypes, or
GADTs—we can incorporate the STLC’s type discipline into our interpreter.8 Using
the extra features in Dependent Haskell, we can then write both a big-step semantics
and a small-step semantics and have GHC check that they correspond.

3.1.2.1 Type definitions

Our first step is to write a type to represent the types in our λ-calculus:

data Ty = Unit | Ty : Ty
infixr 0 : 

I choose Unit as our one and only base type, for simplicity. This calculus is clearly
not suitable for computation, but it demonstrates the use of GADTs well. The model
described here scales up to a more featureful λ-calculus.9 The infixr declaration
declares that the constructor : is right-associative, as usual.

We are then confronted quickly with the decision of how to encode bound variables.
Let’s choose de Bruijn indices [21], as these are well known and conceptually simple.
However, instead of using natural numbers to represent our variables, we’ll use a
custom Elem type:

data Elem :: [a ]→ a→ Type where
EZ :: Elem (x ’: xs) x
ES :: Elem xs x → Elem (y ’: xs) x

A value of type Elem xs x is a proof that x is in the list xs. This proof naturally
takes the form of a natural number, naming the place in xs where x lives. The first
constructor EZ is a proof that x is the first element in x ’: xs. The second constructor
ES says that, if we know x is an element in xs, then it is also an element in y ’: xs.

We can now write our expression type:

data Expr :: [Ty ]→ Ty → Type where
Var :: Elem ctx ty → Expr ctx ty
Lam :: Expr (arg ’: ctx) res → Expr ctx (arg ’: res)
App :: Expr ctx (arg ’: res)→ Expr ctx arg → Expr ctx res
TT :: Expr ctx ’Unit

As with Elem list elt, a value of type Expr ctx ty serves two purposes: it records the
structure of our expression, and it proves a property, namely that the expression is

8The skeleton of this example—using GADTs to verify the implementation of the STLC—is not
novel, but I am unaware of a canonical reference for it.

9For example, see my work on glambda at https://github.com/goldfirere/glambda.

21

https://github.com/goldfirere/glambda


well-typed in context ctx with type ty . Indeed, with some practice, we can read off
the typing rules for the simply typed λ-calculus direct from Expr ’s definition. In this
way, it is impossible to create an ill-typed Expr .

3.1.2.2 Big-step evaluator

We now wish to write both small-step and big-step operational semantics for our
expressions. First, we’ll need a way to denote values in our language:

data Val :: Ty → Type where
LamVal :: Expr ’[arg ] res → Val (arg ’: res)
TTVal :: Val ’Unit

Our big-step evaluator has a straightforward type:

eval :: Expr ’[ ] ty → Val ty

This type says that a well-typed, closed expression (that is, the context is empty) can
evaluate to a well-typed value of the same type ty . Only a type-preserving evaluator
will have that type, so GHC can check the type-soundness of our λ-calculus as it
compiles our interpreter.

To implement eval , we’ll need several auxiliary functions, each with an intriguing
type:

-- Shift the de Bruijn indices in an expression
shift :: ∀ ctx ty x . Expr ctx ty → Expr (x ’: ctx) ty
-- Substitute one expression into another

subst :: ∀ ctx s ty . Expr ctx s → Expr (s ’: ctx) ty → Expr ctx ty
-- Perform β-reduction

apply :: Val (arg ’: res)→ Expr ’[ ] arg → Expr ’[ ] res

The type of shift is precisely the content of a weakening lemma: that we can add a
type to a context without changing the type of a well-typed expression. The type of
subst is precisely the content of a substitution lemma: that given an expression of
type s and an expression of type t (typed in a context containing a variable bound
to s), we can substitute and get a new expression of type t. The type of apply shows
that it does β-reduction: it takes an abstraction of type arg ’: res and an argument
of type arg , producing a result of type res.

The implementations of these functions, unsurprisingly, read much like the proof
of the corresponding lemmas. We even have to “strengthen the induction hypothesis”
for shift and subst; we need an internal recursive function with extra arguments. Here
are the first few lines of shift and subst:
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shift = go [ ]
where
go :: ∀ ty . Π ctx0 → Expr (ctx0 ’++ ctx) ty → Expr (ctx0 ’++ x ’: ctx) ty
go = ...

subst e = go [ ]
where
go :: ∀ ty . Π ctx0 → Expr (ctx0 ’++ s ’: ctx) ty → Expr (ctx0 ’++ ctx) ty
go = ...

As many readers will be aware, to prove the weakening and substitution lemmas, it is
necessary to consider the possibility that the context change is not happening at the
beginning of the list of types, but somewhere in the middle. This generality is needed
in the Lam case, where we wish to use an induction hypothesis; the typing rule for
Lam adds the type of the argument to the context, and thus the context change is no
longer at the beginning of the context.

Naturally, this issue comes up in our interpreter’s implementation, too. The go
helper functions have types generalized over a possibly non-empty context prefix, ctx0.
This context prefix is appended to the existing context using ’++, the promoted form
of the existing ++ list-append operator. (Using ’ for promoting functions is a natural
extension of the existing convention of using ’ to promote constructors from terms to
types; see also Section 3.1.1.2.) The go functions also Π-quantify over ctx0, meaning
that the value of this context prefix is available in types (as we can see) and also at
runtime. This is necessary because the functions need the length of ctx0 at runtime,
in order to know how to shift or substitute. Note also the syntax Π ctx0 →, where the
Π-bound variable is followed by an →. The use of an arrow here (as opposed to a . )
indicates that the parameter is visible in source programs; the empty list is passed in
visibly in the invocation of go. (See also Section 4.2.3.) The final interesting feature
of these types is that they re-quantify ty . This is necessary because the recursive
invocations of the functions may be at a different type than the outer invocation. The
other type variables—which do not change during recursive calls to the go helper
functions—are lexically bound by the ∀ in the type signature of the outer function.

The implementation of these functions is fiddly and uninteresting, and is omitted
from this text. However, writing this implementation is made much easier by the
precise types. If I were to make a mistake in the delicate de Bruijn shifting operation,
I would learn of my mistake immediately, without any testing. In an algorithm so easy
to get wrong, this feedback is wonderful, indeed.

With all of these supporting functions written, the evaluator itself is dead simple:

eval (Var v) = case v of { } -- no variables in an empty context
eval (Lam body) = LamVal body
eval (App e1 e2) = eval (apply (eval e1) e2)
eval TT = TTVal
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The only curiosity here is the empty case expression in the Var case, which eliminates
v of the uninhabited type Elem ’[ ] ty .

3.1.2.3 Small-step stepper

We now turn to writing the small-step semantics. We could proceed in a very similar
fashion to the big-step semantics, by defining a step function that steps an expression
either to another expression or to a value. But we want better than this.

Instead, we want to ensure that the small-step semantics respects the big-step
semantics. That is, after every step, we want the value—as given by the big-step
semantics—to remain the same. We thus want the small-step stepper to return a
custom datatype, marrying the result of stepping with evidence that the value of this
result agrees with the value of the original expression:10

data StepResult :: Expr ’[ ] ty → Type where
Stepped :: Π (e’ :: Expr ’[ ] ty)→ ( ’eval e ∼ ’eval e’)⇒ StepResult e
Value :: Π (v :: Val ty)→ ( ’eval e ∼ v) ⇒ StepResult e

A StepResult e is the result of stepping an expression e. It either contains a new
expression e’ whose value equals e’s value, or it contains the value v that is the result
of evaluating e.

An interesting detail about these constructors is that they feature an equality
constraint after a runtime argument. Currently, GHC requires that all data constructors
take a sequence of type arguments, followed by constraints, followed by regular
arguments. Generalizing this form poses no real difficulty, however.

With this in hand, the step function is remarkably easy to write:

step :: Π (e :: Expr ’[ ] ty)→ StepResult e
step (Var v) = case v of { } -- no variables in an empty context
step (Lam body) = Value (LamVal body)
step (App e1 e2) = case step e1 of
Stepped e1’ → Stepped (App e1’ e2)
Value v → Stepped (apply v e2)

step TT = Value TTVal

10This example fails for two reasons:

• It contains data constructors with constraints occurring after visible parameters, but GHC
imposes rigid requirements on the shape of data constructor types.

• Writing a type-level version of shift (automatic promotion with ’ is not yet implemented) is
not yet possible. The problem is that one of the helper function’s arguments has a type that
mentions the ++ function, a feature that is not yet implemented.

I do not expect fixing either of these problems to be a significant challenge.
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Due to GHC’s ability to freely use equality assumptions, step requires no explicit
manipulation of equality proofs. Let’s look at the App case above. We first check
whether or not e1 can take a step. If it can, we get the result of the step e1’ and a
proof that ’eval e1 ∼ ’eval e1’ . This proof enters into the type-checking context and
is invisible in the program text. On the right-hand side of the match, we conclude
that App e1 e2 steps to App e1’ e2 . This requires a proof that ’eval (App e1 e2) ∼
’eval (App e1’ e2). Reducing ’eval on both sides of that equality gives us

’eval ( ’apply ( ’eval e1) e2) ∼ ’eval ( ’apply ( ’eval e1’) e2).

Since we know ’eval e1 ∼ ’eval e1’ , however, this equality is easily solvable; GHC
does the heavy lifting for us. Similar reasoning proves the equality in the second
branch of the case, and the other clauses of step are straightforward.

The ease with which these equalities are solved is unique to Haskell. I have
translated this example to Coq, Agda, and Idris; each has its shortcomings:

• Coq deals quite poorly with indexed types, such as Expr . The problem appears to
stem from Coq’s weak support for dependent pattern matching. For example, if
we inspect a ctx to discover that it is empty, Coq, by default, forgets the equality
ctx = [ ]. It then, naturally, fails to use the equality to rewrite the types of the
right-hand sides of the pattern match. This can be overcome through various
tricks, but it is far from easy. Alternatively, Coq’s relatively new Program
construct helps with this burden somewhat but still does not always work as
smoothly as GADT pattern matching in Haskell. Furthermore, even once the
challenges around indexed types are surmounted, it is necessary to prove that
eval terminates—a non-trivial task—for Coq to accept the function.

• Agda does a better job with indexed types, but it is not designed around implicit
proof search. A key part of Haskell’s elegance in this example is that pattern-
matching on a StepResult reveals an equality proof to the type-checker, and
this proof is then used to rewrite types in the body of the pattern match. This
all happens without any direction from the programmer. In Agda, the equality
proofs must be unpacked and used with Agda’s rewrite tactic.

Like Coq, Agda normally requires that functions terminate. However, we can
easily disable the termination checker: use {-# NO_TERMINATION_CHECK #-}.

• Like Agda, Idris works well with indexed types. The eval function is, unsurpris-
ingly, inferred to be partial, but this is easy enough to fix with a well-placed
assert_total. However, Idris’s proof search mechanism is unable to find proofs
that step is correct in the App cases. (Using an auto variable, Idris is able to find
the proofs automatically in the other step clauses.) Idris comes the closest to
Haskell’s brevity in this example, but it still requires two places where equality
proofs must be explicitly manipulated.
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3.1.2.4 Conclusion

We have built up a small-step stepper whose behavior is verified against a big-step
evaluator. Despite this extra checking, the step function will run in an identical manner
to one that is unchecked—there is no runtime effect of the extra verification. We
can be sure of this because we can audit the types involved and see that only the
expression itself is around at runtime; the rest of the arguments (the indices and
the equality proofs) are erased. Furthermore, getting this all done is easier and more
straightforward in Dependent Haskell than in the other three dependently typed
languages I tried. Key to the ease of encoding in Haskell is that Haskell does not worry
about termination (see Section 3.3.3) and has an aggressive rewriting engine used to
solve equality predicates.

3.1.3 Type-safe database access with an inferred schema

Many applications need to work in the context of some external database. Haskellers
naturally want their interface to the database to be well-typed, and there already exist
libraries that use (non-dependent) Haskell’s fancy types to good effect for database
access. (See opaleye11 for an advanced, actively developed and actively used example
of such a library.) Dependent Haskell allows us to go one step further and use type
inference to infer a database schema from the database access code.

This example is inspired by the third example by Oury and Swierstra [69]; the full
code powering the example is available online.12

Instead of starting with the library design, let’s start with a concrete use case.
Suppose we are writing an information system for a university. The current task is to
write a function that, given the name of a professor, prints out the names of students
in that professor’s classes. There are two database tables of interest, exemplified in
Figure 3.1 on the following page. Our program will retrieve a professor’s record and
then look up the students by their ID number.

Our goal in this example is understanding the broad strokes of how the database
library works and what it is capable of, not all the precise details. If you wish to
understand more, please check out the full source code online.

3.1.3.1 Accessing the database

The main worker function that retrieves and processes the information of interest from
the database is queryDB , in Figure 3.2 on the next page. Note that this function is not
assigned a type signature; we’ll return to this interesting point in Section 3.1.3.2. The
queryDB function takes in the schemas for the two tables it will retrieve the data from.
It loads the tables that correspond to the schemas; the loadTable function makes sure
that the table (as specified by its filename) does indeed correspond to the schema. An

11https://github.com/tomjaguarpaw/haskell-opaleye
12https://github.com/goldfirere/dependent-db
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The students table:
last first id gradyear
"Matthews" "Maya" 1 2018
"Morley" "Aimee" 2 2017
"Barnett" "William" 3 2020
"Leonard" "Sienna" 4 2019
"Oliveira" "Pedro" 5 2017
"Peng" "Qi" 6 2020
"Chakraborty" "Sangeeta" 7 2018
"Yang" "Rebecca" 8 2019

The classes table:
name students course
"Blank" [2,3,7,8] "Robotics"
"Eisenberg" [1,2,5,8] "Programming Languages"
"Kumar" [3,6,7,8] "Artificial Intelligence"
"Xu" [1,3,4,5] "Graphics"

Figure 3.1: Database tables used in Section 3.1.3.

type NameSchema = [Col "first" String ,Col "last" String ]

printName :: Row NameSchema→ IO ()
printName (first ::> last ::> ) = putStrLn (first ++ " " ++ last)
queryDB classes_sch students_sch = do
classes_tab ← loadTable "classes.table" classes_sch
students_tab ← loadTable "students.table" students_sch
putStr "Whose students do you want to see? "
prof ← getLine
let joined

= project $
select (field @"id" @Int ‘elementOf ‘ field @"students") $
product (select (field @"prof" === literal prof )

(read classes_tab))
(read students_tab)

rows ← query joined
mapM_ printName rows

Figure 3.2: The queryDB function
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data Column = Col String Type
type Schema = [Column ]

data Table :: Schema→ Type -- a table according to a schema
data RA :: Schema→ Type -- a Relational Algebra
data Expr :: Schema→ Type→ Type -- an expression
loadTable :: String → Π (s :: Schema)→ IO (Table s)
project :: Subset s’ s ⇒ RA s → RA s’
select :: Expr s Bool → RA s → RA s
field :: ∀ name ty s. In name ty s ⇒ Expr s ty
elementOf :: Eq ty ⇒ Expr s ty → Expr s [ty ]→ Expr s Bool
product :: ’disjoint s s’ ∼ ’True ⇒ RA s → RA s → RA (s ’++ s’)
literal :: ty → Expr s ty
read :: Table s → RA s

Figure 3.3: Types used in the example of Section 3.1.3.

I/O interaction with the user then ensues, resulting in a variable prof of type String
containing the desired professor’s name.

The joined variable then gets assigned to a large query against the database. This
query:

1. reads in the classes table,

2. selects out any rows that mention the desired prof ,

3. computes the Cartesian product of these rows and all the rows in the students
table,

4. selects out those rows where the id field is in the students list,

5. and finally projects out the name of the student.

The types of the components of this query are in Figure 3.3. There are a few points of
interest in looking at this code:

• The query is well-typed by construction. Note the intricate types appearing in
Figure 3.3. For example, select takes an expression used to select which rows of
a table are preserved. This operation naturally requires an Expr s Bool , where
s is the schema of interest and the Bool indicates that we have a Boolean
expression (as opposed to one that results in a number, say). The RA type does
not permit ill-typed queries, such as taking the Cartesian product of two tables
with overlapping column names (see the type of product), as projections from
such a combination would be ambiguous.
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• Use of field requires the @ invisibility override marker, as we wish to specify the
name of the field.

• In the first select expression, we must specify the type of the field as well as
the name, whereas in the second select expression, we can omit the type. In the
second case, the type can be inferred by comparison with the literal prof . In
the first, type inference tells us that id is the element type of students, but we
need to be more concrete than this—hence the @Int passed to field .

• The use of project at the top projects out the first and last name of the student,
even though neither first nor last is mentioned there. Type inference does
the work for us, as we pass the result of running the query to printName, which
has a type signature that states it works over only names.

3.1.3.2 Inferring a schema

Type inference works to infer the type of queryDB , assigning it this whopper:

λ> :type queryDB
queryDB

:: Π (s :: Schema) (s’ :: Schema)
→ ( ’disjoint s s’ ∼ ’True, In "students" [ Int ] (s ’++ s’),

In "prof" String s, In "last" [Char ] (s ’++ s’),
In "id" Int (s ’++ s’), In "first" [Char ] (s ’++ s’))

⇒ IO ()

The cavalcade of constraints are all inferred from the query above quite straightfor-
wardly.13 But how can we call queryDB satisfying all of these constraints?

The call to queryDB appears here:

main :: IO ()
main = do classes_sch ← loadSchema "classes.schema"

students_sch← loadSchema "students.schema"
$ (checkSchema ’queryDB [ ’classes_sch, ’students_sch ])

13What may be more surprising to the skeptical reader is that a Π-type is inferred, especially if
you have already read Chapter 6. However, I maintain that the Bake algorithm in Chapter 6 infers
this type. The two parameters to queryDB are clearly Schemas, and the body of queryDB asserts
constraints on these Schemas. Note that the type inference algorithm infers only relevant, visible
parameters, but these arguments are indeed relevant and visible. The dependency comes in after
solving, when the quantification telescope ∆ output by the solver has constraints depend on a visible
argument.
As further justification for stating that Bake infers this type, GHC infers a type quite like this

today, albeit using singletons. The appearance of singletons in the type inferred today is why this
snippet is presented on a light yellow background.
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The two calls to loadSchema are uninteresting. The third line of main is a Template
Haskell [83] splice. Template Haskell is GHC’s metaprogramming facility. The quotes
we see before the arguments to checkSchema are Template Haskell quotes, not the
promotion ’ mark we have seen so much.

The function checkSchema :: Name → [Name ] → Q Exp takes the name of a
function (queryDB , in our case), names of schemas to be passed to the function
(classes_sch and students_sch) and produces some Haskell code that arranges for an
appropriate function call. (Exp is the Template Haskell type containing a Haskell
expression, and Q is the name of the monad Template Haskell operates under.) In order
to produce the right function call to queryDB , checkSchema queries for the inferred
type of queryDB . It then examines this type and extracts out all of the constraints on
the schemas. In the produced Haskell expression, checkSchema arranges for calls to
several functions that establish the constraints before calling queryDB . To be concrete,
here is the result of the splice; the following code is spliced into the main function in
place of the call to checkSchema:

checkDisjoint classes_sch students_sch $
checkIn "students" [̂ Înt ] (classes_sch ++ students_sch) $
checkIn "prof" Ŝtring classes_sch $
checkIn "last" [̂ˆChar ] (classes_sch ++ students_sch) $
checkIn "id" Înt (classes_sch ++ students_sch) $
checkIn "first" [̂ˆChar ] (classes_sch ++ students_sch) $
queryDB classes_sch students_sch

Before discussing checkDisjoint and checkIn, I must explain a new piece of syntax: just
as ’ allows us to use a term-level name in a type, the new syntax ˆ allows us to use a
type-level name in a term. That is all the syntax does. For example [̂ Înt ] is the list
type constructor applied to the type Int, not a one-element list (as it would otherwise
appear).

The checkDisjoint and checkIn functions establish the constraints necessary to call
queryDB . Here are their types:

checkDisjoint :: Π (sch1 :: Schema) (sch2 :: Schema)
→ (( ’disjoint sch1 sch2 ∼ ’True)⇒ r)
→ r

checkIn :: Π (name :: String) (ty :: Type) (schema :: Schema)
→ (In name ty schema⇒ r)
→ r

Both functions take input information14 to validate and a continuation to call if indeed
14Readers might be alarmed to see here a Type being passed at runtime. After all, a key feature
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the input is valid. In this implementation, both functions simply error (that is, return
⊥) if the input is not valid, though it would not be hard to report an error in a suitable
monad.

3.1.3.3 Checking inclusion in a schema

It is instructive to look at the implementation of checkIn:

checkIn :: Π (name :: String) (ty :: Type) (schema :: Schema)
→ (In name ty schema⇒ r)
→ r

checkIn name [ ]
= error ("Field " ++ show name ++ " not found.")

checkIn name ty (Col name’ ty’ : rest) k
= case (name ‘eq‘ name’ , ty ‘eq‘ ty’) of

(Just Refl , Just Refl)→ k
(Just , ) → error ("Found " ++ show name ++

" but it maps to " ++ show ty’)
→ checkIn name ty rest k

This function searches through the Schema (which, recall, is just a [Column ]) for the
desired name and type. If the search fails or the search find the column associated with
the wrong type, checkIn fails. Otherwise, it will eventually call k , the continuation
that can now assume In name ty schema. The constraint In is implemented as a
class with instances that prove that the (name, ty) pair is indeed in schema whenever
In name ty schema holds.

The checkIn function makes critical use of a new function eq:15

class Eq a where
...
eq :: Π (x :: a) (y :: a)→ Maybe (x :∼: y)

of Dependent Haskell is type erasure! However, passing types at runtime is sometimes necessary,
and using the type Type to do so is a natural extension of what is done today. Indeed, today’s
TypeRep (explored in detail by Peyton Jones et al. [75]) is essentially a singleton for Type. As
Dependent Haskell removes other singletons, so too will it remove TypeRep in favor of dependent
pattern matching on Type. As with other aspects of type erasure, users will choose which types to
erase by the choice between Π-quantification and a ∀-quantification.

15I present eq here as a member of the ubiquitous Eq class, as a definition for eq should be writable
whenever a definition for == is. (Indeed, == could be implemented in terms of eq.) I do not, however,
expect that eq will end up living directly in the Eq class, as I doubt the Haskell community will
permit Dependent Haskell to alter such a fundamental class. Nevertheless, the functionality sported
by eq will be a common need in Dependent Haskell code, and we will need to find a suitable home
for the function.
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This is just a more informative version of the standard equality operator ==. When
two values are eq, we can get a proof of their equality. This is necessary in checkIn,
where assuming this equality is necessary in order to establish the In constraint before
calling the constrained continuation k .

3.1.3.4 Conclusion

This example has highlighted several aspects of Dependent Haskell:

• Writing a well-typed database access is well within the reach of Dependent
Haskell. Indeed, much of the work has already been done in released libraries.

• Inferring the type of queryDB is a capability unique to Dependent Haskell among
dependently typed languages. Other dependently typed languages require type
signatures on all top-level functions; this example makes critical use of Haskell’s
ability to infer a type in deriving the type for queryDB .

• Having dependent types in a large language like Haskell sometimes shows
synergies with other aspects of the language. In this example, we used Template
Haskell to complement our dependent types to achieve something neither one
could do alone: Template Haskell’s ability to inspect an inferred type allowed us
to synthesize the runtime checks necessary to prove that a call to queryDB was
indeed safe.

3.1.4 Machine-checked sorting algorithms

Using dependent types to check a sorting algorithm is well explored in the literature
(e.g., [1, 61]). These algorithms can also be translated into Haskell, as shown in my
prior work [25, 30]. I will thus not go into any detail in the implementation here.

At the bottom of one implementation16 appears this function definition:

mergeSort :: [ Integer ]→ [ Integer ].

Note that the type of the function is completely ordinary—there is no hint of the rich
types that lurk beneath, in its implementation. It is this fact that makes machine-
checked algorithms, such as sorting, interesting in the context of Haskell.

A Haskell programming team may make a large application with little use for
fancy types. Over time, the team notice bugs frequently appearing in a gnarly section
of code (like a sorting algorithm, or more realistically, perhaps, an implementation of
a cryptographic primitive), and they decide that they want extra assurances that the
algorithm is correct. That one algorithm—and no other part of the large application—
might be rewritten to use dependent types. Indeed any of the examples considered in

16https://github.com/goldfirere/nyc-hug-oct2014/blob/master/OrdList.hs
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this chapter can be hidden beneath simply typed interfaces and thus form just one
component of a larger, simply typed application.

3.2 Encoding hard-to-type programs

3.2.1 Variable-arity zipWith

The Data.List Haskell standard library comes with the following functions:

map :: (a→ b)→ [a ]→ [b ]
zipWith :: (a→ b → c)→ [a ]→ [b ]→ [c ]
zipWith3 :: (a→ b → c → d)→ [a ]→ [b ]→ [c ]→ [d ]
zipWith4 :: (a→ b → c → d → e)→ [a ]→ [b ]→ [c ]→ [d ]→ [e ]

...

Let’s pretend to rename map to zipWith1 and zipWith to zipWith2 . This sequence
continues up to zipWith7 . The fact that these are different functions means that the
user must choose which one to use, based on the arity of the function to be mapped
over the lists. However, forcing the user to choose this is a bit silly: the type system
should be able to discern which zipWith is correct based on the type of the function.
Dependent Haskell gives us the power to write such a variable-arity zipWith function.17

Let’s build up our solution one step at a time. We’ll first focus on building a
zipWith that is told what arity to be; then we’ll worry about inferring this arity.

Recall the definition of natural numbers from Section 3.1.1:

data Nat = Zero | Succ Nat

What will the type of our final zipWith be? It will first take a function and then
several lists. The types of these lists are determined by the type of the function passed
in. For example, suppose our function f has type Int → Bool → Double, then the type
of zipWith should be (Int → Bool → Double)→ [ Int ]→ [Bool ]→ [Double ]. Thus, we
wish to take the type of the function and apply the list type constructor [ ] to each
component of it.

Before we write the code for this operation, we pause to note an ambiguity in this
definition. Both of the following are sensible concrete types for a zipWith over the
function f :

zipWith :: (Int → Bool → Double)
→ [ Int ]→ [Bool → Double ]

zipWith :: (Int → Bool → Double)
→ [ Int ]→ [Bool ]→ [Double ]

17This example is adapted from my prior work [31].
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The first of these is essentially map; the second is the classic function zipWith that
expects two lists. Thus, we must pass in the desired number of parameters to apply
the list type constructor to. The function to apply these list constructors is named
Listify :

type family Listify (n :: Nat) arrows where
Listify ’Zero a = [a ]
Listify ( ’Succ n) (a→ b) = [a ]→ Listify n b

We now need to create some runtime evidence of our choice for the number of
arguments. This will be used to control the runtime operation of zipWith—after all, our
function must have both the correct behavior and the correct type. We use a GADT
NumArgs that plays two roles: it controls the runtime behavior as just described, and
it also is used as evidence to the type checker that the number argument to Listify is
appropriate. After all, we do not want to call Listify 2 (Int → Bool), as that would be
stuck. By pattern-matching on the NumArgs GADT, we get enough information to
allow Listify to fully reduce.

data NumArgs :: Nat → Type→ Type where
NAZero :: ∀ a. NumArgs ’Zero a
NASucc :: ∀ a b (n :: Nat). NumArgs n b → NumArgs ( ’Succ n) (a→ b)

We now write the runtime workhorse listApply , with the following type:

listApply :: NumArgs n a→ [a ]→ Listify n a

The first argument is the encoding of the number of arguments to the function. The
second argument is a list of functions to apply to corresponding elements of the lists
passed in after the second argument. Why do we need a list of functions? Consider
evaluating zipWith (+) [1, 2] [3, 4], where we recur not only on the elements in the
list, but on the number of arguments. After processing the first list, we have to be
able to apply different functions to each of the elements of the second list. To wit, we
need to apply the functions [(1+), (2+)] to corresponding elements in the list [3, 4].
(Here, we are using Haskell’s “section” notation for partially-applied operators.)

Here is the definition of listApply :

listApply NAZero fs = fs
listApply (NASucc na) fs =
λargs → listApply na (apply fs args)
where apply :: [a→ b ]→ [a ]→ [b ]

apply (f : fs) (x : xs) = (f x : apply fs xs)
apply = [ ]

It first pattern-matches on its first argument. In the NAZero case, each member of the
list of functions passed in has 0 arguments, so we just return the list. In the NASucc
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case, we process one more argument (args), apply the list of functions fs respectively
to the elements of args, and then recur. Note how the GADT pattern matching is
essential for this to type-check—the type checker gets just enough information for
Listify to reduce enough so that the second case can expect one more argument than
the first case.

Inferring arity In order to infer the arity, we need to have a function that counts
up the number of arrows in a function type:

type family CountArgs (f :: Type) :: Nat where
CountArgs (a→ b) = ’Succ (CountArgs b)
CountArgs result = ’Zero

The ability to write this function is unique to Haskell, where pattern-matching on
proper types (of kind Type) is allowed.

We need to connect this type-level function with the term-level GADT NumArgs.
We use Haskell’s method for reflecting type-level decisions on the term level: type
classes. The following definition essentially repeats the definition of NumArgs, but
because this is a definition for a class, the instance is inferred rather than given
explicitly:

class CNumArgs (numArgs :: Nat) (arrows :: Type) where
getNA :: NumArgs numArgs arrows

instance CNumArgs ’Zero a where
getNA = NAZero

instance CNumArgs n b ⇒
CNumArgs ( ’Succ n) (a→ b) where

getNA = NASucc getNA

Note that the instances do not overlap; they are distinguished by their first parameter.
It is now straightforward to give the final definition of zipWith, using the extension

ScopedTypeVariables to give the body of zipWith access to the type variable f :

zipWith :: ∀ f . CNumArgs (CountArgs f ) f
⇒ f → Listify (CountArgs f ) f

zipWith fun
= listApply (getNA :: NumArgs (CountArgs f ) f ) (repeat fun)

The standard Haskell function repeat creates an infinite list of its one argument.
The following examples show that zipWith indeed infers the arity:

example1 = zipWith (&&) [False,True,False ] [True,True,False ]
example2 = zipWith ((+) :: Int → Int → Int) [1, 2, 3] [4, 5, 6]
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concat :: Int → Char → Double → String
concat a b c = (show a) ++ (show b) ++ (show c)
example3 = zipWith concat [1, 2, 3] [’a’, ’b’, ’c’ ]

[3.14, 2.1728, 1.01001]

In example2, we must specify the concrete instantiation of (+). In Haskell, built-in
numerical operations are generalized over a type class Num. In this case, the operator
(+) has the type Num a ⇒ a → a → a. Because it is theoretically possible (though
deeply strange!) for a to be instantiated with a function type, using (+) without an
explicit type will not work—there is no way to infer an unambiguous arity. Specifically,
CountArgs gets stuck. CountArgs (a→ a→ a) simplifies to Succ (Succ (CountArgs a))
but can go no further; CountArgs a will not simplify to Zero, because a is not apart
from b → c .

3.2.2 Typed reflection

Reflection is the act of reasoning about a programming language from within programs
written in that language.18 In Haskell, we are naturally concerned with reflecting the
rich language of Haskell types. A reflection facility such as the one described here
will be immediately applicable in the context of Cloud Haskell. Cloud Haskell [35] is
an ongoing project, aiming to support writing a Haskell program that can operate
on several machines in parallel, communicating over a network. To achieve this goal,
we need a way of communicating data of all types over a wire—in other words, we
need dynamic types. On the receiving end, we would like to be able to inspect a
dynamically typed datum, figure out its type, and then use it at the encoded type.
For more information about how kind equalities fit into Cloud Haskell, please see the
GHC wiki at https://ghc.haskell.org/trac/ghc/wiki/DistributedHaskell.

Reflection of this sort has been possible for some time using the Typeable mecha-
nism [53]. However, the lack of kind equalities—the ability to learn about a type’s
kind via pattern matching—has hindered some of the usefulness of Haskell’s reflection
facility. In this section, we explore how this is the case and how the problem is fixed.

3.2.2.1 Heterogeneous propositional equality

Kind equalities allow for the definition of heterogeneous propositional equality, a natural
extension to the propositional equality described in Section 2.4:

data (a :: k1) :≈:(b :: k2) where
HRefl :: a :≈: a

18Many passages in this example are expanded upon in my prior work [75].
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Pattern-matching on a value of type a :≈: b to get HRefl , where a :: k1 and b :: k2, tells
us both that k1 ∼ k2 and that a ∼ b. As we’ll see below, this more powerful form of
equality is essential in building the typed reflection facility we want.

3.2.2.2 Type representation

Here is our desired representation:19

data TyCon (a :: k)
-- abstract; the type Int is represented by the one value of type TyCon Int

data TypeRep (a :: k) where
TyCon :: TyCon a→ TypeRep a
TyApp :: TypeRep a→ TypeRep b → TypeRep (a b)

The intent is that, for every new type declared, the compiler would supply an appropri-
ate value of the TyCon datatype. The type representation library would supply also the
following function, which computes equality over TyCons, returning the heterogeneous
equality witness:

eqTyCon :: ∀ (a :: k1) (b :: k2).
TyCon a→ TyCon b → Maybe (a :≈: b)

It is critical that this function returns (:≈:), not (:∼:). This is because TyCons exist
at many different kinds. For example, Int is at kind Type, and Maybe is at kind
Type → Type. Thus, when comparing two TyCon representations for equality, we
want to learn whether the types and the kinds are equal. If we used (:∼:) here, then
the eqTyCon could be used only when we know, from some other source, that the
kinds are equal.

We can now easily write an equality test over these type representations:

eqT :: ∀ (a :: k1) (b :: k2).
TypeRep a→ TypeRep b → Maybe (a :≈: b)

eqT (TyCon t1) (TyCon t2) = eqTyCon t1 t2
eqT (TyApp a1 b1) (TyApp a2 b2)
| Just HRefl ← eqT a1 a2
, Just HRefl ← eqT b1 b2 = Just HRefl

eqT = Nothing

Note the extra power we get by returning Maybe (a :≈: b) instead of just a Bool .
When the types are indeed equal, we get evidence that GHC can use to be aware of

19This representation works well with an open world assumption, where users may introduce new
type constants in any module. See my prior work [75, Section 4] for more discussion on this point.
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this type equality during type checking. A simple return type of Bool would not give
the type-checker any information.

3.2.2.3 Dynamic typing

Now that we have a type representation with computable equality, we can package
that representation with a chunk of data, and so form a dynamically typed package:

data Dyn where
Dyn :: ∀ (a :: Type). TypeRep a→ a→ Dyn

The a type variable there is an existential type variable. We can think of this type
as being part of the data payload of the Dyn constructor; it is chosen at construction
time and unpacked at pattern-match time. Because of the TypeRep a argument, we can
learn more about a after unpacking. (Without the TypeRep a or some other type-level
information about a, the unpacking code must treat a as an unknown type and must
be parametric in the choice of a.)

Using Dyn, we can pack up arbitrary data along with its type and push that data
across a network. The receiving program can then make use of the data, without
needing to subvert Haskell’s type system. This type representation library must be
trusted to recreate the TypeRep on the far end of the wire, but the equality tests
above and other functions below can live outside the trusted code base.

Suppose we were to send an object with a function type, say Bool → Int over the
network. Let’s ignore here the complexities of actually serializing a function—there
is a solution to that problem20, but here we are concerned only with the types. We
would want to apply the received function to some argument. What we want is this:

dynApply :: Dyn→ Dyn→ Maybe Dyn

The function dynApply applies its first argument to the second, as long as the types
line up. The definition of this function is fairly straightforward:

dynApply (Dyn (TyApp
(TyApp (TyCon tarrow) targ)
tres)

fun)
(Dyn targ’ arg)

| Just HRefl ← eqTyCon tarrow (tyCon :: TyCon (→))
, Just HRefl ← eqT targ targ’
= Just (Dyn tres (fun arg))

dynApply = Nothing

20https://ghc.haskell.org/trac/ghc/wiki/StaticPointers
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We first match against the expected type structure—the first Dyn argument must be a
function type. We then confirm that the TyCon tarrow is indeed the representation for
(→) (the construct tyCon ::TyCon (→) retrieves the compiler-generated representation
for (→)) and that the actual argument type matches the expected argument type. If
everything is good so far, we succeed, applying the function in fun arg .

3.2.2.4 Conclusion

Heterogeneous equality is necessary throughout this example. It first is necessary in the
definition of eqT . In the TyApp case, we compare a1 to a2 . If we had only homogeneous
equality, it would be necessary that the types represented by a1 and a2 be of the same
kind. Yet, we can’t know this here! Even if the types represented by TyApp a1 b1 and
TyApp a2 b2 have the same kind, it is possible that a1 and a2 would not. (For example,
maybe the type represented by a1 has kind Type→ Type and the type represented
by a2 has kind Bool → Type.) With only homogeneous equality, we cannot even
write an equality function over this form of type representation. The problem repeats
itself in the definition of dynApply , when calling eqTyCon tarrow TArrow . The call to
eqT in dynApply , on the other hand, could be homogeneous, as we would know at
that point that the types represented by targ and targ’ are both of kind Type.

In today’s Haskell, the lack of heterogeneous equality means that dynApply must
rely critically on unsafeCoerce. With heterogeneous equality, dynApply can remain
safely outside the trusted code base.

3.2.3 Algebraic effects

Brady [8] describes an approach to the challenge of embedding side effects into a pure,
functional language. His approach is to use composable algebraic effects, implemented
as a domain-specific language embedded in Idris [9], a full spectrum dependently typed
language. This technique is meant to contrast with Haskell’s monad transformers [55].
Brady’s library, Effects, is translatable directly into Dependent Haskell. With heavy
use of singletons, all of the code described in the original paper is even implementable
in GHC 8.21

3.2.3.1 Example 1: an simple expression interpreter

To give you an idea of the power and flexibility of the algebraic effects approach,
let’s look at a function that interprets a simple expression language.22 Here is the
expression AST:

data Expr = Val Nat | Add Expr Expr | Var String | Random Nat

21The code is available at https://github.com/goldfirere/thesis/tree/master/effects. It
does not compile with GHC 8.0.1 due to a small implementation bug. The fix is in the latest
development version of GHC and may be available in GHC 8.0.2.

22This example is adapted from Brady [8, Section 2.1.3].
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Expressions can contain literal numbers,23 addition, variable references, and naturals
randomly generated up to some specified limit. In the version we will consider, the
interpreter is instrumented to print out the value of every random number generated.
Thus the interpreter needs four different effectful capabilities: the ability to deal with
errors (in case a named variable does not exist), the ability to write output, access to
a pseudo-random number generator, and an ambient environment of defined variables.
This ambient environment has type Vars, an association list mapping variable names
to their values:

type Vars = [(String ,Nat)]

With all that in mind, here is the evaluator:

eval :: Handler StdIO e
⇒ Expr → Eff e ’[EXCEPTION String , STDIO,RND, STATE Vars ] Nat

eval (Val x) = return x
eval (Var x) = do vs ← get

case lookup x vs of
Nothing → raise ("Unknown var: " ++ x)
Just val → return val

eval (Add l r) = (+) 〈$〉 eval l 〈∗〉 eval r
eval (Random upper) = do num← rndNat 0 upper

putStrLn ("Random value: " ++ show num)
return num

Let’s first look at the type of eval , with our goal being a general understanding of
what this technique brings us, not working out all the details.

The return type of this function is a specialization of Eff , a type defined by the
Effects library. Eff is not a monad; the use of do-notation in the code in this section is
enabled by the GHC extension RebindableSyntax. With RebindableSyntax, GHC
uses whatever symbols are in scope to implement various features. In our case, Effects
defines >> and >>= operators which work over Eff .

Eff takes three parameters: an underlying effect handler e, a type-level list of
capabilities, and the return type of the computation. The underlying effect handler
must be able to handle read and write commands. We would generally expect this to
be IO, but an environment with an input list of strings and an output list of strings
could be used to model I/O in a pure environment. The list of capabilities is better
viewed as a set, as the order in this list is immaterial. Fancy footwork done by the
types of the operations provided by the capabilities (like get or rndNat) looks up the
capability in the list, regardless of order.

23I have restricted this and other examples to work with naturals only. This restriction is in place
solely to play nicely with the use of singletons to translate the Idris library into a form compatible
with GHC 8. In a full Dependent Haskell implementation, this restriction would not be necessary.
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Once we’ve absorbed the type of eval , its body is rather uninteresting—and that’s
exactly the point! We need not lift one capability through another (as must be done
with monad transformers) nor give any indication of how our capabilities are structured.
It all just works.

With eval in hand, it is straightforward to write the function that actually can
evaluate an expression:

runEval :: Vars → Expr → IO Nat
runEval env expr = run (() :> () :> 123 :> env :> Empty) (eval expr)

The first argument to the Effects library function run is an environment of resources,
where each resource is associated with a capability. While the order of capabilities does
not matter in the body of eval , its order must match up with the order of resources
given when running an Eff computation. In this case, the EXCEPTION String and
STDIO capabilities have no associated resource (the entries in the environment are
both ()). The RND capability uses a random generation seed (123 in our case), and
the STATE Vars needs the initial state, passed as a parameter to runEval .

Having defined all of the above, we can now observe this interaction:

λ> runEval [("x", 3)] (Var "x" ‘Add ‘ Random 12)
Random value: 1
4

In this output, the 4 at the end is the result of evaluating the expression, which adds
the value of "x", 3, to the pseudo-random number 1.

3.2.3.2 Automatic lifting

In the example above, we can use the STATE capability with its get accessor, despite
the fact that STATE is buried at the bottom of the list of capabilities. This is done by
get’s rather clever type:

get :: Π (prf :: SubList ’[STATE x ] xs).
prf ∼ ’findSubListProof ’[STATE x ] xs

⇒ EffM m xs (UpdateWith ’[STATE x ] xs prf ) x

The function get takes in a proof that ’[STATE x ] xs is a sublist of xs, the list of
capabilities in the result type. (EffM is a generalization of Eff that allows for the
capabilities to change during a computation. It lists the “before” capabilities and the
“after” capabilities. Eff is just a type synonym for EffM with both lists the same.)
Despite taking the proof in as an argument, get requires that the proof be the one
found by the findSubListProof function. In this way, the calling code does not need to
write the proof by hand; it can be discovered automatically. However, note that the
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proof is Π-bound—it is needed at runtime because each capability is associated with a
resource, stored in a list. The proof acts as an index into that list to find the resource.

In Idris, get’s type is considerably simpler: get ::Eff m ’[STATE x ] x . This works in
Idris because of Idris’s implicits feature, whereby a user can install an implicit function
to be tried in the case of a type mismatch. In our case here, the list of capabilities in
get’s type will not match the larger list in eval ’s type, triggering a type error. The
Effects library provides an implicit lifting operation which does the proof search I
have encapsulated into findSubListProof . While it is conceivable to consider adding
such an implicits feature to Haskell, doing so is well beyond this dissertation. In the
case of my translation of Effects, the lack of implicits bites, but not in a particularly
troublesome way; the types of basic operations like get just get a little more involved.

3.2.3.3 Example 2: Working with files

Brady [8, Section 2.2.5] also includes an example of how Effects can help us work with
files. We first define a readLines function that reads all of the lines in a file. This uses
primitive operations readLine and eof .

readLines :: Eff IO ’[FILE_IO (OpenFile ’Read)] [String ]
readLines = readAcc [ ]
where
readAcc acc = do e ← eof

if (not e)
then do str ← readLine

readAcc (str : acc)
else return (reverse acc)

Once again, let’s look at the type. The only capability asserted by readLines is the
ability to access one file opened for reading. The implementation is straightforward.

The function readLines is used by readFile:

readFile :: String → Eff IO ’[FILE_IO (), STDIO,EXCEPTION String ] [String ]
readFile path

= catch (do ← open path Read
test Here (raise ("Cannot open file: " ++ path)) $
do lines ← lift readLines

close @Read
return lines)

(λerr → do putStrLn ("Failed: " ++ err)
return [ ])

The type of readFile is becoming routine: it describes an effectful computation that can
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access files (with none open), do input/output, and raise exceptions. The underlying
handler is Haskell’s IO monad, and the result of running readFile is a list of strings.

The body of this function, however, deserves scrutiny, as the type system is working
hard on our behalf throughout this function. The first line calls the Effects library
function open, which uses the FILE_IO capability. Here is a simplified version of its
type, where the automatic lifting mechanism (Section 3.2.3.2) is left out:

open :: String → Π (m :: Mode)
→ EffM e ’[FILE_IO ()] ’[FILE_IO (Either () (OpenFile m))] Bool

The function open takes the name of a file and whether to open it for reading or
writing. Its return type declares that the open operation starts with the capability of
file operations with no open file but ends with the capability of file operations either
with no open file or with a file opened according to the mode requested. Recall that
EffM is a generalization of Eff that declares two lists of capabilities: one before an
action and one after it. The Either in open’s type reflects the possibility of failure.
After all, we cannot be sure that open will indeed result in an open file.24 The return
value of type Bool indicates success or failure.

After running open, readFile uses test, another Effects function, with the following
type:

test :: Π (prf :: EffElem e (Either l r) xs)
→ EffM m (UpdateResTyImm xs prf l) xs’ t
→ EffM m (UpdateResTyImm xs prf r) xs’ t
→ EffM m xs xs’ t

Without looking too closely at that type, we can surmise this:

• The starting capability set, xs, contains an effect with an Either l r resource.

• The caller of test must provide a proof prf of this fact. (EffElem is a rather
standard datatype that witnesses the inclusion of some element in a list, tailored
a bit to work with capabilities.)

• The next two arguments of test are continuations to pursue depending on the
status of the Either . Note that the first works with l and the second with r . Both
continuations must result in the same ending capability set xs’ .

24Readers may be wondering at this point how Effects deals with the possibility of multiple open
files. The library can indeed handle this possibility through listing FILE_IO multiple times in the
list of capabilities. Effects includes a mechanism for labeling capabilities (not described here, but
implemented in Haskell and described by Brady [8]) that can differentiate among several FILE_IO
capabilities.
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• The test operator itself takes the capability set from xs to xs’ .

In our case, test is meant to check the Either () (OpenFile ’Read), stored in the first
capability. (Here is the proof that the capability we seek is first in the list.) If the
Either is Left, raise an exception. Otherwise, we know that the open succeeded, and
the inner do block can work with a capability FILE_IO (OpenFile ’Read).

The inner do block runs readLines, using lift because the type of readLines assumes
only the one FILE_IO capability, and readFile has more than just that. The same
automatic proof search facility described earlier works with explicit lifts.

The use of close here is again interesting, because omitting it would be a type
error. Here is close’s type (again, eliding the lifting machinery):

close :: ∀ m e. EffM e ’[FILE_IO (OpenFile m)] ’[FILE_IO ()] ()

It takes an OpenFile and closes it. Forgetting this step would be a type error because
test requires that both paths result in the same set of capabilities. The failure path
from test has no open files at the end, and so the success path must also end with no
open files. The type of close achieves this.

A careful reader will note that we have to specify the Read invisible parameter
to close. This is necessary to support the automatic lifting mechanism. Without
knowing that it is searching for FILE_IO (OpenFile Read), it gets quite confused;
looking for FILE_IO (OpenFile m) is just not specific enough. It is conceivable that
this restriction could be lifted with a cleverer automatic lifting mechanism or a
type-checker plugin [22, 38].

All of the code described above is wrapped in a catch in order to deal with any
possible exception; catch is not intricately typed and does not deserve further study
here.

Having written readFile, we can now use it:

printFile :: FilePath→ IO ()
printFile filepath

= do ls ← run (() :> () :> () :> Empty) (readFile filepath)
mapM_ putStrLn ls

The return type of printFile is just the regular Haskell IO monad. Due to the way
GHC’s RebindableSyntax extension works, printFile must be written in a separate
module from the code above in order to access the usual monadic meaning of do.

This example has shown us how the Effects not only makes it easy to mix and
match different effects without the quadratic code cost of monad transformers, but
it also helps us remember to release resources. Forgetting to release a resource has
become a type error.
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3.2.3.4 Example 3: an interpreter for a well-typed imperative language

The final example with Effects is also the culminating example by Brady [8, Section 4]:
an interpreter for an imperative language with mutable state. The goal of presenting
this example is simply to show that Effects scales to ever more intricate types, even
in its translation to Haskell. Accordingly, I will be suppressing many details in this
presentation. The curious can read the full source code online.25

This language, Imp, contains both expressions and statements:

data Ty = ... -- types in Imp
interpTy :: Ty → Type -- consider a Ty as a real Haskell Type
data Expr :: ∀ n. Vec Ty n→ Ty → Type where ...
data Imp :: ∀ n. Vec Ty n→ Ty → Type where ...

Following the implementation in Idris, my translation uses a deep embedding for the
types, using the datatype Ty instead of Haskell’s types. This is purely a design choice;
using Haskell’s types works just as well.26

Expressions and statements (the datatype Imp) are parameterized over a vector
of types given to de Bruijn-indexed variables. Both expressions and statements also
produce an output value, included in their types above. Thus, an expression of type
Expr g t has type t in the typing context g .

Let’s focus on the statement form that introduces a new, mutable variable:

data Imp :: ∀ n. Vec Ty n→ Ty → Type where
Let :: ∀ t g u. Expr g t → Imp (t :& g) u → Imp g u
...

The variable, of type t, is given an initial value by evaluating the Expr g t. The body
of the Let is an Imp (t :& g) u—that is, a statement of type u in a context extended
by t. (The operator :& is the cons operator for Vec , here.)

Here is how such a statement is interpreted:
25https://github.com/goldfirere/thesis/blob/master/effects/Sec4.hs
26Interestingly, the use of a deep embedding in my implementation means that I have to label

interpTy as injective [86]. Otherwise, type inference fails. Idris’s type inference algorithm must
similarly use injectivity to accept this program.
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interp :: ∀ g t. Imp g t → Eff IO ’[STDIO,RND, STATE (Vars g)] ( ’interpTy t)
interp (Let @t’ e sc)

= do e’ ← lift (eval e)
vars ← get @(Vars g)
putM @(Vars g) (e’ :ˆ vars)
res ← interp sc
( :ˆ vars’)← get @(Vars (t’ :& g))
putM @(Vars (t’ :& g)) vars’
return res

I will skip over most of the details here, making only these points:

• It is necessary to use the @ invisibility override (Section 4.2.3.1) several times
so that the automatic lifting mechanism knows what to look for. Alternatives to
the approach seen here include using explicit labels on capabilities (see Brady [8,
Section 2.1.2]), writing down the index of the capability desired, or implementing
a type-checker plugin to help do automatic lifting.

• The putM function (an operation on STATE ) changes the type of the stored
state. In this case, the stored state is a vector that is extended with the new
variable. We must, however, remember to restore the original state, as otherwise
the final list of capabilities would be different than the starting list, a violation of
interp’s type. (Recall that Eff , in interp’s type, requires the same final capability
set as its initial capability set.)

• The eval function (elided from this text) uses a smaller set of capabilities. Its
use must be lifted.

Despite the ever fancier types seen in this example, Haskell still holds up. The
requirement to specify the many invisible arguments (such as @(Vars g)) is indeed
regrettable; however, I feel confident that some future work could resolve this pain
point.

3.2.3.5 Conclusion

The Effects library is a major achievement in Idris and shows some of the power
of dependent types for practical programming. I have shown here that this library
can be ported to Dependent Haskell, where it remains just as useful. Perhaps as
Dependent Haskell is adopted, more users will prefer to use this approach over monad
transformers.
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3.3 Why Haskell?
There already exist several dependently typed languages. Why do we need another?
This section presents several reasons why I believe the work described in this disserta-
tion will have impact.

3.3.1 Increased reach

Haskell currently has some level of adoption in industry.27 Haskell is also used as the
language of choice in several academic programs used to teach functional programming.
There is also the ongoing success of the Haskell Symposium. These facts all indicate
that the Haskell community is active and sizeable. If GHC, the primary Haskell
compiler, offers dependent types, more users will have immediate access to dependent
types than ever before.

The existing dependently typed languages were all created, more or less, as play-
grounds for dependently typed programming. For a programmer to choose to write her
program in an existing dependently typed language, she would have to be thinking
about dependent types (or the possibility of dependent types) from the start. However,
Haskell is, first and foremost, a general purpose functional programming language. A
programmer might start his work in Haskell without even being aware of dependent
types, and then as his experience grows, decide to add rich typing to a portion of his
program.

With the increased exposure GHC would offer to dependent types, the academic
community will gain more insight into dependent types and their practical use in
programs meant to get work done.

3.3.2 Backward-compatible type inference

Working in the context of Haskell gives me a stringent, immovable constraint: my work
must be backward compatible. In the new version of GHC that supports dependent
types, all current programs must continue to compile. In particular, this means that
type inference must remain able to infer all the types it does today, including types
for definitions with no top-level annotation. Agda and Idris require a top-level type
annotation for every function; Coq uses inference where possible for top-level definitions
but is sometimes unpredictable. Furthermore, Haskellers expect the type inference
engine to work hard on their behalf; they wish to rarely rely on manual proving
techniques.

27At the time of writing, https://wiki.haskell.org/Haskell_in_industry lists 81 companies
who use Haskell to some degree. That page, of course, is world-editable and is not authoritative.
However, I am personally aware of Haskell’s (growing) use in several industrial settings, and I
have seen quite a few job postings looking for Haskell programmers in industry. For example, see
http://functionaljobs.com/jobs/search/?q=haskell.
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The requirement of backward compatibility keeps me honest in my design of type
inference—I cannot cheat by asking the user for more information. The technical
content of this statement is discussed in Chapter 6 by comparison with the work of
Vytiniotis et al. [99] and Eisenberg et al. [33]. See Sections 6.8.2 and 6.8.3. A further
advantage of working in Haskell is that the type inference of Haskell is well studied in
the literature. This dissertation continues this tradition in Chapter 6.

3.3.3 No termination or totality checking

Many dependently typed languages today strive to be proof systems as well as
programming languages. These care deeply about totality: that all pattern matches
consider all possibilities and that every function can be proved to terminate. Coq
does not accept a function until it is proved to terminate. Agda behaves likewise,
although the termination checker can be disabled on a per-function basis. Idris
embraces partiality, but then refuses to evaluate partial functions during type-checking.
Dependent Haskell, on the other hand, does not care about totality.

Dependent Haskell emphatically does not strive to be a proof system. In a proof
system, whether or not a type is inhabited is equivalent to whether or not a proposition
holds. Yet, in Haskell, all types are inhabited, by ⊥ and other looping terms, at a
minimum. Even at the type level, all kinds are inhabited by the following type family,
defined in GHC’s standard library:

type family Any :: k -- no instances

The type family Any can be used at any kind, and so inhabits all kinds.
Furthermore, Dependent Haskell has the Type :Type axiom, meaning that instead

of having an infinite hierarchy of universes characteristic of Coq, Agda, and Idris,
Dependent Haskell has just one universe, which contains itself. It is well known that
self-containment of this form leads to logical inconsistency by enabling the construction
of a looping term [36], but I am unbothered by this—Haskell has many other looping
terms, too! (See Section 4.4.1 for more discussion on this point.) By allowing ourselves
to have Type:Type, the type system is much simpler than in systems with a hierarchy
of universes.

There are two clear downsides of the lack of totality:

• What appears to be a proof might not be. Suppose we need to prove that type τ
equals type σ in order to type-check a program. We can always use ⊥ :: τ :≈:σ
to prove this equality, and then the program will type-check. The problem will
be discovered only at runtime. Another way to see this problem is that equality
proofs must be run, having an impact on performance. However, note that we
cannot use the bogus equality without evaluating it; there is no soundness issue.

This drawback is indeed serious, and important future work includes designing
and implementing a totality checker for Haskell. (See the work of Vazou et al.
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[94] for one approach toward this goal. Recent work by Karachalias et al. [51]
is another key building block.) Unlike in other languages, though, the totality
checker would be chiefly used in order to optimize away proofs, rather than to
keep the language safe. Once the checker is working, we could also add compiler
flags to give programmers compile-time warnings or errors about partial functions,
if requested.

• Lack of termination in functions used at the type level might conceivably cause
GHC to loop. This is not a great concern, however, because the loop is directly
caused by a user’s type-level program. In practice, GHC counts steps it uses in
reducing types and reports an error after too many steps are taken. The user
can, via a compiler flag, increase the limit or disable the check.

The advantages to the lack of totality checking are that Dependent Haskell is
simpler for not worrying about totality. It is also more expressive, treating partial
functions as first-class citizens.

3.3.4 GHC is an industrial-strength compiler

Hosting dependent types within GHC is likely to reveal new insights about dependent
types due to all of the features that GHC offers. Not only are there many surface
language extensions that must be made to work with dependent types, but the back
end must also be adapted. A dependently typed intermediate language must, for
example, allow for optimizations. Working in the context of an industrial-strength
compiler also forces the implementation to be more than just “research quality,” but
ready for a broad audience.

3.3.5 Manifest type erasure properties

A critical property of Haskell is that it can erase types. Despite all the machinery
available in Haskell’s type system, all type information can be dropped during compila-
tion. In Dependent Haskell, this does not change. However, dependent types certainly
blur the line between term and type, and so what, precisely, gets erased can be
difficult to discern. Dependent Haskell, in a way different from other dependently
typed languages, makes clear which arguments to functions (and data constructors)
get erased. This is through the user’s choice of relevant vs. irrelevant quantifiers, as
explored in Section 4.2.2. Because erasure properties are manifestly available in types,
a performance-conscious user can audit a Dependent Haskell program and see exactly
what will be removed at runtime.

It is possible that, with practice, this ability will become burdensome, in that the
user has to figure out what to keep and what to discard. Idris’s progress toward type
erasure analysis [10, 90] may benefit Dependent Haskell as well.
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3.3.6 Type-checker plugin support

Recent versions of GHC allow type-checker plugins, a feature that allows end users to
write a custom solver for some domain of interest. For example, Gundry [38] uses a
plugin to solve constraints arising from using Haskell’s type system to check that a
physical computation respects units of measure. As another example, Diatchki [22] has
written a plugin that uses an SMT solver to work out certain numerical constraints
that can arise using GHC’s type-level numbers feature.

Once Haskell is equipped with dependent types, the need for these plugins will
only increase. However, because GHC already has this accessible interface, the work of
developing the best solvers for Dependent Haskell can be distributed over the Haskell
community. This democratizes the development of dependently typed programs and
spurs innovation in a way a centralized development process cannot.

3.3.7 Haskellers want dependent types

The design of Haskell has slowly been marching toward having dependent types.
Haskellers have enthusiastically taken advantage of the new features. For example, over
1,000 packages published at hackage.haskell.org use type families [86]. Anecdotally,
Haskellers are excited about getting full dependent types, instead of just faking
them [30, 59, 60]. Furthermore, with all of the type-level programming features that
exist in Haskell today, it is a reasonable step to go to full dependency.
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Chapter 4

Dependent Haskell

This chapter provides an overview of Dependent Haskell. I will review the new features
of the type language (Section 4.1), introduce the small menagerie of quantifiers
available in Dependent Haskell (Section 4.2), explain pattern matching in the presence
of dependent types (Section 4.3), and conclude the chapter by discussing several
further points of interest in the design of the language.

There are many examples throughout this chapter, building on the following
definitions:

-- Length-indexed vectors, from Section 3.1.1
data Nat = Zero | Succ Nat
data Vec :: Type→ Nat → Type where
Nil :: Vec a ’Zero
(:>) :: a→ Vec a n→ Vec a ( ’Succ n)

infixr 5 :>

-- Propositional equality, from Section 2.4
data a :∼: b where
Refl :: a :∼: a
-- Heterogeneous lists, indexed by the list of types of elements

data HList :: [Type ]→ Type where
HNil :: HList ’[ ]
(:::) :: h→ HList t → HList (h ’: t)

infixr 5 :::

4.1 Dependent Haskell is dependently typed
The most noticeable change when going from Haskell to Dependent Haskell is that the
latter is a full-spectrum dependently typed language. Expressions and types intermix.
This actually is not too great a shock to the Haskell programmer, as the syntax of
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Haskell expressions and Haskell types is so similar. However, by utterly dropping the
distinction, Dependent Haskell has many more possibilities in types, as seen in the
last chapter.

No distinction between types and kinds The kind system of GHC 7.10 and
earlier is described in Section 2.3. It maintained a distinction between types, which
classify terms, and kinds, which classify types. Yorgey et al. [107] enriched the language
of kinds, allowing for some types to be promoted into kinds, but it did not mix the
two levels.

My prior work [105] goes one step further than Yorgey et al. [107] and does merge
types with kinds by allowing non-trivial equalities to exist among kinds. See my prior
work for the details; this feature does not come through saliently in this dissertation,
as I never consider any distinction between types and kinds. It is this work that is
implemented and released in GHC 8. Removing the distinction between types and
kinds has opened up new possibilities to the Haskell programmer. Below are brief
examples of these new capabilities:

• Explicit kind quantification. Previously, kind variables were all quantified implic-
itly. GHC 8 allows explicit kind quantification:

data Proxy k (a :: k) = Proxy
-- NB: Proxy takes both kind and type arguments

f :: ∀ k (a :: k). Proxy k a→ ()

• Kind-indexed GADTs. Previously, a GADT could vary the return types of
constructors only in its type variables, never its kind variables; this restriction is
lifted. Here is a contrived example:

data G (a :: k) where
MkG1 :: G Int
MkG2 :: G Maybe

Notice that Int and Maybe have different kinds, and thus that the instantiation
of the G ’s k parameter is non-uniform between the constructors. Some recent
prior work [75] explores applying a kind-indexed to enabling dynamic types
within Haskell.

• Universal promotion. As outlined by Yorgey et al. [107, Section 3.3], only some
types were promoted to kinds in GHC 7.10 and below. In contrast, GHC 8 allows
all types to be used in kinds. This includes type synonyms and type families,
allowing computation in kinds for the first time.

52



• GADT constructors in types. A constructor for a GADT packs an equality
proof, which is then exposed when the constructor is matched against. Because
GHC 7.10 and earlier lacked informative equality proofs among kinds, GADT
constructors could not be used in types. (They were simply not promoted.)
However, with the rich kind equalities permitted in GHC 8, GADT constructors
can be used freely in types, and type families may perform GADT pattern
matching.

Expression variables in types Dependent Haskell obviates the need for most
closed type families by allowing the use of ordinary functions directly in types. Because
Haskell has a separate term-level namespace from its type-level namespace, any term-
level definition used in a type must be prefixed with a ’ mark. This expands the use
of a ’ mark to promote constructors as initially introduced by Yorgey et al. [107]. For
example:

(+) :: Nat → Nat → Nat
Zero + m = m
Succ n + m = Succ (n + m)

append :: Vec a n→ Vec a m→ Vec a (n ’+m)
append Nil v = v
append (h :> t) v = h :> (append t v)

Note that this ability does not eliminate all closed type families, as term-level function
definitions cannot use non-linear patterns, nor can they perform unsaturated matches
(see Section 5.1.1.2).

Type names in terms It is sometimes necessary to go the other way and mention
a type when writing something that syntactically appears to be a term. For the same
reasons we need ’ when using a term-level name in a type, we use ˆ to use a type-level
name in a term. A case in point is the code appearing in Section 3.1.3.2.

Pattern matching in types It is now possible to use case directly in a type:

tailOrNil :: Vec a n→ Vec a (case n of
’Zero → ’Zero
’Succ n’ → n’)

tailOrNil Nil = Nil
tailOrNil ( :> t) = t

53



Anonymous functions in types Types may now include λ-expressions:

eitherize :: HList types → HList ( ’map (λty → Either ty String) types)
eitherize HNil = HNil
eitherize (h ::: t) = Left h ::: eitherize t

Other expression-level syntax in types Having merged types and expressions,
all expression-level syntax is now available in types (for example, do-notation, let
bindings, even arrows [46]). From a compilation standpoint, supporting these features
is actually not a great challenge (once we have Chapters 5 and 6 implemented); it
requires only interleaving type-checking with desugaring.28 When a type-level use
of elaborate expression-level syntax is encountered, we will need to work with the
desugared version, hence the interleaving.

4.2 Quantifiers
Beyond simply allowing old syntax in new places, as demonstrated above, Dependent
Haskell also introduces new quantifiers that allow users to write a broader set of
functions than was previously possible. Before looking at the new quantifiers of
Dependent Haskell, it is helpful to understand the several axes along which quantifiers
can vary in the context of today’s Haskell.

In Haskell, a quantifier is a type-level operator that introduces the type of an
abstraction, or function. In Dependent Haskell, there are four essential properties
of quantifiers, each of which can vary independently of the others. To understand
the range of quantifiers that the language offers, we must go through each of these
properties. In the text that follows, I use the term quantifiee to refer to the argument
quantified over. The quantifier body is the type “to the right” of the quantifier. The
quantifiers introduced in this section are summarized in Figure 4.1 on page 59.

4.2.1 Dependency

A quantifiee may be either dependent or non-dependent. A dependent quantifiee may
be used in the quantifier body; a non-dependent quantifiee may not.

Today’s Haskell uses ∀ for dependent quantification, as follows:

id :: ∀ a. a→ a

In this example, a is the quantifiee, and a→ a is the quantifier body. Note that the
quantifiee a is used in the quantifier body.

28GHC currently type-checks the Haskell source directly, allowing it to produce better error
messages. Only after type-checking and type inference does it convert Haskell source into its internal
language, the process called desugaring.
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The normal function arrow (→) is an example of a non-dependent quantifier.
Consider the predecessor function:

pred :: Int → Int

The Int quantifiee is not named in the type, nor is it mentioned in the quantifier body.
In addition to ∀, Dependent Haskell adds a new dependent quantifier, Π. The only

difference between Π and ∀ is that Π-quantifiee is relevant, as we’ll explore next.

4.2.2 Relevance

A quantifiee may be either relevant or irrelevant. A relevant quantifiee may be used
anywhere in the function quantified over; an irrelevant quantifiee may be used only in
irrelevant positions—that is, as an irrelevant argument to other functions or in type
annotations. Note that relevance talks about usage in the function quantified over,
not the type quantified over (which is covered by the dependency property).

Relevance is very closely tied to type erasure. Relevant arguments in terms are
precisely those arguments that are not erased. However, the relevance property applies
equally to type-level functions, where erasure does not make sense, as all types are
erased. For gaining an intuition about relevance, thinking about type erasure is a very
good guide.

Today’s Haskell uses (→) for relevant quantification. For example, here is the body
of pred :

pred x = x − 1

Note that x , a relevant quantifiee, is used in a relevant position on the right-hand
side. Relevant positions include all places in a term or type that are not within a
type annotation, other type-level context, or irrelevant argument context, as will be
demonstrated in the next example.

Today’s Haskell uses ∀ for irrelevant quantification. For example, here is the body
of id (as given a type signature above):

id x = (x :: a)

The type variable a is the irrelevant quantifiee. According to Haskell’s scoped type
variables, it is brought into scope by the ∀ a in id ’s type annotation. (It could also be
brought into scope by using a in a type annotation on the pattern x to the left of the
=.) Although a is used in the body of id , it is used only in an irrelevant position, in
the type annotation for x . It would violate the irrelevance of ∀ for a to be used outside
of a type annotation or other irrelevant context. As functions can take irrelevant
arguments, irrelevant contexts include these irrelevant arguments.

Dependent Haskell adds a new relevant quantifier, Π. The fact that Π is both
relevant and dependent is the very reason for Π’s existence!
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4.2.3 Visibility

A quantifiee may be either visible or invisible. The argument used to instantiate a
visible quantifiee appears in the Haskell source; the argument used to instantiate an
invisible quantifiee is elided.

Today’s Haskell uses (→) for visible quantification. That is, when we pass an
ordinary function an argument, the argument is visible in the Haskell source. For
example, the 3 in pred 3 is visible.

On the other hand, today’s ∀ and (⇒) are invisible quantifiers. When we call
id True, the a in the type of id is instantiated at Bool , but Bool is elided in the call
id True. During type inference, GHC uses unification to discover that the correct
argument to use for a is Bool .

Invisible arguments specified with (⇒) are constraints. Take, for example, show ::
∀ a. Show a ⇒ a → String . The show function properly takes 3 arguments: the
∀-quantified type variable a, the (⇒)-quantified dictionary for Show a (see Section 2.1
if this statement surprises you), and the (→)-quantified argument of type a. However,
we use show as, say, show True, passing only one argument visibly. The ∀ a argument
is discovered by unification to be Bool , but the Show a argument is discovered using
a different mechanism: instance solving and lookup. (See the work of Vytiniotis et al.
[99] for the algorithm used.) We thus must be aware that invisible arguments may use
different mechanisms for instantiation.

Dependent Haskell offers both visible and invisible forms of ∀ and Π; the invisible
forms instantiate only via unification. Dependent Haskell retains, of course, the invisible
quantifier (⇒), which is instantiated via instance lookup and solving. Finally, note
that visibility is a quality only of source Haskell. All arguments are always “visible” in
Pico.

It may be helpful to compare Dependent Haskell’s treatment of visibility to that
in other languages; see Section 8.6.

4.2.3.1 Visibility overrides

It is often desirable when using rich types to override a declared visibility specification.
That is, when a function is declared to have an invisible parameter a, a call site may
wish to instantiate a visibly. Conversely, a function may declare a visible parameter
b, but a caller knows that the choice for b can be discovered by unification and so
wishes to omit it at the call site.

Instantiating invisible parameters visibly Dependent Haskell adopts the @ . . .
syntax of Eisenberg et al. [33] to instantiate any invisible parameter visibly, whether
it is a type or not. Continuing our example with id , we could write id @Bool True
instead of id True. This syntax works in patterns, expressions, and types. In patterns,
the choice of @ conflicts with as-patterns, such as using the pattern list@(x :xs) to bind
list to the whole list while pattern matching. However, as-patterns are almost always
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written without whitespace. I thus use the presence of whitespace before the @ to
signal the choice between an as-pattern and a visibility override.29 Dictionaries cannot
be named in Haskell, so this visibility override skips over any constraint arguments.

Omitting visible parameters The function replicate :: Π (n ::Nat)→ a→ Vec a n
from Section 3.1.1.3 creates a length-indexed vector of length n, where n is passed
in as the first visible argument. (The true first argument is a, which is invisible and
elided from the type.) However, the choice for n can be inferred from the context. For
example:

theSimons :: Vec String 2
theSimons = replicate 2 "Simon"

In this case, the two uses of 2 are redundant. We know from the type signature that
the length of theSimons should be 2. So we can omit the visible parameter n when
calling replicate:

theSimons’ :: Vec String 2
theSimons’ = replicate "Simon"

The underscore tells GHC to infer the missing parameter via unification.
The two overrides can usefully be combined, when we wish to infer the instantiation

of some invisible parameters but then specify the value for some later invisible
parameter. Consider, for example, coerce :: ∀ a b. Coercible a b ⇒ a→ b. In the call
coerce (MkAge 3) (where we have newtype Age = MkAge Int), we can infer the value
for a, but the choice for b is a mystery. We can thus say coerce @_ @Int (MkAge 3),
which will convert MkAge 3 to an Int.

The choice of syntax for omitting visible parameters conflicts somewhat with the
feature of typed holes, whereby a programmer can leave out a part of an expression,
replacing it with an underscore, and then get an informative error message about the
type of expression expected at that point in the program. (This is not unlike Agda’s
sheds feature or Idris’s metavariables feature.) However, this is not a true conflict, as
an uninferrable omitted visible parameter is indeed an error and should be reported;
the error report is that of a typed hole. Depending on user feedback, this override of
the underscore symbol may be hidden behind a language extension or other compiler
flag.

29This perhaps-surprising decision based on whitespace is regrettable, but it has company. The
symbol $ can mean an ordinary, user-defined operator when it is followed by a space but a Template
Haskell splice when there is no space. The symbol . can mean an ordinary, user-defined operator
when it is preceded by a space but indicate namespace resolution when it is not. Introducing these
oddities seems a good bargain for concision in the final language.
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4.2.4 Matchability

Suppose we know that f a equals g b. What relationship can we conclude about
the individual pieces? In general, nothing: there is no way to reduce f a ∼ g b for
arbitrary f and g . Yet Haskell type inference must simplify such equations frequently.
For example:

class Monad m where
return :: a→ m a
...

just5 :: Maybe Int
just5 = return 5

When calling return in the body of just5 , type inference must determine how to
instantiate the call to return. We can see that m a (the return type of return) must be
Maybe Int. We surely want type inference to decide to set m to Maybe and a to Int!
Otherwise, much current Haskell code would no longer compile.

The reason it is sensible to reduce m a ∼ Maybe Int to m ∼ Maybe and a ∼ Int
is that all type constructors in Haskell are generative and injective, according to these
definitions:

Definition (Generativity). If f and g are generative, then f a ∼ g b implies f ∼ g.30

Definition (Injectivity). If f is injective, then f a ∼ f b implies a ∼ b.

Because these two notions go together so often in the context of Haskell, I introduce
a new word matchable, thus:

Definition (Matchability). A function f is matchable iff it is generative and injective.

Thus, we say that all type constructors in Haskell are matchable. Note that if f
and g are matchable, then f a ∼ g b implies f ∼ g and a ∼ b, as desired.

On the other hand, ordinary Haskell functions are not, in general, matchable.
The inability to reduce f a ∼ g b to f ∼ g and a ∼ b for arbitrary functions is
precisely why type families must be saturated in today’s Haskell. If they were allowed
to appear unsaturated, then the type inference algorithm could no longer assume that
higher-kinded types are always matchable,31 and inference would grind to a halt.

The solution is to separate out matchable functions from unmatchable ones,
classifying each by their own quantifier, as described in my prior work [29].

The difference already exists in today’s Haskell between a matchable arrow and an
unmatchable arrow, though this difference is invisible. When we write an arrow in a

30As we see in this definition, generativity is really a relation between pairs of types. We can
consider the type constructors to be a set such that any pair are generative w.r.t. the other. When I
talk about a type being generative, it is in relation to this set.

31For example, unifying a b with Maybe Int would no longer have a unique solution.
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Quantifier Dependency Relevance Visibility Matchability
∀ (a :: τ). ... dep. irrel. inv. (unification) unmatchable
’∀ (a :: τ). ... dep. irrel. inv. (unification) matchable
∀ (a :: τ)→ ... dep. irrel. vis. unmatchable
’∀ (a :: τ)→ ... dep. irrel. vis. matchable

Π (a :: τ). ... dep. rel. inv. (unification) unmatchable
’Π (a :: τ). ... dep. rel. inv. (unification) matchable

Π (a :: τ)→ ... dep. rel. vis. unmatchable
’Π (a :: τ)→ ... dep. rel. vis. matchable

τ ⇒ ... non-dep. rel. inv. (solving) unmatchable
τ ’⇒ ... non-dep. rel. inv. (solving) matchable
τ → ... non-dep. rel. vis. unmatchable
τ ’→ ... non-dep. rel. vis. matchable

Figure 4.1: The twelve quantifiers of Dependent Haskell

type that classifies an expression, that arrow is unmatchable. But when we write an
arrow in a kind that classifies a type, the arrow is matchable. This is why map :: (a→
b)→ [a ]→ [b ] does not cleanly promote to the type Map :: (a→ b)→ [a ]→ [b ]; if
you write that type family, it is much more restrictive than the term-level function.

The idea of matchability also helps to explain why, so far, we have been able only
to promote data constructors into types: data constructors are matchable—this is why
pattern matching on constructors makes any sense at all. When we promote a data
constructor to a type constructor, the constructor’s matchable nature fits well with
the fact that all type constructors are matchable.

Dependent Haskell thus introduces a new arrow, spelled ’→, that classifies match-
able functions. The idea is that ’ is used to promote data constructors, and ’→ promotes
the arrow used in data constructor types. In order to be backward compatible, types
of type constructors (as in data Vec :: Type → Nat → Type) and types of data
constructors (as in Just :: a→ Maybe a) can still be written with an ordinary arrow,
even though those arrows should properly be ’→. Along similar lines, any arrow written
in a stretch of Haskell that is lexically a kind (that is, in a type signature in a type) is
interpreted as ’→ as long as the DependentTypes extension is not enabled.

We can now say ’map :: (a → b) → [a ] → [b ], with unmatchable →, and retain
the flexibility we have in the expression map.

4.2.5 The twelve quantifiers of Dependent Haskell

Now that we have enumerated the quantifier properties, we are ready to describe the
twelve quantifiers that exist in Dependent Haskell. They appear in Figure 4.1. The
first one (∀ (a :: t). ...) and two near the bottom (⇒ and →) exist in today’s Haskell
and are completely unchanged. Dependent Haskell adds a visible ∀, the Π quantifiers,
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and matchable versions of everything.32

It is expected that the matchable quantifiers will be a rarity in user code. These
quantifiers are used to describe type and data constructors, but matchability is assumed
in a type or data constructor signature. Beyond those signatures, I don’t imagine
many users will need to write matchable function types. However, there is no reason
to prevent users from writing these, so I have included them in the user-facing design.

The visible ∀ is useful in situations where a type parameter might otherwise be
ambiguous. For example, suppose F is a non-injective [86] type family and consider
this:

frob :: ∀ a. F a→ F [a ]

This type signature is inherently ambiguous—we cannot know the choice of a even
if we know we want a such that frob :: Int → Bool—and GHC reports an error when
it is written. Suppose that we know we want a particular use of frob to have type
Int → Bool . Even with that knowledge, there is no way to determine how to instantiate
a. To fix this problem, we simply make a visible:

frob :: ∀ a→ F a→ F [a ]

Now, any call to frob must specify the choice for a, and the type is no longer ambiguous.
A Π-quantified parameter is both dependent (it can be used in types) and relevant

(it can be used in terms). Critically, pattern-matching (in a term) on a Π-quantified
parameter informs our knowledge about that parameter as it is used in types, a subject
we explore in the next section.

Lastly, Dependent Haskell omits the non-dependent, irrelevant quantifiers, as a
non-dependent, irrelevant quantifiee would not be able to be used anywhere.

4.3 Pattern matching
We will approach an understanding of pattern matches in stages, working through three
examples of increasing complexity. All these examples will work over the somewhat
hackneyed length-indexed vectors for simplicity and familiarity.

32The choice of syntax here is directly due to the work of Gundry [37].
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4.3.1 A simple pattern match

Naturally, Dependent Haskell retains the capability for simple pattern matches:

-- isEmpty :: Vec a n→ Bool
isEmpty v = case v of
Nil → True
→ False

A simple pattern match looks at a scrutinee—in this case, v—and chooses a case
alternative depending on the value of the scrutinee. The bodies of the case alternatives
need no extra information to be well typed. In this case, every body is clearly a Bool ,
with no dependency on which case has been chosen. Indeed, swapping the bodies
would yield a well typed pattern match, too. In a simple pattern match, no type
signature is required.33

4.3.2 A GADT pattern match

Today’s Haskell (and Dependent Haskell) supports GADT pattern-matches, where
learning about the constructor that forms a scrutinee’s value can affect the types in a
case alternative body. Here is the example:

pred :: Nat → Nat
pred Zero = error "pred Zero"
pred (Succ n) = n
safeTail :: Vec a n→ Either (n :∼: ’Zero) (Vec a ( ’pred n))
safeTail Nil = Left Refl
safeTail ( :> t) = Right t

In this example, we must use type information learned through the pattern match in
order for the body of the pattern match to type-check. (Here, and in the last example, I
use the more typical syntax of defining a function via pattern matching. The reasoning
is the same as if I had used an explicit case.) Let’s examine the two pattern match
bodies individually:

• For Left Refl to be well typed at Either (n :∼: ’Zero) τ , we need to know that n
is indeed ’Zero. This fact is known only because we have pattern-matched on
Nil . Note that the type of Nil is Vec a ’Zero. Because we have discovered that
our argument of type Vec a n is Nil ::Vec a ’Zero, it must be that n ∼ ’Zero, as
desired.

33Expert readers may be puzzled why this example is accepted without a type signature. After all,
pattern-matching against Nil indeed does introduce a type equality, making the result type of the
match hard to infer. In this case, however, the existence of the last pattern, , which introduces no
equalities, allows the return type to be inferred as Bool .
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• For Right t to be well typed at Either τ (Vec a ( ’pred n)) (where t ::Vec a n’ for
some n’), we need to know that n ∼ ’Succ n’ , so that we can simplify ’pred n
to ’pred ( ’Succ n’) to n’ . The equality n ∼ ’Succ n’ is exactly what we get by
pattern-matching on :>.

Note that I have provided a type signature for safeTail . This is necessary in the event
of a GADT pattern match, because there is no way, in general, to infer the return
type of a pattern match where each branch has a type equality in scope.34

4.3.3 Dependent pattern match

New to Dependent Haskell is the dependent pattern match, shown here:

replicate :: Π n→ a→ Vec a n
replicate Zero = Nil
replicate (Succ n’) x = x :> replicate n’ x

Let’s again consider the function bodies one at a time:

• Its type signature tells us Nil has type Vec a ’Zero. Thus for Nil to be well typed
in replicate, we must know that n ∼ ’Zero. We indeed do know this, as we have
scrutinized n and found that n is ’Zero.

• For the recursive call to be well typed, we need to know that n ∼ ’Succ n’ ,
which is, once again, what we know by the pattern match.

Note the difference between this case of dependent pattern match and the previous
case of GADT pattern match. In GADT pattern matching, the equality assumption
of interest is found by looking at the type of the constructor that we have found. In a
dependent pattern match, on the other hand, the equality assumption of interest is
between the scrutinee and the constructor. In our case here, the scrutinized value is
not even of a GADT; Nat is a perfectly ordinary, Haskell98 datatype.

A question naturally comes up in this example: when should we do dependent
pattern match and when should we do a traditional (non-dependent) pattern match?
A naive answer might be to always do dependent pattern matching, as we can always
feel free to ignore the extra, unused equality if we do not need it. However, this would
not work in practice—with an equality assumption in scope, we cannot accurately infer
the return type of a pattern match. Yet this last problem delivers us the solution: use
dependent pattern matching only when we know a match’s result type, as propagated
down via a bidirectional type system. (This is much the same way that today’s Haskell
allows inference in the presence of higher-rank types [74]. See Section 6.4 for the

34If this last statement is a surprise to you, the introduction of Vytiniotis et al. [99] has a nice
explanation of why this is a hard problem.
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details.) If we know a result type and do not need the dependent pattern match
equality, no harm is done. On the other hand, if we do not know the result type, this
design decision means that dependent pattern matching does not get in the way of
inferring the types of Haskell98 programs.

4.4 Discussion
The larger syntactic changes to Haskell as it becomes Dependent Haskell are sketched
above. In addition to these changes, Haskell’s typing rules naturally become much
more involved. Though a declarative specification remains out of reach, Chapter 6
describes (and Appendix D details) the algorithm Bake, which is used to detect
type-correct Dependent Haskell programs. It is important future work to develop a
more declarative specification of Dependent Haskell.

This section comments on several topics that affect the design of Dependent Haskell.

4.4.1 Type : Type

Dependent Haskell includes the Type : Type axiom, avoiding the infinite hierarchy of
sorts [57, 80] that appear in other dependently-typed languages. This choice is made
solely to simplify the language. Other languages avoid the Type : Type axiom in
order to remain consistent as a logic. However, to have logical consistency, a language
must be total. Haskell already has many sources of partiality, so there is little risk in
adding one more.

Despite the questionable reputation of the Type : Type axiom, languages with
this feature have been proved type-safe for some time. Cardelli [12] gives a thorough
early history of the axiom and presents a type-safe language with Type : Type. Given
the inherent partiality of Haskell, the inclusion of this axiom has little effect on the
theory.

4.4.2 Inferring Π

The discussion of quantifiers in this chapter begs a question: which quantifier is chosen
when the user has not written any? The answer: →. Despite all of the advances to
the type system that come with Dependent Haskell, the non-dependent, relevant,
visible, and unmatchable function type, →, remains the bedrock. In absence of other
information, this is the quantifier that will be used.

However, as determined by the type inference process (Chapter 6), an inferred
type might still have a Π in it. For example, if I declare

replicate’ = replicate

without giving a type signature to replicate’ , it should naturally get the same type
(which includes a Π) as replicate. Indeed this is what is delivered by Bake, Dependent
Haskell’s type inference algorithm.
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On the other hand, the generalized type of the expression λf g x → f (g x)
is ∀ a b c . (b → c) → (a → b) → (a → c), the traditional type for function
composition, not the much more elaborate type (see Section 6.1) for a dependently
typed composition function. The more exotic types are introduced only when written
in by the user.

4.4.3 Roles and dependent types

Integrating dependent types with Haskell’s role mechanism [11] is a challenge, as
explored in some depth in my prior, unpublished work [27]. Instead of addressing this
issue head-on, I am deferring the resolution until we can find a better solution than
what was proposed in that prior work. That approach, unworthy of being repeated here,
is far too ornate and hard to predict. Instead, I make a simplifying assumption that
all coercions used in types have a nominal role.35 This choice restricts the way Haskell
newtypes can work with dependent types if the coerce function has been used. A
violation of this restriction (yet to be nailed down, exactly) can be detected after type-
checking and does not affect the larger type system. It is my hope that, once the rest of
Dependent Haskell is implemented, a solution to this thorny problem will present itself.
A leading, unexplored candidate is to have two types of casts: representational and
nominal. Currently, all casts are representational; possibly, tracking representational
casts separately from nominal casts will allow a smoother integration of roles and
dependent types than does the ornate approach in my prior work.

4.4.4 Impredicativity, or lack thereof

Despite a published paper [97] and continued attempts at cracking this nut, GHC lacks
support for impredicativity.36 Here, I use the following definitions in my meaning of
impredicativity, which has admittedly drifted somewhat from its philosophical origins:

Definition (Simple types). A simple type has no constraint, quantification, or de-
pendency.

Definition (Impredicativity). A program is impredicative if it requires a non-simple
type to be substituted for a type variable.

Impredicativity is challenging to implement while retaining predictable type infer-
ence, essentially because it is impossible to know where to infer invisible arguments—
invisible arguments can be hidden behind a type variable in an impredicative type
system.

Dependent Haskell does not change this state of affairs in any way. In Dependent
Haskell, just like in today’s Haskell, impredicativity is simply not allowed.

35If you are not familiar with roles, do not fret. Instead, safely skip the rest of this subsection.
36There does exist an extension ImpredicativeTypes. However, it is unmaintained, deprecated,

and quite broken.

64



There is a tantalizing future direction here, however: are the restrictions around
impredicativity due to invisible binders only? Perhaps. Up until now, it has been
impossible to have a dependent or irrelevant binder without that binder also being
invisible. (To wit, ∀ is the invisible, dependent, irrelevant binder of today’s Haskell.)
One of the tasks of enhancing Haskell with dependent types is picking apart the
relationship among all of the qualities of quantifiers [56]. It is conceivable that the
reason impredicativity hinders the predictability of type inference has to do only
with visibility, allowing arbitrary instantiations of type variables with complex types,
as long as they have no invisible binders. Such an idea requires close study before
implementing, but by pursuing this idea, we may be able to relax the impredicativity
restriction substantially.

4.4.5 Running proofs

Haskell is a partial language. It has a multitude of ways of introducing a computa-
tion that does not reduce to a value: ⊥/error , general recursion, incomplete pattern
matches, non-strictly-positive datatypes, baked-in type representations [75], and possi-
bly Girard’s paradox [36, 48], among others. This is in sharp contrast to many other
dependently typed language, which are total. (An important exception is Cayenne.
See Section 8.3.)

In a total language, if you have a function pf that results in a proof that a ∼ b,
you never need to run the function. (Here, I’m ignoring the possibility of multiple,
different proofs of equality [91].) By the totality of that language, you are assured
that pf will always terminate, and thus running pf yields no information.

On the other hand, in a partial language like Haskell, it is always possible that pf
diverges or errors. We are thus required to run pf to make sure that it terminates.
This is disappointing, as the only point of running pf is to prove a type equality, and
types are supposed to be erased. However, the Haskell function pf has two possible
outcomes: an uninformative (at runtime) proof of type equality, or divergence. There
seems to be no easy, sound way around this restriction, which will unfortunately have
a real effect on the runtimes of dependently typed Haskell programs.37

Despite not having an easy, sound workaround, GHC already comes with an easy,
unsound workaround: rewrite rules [73]. A rewrite rule (written with a RULES pragma)
instructs GHC to exchange one fragment of a program in its intermediate language
with another, by pattern matching on the program structure. For example, a user can
write a rule to change map id to id . To the case in point, a user could write a rule
that changes pf ... to unsafeCoerce Refl . Such a rule would eliminate the possibility of
a runtime cost to the proof. By writing this rule, the user is effectively asserting that
the proof always terminates.

37Note that running a term like pf is the only negative consequence of Haskell’s partiality. If, say,
Agda always ran its proofs, it could be partial, too! This loses logical consistency—and may surprise
users expecting something that looks like a proof to actually be a proof—but the language would
remain type safe.
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4.4.6 Import and export lists

Recall the safeTail example from Section 4.3.2. As discussed in that section, for safeTail
to compile, it is necessary to reduce ’pred ( ’Succ n’) to n’ . This reduction requires
knowledge of the details of the implementation of pred . However, if we imagine that
pred is defined in another module, it is conceivable that the author of pred wishes to
keep the precise implementation of pred private—after all, it might change in future
versions of the module. Naturally, hiding the implementation of pred would prevent
an importing module from writing safeTail , but that should be the library author’s
prerogative.

Another way of examining this problem is to recognize that the definition of pred
encompasses two distinct pieces of information: pred ’s type and pred ’s body. A module
author should have the option of exporting the type without the body.

This finer control is done by a small generalization of the syntax in import and
export lists. If a user includes pred in an import/export list, only the name pred and
its type are involved. On the other hand, writing pred(. .) (with a literal (. .) in the
source code) in the import/export list also includes pred ’s implementation. This echoes
the current syntax of using, say, Bool to export only the Bool symbol while Bool(. .)
exports Bool with all of its constructors.

4.4.7 Type-checking is undecidable

In order to type-check a Dependent Haskell program, it is sometimes necesary to eval-
uate expressions used in types. Of course, these expressions might be non-terminating
in Haskell. Accordingly, type-checking Dependent Haskell is undecidable.

This fact, however, is not worrisome. Indeed, GHC’s type-checker has had the
potential to loop for some time. Assuming that the solver’s own algorithm terminates,
type-checking will loop only when the user has written a type-level program that loops.
Programmers are not surprised when they write an ordinary term-level program that
loops at runtime; they should be similarly not surprised when they write a type-level
program that loops at compile time. In order to provide a better user experience,
GHC counts reduction steps and halts with an error message if the count gets too
high; users can disable this check or increase the limit via a compiler flag.

4.5 Conclusion
This chapter has offered a concrete description of Dependent Haskell. Other than
around the addition of new quantifiers, most of the changes are loosening of restrictions
that exist in today’s Haskell. (For example, a ’ mark in a type today can promote only
a constructor; Dependent Haskell allows any identifier to be so promoted.) Accordingly,
and in concert with the conservativity of the type inference algorithm (Sections 6.8.2
and 6.8.3), programs that compile today will continue to do so under Dependent
Haskell.
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Naturally, what is described here is just my own considered vision for Dependent
Haskell. I am looking forward to the process of getting feedback from the Haskell
community and evolving this description of the language to fit the community’s needs.
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Chapter 5

Pico: The intermediate language

This chapter presents Pico, the internal language that Dependent Haskell compiles
into. I have proved type safety (via the usual preservation and progress theorems,
Theorem C.46 and Theorem C.78) and type erasure (Theorem C.83 and Theorem
C.86). I believe Pico would make a strong candidate for the internal language in a
future version of GHC.

5.1 Overview
Pico (pronounced “Π-co”, never “peek-o”) descends directly from the long line of work
on System FC [87]. It is most closely related to the version of System FC presented in
my prior work [105] and in Gundry’s thesis [37].

Pico sits in the λ-cube [6] on the same vertex as the Calculus of Constructions [19],
but with a very different notion of equality. A typical dependently typed calculus
contains a conversion rule, something like this:

τ : κ1 κ1 ≡ κ2

τ : κ2

Conv

This rule encapsulates the point of type equivalence: if a type τ is found to have some
kind κ1 and κ1 is known to be equivalent to some κ2, then we can say that τ has
kind κ2.38 This rule is flexible and helps a language to be succinct. It has a major
drawback, however: it is not syntax directed. In general, determining whether κ1 ≡ κ2

might not be easy. Indeed, type equivalence in Pico is undecidable, so we would
have a hard time building a type-checker with a Conv rule such as this one. Other
dependently typed languages are forced to restrict expressiveness in order to keep

38I tend to use the word “kind” when referring to the classification of a type. However, in the
languages considered in this dissertation, kinds and types come from the same grammar; the terms
“type” and “kind” are technically equivalent. Nevertheless, I find that discerning between these two
words can aid intuition and will continue to do so throughout the dissertation.
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type-checking decidable; this need for decidable type equivalence is one motivation to
design a dependently typed language to be strongly normalizing.

Pico’s approach to type equivalence (and the Conv rule) derives from the coercions
that provide the “C” in “System FC”. Instead of relying on a non-syntax-directed
equivalence relation, Pico’s type equivalence requires evidence of equality in the form
of coercions. Here is a simplified version of Pico’s take on the Conv rule:

τ : κ1 γ : κ1 ∼ κ2

τ B γ : κ2

Ty_Cast

In this rule, the metavariable γ stands for a coercion, a proof of the equality between
two types. Here, we see that γ proves that kinds κ1 and κ2 are equivalent. Thus, we
can type τ B γ at κ2 as long as τ can be typed at κ1. Note the critical appearance of
γ in the conclusion of the rule: this rule is syntax-directed. The type-checker simply
needs to check the equality proofs against a set of (also syntax-directed) rules, not to
check some more general equivalence relation.

The grammar for coercions (in Figure 5.1 on page 76) allows for a wide variety
of coercion forms, giving Pico a powerful notion of type equivalence. However,
coercions have no notion of evaluation nor proper λ-abstractions.39 Thus, the fact
that evaluation in Pico might not terminate does not threaten the type safety of
the language. Coercions are held separate from types, and proving consistency of the
coercion language (Section 5.10)—in other words, that we cannot prove Int ∼ Bool—is
the heart of the type safety proof. It does not, naturally, depend on any termination
proof, nor any termination checking of the program being checked. The independence
of Pico’s type safety result from termination means that Pico can avoid many
potential traps that have snagged other dependently typed languages that rely on
intricate termination checks.40

5.1.1 Features of Pico

Pico is a dependently typed λ-calculus with mutually recursive algebraic datatypes
and a fixpoint operator. Recursion is modeled only via this fixpoint operator; there is
no recursive let. Other than the way in which the operational semantics deals with
coercions in the form of push rules, the small-step semantics is what you might expect
for a call-by-name λ-calculus.

The typing relations, however, have a few features worth mentioning up front
(other unusual features are best explained after the detailed coverage of Pico; see
Section 5.12).

39There is a coercion form that starts with λ; it is only a congruence form for λ-abstractions in
types, not a λ-abstraction in the coercion language. See Section 5.8.5.1.

40For example, see https://coq.inria.fr/cocorico/CoqTerminationDiscussion.
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5.1.1.1 Relevance annotations and type erasure

A key concern when compiling a dependently typed language is type erasure. Given
that terms and types can intermingle, what should be erased during compilation?
And what data is necessary to be retained until runtime? Dependent Haskell (and, in
turn, Pico) forces the user to specify this detail at each quantifier (Section 5.3). In
the formal grammar of Pico, we distinguish between Πa:Relκ. ... and Πa:Irrelκ. .... The
former is the type of an abstraction that is retained at runtime, written with a Π in
Haskell; the latter, written with ∀, is fully erased. In order to back up this claim of full
erasure of irrelevant quantification, evaluation happens under irrelevant abstractions;
see Section 5.7.1.

So that we can be sure a variable’s relevance is respected at use sites, variable
contexts Γ track the relevance of bound variables. Only relevant variables may appear
in the “level” in which they were bound; when a typing premise refers to a higher
“level”, the context is altered to mark all variables as relevant. For example, the case
construct caseκ τ of alt includes the return kind of the entire case expression as its κ
subscript. This kind is type-checked in a context where all variables are marked as
relevant; because the kind is erased during compilation, the use of an irrelevant variable
there is allowed. As they are also erased, coercions are considered fully irrelevant as
well.

My treatment of resetting the context is precisely like what is done by Mishra-Linger
and Sheard [65].

5.1.1.2 Tracking matchable vs. unmatchable functions

Dependent Haskell supports both matchable—that is, generative and injective—
abstractions and unmatchable ones (Section 4.2.4). Though at first it might appear
that separating out these two modalities is necessary only to support type inference,
Pico maintains this distinction. Every Π-type in Pico is labeled as either matchable
or unmatchable: ’Π denotes a matchable Π-type and

˜
Π denotes an unmatchable one.

An unadorned Π is a metavariable which might be instantiated either to ’Π or
˜
Π. We

do not have to label λ-abstractions, however, because all λ-abstractions are always
unmatchable—only partially applied type constants (or functions returning them) are
matchable.

Pico maintains the matchable/unmatchable distinction for two reasons:

Decomposing coercions over function applications Since at least the invention
of System FC [87], GHC has supported application decomposition. That is, from a
proof that τ1 σ1 equals τ2 σ2, we can derive proofs of τ1 ∼ τ2 and σ1 ∼ σ2. I would like
to retain this ability in Pico in order to support the claim that Dependent Haskell is
a conservative extension over today’s Haskell. However, decomposing an application
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as above in the presence of unsaturated λ-abstractions is clearly bogus.41

The solution here is to keep matchable applications separate from unmatchable
ones, and allow decomposition only of matchable applications. The two application
forms comprise different nodes in the Pico grammar. Decomposing only matchable
applications is a backward-compatible treatment, as today’s Haskell has only matchable
applications. In turn, keeping the application forms separate requires tracking the
matchability of the abstractions themselves.

Pico’s support of the application decomposition while allowing unsaturated λ-
abstractions is one of the key improvements Pico makes over Gundry’s evidence
language [37]. See Section 8.1 for more discussion of the comparison of my work to
Gundry’s.

Matching on partially applied constants Pico does not contain type families.
Instead, it uses λ-abstractions and case expressions, as these are more familiar to
functional programmers. And yet, I wish for Pico to support the variety of ways in
which type families are used in today’s Haskell. One curiosity of today’s Haskell is
that it allows matching on partially applied data constructors:

type family IsLeft a where
IsLeft ’Left = ’True
IsLeft ’Right = ’False

The type family IsLeft is inferred to have kind ∀ k . (k → Either k k)→ Bool . (Note
that k → Either k k is what you get when unifying the kind of Left with that of Right.)
That is, it matches on the Left and Right constructors, even though these are not
applied to arguments. While it may seem that IsLeft is matching on a function—after
all, the type of IsLeft’s argument appears to be an arrow type—it is not. It is matching
only on constructors, because today’s kind-level→ classifies only type constants. That
is, it really should be spelled ’→.

To support functions such as IsLeft, Pico allows case scrutinees to have matchable
’Π-types, instead of just fully applied datatypes. As designed here, matching on partially
applied data constructors is also available at the term level in Pico. However, practical
considerations (e.g., how would you compile such a match?) may lead us to prevent
the use of this feature from surface Haskell.

5.1.1.3 Matching on Type

Today’s Haskell also has the ability, through its type families, to match on members
of Type. For example:

41For example, we can prove (λx :RelInt. 3) 4 ∼ (λx :RelInt. 3) 5 but do not wish to be able to prove
4 ∼ 5.
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type family IntLike x where
IntLike Integer = ’True
IntLike Int = ’True
IntLike = ’False

This ability for a function to inspect the choice of a type—and not a code for a
type—is unique among production languages to Haskell, as far as I am aware. With
the type families in today’s Haskell, discerning between types is done by simple pattern
matching. However, if we compile type families to case statements, we need a way to
deal with this construct, even though Type is not an algebraic datatype.

Fortunately, types like Either resemble data constructors like Just: both are classified
by matchable quantification(s) over a type headed by another type constant. In the case
of Either , we have Either : ’Π_:RelType,_:RelType.Type;42 note that the body of the
Π-type is headed by the constant Type. For Just, we have Just{a} : ’Π_:Rela.Maybe a.43

With this similarity, it is not hard to create a typing rule for a case statement that
can handle both data constructors (like Just) and types (like Either).

A key feature, however, that is needed to support matching on Type is default
patterns. For a closed datatype, where all the constructors can be enumerated, default
patterns are merely a convenience; any default can be expanded to list all possible
constructors. For an open type, like Type, the availability of the default pattern is
essential. It is for this reason alone that I have chosen to include default patterns in
Pico.

5.1.1.4 Hypothetical equality

Pico allows abstraction over coercions, much like any λ-calculus allows abstraction
over expressions (or, in a call-by-value calculus, values). Coercion abstraction means
that a type equality may be assumed in a given type. When we wish to evaluate a
term that assumes an equality, we must apply that term to evidence that the equality
holds—an actual coercion. It is this ability, to assume an equality, that allows Pico
to have GADTs. See the example in Section 5.5 for the details.

5.1.2 Design requirements for Pico

In the course of any language design, there needs to be a guiding principle to aid in
making free design decisions. The chief motivator for the design of Pico is that it
should be suitable for use as the internal language of a Haskell compiler. This use case
provides several desiderata:

Decidable, syntax-directed, efficient type checking The use of types in a
compiler’s intermediate language serves only as a check of the correctness of the

42Why Rel? See the end of Section 5.4.2.2.
43The {a} subscript is explained in Section 5.4.1.
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compiler. Any programmer errors are caught before the intermediate language code
is emitted, and so a correct compiler should only produce well typed intermediate-
language programs, if it produces such programs at all. In addition, a correct compiler
performing program transformations on the intermediate language should take a well
typed program to a well typed program. However, not all compilers are correct, and
thus it is helpful to have a way to check that intermediate-language program generation
and transformation is at least type-preserving. To check this property, we need to
type-check the intermediate language, both after it is originally produced and after
every transformation. It thus must be easy and efficient to do so.

Pico essentially encodes a typing derivation right in the syntax of types and
coercions. It is thus very easy to write a type checker for the language. Type-checking
is manifestly decidable and can be done in one pass over the program text, with no
constraint solving.44 Pico’s lack of a termination requirement also significantly lowers
the burden of implementation of a type checker for the language.

Erasability An intermediate-language program should make clear what information
can be erased at runtime. After all, when the compiler is done performing optimizations,
runtime code generation must take place, and we thus need to know what information
can be dropped. It is for this reason that Pico includes the relevance annotations.

A balance between ease of proving and ease of implementation Pico serves
two goals: to be a template for an implementation, and also to be a calculus used to
prove type safety. These goals are sometimes at odds with each other.

These two goals of System FC have tugged in different directions since the advent
of FC. Historically, published versions of the language have greatly simplified certain
details. No previously published treatment of FC has included support for recursion,
either through letrec or fix. In contrast, the implemented version of FC (also called
GHC Core) makes certain choices for efficiency; for example, applied type constructors,
such as Either Int Bool , have a different representation than do applied type variables,
such as a Int Bool . The former is stored as the head constructor with a list of
arguments, and the latter is stored as nested binary applications. This is convenient
when implementing but meddlesome when proving properties. The divergence between
published FC and the implemented version (more often called GHC Core) have led to
a separate document just to track the implemented version [26].

In the design of Pico, I have aimed for balance between these two needs. Because
of the risk that non-termination might cause unsoundness, I have explicitly included
fix in the design, just to make sure that the non-termination is obvious.45 I have

44I do not claim that it is strictly linear, as a formal analysis of its running time is beyond the
scope of this dissertation. In particular, one rule (see Section 5.6.5) requires the use of a unification
algorithm and likely breaks linearity.

45With Type : Type, we have the possibility of Girard’s paradox [36, 48] and thus can have
non-termination even without fix, but making the non-termination more obvious clarifies that we
can achieve type safety without termination.
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not, however, included an explicit let or letrec construct, as the specification of
these would be quite involved, and yet desugaring these constructs into λ and fix is
straightforward. (See Section 5.13.1.)

On the other hand, I have included case. Having case in the language also
significantly complicates the presentation, but here in a useful way: the existence of
case (over unsaturated constructors) motivates the distinction between

˜
Π and ’Π. The

desugaring of case into recursive types built, say, with fix is not nearly as simple as
the desugaring of let.

In the end, choices such as these are somewhat arbitrary and come down to taste.
I believe that the choices I have made here bring us to a useful formalization with
the right points of complexity. Some of these design decisions are considered in more
depth after Pico has been presented; see Section 5.12.

5.1.3 Other applications of Pico

It is my hope that Pico sees application beyond just in Haskell. In designing it, I have
tried to permit certain Haskell idioms (call-by-name semantics, the extra capabilities
of case expressions outlined above) while still retaining a general enough flavor that it
could be adapted to other settings. I believe that the arguments above about Pico’s
design mean that it is a suitable starting point for the design of an intermediate
language for any dependently typed surface language. Other uses might want call-by-
value instead of call-by-name or to remove the somewhat fiddly distinction between
’Π and

˜
Π. These changes should be rather straightforward to make.

In certain areas, I have decided not to support certain existing Haskell constructs
directly in Pico because doing so would clutter the language, making its applicability
beyond Haskell harder to envision. Various extensions of Pico—which would likely
appear in an implementation of Pico within GHC—are discussed in Section 5.13.
These include representation polymorphism and support for the (→) type constructor,
for example.

5.1.4 No roles in Pico

Recent versions of System FC have included roles [11], which distinguish between two
different notions of type equality: nominal equality is the equality relation embodied
in Haskell’s (∼ ) operator, whereas representational equality relates types that have
bit-for-bit identical runtime representations. Tracking these two equality relations is
important for allowing zero-cost conversions between types known to have the same
representation, and it is an important feature to boost performance of programs that
use newtype to enforce abstraction.

However, roles greatly clutter the language and its proofs. Including them through-
out this dissertation would distract us from the main goal of understanding a de-
pendently typed language with Type : Type and at ease with non-termination. It
is for this reason that I have chosen to omit roles entirely from this work. (See also
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Section 4.4.3 for a consideration of how roles interacts with the surface language
proposed here.) I am confident that, in time, roles can be integrated with the language
presented here, perhaps along the lines I have articulated in a draft paper [27], though
the treatment there still leaves something to be desired. Regardless of clutter, having
a solid approach to combining roles with dependent types will be a prerequisite of
releasing a performant implementation of dependent types in GHC.

5.2 A formal specification of Pico

The full grammar of Pico appears in Figure 5.1 on the next page and notation
conventions appear in Figure 5.2 on page 77. We will cover these in detail in the
following sections. Later sections of this chapter will cover portions of the typing rules,
but for a full listing of all the typing rules of the language, please see Appendix B.
Figure 5.3 on page 78 includes the judgment forms and two key lemmas, useful in
understanding the judgments. All of the metatheory lemmas, theorems, and proofs
appear in Appendix C. This chapter mentions several key lemmas and theorems, but
the ordering here is intended for readability and lemma statements may be abbreviated;
please see the appendix for the correct dependency ordering and full statements.

You will see that the Pico language is centered around what I call types, represented
by metavariables τ , σ, and κ. As Pico is a full dependently typed language with a
unified syntax for terms, types, and kinds, this production could be called “expressions”
and could be assigned the metavariable e. However, I have decided to reserve e (and
the moniker “expression”) for erased expressions only, after all the types have been
removed. These expressions are used only in the type erasure theorem (Section 5.11);
the rest of the metatheory is about types. Nevertheless, a program written in Pico
intended to be run will technically be a type, and types in Pico have an operational
semantics (Section 5.7).

As previewed in Section 5.1.1.2, Pico supports two different forms of Π-type:
the matchable ’Π and the unmatchable

˜
Π. It also supports two forms of application:

τ ψ is a matchable application and τ˜ψ is an unmatchable one. However, labeling
all applications would grossly clutter this presentation, and so I just write τ ψ for
both kinds of applications, where we can discern between them by looking at τ ’s
kind. Indeed, the only reason that the grammar has to distinguish between the two
applications at all is in the consistency proof (Section 5.10), a portion of which works
in an untyped setting. (See, in particular, the end of Section 5.10.2 for the one place
where labeling the applications is used.) It is not expected that an implementation of
Pico would need to mark the applications, as this mark is redundant with the typing
information.

Note also the definition for arguments ψ: the application form τ ψ applies a type
to an argument, which can be a type, an irrelevant type, or a coercion. It would be
equivalent to have six46 productions in the definition for types, but having a separate

46Product of two application modes (matchable vs. unmatchable) and three relevance modes (type
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Metavariables:

T algebraic datatype K data constructor
a, b, x ,_ type/term variable c coercion variable
i , j , k, n natural number/index

Π ::= ’Π matchable dep. quantifier
|

˜
Π unmatchable dep. quantifier

z ::= a | c type or coercion variable
H ::= T |K |Type constant
ρ ::= Rel | Irrel relevance annotation
δ ::= a:ρκ | c:φ binder
φ ::= τ1

κ1∼κ2 τ2 heterogeneous equality
τ, σ, κ ::= a | τ ψ | τ˜ψ |Πδ. τ |λδ. τ dependent types

| H{τ} constant applied to universals
| τ B γ kind cast
| caseκ τ of alt case-splitting
| fix τ recursion
| absurd γ τ absurdity elimination

ψ ::= τ |{τ} | γ argument
alt ::= π → τ case alternative
π ::= H |_ pattern

γ, η ::= c coercion assumption
| 〈τ〉 | sym γ | γ1 # γ2 equivalence
| H{γ} | γ ω |Πa:ρη. γ |Πc:(η1, η2). γ congruence
| caseη γ of calt |fix γ |λa:ρη. γ |λc:(η1, η2). γ | absurd (η1, η2) γ
| τ1 ≈η τ2 coherence
| argk γ | argkn γ | resn γ | γ@ω Π-type decomposition
| nthn γ | leftη γ | rightη γ generativity & injectivity
| kind γ “John Major” equality
| step τ β-equivalence

calt ::= π → γ case alternative in coercion
ω ::= γ |{γ} |(γ1, γ2) coercion argument

Σ ::= ∅ signature
| Σ,T :(a:κ) algebraic datatype
| Σ,K :(∆;T ) data constructor

Γ,∆ ::= ∅ |Γ, δ context/telescope
θ ::= ∅ | θ, τ/a | θ, γ/c substitution

Figure 5.1: The grammar of Pico
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, (an overbar) indicates a list
_ , a fresh variable whose name is not used

dom(∆) , the list of variables bound in ∆

prefix(·) , a prefix of a list; length specified elsewhere
fv(·) , extract all free variables, as a set
H , H{} (when appearing in a type)
τ ψ , τ ψ or τ˜ψ, depending on τ ’s kind

Π∆. τ , nested Πs
?Π∆. τ , nested Πs, where the individual Πs used might differ
λ∆. τ , nested λs

τ1 ∼ τ2 , τ1
κ1∼κ2 τ2 (when the kinds are obvious or unimportant)

• , an erased coercion
# , the sets of free variables of two entities are distinct
b·c , coercion erasure (Section 5.8.3)
T·U , type erasure (Section 5.11)
let is used in the metatheory only and should be eagerly inlined

Figure 5.2: Notation conventions of Pico

definition for arguments allows us to easily discuss what I call vectors,47 which are lists
of arguments ψ. Similarly to the redundancy of application forms, tracking relevant
types as compared to irrelevant types is also redundant with the kind of the function
type; an implementation would not need to store this distinction.

Coercions are the most distinctive and most intricate part of Pico. Because the
formation rules for coercions necessarily refer to many other parts of the language,
a thorough treatment of coercions is delayed until the other constructs are covered.
However, it may be helpful to readers unfamiliar with System FC to learn a few quick
facts about coercions: see Figure 5.4 on page 79.

As you will see in Figure 5.2, my presentation of Pico uses several abbreviations
and elisions in its typesetting. In particular, I frequently write types like Π∆. τ to
represents a nested Π-type, binding the variables listed in ∆ (which, as you can see, is
just a list of binders δ). An equality proposition in Pico lists both the related types
and their kinds. Often, the kinds are redundant, obvious, or unimportant, and so I
elide them in those cases.

All of the metatheory in this dissertation is typeset using ott [82]. This tool
effectively type-checks my work, preventing me from writing, say, the nonsense a:φ,
which is rightly a ott parsing error.48 In addition, I have configured my use of ott to
require me to write the kinds of an equality proposition even when I intend for them

vs. irrelevant type vs. coercion)
47I have adopted this terminology from Gundry [37].
48Indeed, to include that example in the text, I had to avoid rendering it in ott syntax.
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Σ t̀c H : ∆1; ∆2;H ′
Constant H has universals ∆1, existentials ∆2, and belongs
to parent type H ′.

Σ; Γ t̀y τ : κ Type τ has kind κ.

Σ; Γ;σ `τ0alt π → τ : κ
Case alternative π → τ yields something of kind κ when
used with a scrutinee τ0 of type σ.

Σ; Γ c̀o γ : φ Coercion γ proves proposition φ.

Σ; Γ p̀rop φ ok Proposition φ is well formed.

Σ; Γ v̀ec ψ : ∆ Vector ψ is classified by telescope ∆.

Σ; Γ c̀ev ψ : ∆
Vector ψ is classified by telescope ∆ (with induction defined
from the end).

s̀ig Σ ok Signature Σ is well formed.

Σ c̀tx Γ ok Context Γ is well formed.

Σ; Γ s̀ τ −→ τ ′ Type τ reduces to type τ ′ in one step.

Lemma (Kind regularity [Lemma C.43]). If Σ; Γ t̀y τ : κ, then Σ; Rel(Γ) t̀y κ : Type.

Lemma (Prop. regularity [Lemma C.44]). If Σ; Γ c̀o γ : φ, then Σ; Rel(Γ) p̀rop φ ok.

Figure 5.3: Judgments used in the definition of Pico

to be elided in the rendered output, as a check to make sure these parameters can
indeed be written with the information to hand.

This chapter proceeds by explaining all of the various typing judgments individually.
Section 5.3 explains contexts Γ, along with relevance annotations. Section 5.4 explains
signatures Σ, which contain specifications for constants H . Having covered the more
unexpected aspects of the syntax, Section 5.5 then presents examples of Pico programs.
Types come next, in Section 5.6, followed by the operational semantics in Section
5.7. Now having an thorough understanding of the rest of Pico, we are prepared
to tackle coercions, the thorniest part, in Section 5.8. Section 5.9 covers one final
rule from the operational semantics (S_KPush), too challenging to describe before
coercions are fully explained. Sections 5.10 and 5.11 cover the metatheory. Section
5.12 describes certain, perhaps unexpected design decisions. The chapter concludes in
Section 5.13 by considering a variety of extensions to Pico that are needed for full,
backward-compatible support for Haskell as embodied in GHC 8.
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Coercions define the equivalence relation ∼ that is used in Pico’s analogue of a
traditional conversion rule, as presented in Section 5.1. Here is a brief introduction
to coercions. The full definition of coercion formation rules appears in Appendix B.3.
The rules are explicated in Section 5.8.

• Coercions are heterogeneous (Section 5.8.1). If a coercion γ proves τ1
κ1∼κ2 τ2,

then we know that τ1 is convertible with τ2 and also that κ1 is convertible
with κ2. The form kind γ extracts the kind equality from the type equality.
I often elide the kinds when writing propositions, however.

• Equality may be assumed via a λ-abstraction over a coercion variable c,
proving any arbitrary equality proposition. (Section 5.8.2)

• Equality is coherent (Section 5.8.3), meaning that a coercion relates any two
types that are identical except for the coercions and casts within them. The
coercion form τ1 ≈η τ2 proves that τ1 ∼ τ2 and is valid whenever τ1 and τ2

are identical, ignoring internal coercions. (The coercion η relates the types’
kinds.)

• Equality is an equivalence (Section 5.8.4): 〈τ〉 is reflexive coercion over τ ;
sym γ represents symmetry; and γ1 # γ2 represents transitivity.

• Equality is (almost) congruent (Section 5.8.5), meaning that if we have a
proof of τ1 ∼ τ2, then we can derive a proof relating larger types containing
τ1 and τ2 but are otherwise identical. The “almost” qualifier is due to a
technical restriction that can be ignored on a first reading.

• Coercions can be decomposed (Section 5.8.6). For example, if γ proves
(Πa1:ρκ1. τ1) ∼ (Πa2:ρκ2. τ2), then argk γ proves κ1 ∼ κ2. Other coercion
forms decompose other type forms.

• The step τ coercion relates τ to its small-step reduct. (Section 5.8.7)

Figure 5.4: A brief introduction to coercions

5.3 Contexts Γ and relevance annotations
One of the distinctive aspects of Pico is its use of relevance annotations on binders.
Every variable binding a:ρκ comes with a relevance annotation ρ, which can be either
Rel or Irrel. A typing context Γ is just a list of such binders (along with, perhaps,
coercion variable binders) and so retains the relevance annotation. These annotations
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come into play only in the rule for checking variable occurrences:

Σ c̀tx Γ ok a:Relκ ∈ Γ

Σ; Γ t̀y a : κ
Ty_Var

Note that this rule requires a:Relκ ∈ Γ, with a relevant binder. Thus, only variables
that are considered relevant—that is, variables that will remain at runtime—can be
used in an expression. As described briefly above, when we “go up a level”, we reset the
context, marking all variables relevant. This resetting is done by the Rel(Γ) operation,
defined recursively on the structure of Γ as follows:

Rel(∅) = ∅
Rel(Γ, a:ρκ) = Rel(Γ), a:Relκ

Rel(Γ, c:φ) = Rel(Γ), c:φ

The Rel(Γ) operation is used, for example, in the judgment to check contexts for
validity:

Σ c̀tx Γ ok Context formation

s̀ig Σ ok

Σ c̀tx ∅ ok
Ctx_Nil

Σ; Rel(Γ) t̀y κ : Type a # Γ Σ c̀tx Γ ok

Σ c̀tx Γ, a:ρκ ok
Ctx_TyVar

Σ; Rel(Γ) p̀rop φ ok c # Γ Σ c̀tx Γ ok

Σ c̀tx Γ, c:φ ok
Ctx_CoVar

Here, we see that a binding a:ρκ can be appended onto a context Γ when the a is
fresh and the κ is well typed at Type in Rel(Γ). The reason for using Rel(Γ) instead
of Γ here is that the kind κ does not exist at runtime, regardless of the relevance
annotation on a. We are thus free to essentially ignore the relevance annotations
on Γ, which is what Rel(Γ) does. The same logic applies to the use of Rel(Γ) in the
Ctx_CoVar rule. Indeed, all premises involving coercions use Rel(Γ), as all coercions
are erased and are thus irrelevant.

In order for premises that use Rel(Γ) to work in the metatheory, we must frequently
use the following lemma:

Lemma (Increasing relevance [Lemma C.6]). Let Γ and Γ′ be the same except that
some bindings in Γ′ are labeled Rel where those same bindings in Γ are labeled Irrel.
Any judgment about Γ is also true about Γ′.
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Regularity Regularity is an important property of Pico, allowing us to easily
assume well-formed contexts and signatures:

Lemma (Context regularity [Lemma C.9]). If

1. Σ; Γ t̀y τ : κ, or

2. Σ; Γ c̀o γ : φ, or

3. Σ; Γ p̀rop φ ok, or

4. Σ; Γ;σ0 `τ0alt alt : κ, or

5. Σ; Γ v̀ec ψ : ∆, or

6. Σ c̀tx Γ ok,

then Σ c̀tx prefix(Γ) ok and s̀ig Σ ok, where prefix(Γ) is an arbitrary prefix of Γ.
Furthermore, both resulting derivations are no larger than the input derivations.

5.4 Signatures Σ and type constants H

The typing rules in Pico are all parameterized by both a signature Σ and a context
Γ. Signatures contain bindings for all global constants: type and data constructors.
In contrast, contexts contain local bindings, for type and coercion variables. Several
treatments of System FC assume a fixed, global signature, but I find it more precise
here to make dependency on this signature explicit.

5.4.1 Signature validity

The judgment to check the validity of a signature follows:

s̀ig Σ ok Signature formation

s̀ig ∅ ok
Sig_Nil

Σ c̀tx a:Irrelκ ok T # Σ

s̀ig Σ,T :(a:κ) ok
Sig_ADT

T :(a:κ) ∈ Σ Σ c̀tx a:Irrelκ,∆ ok K # Σ

s̀ig Σ,K :(∆;T ) ok
Sig_DataCon

We see here the two different entities that can belong to a signature, an algebraic
datatype (ADT) T or a data constructor K .
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An ADT is classified only by its list of universally quantified variables (often
shortened to universals), as this is the only piece of information that varies between
ADTs. For example, the Haskell type Int contains no universals, while Either contains
two (both of kind Type), and Proxy ’s universals are (a : Type, b : a). The relevance
of universals is predetermined (see Section 5.4.2.2) and so no relevance annotations
appear on ADT specifications. Additionally, coercion variables are not permitted
here—coercion variables would be very much akin to Haskell’s misfeature of datatype
contexts49 and so are excluded.

A data constructor is classified by a telescope ∆ of existentially bound variables
(or existentials) and the ADT to which it belongs. The grammar for telescopes is the
same as that for contexts, but we use the metavariables Γ and ∆ in distinct ways: Γ
is used as the context for typing judgments, whereas ∆ is more often used as some
component of a type. A telescope is a list of binders—both type variables and coercion
variables—where later binders may depend on earlier ones. A data constructor’s
existentials are the data that cannot be determined from an applied data constructor’s
type. In this formulation, the term existential also includes what would normally be
considered term-level arguments.

For example, let’s consider these Haskell definitions:

data Tuple a where
MkTuple :: ∀ a. Int → Char → a→ Tuple a

data Ex a where
MkEx :: ∀ a b. b → a→ Ex a

If I have a value of type Tuple Double, then I know the types of the data stored in a
MkTuple, but I do not know the Int, the Char , or the Double—these are the existentials.
Similarly, if I have a value of type Ex Char , then I know the type of one argument to
MkEx , but I do not know the type of the other; I also know neither value. In this case,
the second type, b, is existential, as are both values (of types b and a, respectively).

The use of the term existential to refer to term-level arguments may be non-
standard, but it is quite convenient (while remaining technically accurate) in the
context of a pure type system with ADTs.

5.4.2 Looking up type constants

Information about type constants is retrieved via the Σ t̀c H : ∆1; ∆2;H ′ judgment,
presented in Figure 5.5 on the following page. This judgment retrieves three pieces of
data about a type constant H : its universals, its existentials, and the head of the result
type. It is best understood in concert with the typing rule that handles type constants,
which also uses the typing judgment on vectors—ordered lists of arguments—also
presented in Figure 5.5 on the next page. Let’s tackle this all in order of complexity.

49See discussion of how this is a misfeature at https://prime.haskell.org/wiki/
NoDatatypeContexts.
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Σ t̀c H : ∆1; ∆2;H ′ Σ c̀tx Γ ok
Σ; Rel(Γ) v̀ec τ : Rel(∆1)

Σ; Γ t̀y H{τ} : ’Π(∆2[τ/dom(∆1)]).H ′ τ
Ty_Con

Σ t̀c H : ∆1; ∆2;H ′
Type constant kinds, with universals ∆1,
existentials ∆2, and result H ′

Σ t̀c Type : ∅;∅; Type
Tc_Type

T :(a:κ) ∈ Σ

Σ t̀c T : ∅; a:Relκ; Type
Tc_ADT

K :(∆;T ) ∈ Σ T :(a:κ) ∈ Σ

Σ t̀c K : a:Irrelκ; ∆;T
Tc_DataCon

Σ; Γ v̀ec ψ : ∆ Type vector formation

Σ c̀tx Γ ok

Σ; Γ v̀ec ∅ : ∅
Vec_Nil

Σ; Γ t̀y τ : κ

Σ; Γ v̀ec ψ : ∆[τ/a]

Σ; Γ v̀ec τ, ψ : a:Relκ,∆
Vec_TyRel

Σ; Rel(Γ) t̀y τ : κ

Σ; Γ v̀ec ψ : ∆[τ/a]

Σ; Γ v̀ec {τ}, ψ : a:Irrelκ,∆
Vec_TyIrrel

Σ; Rel(Γ) c̀o γ : φ

Σ; Γ v̀ec ψ : ∆[γ/c]

Σ; Γ v̀ec γ, ψ : c:φ,∆
Vec_Co

Figure 5.5: Type constants H and vectors ψ
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5.4.2.1 The constant Type

The constant Type has no universals, no existentials, and Type’s type is Type, as
Tc_Type tells us. Thus, in the use of Ty_Con when H{τ} is just Type{} (normally,
we omit such empty braces), we see that ∆1, ∆2, and τ are all empty, meaning that
we get Σ; Γ t̀y Type : Type, as desired.

5.4.2.2 Algebraic datatypes

Let’s consider Maybe as an example. We see that the list of universals ∆1 is empty for
all ADTs. Thus, the list of universal arguments τ must be empty in Ty_Con. The list
of existentials ∆2 is a:RelType and the result type root is Type, both by Tc_ADT.
We thus get Σ; Γ t̀y Maybe : ’Πa:RelType.Type, as desired. (Note that a is unused in
the body of the ’Π and thus that this type could also be written as Type→ Type.)

I have argued here how the rules work out this case correctly, but it may surprise
the reader to see that the argument to Maybe is treated as an existential here—part
of ∆2—and not a universal. This could best be understood if we consider Type itself
to be an open ADT (that is, an extensible ADT) with no universal parameters. To
make this even more concrete, here is how it might look in Haskell:

data Type where
Bool :: Type
Int :: Type
Maybe :: Type→ Type
Proxy :: ∀ (k :: Type). k → Type
...

Thinking of ADTs this way, we can see why the argument to Maybe is existential,
just like other arguments to constructors (see Section 5.4.1 for an explanation of the
unusual use of the word existential here). We can also see that the kind parameter k
to Proxy is also considered an existential in this context.

The last detail to cover here is the relevance annotation on the a, as assigned
in Tc_ADT: all the variables are considered relevant. This is a free choice in the
design of Pico. Any choice of relevance annotations would work, including allowing
the user to decide on a case-by-case basis. I have chosen to mark them as relevant,
however, with the consideration that these ADTs might be present at runtime. There
is nothing in Pico that restricts ADTs to be present only at compile time; the user
might write a runtime computation that returns Bool , for example.50 (Such a facility
replaces Haskell’s current TypeRep facility [75].) By marking the ADT parameters as
relevant, a runtime decision can be made between, say, Maybe Int and Maybe Bool .
This seems useful, and so I have decided to make these parameters relevant.

50This statement does not mean that you can extract the value Maybe Int from Just 3, which
would require preserving all types for runtime.
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5.4.2.3 Data constructors

The most involved case is that for data constructors, where both the universals and
the existentials can be non-empty. We’ll try to understand Ty_Con first by an
example inspired by the Haskell expression Left True :: Either Bool Char . Let’s recall
the definition of Either , a basic sum type:

data Either :: Type→ Type→ Type where
Left :: a→ Either a b
Right :: b → Either a b

In Pico this looks like the following:

Σ =Either :(a : Type, b : Type), Left:(x :Rela;Either),Right:(x :Relb;Either),
Bool :(∅),True:(∅;Bool),False:(∅;Bool),Char :(∅)

Σ;∅ t̀y Left{Bool ,Char} True : Either Bool Char

We see how the universal arguments Bool and Char to the constructor Left are specified
in the subscript; without these arguments, there would be no way to get the type of
Left True in a syntax-directed way.

Universal argument saturation The grammar for type constant occurrences in
types requires them to appear fully saturated with respect to universals but perhaps
unsaturated with respect to existentials. There are several reasons for this seemingly
peculiar design:

• It is helpful to separate universals from existentials in a variety of contexts. For
example, existentials are brought into scope on a case-match, while universals are
not. Separating out these arguments is also essential in the step rule S_KPush.

• If Pico did not allow matching on unsaturated constants, it might be most
natural to require saturation with respect to both universals and existentials
(while still keeping these different arguments separate). This would allow, for
example, for a simple statement of the canonical forms lemma (Lemma C.75),
because only a λ-expression would have a Π-type.

However, since Pico does allow matching on unsaturated constants, the grammar
must permit this form. Because Pico tracks the difference between matchable
’Π and unmatchable

˜
Π, we retain the simplicity of the canonical forms lemma,

as any expression classified by a ’Π must be a partially applied constant and any
expression classified by a

˜
Π must be a λ.

• All universal arguments are always irrelevant and erased during type erasure
(Section 5.11). It is thus natural to separate these from existentials in the
grammar.
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As with many design decisions, it is possible to redesign Pico and avoid this
unusual choice, but in my opinion, this design pays its weight nicely.

Typing rules for data constructors The Tc_DataCon rule looks up a data
constructor K in the signature Σ to find its telescope of existentials ∆ and parent
datatype T . The second premise of the rule then looks up T to get the universals.
The universals are annotated with Irrel, as universals are always irrelevant in data
constructors—universal arguments are properly part of the type of a data constructor
and are thus not needed at runtime. The telescope of existentials ∆ and datatype T
are also returned from t̀c.

Rule Ty_Con checks the supplied arguments τ against the telescope of universals,
here named ∆1. Note that τ are checked against Rel(∆1); the braces that appear in
the production H{τ} are part of the concrete syntax and do not represent wrapping
each individual τ ∈ τ in braces (cf. Section 5.6.2). Rule Ty_Con then builds the
result type, a ’Π-type binding the existentials and producing H ′—that is, the parent
type T—applied to all of the universals.

5.5 Examples
Though these examples may make sense more fully after reading the sections below, it
may be helpful at this point to see a few short examples of Pico programs.

We will work with a definition of length-indexed vectors, a tried-and-true example
of the design of GADTs. Here is how they are declared in Haskell (further explanation
is available in Section 3.1.1):

data Nat = Zero | Succ Nat
data Vec :: Type→ Nat → Type where
VNil :: Vec a 0
VCons :: a→ Vec a n→ Vec a ( ’Succ n)

If Pico had a concrete syntax, these declarations would be transformed roughly into
the following:

Nat :: Type
Zero :: Nat
Succ :: Nat → Nat
Vec :: Type→ Nat → Type
VNil :: ∀ (a :: Type) (n :: Nat). (n ∼ Zero)→ Vec a n
VCons :: ∀ (a :: Type) (n :: Nat).

∀ (m :: Nat). (n ∼ Succ m)→ a→ Vec a m→ Vec a n

The change seen here is just the transformation between specifying a GADT equality
constraint via a return type in a declaration to using an explicit existential variable
with an explicit equality constraint.
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In the abstract syntax of Pico, these declarations are represented by this signature
Σ0:

Σ0 =Nat:(∅),
Zero:(∅;Nat),
Succ :(_:RelNat;Nat),
Vec :(a : Type, n : Nat),
VNil :(c:n ∼ 0;Vec),
VCons:(m:IrrelNat, c:n ∼ Succ m,_:Rela,_:RelVec am;Vec)

Let’s walk through these declarations. Our binding for Nat includes an empty list of
universally quantified type variables. This binding is followed by specifications for
Zero, which lists no existential variables and is a constructor of the datatype Nat, and
Succ , which has one (anonymous) existential variable and also belongs to Nat. The
bindings for Vec and its constructors are similar, but with more parameters. Note the
coercion bindings in the telescopes associated with VNil and VCons, as well as the
irrelevant binding for the existential m of VCons. The design we see here, echoing the
Haskell, does not permit runtime extraction of the length of a vector. If we changed
the m to be relevant, then runtime length extraction would be trivial.

We will now look at a few simple operations on vectors, first in Haskell and then
in Pico.51

5.5.1 isEmpty

First, a very simple test for emptiness, in order to familiarize ourselves with pattern-
match syntax in Pico:

isEmpty :: Vec a n→ Bool
isEmpty VNil = True
isEmpty (VCons { }) = False

Translated to Pico, we get the following:

isEmpty :
˜
Π(a:IrrelType), (n:IrrelNat), (v :RelVec a n).Bool

isEmpty =λ(a:IrrelType), (n:IrrelNat), (v :RelVec a n).
caseBool v of

VNil → λ(c:n ∼ 0), (c0:v ∼ VNil{a,n} c).True
VCons→ λ(m:IrrelNat), (c:n ∼ Succ m), (x :Rela), (xs:RelVec am),

(c0:v ∼ VCons{a,n}m c x xs).
False

The most striking feature about this Pico code is the form of the case expression.
Unlike the concrete syntax of Haskell, patterns in Pico do not directly bind any

51In these examples, I assume the use of numerals to specify elements of type Nat, and I also
assume the existence of, e.g., Bool .
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arguments. Note that there are no variable bindings to the left of the arrows in the
case-branches. Instead, I have chosen to have λs to the right of the arrow. This design
choice greatly simplifies the typing and scoping rules for pattern matches, because it
removes a binding site in the grammar (leaving us with two: Π and λ). Because of the
typing rule for case expressions (Section 5.6.5), we still must bind all of the existentials
of a data constructor when matching against it—even when these existentials are
ignored, as we see here.

The matches also bind a variable not mentioned in the data constructors’ exis-
tentials: the coercion variable c0. This coercion witnesses the equality between the
scrutinee (v , in this case) and the applied data constructor that introduces the case
branch. This coercion variable is bound in all matches, meaning that all pattern
matching in Pico is dependent pattern matching.52

The behavior of case can also be viewed through its operational semantics, as
captured in the following rule, excerpted from Section 5.7.2:

alti = H → τ0

Σ; Γ s̀ caseκH{τ} ψ of alt −→ τ0 ψ 〈H{τ} ψ〉
S_Match

Note that the body of the match, τ0, is applied to the existential arguments to H{τ}
and a coercion witnessing the equality between the scrutinee and the pattern. In the
case of a successful match, this coercion is reflexive, as denoted by the angle brackets
〈H{τ} ψ〉.

5.5.2 replicate

Let’s now look at replicate, one of the simplest functions that requires a proper Π-type.
First, in Haskell:

replicate :: Π n→ a→ Vec a n
replicate Zero = VNil
replicate (Succ m) x = VCons x (replicate m x)

52Contrast to Gundry [37], who use two separate constructs, case and dcase, only the latter
of which does dependent matching. This separation is necessary in his language because not all
expressions can be used in types and thus in dependent pattern matching. In particular, Gundry
prevents λ-expressions in types, a limitation I have avoided by maintaining the distinction between
matchable and unmatchable Π-types.
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Now, in Pico:

replicate :
˜
Π(a:IrrelType), (n:RelNat), (x :Rela).Vec a n

replicate =λa:IrrelType.
fixλ(r :Rel

˜
Π(n:RelNat), (x :Rela).Vec a n),

(n:RelNat), (x :Rela).
caseVec a n n of

Zero → λc0:(n ∼ Zero).VNil{a,n} c0

Succ→ λm:RelNat, c0:(n ∼ Succ m).VCons{a,n} {m} c0 x (r m x)

This example shows the (standard) use of fix as well as some of the more exotic
features of Pico. In the case branches, we see how we pass universal arguments to
the data constructors VNil and VCons. We also see how we have to wrap irrelevant
arguments (the {m} in the last line) in braces. This example also shows where the
coercion variable c0 comes into play: it’s needed to provide the coercion to the VNil
and VCons constructors to prove that the universal argument n is indeed of the shape
required for these constructors. Without the ability to do a dependent pattern match,
this example would be impossible to write, unless you fake dependent types using
singletons or some other technique.

5.5.3 append

We’ll now examine how to append two vectors. This operation will also require the
use of an addition operation, defined using prefix notation so as not to pose a parsing
challenge:

plus :: Nat → Nat → Nat
plus Zero n = n
plus (Succ m) n = Succ (plus m n)

append :: Vec a m→ Vec a n→ Vec a ( ’plus m n)
append VNil ys = ys
append (VCons x xs) ys = VCons x (append xs ys)
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And in Pico (where I elide the uninteresting plus for brevity):

append :
˜
Π(a:IrrelType), (m:IrrelNat), (n:IrrelNat), (xs:RelVec am), (ys:RelVec a n).
Vec a (plus m n)

append =λ(a:IrrelType).
fixλ(app:Rel

˜
Π(m:IrrelNat), (n:IrrelNat), (xs:RelVec am), (ys:RelVec a n).
Vec a (plus m n)),

(m:IrrelNat), (n:IrrelNat), (xs:RelVec am), (ys:RelVec a n).
caseVec a (plus m n) xs of

VNil →λ(c:m ∼ Zero), (c0:xs ∼ VNil{a,m} c).
let c1 := 〈plus〉 c 〈n〉 in
let c2 := stepj (plus Zero n) in
ys B sym (Vec 〈a〉 (c1 # c2))

VCons→λ(m’ :IrrelNat), (c:m ∼ Succ m’), (x :Rela), (xs’ :RelVec am’)
(c0:xs ∼ VCons{a,m} {m’} c x xs’).

let c1 := 〈plus〉 c 〈n〉 in
let c2 := stepk (plus (Succ m’) n) in
VCons{a,plus m n} {plus m’ n} (c1 # c2) x (app {m’} {n} xs’ ys)

This is the first example where we are required to write non-trivial coercions.
Let’s start by considering the right-hand side of the VNil case. As we see in the
Haskell version, we wish to return ys. However, ys has type Vec a n, and we need
to return something of type Vec a (plus m n). We must, accordingly, cast ys to have
type Vec a (plus m n). This is what the coercion sym (Vec 〈a〉 (c1 # c2)) is doing; it
proves that Vec a n is in fact equal to Vec a (plus m n). Both the starting type
Vec a n and the ending type Vec a (plus m n) have the same prefix of Vec a. We
use a congruence coercion (Section 5.8.5) Vec 〈a〉 γ to simplify our problem. Now, we
need only a coercion γ that proves plus m n equals n. (The use of sym helpfully has
reversed our proof obligation.) This γ is built in two steps, tied together by using our
transitivity operator #: c1, which uses our reflexivity operator 〈·〉, proves that plus m n
equals plus 0 n by using c, the GADT equality constraint from the VNil constructor;
and c2 proves that plus 0 n equals n.53 For this last coercion, we use the step coercion
that reduces a type by one step. It is fiddly (and unenlightening) to calculate the
precise number of steps necessary to get from plus 0 n to n, so I have just written that
this takes j steps. It is straightforward to calculate j in practice.

The coercion manipulations in the VCons case are similar.
Also of note in this example is the interplay between relevant variables and irrelevant

ones. We see that the lengths m and n are irrelevant throughout this function. Indeed,
we do not need lengths at runtime to append two vectors. Accordingly, we can see that
all uses of m and n (or m’) occur in irrelevant contexts, such as coercions or irrelevant
arguments to functions.

53Recall (Figure 5.2 on page 77) that let is defined by simple expansion. It is not properly a
language construct but instead is just a convenient abbreviation in this writeup.

90



5.5.4 safeHead

With length-indexed vectors, we can write a safe head operation, allowed only when
we know that the vector has a non-zero length:

safeHead :: Vec a ( ’Succ n)→ a
safeHead (VCons x ) = x

Note that safeHead contains a total pattern match; the VNil alternative is impossible
given the type signature of the function. This function translates to Pico thusly:

safeHead :
˜
Π(a:IrrelType), (n:IrrelNat), (v :RelVec a (Succ n)). a

safeHead =λ(a:IrrelType), (n:IrrelNat), (v :RelVec a (Succ n)).
casea v of
VNil → λ(c:Succ n ∼ Zero), (c0:v ∼ VNil{a,Succ n} c). absurd c a
VCons→ λ(m:IrrelNat), (c:Succ n ∼ Succ m), (x :Rela), (xs:RelVec am),

(c0:v ∼ VCons{a,Succ n} {m} c x xs).
x

The new feature demonstrated in this example is the absurd operator, which
appears in the body of the VNil case. In order to be sure that case expressions do
not get stuck, the typing rules require that all matches are exhaustive. However, in
general, in can be undecidable to determine whether the type of a scrutinee indicates
that a certain constructor can be excluded. In order to step around this potential
trap, Pico supports absurdity elimination through absurd. The coercion passed into
absurd (c, above) must prove that one constant equals another. This is, of course,
impossible, and so we allow absurd γ τ to have any type τ .

5.6 Types τ
Having gone through several examples explaining the flavor of Pico code, let’s now
walk through the remaining typing rules of the system. Recall that we have already
seen the typing rules for variables, Ty_Var in Section 5.3, and constants, Ty_Con
in Section 5.4.2.
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5.6.1 Abstractions

The definition for types τ includes the usual productions for a pure type system,
including both a Π-form and a λ-form:

Σ; Γ,Rel(δ) t̀y κ : Type

Σ; Γ t̀y Πδ. κ : Type
Ty_Pi

Σ; Γ, δ t̀y τ : κ

Σ; Γ t̀y λδ. τ :
˜
Πδ. κ

Ty_Lam

The only novel component of these rules is the use of Rel(δ) in the premise to Ty_Pi.
This is done to allow the bound variable to appear in κ, regardless of whether it is
relevant or not. As an example, the use of Rel(δ) here is necessary to allow the type of
Haskell’s ⊥:

˜
Πa:IrrelType. a.

5.6.2 Applications

Terms with a Π-type (either type constants or λ-terms) can be applied to arguments,
via these rules:

Σ; Γ t̀y τ1 : Πa:Relκ1. κ2 Σ; Γ t̀y τ2 : κ1

Σ; Γ t̀y τ1 τ2 : κ2[τ2/a]
Ty_AppRel

Σ; Γ t̀y τ1 : Πa:Irrelκ1. κ2 Σ; Rel(Γ) t̀y τ2 : κ1

Σ; Γ t̀y τ1 {τ2} : κ2[τ2/a]
Ty_AppIrrel

Σ; Γ t̀y τ : Πc:φ. κ Σ; Rel(Γ) c̀o γ : φ

Σ; Γ t̀y τ γ : κ[γ/c]
Ty_CApp

We see in these rules that the argument form for an abstraction over an irrelevant
binder requires braces. (See the conclusion of Ty_AppIrrel.) The system would
remain syntax-directed without marking off irrelevant arguments, but type erasure
(Section 5.11) would then need to be type-directed. It seems easier just to separate
relevant arguments from irrelevant arguments syntactically.

Note also the use of Rel(Γ) in Ty_AppIrrel and Ty_CApp; resetting the
context here happens because irrelevant arguments and coercions are erased in the
running program.
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5.6.3 Kind casts

We can always use an equality to change the kind of a type:

Σ; Rel(Γ) c̀o γ : κ1 ∼ κ2

Σ; Γ t̀y τ : κ1 Σ; Rel(Γ) t̀y κ2 : Type

Σ; Γ t̀y τ B γ : κ2

Ty_Cast

In this rule, a type of kind κ1 is cast by γ to have a type κ2. As always, the coercion
is checked in a reset context Rel(Γ). The final premise, Σ; Rel(Γ) t̀y κ2 : Type is
implied by the first premise (which is actually Σ; Rel(Γ) c̀o γ : κ1

Type∼Type κ2) via
proposition regularity, but we must include it in order to prove kind regularity54 before
we prove coercion regularity.

5.6.4 fix

Pico supports fixpoints via the following rule:

Σ; Γ t̀y τ :
˜
Πa:Relκ. κ

Σ; Γ t̀y fix τ : κ
Ty_Fix

The rule requires type τ to have an unmatchable
˜
Π so that we can be sure that τ ’s

canonical form is indeed a λ (as opposed to an unsaturated constant); otherwise the
progress theorem (Section 5.7) would not hold.

5.6.5 case

Unsurprisingly, the typing rules to support pattern matching are the most involved
and are presented in Figure 5.6 on the following page with the rules to type-check
case branches.

Most of the premises of Ty_Case are easy enough to explain:

• The result kind of a case, κ is given right in the syntax; the first premise
Σ; Rel(Γ) t̀y κ : Type ensures that it is a valid result kind.

• We also must check the kind of the scrutinee, τ . This kind must have the
form ’Π∆.H σ (note the matchable ’Π), where the σ cannot mention any of the
variables bound in ∆. (The Σ; Rel(Γ) t̀y H σ : Type premise checks this scoping
condition.) Note that the scrutinee’s type may be a ’Π-type in order to support
matching against partially applied type and data constructors.

• The alternatives must be exhaustive and distinct. Exhaustivity is needed to
prove that a well-typed case cannot get stuck, and distinctness is necessary to
prove that the reduction relation is deterministic.

54Both regularity lemmas are stated in Figure 5.3 on page 78.
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Σ; Rel(Γ) t̀y κ : Type Σ; Γ t̀y τ : σ
σ = ’Π∆.H σ Σ; Rel(Γ) t̀y H σ : Type
∀i , Σ; Γ;σ `τalt alti : κ

alt are exhaustive and distinct for H , (w.r.t. Σ)
Σ; Γ t̀y caseκ τ of alt : κ

Ty_Case

Σ; Γ;σ `τalt alt : κ Case alternatives

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[σ/dom(∆1)]
dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ
Σ; Γ t̀y τ : ?Π∆3, c:τ0 ∼ H{σ} dom(∆3). κ

Σ; Γ; ’Π∆′.H ′ σ `τ0alt H → τ : κ
Alt_Match

Σ; Γ t̀y τ : κ

Σ; Γ;σ `τ0alt _→ τ : κ
Alt_Default

types(∆) = τ Extract the types from a telescope

types(∅) = ∅
types(∆, a:ρκ) = types(∆), κ

types(∆, c:τ1
κ1∼κ2 τ2) = types(∆), κ1, κ2, τ1, τ2

Figure 5.6: Rule and auxiliary definitions for case expressions

We are left to consider type-checking the alternatives. This is done via the judgment
with schema Σ; Γ; σ `τalt alt : κ. When Σ; Γ; σ `τalt alt : κ holds, we know that the
expression in the case alternative alt produces a type of kind κ when considered with
signature Σ and typing context Γ and when matched against a scrutinee τ of type σ.
The premises of Ty_Case indeed check that all alternatives satisfy this judgment.

5.6.5.1 Checking case alternatives

The rule Alt_Match is intricate. It assumes a scrutinee τ0 of type ’Π∆′.H ′ σ, and
we are checking a case alternative H → τ .

First, we must verify that the constant H is classified by H ′—that is, either H is
a data constructor of the datatype H ′ or H is a datatype and H ′ is Type. We say
that H ′ is the parent of H . This check is done by the Σ t̀c H : ∆1; ∆2;H

′ premise,
which also extracts the universals ∆1 and existentials ∆2.

The next premise (reading to the right) uses ∆2[σ/dom(∆1)] to instantiate the
existentials with the known choices for the universals. These known choices σ are
obtained from determining the type of the scrutinee; see the appearance of σ in the
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type appearing before the àlt in the conclusion of the rule. The second premise also
splits the instantiated existentials into two telescopes, ∆3 and ∆4.

Note that ∆′ is an input to this rule; it is extracted from the type of the scrutinee.
Accordingly, the third premise dom(∆4) = dom(∆′) serves two roles: it fixes the length
of ∆4 (and, hence, ∆3) and it also forces any renaming of bound variables necessary
to line up the telescopes ∆′ and ∆4. Keeping the names of the bound variables
consistent between these telescopes simplifies this rule. We see that in the event that
the scrutinee is a fully saturated datatype or data constructor, ∆4 = ∆′ = ∅ and
∆3 = ∆2[σ/dom(∆1)]; in this common case, then, unification is unnecessary.

The next premise uses a one-way unification algorithm to make sure that the
bound telescope in the scrutinee’s type, ∆′, matches the expected shape ∆4. (The
types operation appears in Figure 5.6 on the previous page.) We will return to this in
Section 5.6.5.2, below. In the common case of ∆′ = ∅ (that is, full saturation of the
scrutinee), this premise is trivially satisfied. Also note that we do not use the output
of this premise, θ, anywhere in the rule, so skipping it on a first reading is appropriate.

Lastly, we must check that the body of the alternative, τ , has the right type. This
type must bind (by any combination of matchable ’Π and unmatchable

˜
Π—recall

that this is the meaning of ?Π from Figure 5.2 on page 77) all of the existentials in
∆3, as well as the coercion variable witnessing the equality between τ0 (the scrutinee)
and the applied H . In this rule the use of dom(∆3) as a list of arguments to H{σ} is
a small pun; we must imagine braces surrounding any variable in dom(∆3) that is
irrelevantly bound. The return type of the abstraction in τ must be κ, the result kind
of the overall match.

For examples of this in action—at least in the fully saturated case—see the worked
out examples above (Section 5.5).

5.6.5.2 Unification in Alt_Match

Let’s examine the use of unification in Alt_Match more carefully. We will proceed
by examining two examples, a simple one where unification is unnecessary and a more
involved one showing why we sometimes need it.

Our first example was given above, when first describing unsaturated matching
(Section 5.1.1.2):

type family IsLeft x where
IsLeft ’Left = ’True
IsLeft ’Right = ’False

The translation of Either into Pico appears in Section 5.4.2.3. This type family
translated to the following Pico function (rewritten to be lowercase according to
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Haskell naming requirements):

isLeft :
˜
Π(a:IrrelType), (x :Rel’Π(y :Rela).Either a a).Bool

isLeft =λ(a:IrrelType), (x :Rel’Π(y :Rela).Either a a).
caseBool x of

Left → λc0:(x ∼ Left{a,a}).True
Right→ λc0:(x ∼ Right{a,a}).False

Comparing the first alternative against Alt_Match, we see the following concrete
instantiations of metavariables:

H = Left
∆1 = s:IrrelType, t:IrrelType
∆2 = y :Rels
H ′= Either
τ0 = x
∆′= y :Rela

σ= a, a
∆3 = ∅
∆4 = y :Rela
θ= ∅
τ = λ(c0:x ∼ Left{a,a}).True
κ= Bool

In this example, the constructor is not applied to any existential variables, and so
∆3, the telescope of binders that are to be bound by the match, is empty. The only
variable bound in the match body is c0, the dependent-match coercion variable. Also
note that ∆4, the instantiated suffix of the telescope of existential arguments to Left,
and ∆′, the telescope of binders in the type of the scrutinee, coincide. Accordingly,
the match operation succeeds with an empty substitution θ = ∅.

In contrast, the following example shows why we need unification in Alt_Match:

data X where
MkX :: a→ a→ X

-- NB: a is existential; no universals here
type family UnX (x :: Bool ’→X ) :: Bool where
UnX ( ’MkX y) = y

Note that we’re extracting the first (visible) argument from an unsaturated use of
MkX . This Haskell code translates to the following Pico:

Σ =X :(∅),
MkX :(a:IrrelType, y :Rela, z :Rela;X )

unX :
˜
Π(x :Rel’Π(z :RelBool).X ).Bool

unX =λ(x :Rel’Π(z :RelBool).X ).
caseBool x of
MkX → λ(a:IrrelType), (y :Rela), (c0:x ’Π(z:RelBool).X∼’Π(z:Rela).X MkX a y).

y B sym (argk (kind c0))

Before we get into the minutiae of Alt_Match, let’s dwell a moment on the cast
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necessary in the last line. According to both the type of unX and the return type
provided in the case, the match must return something of type Bool . Yet the body of
a match must bind precisely the existential variables of a data constructor; according
to the definition of MkX , the variable y has type a, not Bool . We thus must cast y
from a to Bool . We do this by extracting out the right coercion from c0. This c0 is
heterogeneous; I have typeset the code above with the kinds explicit to show this.
The left-hand kind is the declared type of x , binding z of type Bool . The right-hand
kind is the kind of MkX a y , which binds z of type a. By using kind (which extracts
a kind equality from a heterogeneous coercion; see Section 5.8.1), followed by argk
(which extracts a coercion between the kinds of the arguments of Π-types; see Section
5.8.6.1), and then sym (which reverses the orientation of a coercion), we get the
coercion needed, of type a ∼ Bool .

Now, we’ll try to understand the matching in Alt_Match. Let’s once again
examine the concrete instantiations of the metavariables in the rule:

H = MkX
∆1 = ∅
∆2 = a:IrrelType, y :Rela, z :Rela
H ′= X
τ0 = x
∆′= z :RelBool

σ= ∅
∆3 = a:IrrelType, y :Rela
∆4 = z :Rela
θ= Bool/a
τ = 〈as above〉
κ= Bool

Recall that ∆3 and ∆4 are the prefix and suffix, respectively, of the telescope of
existentials ∆2, after this telescope has been instantiated with the known arguments
for the universals. However, with MkX , there are no universals at all (the datatype
X takes no arguments), and so this instantiation is a no-op. (The lack of universals
shows up in the equations above via an empty ∆1 and an empty σ.) We thus have
∆3,∆4 = ∆2, where the length of ∆4 must match the length of ∆′, the telescope
of variables bound in the type of the scrutinee. We see that the scrutinee x has
type ’Π(z :RelBool).X and so ∆′ = z :RelBool . Thus ∆3—the existentials bound by the
pattern match—has two elements (a and y) and ∆4 has one (z).

We now must make sure that the shape of the types in ∆′ match the template
given by the types in ∆4. That is, ∆′ must be some instance of ∆4, as determined
by a unification algorithm (discussed in more depth in Section 7.3). In this case, the
unification succeeds, assigning the type variable a to be Bool , as shown in the choice
for θ, above. Accordingly, the match is well typed.

Requiring this unification simply reduces the set of well typed programs. It is thus
important to understand why the restriction is necessary. What goes wrong if we omit
it? The problem comes up in the proof for progress, in the case where the scrutinee
has a top-level cast. We will use step rule S_KPush (see Section 5.9); that rule has
several typing premises55 which can be satisfied only when this match succeeds. The
restriction is quite technical in nature, but any alternative not ruled out by the type

55These unexpected typing premises to a small-step reduction rule are addressed in Section 5.7.4.
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of the scrutinee should be acceptable. See the proof of progress in Appendix C.11 for
the precise details.

5.6.5.3 Default alternatives

Pico supports default alternatives through the form _ → τ . This is a catch-all
case, to be used only when no other case matches. In a language with a simpler
treatment for case statements, a default would be unnecessary; every case could
simply enumerate all possible constructors. However, Pico has two features that
makes defaults indispensable:

• When matching on a scrutinee of kind Type (or, say, a function returning a
Type), it would be impossible to enumerate all possibilities of this open type.
Such matches must have a default alternative.

• If a scrutinee is partially applied, the typing rules dictate a delicate unification
process to make sure alternatives are well typed. (See Section 5.6.5.2.) Given
the design of Alt_Match, it is possible some of the constructors of a datatype
would be ill typed as patterns in an unsaturated match. It might therefore be
challenging to detect whether an unsaturated match is exhaustive. To avoid
this problem, unsaturated matches may use a default alternative in order to be
unimpeachably exhaustive.

Happily, the typing rule Alt_Default for default alternatives could hardly be
simpler.

5.6.5.4 Absurdity

We saw in the safeHead example (Section 5.5.4) the need for absurdity elimination
via the absurd operator. Here is the typing rule:

Σ; Rel(Γ) c̀o γ : H1{τ1} ψ1 ∼ H2{τ2} ψ2 H1 6= H2

Σ; Rel(Γ) t̀y τ : Type

Σ; Γ t̀y absurd γ τ : τ
Ty_Absurd

This rule requires that the coercion argument to absurd, γ, relate two unequal type
constants H1 and H2. The type absurd γ τ can have any well formed kind, as chosen
by τ . Because τ is needed only to choose the overall kind of the type, it is checked a
context reset by Rel.

As explained with the example, absurdity elimination is sometimes needed in
the body of case alternatives that can never be reached. In a language that admits
undefined , the absurd construct is not strictly necessary. Yet by including it, we can
definitively mark those alternatives that are unreachable. Simply returning undefined
would not be as informative.

98



5.7 Operational semantics
Now that we have seen the static semantics of types, we are well placed to explore
their dynamic semantics—how the types can reduce to values. The dynamic semantics
of types is expressed in Pico via a small-step operational semantics, captured in the
judgment Σ; Γ s̀ τ −→ τ ′. Rules in this judgment are prefixed by “S_”. It must be
parameterized over a typing environment because of the push rules, as explained in
Section 5.7.4.

The operational semantics obeys preservation and progress theorems.

Theorem (Preservation [Theorem C.46]). If Σ; Γ t̀y τ : κ and Σ; Γ s̀ τ −→ τ ′, then
Σ; Γ t̀y τ

′ : κ.

Theorem (Progress [Theorem C.78]). Assume Γ has only irrelevant variable bindings.
If Σ; Γ t̀y τ : κ, then either τ is a value v , τ is a coerced value v B γ, or there exists τ ′
such that Σ; Γ s̀ τ −→ τ ′.

The progress theorem is non-standard in two different ways:

• As discussed shortly (Section 5.7.1), reduction can take place in a context with
irrelevant variable bindings.

• The progress theorem guarantees that a stuck type is either a value v or a
coerced value v B γ. This statement of the theorem follows previous work (such
as Weirich et al. [105]) and is applicable in the right spot in the proof of type
erasure (Section 5.11).

The operational semantics are also deterministic.

Lemma (Determinacy [Lemma C.20]). If Σ; Γ s̀ τ −→ σ1 and Σ; Γ s̀ τ −→ σ2, then
σ1 = σ2.

5.7.1 Values

A subset of the types τ are considered values, written with the metavariable v :

Definition (Values). Let values v be defined by the following sub-grammar of τ :

v ::=H{τ} ψ |Πδ. τ |λa:Relκ. τ |λa:Irrelκ. v |λc:φ. τ

As we can see, values include applied constants, Π-types, and some λ-types.
However, note a subtle but important part of this definition: the production for
irrelevant abstractions is recursive. An irrelevant abstraction λa:Irrelκ. τ is a value if
and only if τ , the body, is also a value. This choice is important in order to prove type
erasure.

Our definition of values also gives us this convenient property:
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Lemma (Value types [Lemma C.76]). If Σ; Γ t̀y v : κ, then κ is a value.

During compilation, we erase irrelevant components of an expression completely.
This includes irrelevant abstractions. Thus, the erasure operation, written T·U and
further explored in Section 5.11, includes this equation,

Tλa:Irrelκ. τU = TτU,

erasing the abstraction entirely. Yet we must make sure to maintain the following
lemma, referring to the definition of values on erased expressions:

Lemma (Expression redexes [Lemma C.84]). If TτU is not a value, then τ is not a
value.

If we have the equation above erasing irrelevant abstractions to the erasure of their
bodies but call all irrelevant abstractions values (that is, make λa:Irrelκ. τ a value for all
τ), then this lemma becomes false. To wit, suppose τ is not a value. Then Tλa:Irrelκ. τU
would not be a value, but λa:Irrelκ. τ would be. Thus, in order to maintain this lemma,
we have a recursive definition of values for irrelevant abstractions and, accordingly,
evaluate under irrelevant abstractions as well. See rule S_IrrelAbs_Cong in Section
5.7.3.

5.7.2 Reduction

Several of the small-step rules perform actual reduction in a type:

Σ; Γ s̀ (λa:Relκ. σ1)˜σ2 −→ σ1[σ2/a]
S_BetaRel

Σ; Γ s̀ (λa:Irrelκ. v1)˜{σ2} −→ v1[σ2/a]
S_BetaIrrel

Σ; Γ s̀ (λc:φ. σ)˜γ −→ σ[γ/c]
S_CBeta

alti = H → τ0

Σ; Γ s̀ caseκH{τ} ψ of alt −→ τ0 ψ 〈H{τ} ψ〉
S_Match

alti = _→ σ no alternative in alt matches H
Σ; Γ s̀ caseκH{τ} ψ of alt −→ σ

S_Default

alti = _→ σ no alternative in alt matches H
Σ; Γ s̀ caseκH{τ} ψ B γ of alt −→ σ

S_DefaultCo

τ = λa:Relκ. σ

Σ; Γ s̀ fix τ −→ σ[fix τ/a]
S_Unroll
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Note that S_BetaIrrel requires a value v1 in the body of the abstraction in order
to keep the rules deterministic. The only other surprising feature in these rules is the
way that S_Match works by applying the body of the alternative τ0 to the actual
existential arguments to H{τ} and a reflexive coercion. This follows directly from my
design of having case alternatives avoid a special binding form and use the existing
forms in the language.

The Beta rules above make explicit that the application is an unmatchable
application τ˜ψ. This is actually redundant, as all λ-abstractions are unmatchable. I
have included the notation here to make it clearer how these rules line up with the
rules in the parallel rewrite relation used to prove consistency (Section 5.10.2).

5.7.3 Congruence forms

Pico has several uninteresting congruence forms,

Σ; Γ s̀ σ −→ σ′

Σ; Γ s̀ σ ψ −→ σ′ ψ
S_App_Cong

Σ; Γ s̀ σ −→ σ′

Σ; Γ s̀ σ B γ −→ σ′ B γ
S_Cast_Cong

Σ; Γ s̀ σ −→ σ′

Σ; Γ s̀ caseτ σ of alt −→ caseτ σ′ of alt
S_Case_Cong

Σ; Γ s̀ τ −→ τ ′

Σ; Γ s̀ fix τ −→ fix τ ′
S_Fix_Cong

and one more unusual one:

Σ; Γ, a:Irrelκ s̀ σ −→ σ′

Σ; Γ s̀ λa:Irrelκ. σ −→ λa:Irrelκ. σ′
S_IrrelAbs_Cong

This last rule allows for evaluation under irrelevant abstractions, as described in
Section 5.7.1. It must add the new irrelevant variable to the context, but is otherwise
unexceptional.

5.7.4 Push rules

A system with explicit coercions like Pico must deal with the possibility that coercions
get in the way of reduction. For example, what happens when we try to reduce

((λx :RelBool . x)B 〈Bool〉)True ?

Casting by a reflexive coercion should hardly matter, and yet no rule yet described
applies here. In particular, S_BetaRel does not.
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Σ; Γ s̀ (v B γ1)B γ2 −→ v B (γ1 # γ2)
S_Trans

Σ; Rel(Γ) c̀o γ0 : Πa:Relκ. σ ∼ Πa:Relκ
′. σ′

γ1 = sym (argk γ0) γ2 = γ0@(τ B γ1 ≈sym γ1 τ)

Σ; Γ s̀ (v B γ0) τ −→ v (τ B γ1)B γ2

S_PushRel

Σ; Rel(Γ) c̀o γ0 : Πa:Irrelκ. σ ∼ Πa:Irrelκ
′. σ′

γ1 = sym (argk γ0) γ2 = γ0@(τ B γ1 ≈sym γ1 τ)

Σ; Γ s̀ (v B γ0) {τ} −→ v {τ B γ1}B γ2

S_PushIrrel

Σ; Rel(Γ) c̀o γ0 : Πc:φ. σ ∼ Πc:φ′. σ′

γ1 = argk1 γ0 γ2 = argk2 γ0

η′ = γ1 # η # sym γ2 γ3 = γ0@(η′, η)

Σ; Γ s̀ (v B γ0) η −→ v η′ B γ3

S_CPush

γ1 =
˜
Πa:Irrel〈κ〉. γ γ2 = τ1 ≈〈Type〉 τ2

τ1 =
˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a]) τ2 =

˜
Πa:Irrelκ. κ1

Σ; Γ s̀ λa:Irrelκ. (v B γ) −→ (λa:Irrelκ. v)B (γ1 # γ2)
S_APush

γ1 = γ0@(a ≈γ2 a B γ2) # sym γ2

γ2 = argk γ0

Σ; Γ s̀ fix ((λa:Relκ. σ)B γ0) −→ (fix (λa:Relκ. (σ B γ1)))B γ2

S_FPush

Σ t̀c H : a:Irrelκ; ∆;H ′ ∆ = ∆1,∆2 n = |∆2|
κ = ’Πa:Irrelκ,∆.H

′ a

σ = ’Π(∆2[τ/a][ψ/dom(∆1)]).H ′ τ

σ′ = ’Π(∆2[τ ′/a][ψ
′
/dom(∆1)]).H ′ τ ′

Σ; Rel(Γ) c̀o η : σ ∼ σ′

Σ; Rel(Γ) v̀ec τ
′ : a:Relκ

∀i , γi = build_kpush_co(〈κ〉@(nths (resn η));ψ1...i−1)
∀i , ψ′i = cast_kpush_arg(ψi ; γi)

H → κ′ ∈ alt

Σ; Γ s̀ caseκ0 (H{τ} ψ)B η of alt −→ caseκ0 H{τ ′} ψ
′
of alt

S_KPush

Figure 5.7: Push rules
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To deal with this and similar scenarios, Pico follows the System FC tradition and
contains so-called push rules, as shown in Figure 5.7 on the previous page. These rules
are fiddly but—ignoring S_KPush for a moment—straightforward. They simply serve
to rephrase a type with a coercion in the “wrong” place to an equivalent type with the
coercion moved out of the way. The rules can be derived simply by following the typing
rules and a desire to push the coercion aside. Compared to previous work, the novelty
here is in rules S_APush (which handles reduction under irrelevant abstractions and
must take into account the awkward substitution in Co_PiTy; see Section 5.8.5.1)
and S_FPush (which handles fix, never before seen in System FC), but these rules
again pose no design challenge other than the need for attention to detail.

Many of the push rules share an odd feature: they have typing judgment premises.
These premises are the reason that the stepping judgment is parameterized on a typing
context. In order to prove the progress theorem, it is necessary to prove consistency
(Section 5.10), which basically says that no coercion (made without assumptions) can
prove, say, Int ∼ Bool . Still ignoring S_KPush, the consistency lemma is enough
to admit the typing premises to the push rules. However, using consistency here
would mean that the preservation theorem depends on the consistency lemma, while
consistency is normally used only to prove progress. In seems to lead to cleaner proofs
to avoid the dependency of preservation on consistency, and so these typing premises
are necessary.

The S_KPush rule is very intricate and makes use of a variety of coercions.
Explicating this rule in its entirety is best saved until after we have covered coercions
in more depth. See Section 5.9.

5.8 Coercions γ
Pico comes with a very rich theory of equality, embodied in the large number of
coercion forms. We will examine these forms in terms of the properties they imbue
on the equality relation. Note that the coercion language is far from orthogonal; it is
often possible to prove one thing in multiple ways. Indeed, GHC comes with a coercion
optimizer [96] that transforms a coercion proving a certain proposition into another,
simpler one proving the same proposition. Enhancing this optimizer is beyond the
scope of this dissertation, however. It is needed only as an optimization in the speed
of compilation and is not central to the theory or metatheory of the language.

All coercions are erased before runtime (Section 5.11). Accordingly, we check for
well typed coercions (via the judgment Σ; Γ c̀o γ : φ) only in contexts reset by the
Rel(·) operator.

5.8.1 Equality is heterogeneous

The equality relation in Pico is heterogeneous, allowing ∼ to relate two types of
different kinds. This is most clearly demonstrated in the rule for the well-formedness
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of propositions:56

Σ; Γ p̀rop φ ok Proposition formation

Σ; Γ t̀y τ1 : κ1

Σ; Γ t̀y τ2 : κ2

Σ; Γ p̀rop τ1
κ1∼κ2 τ2 ok

Prop_Equality

Note that the kinds κ1 and κ2 are allowed to differ.
The particular flavor of heterogeneous equality in Pico is so-called “John Major”

equality [58], where an equality between two types implies the equality between the
kinds:

Σ; Γ c̀o γ : τ1
κ1∼κ2 τ2

Σ; Γ c̀o kind γ : κ1 ∼ κ2

Co_Kind

As we can see, the kind coercion form extracts a kind coercion from a type coercion.
Though I have described my equality relation following McBride [58], he uses

identity proofs in quite a different way than I do here. His language confirms that an
identity proof is reflexive and then brings definitional equalities of the types and kinds
into scope. The surface Haskell version of heterogeneous equality works quite like
McBride’s. My invocation of “John Major” here is to recall that an equality between
types implies the same relationship among the kinds.

It’s worth pausing here for a moment to consider two other possible meanings,
among others, of heterogeneous equality:

Trellys equality The equality relation studied in the Trellys project [13] a hetero-
geneous equality with no equivalent of the kind coercion. That is, if we have a proof of
τ1

κ1∼κ2 τ2, then there is no way to prove κ1 ∼ κ2 (absent other information). Indeed,
Trellys equality (that is, omitting the Co_Kind rule) would work in Pico; that
coercion form is never needed in the metatheory. Omitting it would weaken Pico’s
equational theory, however, and so I have decided to include it.

Flexible homogeneous equality Another potential meaning of heterogeneous
equality is that κ1 and κ2 might not be identical—as they would be in a traditional
homogeneous equality relation—but they are propositionally equal.57 Such an equality

56This rule is the entire judgment—there is no other form of proposition supported in Pico.
57I am distinguishing here between definitional equality and propositional equality. The former, in

Pico, refers to α-equivalence. Definitional equality is the equality used implicitly in typing rules when
we use the same metavariable twice. If written explicitly, it is sometimes written ≡. Propositional
equality, on the other hand, means an equality that must be accompanied by a proof; in Pico, ∼ is
the propositional equality relation. Languages with a Conv rule (Section 5.1) import propositional
equality into their definitional equality. Pico does not do this, requiring a cast to use a propositional
equality.

104



would use this rule (not part of Pico):

Σ; Γ t̀y τ1 : κ1 Σ; Γ t̀y τ2 : κ2

Σ; Γ c̀o γ : κ1 ∼ κ2

Σ; Γ p̀rop τ1
κ1 ∼κ2γ τ2 ok

Prop_Homogeneous

Note how ∼ is indexed by γ, the proof that the kinds are equal. I call this equality
homogeneous, because even to form the equality τ1 ∼ τ2, we must know that the kinds
are equal. Contrast to Prop_Equality, where the proposition itself is well formed
even when the kinds and/or types are not provably equal.

5.8.2 Equality is hypothetical

A key property of equality in Pico is that programs can assume an equality proof.
This is how GADTs are implemented, by packing an equality proof into a nugget of
data and then extracting it again on pattern match. In the body of the pattern match,
we can assume the packed equality. Here is the typing rule:

Σ c̀tx Γ ok c:φ ∈ Γ

Σ; Γ c̀o c : φ
Co_Var

Coercion variables are brought into scope by Π and λ over coercion binders.

5.8.3 Equality is coherent

Pico’s equality relation is coherent, in that the precise locations and structure of
coercions within types is immaterial. This is a critical property because it is intended
for a compiler to create and place these coercions. The type system must be agnostic
to where, precisely, they are placed. Coherence is obtained through this coercion form:

Σ; Γ c̀o η : κ1 ∼ κ2 bτ1c = bτ2c
Σ; Γ t̀y τ1 : κ1 Σ; Γ t̀y τ2 : κ2

Σ; Γ c̀o τ1 ≈η τ2 : τ1 ∼ τ2

Co_Coherence

This coercion form requires two well kinded types τ1 and τ2 as well as a coercion η
that relates their kinds. It also requires the critical premise that bτ1c = bτ2c, where
b·c is a coercion erasure operation. This operation is separate from (though similar
to) the type erasure operation spelled T·U and discussed several times thus far. The
full definition of this operation is given in Definition C.47. Briefly, coercion erasure
is defined recursively on types, binders, case alternatives, and propositions by the
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following equations, treating other forms homomorphically:

bτ γc = bτc • bτ B γc = bτc
babsurd γ τc = absurd • bτc b(c:φ)c = (•:bφc)

As we can see coercion erasure simply removes the coercions from a type. We use
• to stand in for an erased coercion application. I sometimes use the metavariable
ε to stand for a type that has its coercions erased, but τ and σ may also refer to a
coercion-erased type, if that is clear from the context.

By using coercion erasure in its premise, the coherence coercion can relate any two
types that are the same, ignoring the coercions. This is precisely what we mean by
coherence.

The coherence rule implies that any two proofs of equality are considered inter-
changeable. In other words, Pico assumes the uniqueness of identity proofs (UIP) [44].
This choice makes Pico “anti-HoTT”, that is, incompatible with homotopy type
theory [91], which takes as a key premise that there may be more than one way to
prove the identity between two types. While baking UIP into the language may limit
its applicability, Pico’s intended role as an intermediate language, where the coercions
are inferred by the compiler, makes this choice necessary. We would not want the
static semantics of our programs to depend on the vagaries of how the compiler placed
its equality proofs.

Note that the coherence form in Pico is rather more general than the coherence
form used in my prior work [105]. The way I have phrased coherence is critical for my
consistency proof. See Section 5.10.5 for more discussion.

5.8.4 Equality is an equivalence

The equality relation ∼ is explicitly an equivalence relation, via these rules:

Σ; Γ t̀y τ : κ

Σ; Γ c̀o 〈τ〉 : τ ∼ τ
Co_Refl

Σ; Γ c̀o γ : τ1 ∼ τ2

Σ; Γ c̀o sym γ : τ2 ∼ τ1

Co_Sym

Σ; Γ c̀o γ1 : τ1 ∼ τ2 Σ; Γ c̀o γ2 : τ2 ∼ τ3

Σ; Γ c̀o γ1 # γ2 : τ1 ∼ τ3

Co_Trans

Note the use of 〈τ〉 to denote a reflexive coercion over the type τ .

5.8.5 Equality is (almost) congruent

Given coercions between the component parts of two types, we often want to build a
coercion relating the types themselves. For example, if we know that Σ; Γ c̀o γ1 : τ1 ∼ σ1
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and Σ; Γ c̀o γ2 : τ2 ∼ σ2, then we can build Σ; Γ c̀o γ1 γ2 : τ1 τ2 ∼ σ1 σ2. The form
γ1 γ2 is typed by a congruence rule; each form of type has an associated congruence
rule. The rules that do not bind variables appear in Figure 5.8 on the following page;
I’ll call these the simple congruence rules. Rules that do bind variables are subtler;
they appear in Figure 5.9 on page 109.

The simple congruence rules simply build up larger coercions from smaller ones.
With the exception of Co_Absurd, they assert that the types related by the coercion
are well formed; it is easier simply to check the types than to repeat all the conditions
in the relevant typing rules. The typing premises for absurd are simple enough on
their own, however.

The notation I use for congruence rules deliberately mimics that of types. However,
do not be fooled: the coercion γ1 γ2 does not apply a “coercion function” γ1 to some
argument. The coercion γ1 γ2 never β-reduces to become some γ[γ2/c]. Similarly, the
λ-coercion (one of the binding congruence forms) does not define a λ-abstraction over
coercions; it witnesses the equality between two λ-abstraction types.

Two of the congruence rules—Co_CApp and Co_Absurd—relate types that
mention coercions. In these congruence rules, the coercion γ must explicitly mention
the two coercions that appear in the respective locations in the related types, as we
do not have a coercion form that relates coercions. For example, examine Co_CApp,
declaring that γ0 (γ1, γ2) relates τ1 γ1 and τ2 γ2, given that γ0 relates τ1 and τ2. Instead
of (γ1, γ2) appearing in the coercion, we might naively expect some η that relates γ1

and γ2; since such an η does not exist in the grammar, we just list the two coercions
γ1 and γ2. The syntax for Co_Absurd is similar.

5.8.5.1 Binding congruence forms

The binding coercions forms (Figure 5.9 on page 109) all have a particular challenge
to meet. Suppose we know that Σ; Γ c̀o η : κ1 ∼ κ2 and we wish to prove equality
between Πa:ρκ1. τ1 and Πa:ρκ2. τ2. We surely must have a coercion γ relating τ1 to τ2.
But in what context should we check γ? We cannot assign a both κ1 and κ2.

In Pico, I have chosen to favor the left-hand kind in the context and do a
substitution in the result. Let’s examine Co_PiTy closely. The coercion η indeed
relates κ1 and κ2. The coercion γ is checked in the context Γ, a:Relκ1—note the use
of κ1 there. Regardless of the relevance annotation ρ on the coercion, the context
is extended with a binding marked Rel, echoing the use of Rel(δ) in the premise to
Ty_Pi (Section 5.6.1). The types related by γ (σ1 and σ2) might mention a, assumed
to be of type κ1. For σ1, that assumption is correct; the left-hand type in the result is
Πa:ρκ1. σ1. However, for σ2, this assumption is wrong: we wish a to have kind κ2 in the
right-hand result type. In order to fix up the mess, the conclusion of Co_PiTy does
an unusual substitution, mentioning the type σ2[a B sym η/a]. This takes σ2—well
typed in a context where a has kind κ1—and changes it to expect a to have kind κ2.
It does this by casting a by sym η, a coercion from κ2 to κ1. We can thus use the
(standard) substitution lemma (Lemma C.35) to show that this result type is itself
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∀i , Σ; Γ c̀o γi : σi ∼ σ′i
Σ; Γ t̀y H{σ} : κ1 Σ; Γ t̀y H{σ′} : κ2

Σ; Γ c̀o H{γ} : H{σ} ∼ H{σ′}
Co_Con

Σ; Γ c̀o γ1 : τ1 ∼ τ2

Σ; Γ c̀o γ2 : σ1 ∼ σ2

Σ; Γ t̀y τ1 σ1 : κ1 Σ; Γ t̀y τ2 σ2 : κ2

Σ; Γ c̀o γ1 γ2 : τ1 σ1 ∼ τ2 σ2

Co_AppRel

Σ; Γ c̀o γ1 : τ1 ∼ τ2

Σ; Γ c̀o γ2 : σ1 ∼ σ2

Σ; Γ t̀y τ1 {σ1} : κ1 Σ; Γ t̀y τ2 {σ2} : κ2

Σ; Γ c̀o γ1 {γ2} : τ1 {σ1} ∼ τ2 {σ2}
Co_AppIrrel

Σ; Γ c̀o γ0 : τ1 ∼ τ2

Σ; Γ t̀y τ1 γ1 : κ1 Σ; Γ t̀y τ2 γ2 : κ2

Σ; Γ c̀o γ0 (γ1, γ2) : τ1 γ1 ∼ τ2 γ2

Co_CApp

Σ; Γ c̀o η : κ1 ∼ κ2 Σ; Γ c̀o γ0 : τ1 ∼ τ2

∀i , Σ; Γ c̀o γi : σi ∼ σ′i
alt1 = πi → σi alt2 = πi → σ′i
Σ; Γ t̀y caseκ1 τ1 of alt1 : κ1 Σ; Γ t̀y caseκ2 τ2 of alt2 : κ2

Σ; Γ c̀o caseη γ0 of πi → γi : caseκ1 τ1 of alt1 ∼ caseκ2 τ2 of alt2

Co_Case

Σ; Γ c̀o γ : τ1 ∼ τ2

Σ; Γ t̀y fix τ1 : κ1 Σ; Γ t̀y fix τ2 : κ2

Σ; Γ c̀o fix γ : fix τ1 ∼ fix τ2

Co_Fix

Σ; Γ c̀o γ1 : H1{τ1} ψ1 ∼ H ′1{τ ′1} ψ
′
1 H1 6= H ′1

Σ; Γ c̀o γ2 : H2{τ2} ψ2 ∼ H ′2{τ ′2} ψ
′
2 H2 6= H ′2

Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ c̀o absurd (γ1, γ2) η : absurd γ1 κ1 ∼ absurd γ2 κ2

Co_Absurd

Figure 5.8: Congruence rules that do not bind variables
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Σ; Γ c̀o η : κ1
Type∼Type κ2

Σ; Γ, a:Relκ1 c̀o γ : σ1
Type∼Type σ2

Σ; Γ c̀o Πa:ρη. γ : (Πa:ρκ1. σ1) ∼ (Πa:ρκ2. (σ2[a B sym η/a]))
Co_PiTy

Σ; Γ c̀o η1 : τ1 ∼ τ2 Σ; Γ c̀o η2 : σ1 ∼ σ2

Σ; Γ, c:τ1 ∼ σ1 c̀o γ : κ1
Type∼Type κ2 c #̃ γ

η3 = η1 # c # sym η2

Σ; Γ c̀o Πc:(η1, η2). γ : (Πc:τ1 ∼ σ1. κ1) ∼ (Πc:τ2 ∼ σ2. (κ2[η3/c]))
Co_PiCo

Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ, a:ρκ1 c̀o γ : τ1 ∼ τ2

Σ; Γ, a:ρκ1 t̀y τ1 : σ1 Σ; Γ, a:ρκ1 t̀y τ2 : σ2

Σ; Γ c̀o λa:ρη. γ : λa:ρκ1. τ1 ∼ λa:ρκ2. (τ2[a B sym η/a])
Co_Lam

Σ; Γ c̀o η1 : τ1 ∼ τ2 Σ; Γ c̀o η2 : σ1 ∼ σ2

Σ; Γ, c:τ1 ∼ σ1 c̀o γ : κ1 ∼ κ2 c #̃ γ
η3 = η1 # c # sym η2

Σ; Γ c̀o λc:(η1, η2). γ : (λc:τ1 ∼ σ1. κ1) ∼ (λc:τ2 ∼ σ2. (κ2[η3/c]))
Co_CLam

Figure 5.9: Congruence rules that bind variables

well typed, as needed to prove regularity (Lemma C.44). The other binding congruence
forms use similar substitutions in their conclusions, for similar reasons.

This extra substitution in the conclusion is indeed asymmetric and a bit unwieldy,58

but this treatment is, on balance, better than the only known alternative. Other
type systems similar to Pico [37, 92, 105] use an entirely different way of handling
congruence coercions with binders: instead of trying to treat a as a variable with two
different kinds, they invent fresh variables. What I write as Πa:ρη. γ, they would write
as Πη(a1, a2, c).γ, binding a1 : κ1 and a2 : κ2, as well as a coercion c : a1 ∼ a2. You can
see either of those works for the details, but I have found this construction worse than
the asymmetrical version. Other than the bookkeeping overhead of extra variables,
the three-variable version also requires us to introduce a coercion variable even when
making a congruence coercion over a Π-type over a type variable. Coercion variables
in the context cause trouble (as discussed in Section 5.10.3), and my one-variable
version helps to contain the trouble. See Section 5.10.5.3 for more discussion.

As a further support to my choice of a one-variable binding form with an asym-
metrical rule, I have implemented both versions in GHC. Initially, I implemented the
three-variable form from Weirich et al. [105]. This worked, but it was often hard to
construct the coercions, and it was sometimes a struggle to find names guaranteed to

58See the statement of the push rule S_APush (Section 5.7.4) for an example of how its unwieldiness
can bite.
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be fresh. When I refactored the code to use the one-variable version formalized here,
the code became simpler.

5.8.5.2 Congruence over coercion binders

The congruence forms over types that bind coercion variables (rules Co_PiCo and
Co_CLam) have two more wrinkles. The first is that there is no equivalent of
Co_PiTy’s η coercion that relates two propositions; we must settle for the pair of
coercions (η1, η2) that appear in Co_PiCo and Co_CLam. These coercions relate
corresponding parts of the propositions. The second wrinkle is in the c #̃ γ premise of
both of these rules.

Definition (“Almost devoid”). Define c #̃ γ (pronounced “γ is almost devoid of c”)
to mean that the coercion variable c appears nowhere in γ except, perhaps, in one of
the types related by a τ1 ≈η τ2 coercion.

The almost-devoid condition on Co_PiCo and Co_CLam restricts where the
bound variable c can appear in the coercion body. This technical restriction, based
on the original idea by Weirich et al. [105], is necessary for my proof of consistency
(Section 5.10) to go through. The motivation for the restriction is discussed in depth
in Section 5.10.3.

The key example that this restriction forbids looks like this:

Σ; Γ 6 c̀o Πc:(〈Int〉, 〈Bool〉). c : (Πc:Int ∼ Bool . Int) ∼ (Πc:Int ∼ Bool .Bool)

It would seem that this coercion would not cause harm, yet I know of no way to prove
consistency while allowing it. See Section 5.10.5 for a discussion of other approaches.

Happily, this restriction is not likely to bite when translating Dependent Haskell
programs to Pico, as we can write functions witnessing the isomorphism between the
two types related above:

to :
˜
Π(x :Rel(

˜
Πc:Int ∼ Bool . Int)). (

˜
Πc:Int ∼ Bool .Bool)

to =λ(x :Rel(
˜
Πc:Int ∼ Bool . Int)), (c:Int ∼ Bool). (x c)B c

from :
˜
Π(x :Rel(

˜
Πc:Int ∼ Bool .Bool)). (

˜
Πc:Int ∼ Bool . Int)

from=λ(x :Rel(
˜
Πc:Int ∼ Bool .Bool)), (c:Int ∼ Bool). (x c)B sym c

A compiler of Dependent Haskell creates functions such as these as it is compiling
a subsumption relationship ≤, as discussed further in Section 6.4.2. In other words,
while we don’t have (Πc:Int ∼ Bool . Int) ∼ (Πc:Int ∼ Bool .Bool), these two types
are related by ≤, in both directions. This mean that a Dependent Haskell program
that expects one of these types in a certain context, but gets the other type, is still
well typed.

When can the lack of the equality proof bite? Only when that proof is needed as a
coercion argument to some function or GADT constructor. As we’ve just seen, using
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it to cast is unnecessary, as we can just use one component of the isomorphism. The
forbidden equalities all relate Π-types over coercions. Yet, in Dependent Haskell, an
abstraction over an equality constraint is considered a polytype. Passing a polytype
as an argument is considered a use of impredicativity, which is not supported. (See
Section 4.4.4.) In particular, the equality constraint ((Int ∼ Bool)⇒ Int) ∼ ((Int ∼
Bool) ⇒ Bool) is malformed in Dependent Haskell, because it passes polytypes as
arguments to ∼ . I thus conjecture that no Dependent Haskell program is ruled out
because of the coercion variable restriction. Proving such a claim seems challenging,
however, and remains as an exercise for the reader.

5.8.5.3 (Almost) Congruence

The coercion variable restriction means that equality is not quite congruent, according
to the following definition:

Definition (Congruence). Equality is congruent if, whenever Σ; Γ c̀o γ : σ1
κ∼κ σ2 and

Σ; Γ, a:ρκ t̀y τ : κ0, there exists η such that Σ; Γ c̀o η : τ [σ1/a] κ0[σ1/a]∼κ0[σ2/a] τ [σ2/a].

If we were to try to prove that equality is congruent, it seems natural to proceed
by induction on the typing derivation for τ . However, in the proof, we are stuck when
τ = λc:φ. τ0. The congruence form for λ-types over coercions is no help because of the
coercion variable restriction.59 If we strengthen the induction hypothesis to provide
what we need in this case, then other cases fail, unable to obey the restriction.

As a concrete example, consider this: Let Γ = y :RelInt, c:3 ∼ y and τ = λ(c ′:Int ∼
Bool). xBc ′. We know Σ; Γ c̀o c : 3 ∼ y and Σ; Γ, x :RelInt t̀y τ :

˜
Π(c′:Int ∼ Bool).Bool .

Yet there seems to be no way to construct a proof of τ [3/x ] ∼ τ [y/x ].60

Instead of proving congruence, I am left proving almost-congruence, as follows:

Definition (Unrestricted coercion variables [Definition C.87]). Define a new judgment
∗̀
co to be identical to c̀o, except with the c #̃ γ premises removed from rules Co_PiCo
and Co_CLam and all recursive uses of c̀o replaced with ∗̀

co.

Now, the proof for the following theorem is straightforward:

Theorem ((Almost) Congruence [Theorem C.90]). Equality is congruent with the
judgment ∗̀co.

59Contrast to the proof of the lifting lemma in my prior work [106]; that proof relies on a critical
auxiliary lemma (their Lemma C.7) which requires a different coercion variable restriction than what
I am using here. Furthermore, I show in Section 5.10.5.2 that their restriction is too weak.

60It is tempting to try to prove this by using the Co_CLam form and then coherence forms
stitched together with transitivity; after all, the c #̃ γ restriction in Co_CLam does not affect the
types in a coherence coercion. However, the η coercion in the coherence coercion (η relates the kinds
of the types mentioned in the coherence coercion) must still be devoid of c, and that is where this
plan falls apart.
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What this means, in practice, is that we can often think of equality as congruent,
and intuition about the equality relation stemming from congruence is often accurate.
In particular, if the type τ in the statement of congruence has no coercion abstractions
or Π-types, then congruence with respect to c̀o holds.61

5.8.5.4 Consequences of congruence

Congruence is not, thankfully, a necessary property of Pico. Nowhere in the metatheory
do we rely on this result (or lack thereof).

In the implementation, however, congruence62 is used to perform some coercion
optimizations [96]. After desugaring Haskell into its Core language (currently based
on the version of System FC as described in my prior work [105]), GHC optionally
performs coercion optimization, in the hope of converting large coercions into smaller
ones that prove the same propositions. This speeds up compilation and reduces the
size of the interface files that GHC writes to disk to store information about compiled
modules; the optimization has no effect at runtime, however, because coercions are
fully erased before execution.

Congruence comes into play when optimizing a coercion such as (Πa:ρη. γ1)@γ2,
where γ1@γ2 is a decomposition form that instantiates a Π-type (Section 5.8.6.2).
Without going into further detail, in order to perform the instantiation requested, we
must find exactly the coercion suggested in the definition of congruence above. Since
Pico lacks congruence, the updated coercion optimizer sometimes fails to optimize
these coercions. The troublesome case—when we would run afoul of the c #̃ γ
restrictions in Co_PiCo and Co_CLam—is easy to detect, and the optimization is
simply skipped when this were to happen. The lack of congruence does not otherwise
bite.

5.8.6 Equality can be decomposed

Pico comes equipped with a large variety of ways of decomposing an equality to get
out a smaller one—in some sense, these are the inverses of the congruence forms. We
will approach these in batches.

5.8.6.1 The argk forms

The coercion form argk extracts a coercion between the kinds of the bound variables
in a coercion relating abstractions. The rules appear in Figure 5.10 on the next page.
The rules are actually straightforward; look at Co_ArgK for a typical example. This
form extracts the equality between κ1 and κ2 from the type of γ. The other forms work

61This intuition is hard to state precisely, because of the possibility that the contexts have abstrac-
tions over coercions. We would somehow need a premise that states that no coercion abstractions are
“reachable” from τ , but defining such a property and then proving this claim seems not to pay its way.

62What I call congruence here has been called the lifting lemma in the literature.
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Σ; Γ c̀o γ : (Πa:ρκ1. σ1) ∼ (Πa:ρκ2. σ2)

Σ; Γ c̀o argk γ : κ1 ∼ κ2

Co_ArgK

Σ; Γ c̀o γ : (Πc:(τ1 ∼ τ ′1). σ1) ∼ (Πc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk1 γ : τ1 ∼ τ2

Co_CArgK1

Σ; Γ c̀o γ : (Πc:(τ1 ∼ τ ′1). σ1) ∼ (Πc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk2 γ : τ ′1 ∼ τ ′2
Co_CArgK2

Σ; Γ c̀o γ : (λa:ρκ1. σ1) ∼ (λa:ρκ2. σ2)

Σ; Γ c̀o argk γ : κ1 ∼ κ2

Co_ArgKLam

Σ; Γ c̀o γ : (λc:(τ1 ∼ τ ′1). σ1) ∼ (λc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk1 γ : τ1 ∼ τ2

Co_CArgKLam1

Σ; Γ c̀o γ : (λc:(τ1 ∼ τ ′1). σ1) ∼ (λc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk2 γ : τ ′1 ∼ τ ′2
Co_CArgKLam2

Figure 5.10: The argk rules of coercion formation

analogously. The forms with argki are necessary because Pico has no built-in notion
of an equality between equalities: If we tried to extract a relation between propositions
like we do in Co_ArgK, we would need something that looks like φ1 ∼ φ2, which
does not exist in Pico. So, we have to extract either the left side of the propositions
or the right side.

Note that these rules are syntax-directed even though their conclusions overlap:
we can always find the proposition a coercion proves and then decide which argk rule
to use.

5.8.6.2 The instantiation forms

Given a coercion between abstractions, we can instantiate the bound variable and
get a coercion between the instantiated bodies. The rules for these coercions are in
Figure 5.11 on the following page.

These rules are essentially concrete instances of two rule schemas, one for instanti-
ation coercions built with @, and the other for “result” coercions built with res. The
instantiation coercions can work with one of three argument types (relevant type,
irrelevant type, and coercion) and one of two forms (Π and λ), leading to six very
similar rules. Along the same lines, res coercions work with both Π and λ, though
this form is agnostic to the argument flavor, so we get only two rules.

The instantiation coercions are essential in writing the push rules (Section 5.7.4)
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Σ; Γ c̀o γ : Πa:Relκ1. σ1 ∼ Πa:Relκ2. σ2

Σ; Γ c̀o η : τ1
κ1∼κ2 τ2

Σ; Γ c̀o γ@η : σ1[τ1/a] ∼ σ2[τ2/a]
Co_InstRel

Σ; Γ c̀o γ : Πa:Irrelκ1. σ1 ∼ Πa:Irrelκ2. σ2

Σ; Γ c̀o η : τ1
κ1∼κ2 τ2

Σ; Γ c̀o γ@{η} : σ1[τ1/a] ∼ σ2[τ2/a]
Co_InstIrrel

Σ; Γ c̀o η1 : Πc:φ1. σ1 ∼ Πc:φ2. σ2

Σ; Γ c̀o γ1 : φ1 Σ; Γ c̀o γ2 : φ2

Σ; Γ c̀o η1@(γ1, γ2) : σ1[γ1/c] ∼ σ2[γ2/c]
Co_CInst

Σ; Γ c̀o γ : λa:Relκ1. τ1 ∼ λa:Relκ2. τ2

Σ; Γ c̀o η : σ1
κ1∼κ2 σ2

Σ; Γ c̀o γ@η : τ1[σ1/a] ∼ τ2[σ2/a]
Co_InstLamRel

Σ; Γ c̀o γ : λa:Irrelκ1. τ1 ∼ λa:Irrelκ2. τ2

Σ; Γ c̀o η : σ1
κ1∼κ2 σ2

Σ; Γ c̀o γ@{η} : τ1[σ1/a] ∼ τ2[σ2/a]
Co_InstLamIrrel

Σ; Γ c̀o γ : λc:φ1. σ1 ∼ λc:φ2. σ2

Σ; Γ c̀o η1 : φ1 Σ; Γ c̀o η2 : φ2

Σ; Γ c̀o γ@(η1, η2) : σ1[η1/c] ∼ σ2[η2/c]
Co_CInstLam

Σ; Γ c̀o γ : ?Π∆1. τ1 ∼ ?Π∆2. τ2 |∆1| = |∆2| = n
Σ; Γ t̀y τ1 : Type Σ; Γ t̀y τ2 : Type

Σ; Γ c̀o resn γ : τ1 ∼ τ2

Co_Res

Σ; Γ c̀o γ : λ∆1. τ1 ∼ λ∆2. τ2 |∆1| = |∆2| = n
Σ; Γ t̀y τ1 : κ1 Σ; Γ t̀y τ2 : κ2

Σ; Γ c̀o resn γ : τ1 ∼ τ2

Co_ResLam

Figure 5.11: Instantiation rules of coercion formation
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of the operational semantics.63

The res coercions are a form of degenerate instantiation, usable when the body
of an abstraction (either Π or λ) does not mention the bound variable(s). Note that
both res rules require that the body types (τ1 and τ2) are well typed without any
of the bound variables in ∆1 or ∆2. These coercions also allow for the possibility of
looking through multiple binders. This ability cannot be emulated by repeated use of
res because of the possibility of an intermediate dependency. For example, consider
the reflexive coercion γ = 〈Π(a:IrrelType), (b:Rela).Type〉. We can see that res2 γ is
well typed, even though res1 γ is not (because of the appearance of a in the type of b).

We must use res instead of instantiation when we don’t have a coercion to use
for the instantiation. This situation happens in the S_KPush rule, where we need
a coercion relating the bodies of two propositionally equal Π-types, but we have no
coercions to hand to use in instantiation. See Section 5.9 for more details.

5.8.6.3 Type constants are injective

In Pico, all type constants are considered injective, as witnessed by the nth coercions,
which extract an equality between arguments of a type constant:

Σ; Γ c̀o γ : H{κ} ψ ∼ H{κ′} ψ
′

ψi = τ ψ′i = σ
Σ; Γ t̀y τ : κ1 Σ; Γ t̀y σ : κ2

Σ; Γ c̀o nthi γ : τ ∼ σ
Co_NthRel

Σ; Γ c̀o γ : H{κ} ψ ∼ H{κ′} ψ
′

ψi = {τ} ψ′i = {σ}
Σ; Rel(Γ) t̀y τ : κ1 Σ; Rel(Γ) t̀y σ : κ2

Σ; Γ c̀o nthi γ : τ ∼ σ
Co_NthIrrel

Both forms above require that we extract a coercion between type arguments, never
coercion arguments. As discussed in Section 5.8.3, we never need an explicit proof
of equality between coercions. The last line of premises in the rules are simply to
produce the kinds to put in the result proposition, where the kinds are elided in the
typesetting.

Injectivity of type constants is sometimes controversial [104] and is known to be
anti-classical [47]. However, in a type system with Type : Type, being able to prove
absurdity by combining type constant injectivity with, say, the Law of the Excluded
Middle, does not weaken any property of the language. Injectivity is vital in the
S_KPush rule and is thus a part of the language.

63It is necessary for the system to allow instantiation on Π-types; λ-types, on the other hand, are
not strictly necessary to instantiate in order to prove type safety. However, doing so is easy, and so I
took the opportunity to make the equality relation stronger.
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Σ; Γ c̀o γ : τ1 ψ1 ∼ τ2 ψ2

Σ; Γ t̀y τ1 : ’Πδ1. κ1 Σ; Γ t̀y τ2 : ’Πδ2. κ2

Σ; Γ c̀o η : ’Πδ1. κ1 ∼ ’Πδ2. κ2

Σ; Γ c̀o leftη γ : τ1 ∼ τ2

Co_Left

Σ; Γ c̀o γ : τ1 σ1 ∼ τ2 σ2

Σ; Γ t̀y σ1 : κ1 Σ; Γ t̀y σ2 : κ2 Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ c̀o rightη γ : σ1 ∼ σ2

Co_RightRel

Σ; Γ c̀o γ : τ1 {σ1} ∼ τ2 {σ2}
Σ; Γ t̀y σ1 : κ1 Σ; Γ t̀y σ2 : κ2 Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ c̀o rightη γ : σ1 ∼ σ2

Co_RightIrrel

Figure 5.12: Function application decomposition coercions

5.8.6.4 Matchable types are generative and injective

In Section 4.2.4, I define matchable as the conjunction of generative and injective. Pico
includes two coercion forms that witness the generativity (left) and injectivity (right)
of matchable function types, as shown in Figure 5.12. Note that the applications in the
proposition proved by γ are matchable applications τ ψ, distinct from unmatchable
applications τ˜ψ.Interestingly, these coercions require an extra coercion η that proves that the kinds
of the output types are equal. This kind coercion is necessary to prove the consistency
of the kind coercion (Section 5.8.1). It is curiously absent from my prior work on kind
equalities [105], but I now believe that this coercion is necessary—though I have yet to
find a counterexample to consistency by omitting it, I am unable to prove consistency
without it.

Does adding this extra argument to left and right now weaken Pico’s expressive-
ness, compared to its predecessors? Yes and no:

Yes, fewer coercions are available, when comparing against the system in my
prior work [105]. However, I argue in Section 5.10.5.2 that the proof in that prior
work is broken, precisely around its kind coercion. If Pico reduces expressiveness
compared to an unsound system, this may be an improvement.

No fewer coercions are available, when comparing against the System FC before
kind equalities (that is, the System FC in GHC 7). Prior to GHC 8, the left
and right coercions required the kinds of the output types to be identical. In
those cases, the η coercion in Pico’s left and right would just be reflexive.
Though this restriction on the kinds was overlooked in the original publication
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on System FC [87], it appears in later treatments [11, 32].64

I thus conclude that adding these extra kind coercions is appropriate, considering that
their omission in GHC 8.0 may be unsafe and that including them is conservative
with respect to GHC 7.

5.8.7 Equality includes β-reduction

The last rule to consider in the c̀o judgment is the one that witnesses β-reduction:

Σ; Γ t̀y τ : κ Σ; Γ t̀y τ
′ : κ

Σ; Γ s̀ τ −→ τ ′

Σ; Γ c̀o step τ : τ ∼ τ ′
Co_Step

This rule is in place of having β-equivalence be part of definitional equality, as
is done in some other dependently typed languages, such as Coq. Instead, in order
to get a type to reduce, a Pico program must invoke the step coercion explicitly.
Generating these coercions is quite painful to do by hand (as seen in the example in
Section 5.5.3), but straightforward for a compiler.65

You will see that the rule requires both the redex and the reduct to be well kinded
at kind κ. The requirement on the reduct is implied by the preservation theorem
(Theorem C.46), but omitting it from the rule means that the proofs of proposition
regularity (Lemma C.44) and preservation would have to be mutually inductive. It
seems simpler just to add this extra, redundant premise.

5.8.8 Discussion

The coercion language in Pico is quite extensive, boasting (or suffering from, depending
on your viewpoint) 37 separate typing rules. I consider here, briefly, why this is so.

There are several coercion forms (to wit, 10) that are absolutely essential for Pico
to be proven type-safe and yet remain meaningful. These include the equivalence and
coherence rules, assumptions, the Π-congruence form over type variables,66 argk over
Π, instantiation over Π, injectivity, and β-reduction. With the exception of assumptions
(Co_Var) and β-reduction (Co_Step), these forms are all needed somewhere in the
push rules (Section 5.7.4).67 Assumptions and β-reduction, however, make Pico what

64The left and right coercions were omitted entirely from Yorgey et al. [107]. Correspondingly,
they were dropped from the implementation in GHC 7.4. However, users found that this omission
prevented some programs from being accepted. See GHC ticket #7205.

65If a type must reduce many times, it would be more efficient to support a stepn coercion form
that performs n steps at once. Indeed, this is what I plan to implement. It is easier, however, to
prove properties about single-step reduction.

66This form is needed only to support reduction under irrelevant λs.
67I am considering here a version of Pico without unsaturated matches. If we wish to include

unsaturated matches, we would also need res over Π.
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it is; the language would be near useless as a candidate for an internal dependently
typed language without these.

The rest of the forms merely enrich the equality relation, while remaining inessential.
I have decided to include them to make the equality relation relate more types. Doing
so makes Pico—and, in turn, Dependent Haskell—more expressive. When adding
rules, we must be careful that the new forms do not violate consistency (or other
proved properties), so they are not entirely free. Perhaps there are more useful, safe
rules one could add later, simply by updating the relevant proofs. Because Pico
never inspects the structure of a coercion, adding new rules introduces only a minimal
burden on any implementation—essentially just for bookkeeping. I thus leave open
the possibility of more coercions as Pico gets used in practice.

5.9 The S_KPush rule

Σ t̀c H : a:Irrelκ; ∆;H ′ ∆ = ∆1,∆2 n = |∆2|
κ = ’Πa:Irrelκ,∆.H

′ a

σ = ’Π(∆2[τ/a][ψ/dom(∆1)]).H ′ τ

σ′ = ’Π(∆2[τ ′/a][ψ
′
/dom(∆1)]).H ′ τ ′

Σ; Rel(Γ) c̀o η : σ ∼ σ′

Σ; Rel(Γ) v̀ec τ
′ : a:Relκ

∀i , γi = build_kpush_co(〈κ〉@(nths (resn η));ψ1...i−1)
∀i , ψ′i = cast_kpush_arg(ψi ; γi)

H → κ′ ∈ alt

Σ; Γ s̀ caseκ0 (H{τ} ψ)B η of alt −→ caseκ0 H{τ ′} ψ
′
of alt

S_KPush

The S_KPush rule handles the case where the scrutinee of a case expression is
headed by a cast. As in all previous work on System FC, this push rule is the most
intricate. However, in this dissertation, I have taken a new approach to S_KPush
that does not require the so-called “lifting lemma” of previous work.68 This lifting
lemma is a generalization of the congruence property, which does not hold in Pico
(Section 5.8.5.3). Instead, I rely on instantiating the type of a type constant, and on
the fact that type constant types are always closed. As the computational content
of the S_KPush rule must actually be implemented as part of a compiler that uses
Pico, this (slightly) simpler statement of S_KPush may prove to be a measurable
optimization in practice.

A few examples can demonstrate the general idea. Firstly, note that in S_KPush,
only the scrutinee matters; the alternatives remain the same before and after the
reduction. With that in mind, we can see scrutinees before and after pushing in
Figure 5.13 on the following page.

68See for example, Weirich et al. [105], which contains a good, detailed explication of the lifting
lemma.
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Original scrutinee Assumptions / Notes
Pushed scrutinee
True B 〈Bool〉 simple case; no universals (1)
True

Just{Int} 3B γ Σ; Γ c̀o γ : Maybe Int ∼ Maybe b
b:IrrelType ∈ Γ

(2)

Just{b} (3B argk (〈’Πa:IrrelType, x :Rela.Maybe a〉@(nth1 γ)))

MkG {Bool} 〈Bool〉B γ Σ; Γ c̀o γ : G Bool ∼ G b
b:IrrelType ∈ Γ

(3)

MkG {b} (sym (argk1 η) # 〈Bool〉 # argk2 η), where
η = 〈’Π(a:IrrelType), (c:a ∼ Bool).G a〉@(nth1 γ)

(Pack{Bool} True MkP{Bool ,True})B γ Σ; Γ c̀o γ : ’Πδ1.Ex Bool ∼ ’Πδ2.Ex b
δ1 = y :RelProxy Bool True
δ2 = y :RelProxy b (True B γ2)
Σ; Γ c̀o γ2 : Bool ∼ b
b:IrrelType ∈ Γ

(4)

Pack{b} {True B η′0} (MkP{Bool ,True} B η′1), where
κ = ’Π(k :IrrelType), (a:Irrelk), (x :RelProxy k a), (y :RelProxy k a).Ex k
η0 = 〈κ〉@(nth1 (res1 γ))
η′0 = argk η0

η1 = η0@(True ≈η′0 True B η
′
0)

η′1 = argk η1

The reductions above assume the following datatypes. In Haskell:

data Bool = False | True
data Maybe a = Just a | Nothing
data G a where
MkG :: G Bool

data Proxy (a :: k) = MkP
data Ex k where
Pack :: ∀ (a :: k). Proxy a→ Proxy a→ Ex k

And in Pico:

Σ =Bool :(∅),False:(∅;Bool),True:(∅;Bool)
Maybe:(a:Type), Just:(x :Rela;Maybe),Nothing :(∅;Maybe)
G :(a:Type),MkG :(c:a ∼ Bool ;G )
Proxy :(k : Type, a : k),MkP :(∅;Proxy)
Ex :(k :Type),Pack :(a:Irrelk , x :RelProxy k a, y :RelProxy k a;Ex)

Figure 5.13: Examples of S_KPush
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build_kpush_co(γ;∅) = γ

build_kpush_co(γ;ψ, τ) = let c := build_kpush_co(γ;ψ) in
c@(τ ≈argk c τ B argk c)

build_kpush_co(γ;ψ, {τ}) = let c := build_kpush_co(γ;ψ) in
c@{τ ≈argk c τ B argk c}

build_kpush_co(γ;ψ, η) = let c := build_kpush_co(γ;ψ) in
c@(η, sym (argk1 c) # η # argk2 c)

cast_kpush_arg(τ ; γ) = τ B argk γ

cast_kpush_arg({τ}; γ) = {τ B argk γ}
cast_kpush_arg(γ; η) = sym (argk1 η) # γ # argk2 η

Figure 5.14: Helper functions implementing S_KPush

Example (1) In this example, there are no universals of the type in question (Bool),
and so “pushing” is extraordinarily simple: just drop the coercion. We can see this
in terms of S_KPush in that both τ and ψ are empty. Note that if we had a non-
reflexive coercion in the scrutinee—that is, if the scrutinee were, say, True B γ with
Σ; Γ c̀o γ : Bool ∼ a—the case expression would not be well typed. Rule Ty_Case
requires the type of a scrutinee to be of the form ’Π∆.H σ. The type a does not
have this form, and so such a scrutinee is disallowed. Also note that we cannot have
True B γ with Σ; Γ c̀o γ : Bool ∼ Int due to the consistency lemma (Section 5.10).

Example (2) This is the simplest non-trivial example. We need to push a coercion
γ proving Maybe Int ∼ Maybe b into Just{Int} 3. This coerced scrutinee has type
Maybe b; the pushed scrutinee must have the same type. We thus know it must start
with Just{b}. The only challenge left is to cast the argument, 3, with a coercion that
proves Int ∼ b. We will always be able to extract this coercion from the coercion
casting the scrutinee, γ. But how, in general?

The coercion needed to cast each (existential) argument to a constructor must
surely depend on the type of the constructor. Previous versions of System FC did
a transformation on this type to produce the coercion. In this work, I instantiate
the type using the @ operator (Section 5.8.6.2) via the helper metatheory functions
build_kpush_co and cast_kpush_arg, presented in Figure 5.14.

In the present case—pushing a coercion into Just : ’Πa:IrrelType, x :Rela.Maybe a—
we take Just’s type and instantiate a by the coercion nth1 γ, which proves Int ∼ b.
We are thus left with a coercion that proves

(’Πx :RelInt.Maybe Int) ∼ (’Πx :Relb.Maybe b).
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b
sym (argk1 η)−−−−−−−−→ Booly〈Bool〉

Bool ←−−−−−−−−
argk2 η

Bool

Figure 5.15: “Casting” a coercion in Example (3)

Then, all we have to do is use argk to extract the coercion proving Int ∼ b and we
can use it to cast 3.

Seeing the above action in the definition for S_KPush may be challenging. Let’s
take another look, focusing on the metavariables in the definition of the rule (presented
in Figure 5.7 on page 102). The type σ is the type of the underlying (uncoerced)
scrutinee, and σ′ is the type of the coerced scrutinee. In our example, we have
σ = Maybe Int and σ′ = Maybe b. Note that neither of these are ’Π-types, and thus
the telescope ∆2 from the rule is empty, with n = 0. The κ metavariable in the rule
is the type of Just, above. The coercion we are building is the one to cast the first
argument, that is, γ1. The second argument to build_kpush_co is a list of all previous
existential arguments, but in our case, there are no previous arguments, so this list is
empty. We thus have γ1 = build_kpush_co(〈κ〉@(nth1 γ);∅).69 We can see from the
definition of build_kpush_co that the function just returns its first argument when
its second argument is empty, and so we get γ1 = 〈κ〉@(nth1 γ) as desired. The use
of cast_kpush_arg is to apply the right argk form (Section 5.8.6.1), depending on
whether we are casting a type or “casting” a coercion.

We focus on understanding cast_kpush_arg on the next example.

Example (3) The datatype G is a simple-as-they-come GADT. In this example,
we cast MkG :: G Bool to have type G b (for some type variable b). The action in
S_KPush here is actually quite similar to the previous case, because MkG is quite
similar to Just: both take one argument, whose type depends on the one universal
parameter. The difference here is that MkG ’s argument is a coercion, whereas Just’s is
a type. We thus cannot use argk in exactly the same way as before, instead requiring
argk1 and argk2, as diagrammed in Figure 5.15. In this example, two of the steps in
the diagram are redundant, but they will not be, in general. It can be convenient to
think of constructions such as this as “casting” a coercion—that is, taking the coercion
〈Bool〉 and changing it to connect b with Bool . Indeed, prior work [105] even used a
special notation for this: γ B η1 ∼ η2, but I find it clearer to avoid the sugar.

69Technically, we should write res0 γ, because the superscript in res coercions is part of the
language, not the metatheory. However, a res0 coercion is a no-op, so I leave it out here for simplicity.
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Example (4) Having warmed ourselves up on the simpler examples above, Example
(4) demonstrates the full complexity of S_KPush, including dependent existential
arguments and an unsaturated scrutinee. We’ll take these complications one at a time.

Having dependent existentials motivates the intricacies of build_kpush_co. Since
the pushed-in cast changes universal arguments (unless it’s reflexive), we need to cast
existential arguments that may be dependent on the universals. However, if a later
existential argument is dependent upon an earlier one and we change the earlier one,
we must also change that later one. In this example, the first existential argument
(instantiated to True) depends on the universal argument (instantiated to Bool), and
the second existential depends on the first. The first existential is cast by η′0 and thus
the second must be cast by η′1, which essentially replaces the occurrence of True in the
type of the applied MkP constructor with True B η′0, using a coherence coercion built
with ≈. Indeed, this is the whole point of build_kpush_co—using coherence to alter
the types of later existentials depending on earlier ones. Here is the critical correctness
property of build_kpush_co:

Lemma (Correctness of build_kpush_co [Lemma C.45]).
Assume Σ; Γ c̀ev ψ : ∆[τ/a], and let γi = build_kpush_co(η;ψ1...i−1) and ψ′i =
cast_kpush_arg(ψi ; γi). If Σ; Rel(Γ) c̀o η : (’Π∆. σ)[τ/a] ∼ (’Π∆. σ)[τ ′/a], then:

1. Σ; Rel(Γ) c̀o build_kpush_co(η;ψ) : σ[τ/a][ψ/dom(∆)] ∼ σ[τ ′/a][ψ
′
/dom(∆)]

2. Σ; Γ c̀ev ψ
′
: ∆[τ ′/a]

This lemma is phrased in terms of c̀ev; that relation includes the same elements as v̀ec

but allows induction from right-to-left instead of the usual left-to-right. The η in the
lemma statement relates the type of a constructor to itself, but with the universals
instantiated with potentially different concrete arguments. These instantiations come
directly from the coercion being pushed into the scrutinee, by way of nth. (Note that
the ’Π quantifiers in the type of η above are not a consequence of the possibility of
unsaturation; instead, these are the existentials of the data constructor.) The lemma
concludes that the resulting coercion relates the instantiated coercion (that is, the
one built by build_kpush_co) to itself, with substitutions for both the universals and
some existentials. Along the way, it also asserts the validity of the cast existentials,
via the c̀ev result.

The remaining detail of Example (4) is its unsaturation. This is handled more
simply by a res coercion (Section 5.8.6.2), which looks through binders to relate the
bodies of two abstract types. Indeed, S_KPush is the reason that the res coercion
exists at all, though it is not a burden to support in the metatheory.

5.10 Metatheory: Consistency
Broadly speaking, the type safety proof proceeds along lines well established by prior
work [11, 31, 106]. Indeed, the only challenge in proving the preservation theorem
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τ1 ∝ τ2 Type compatibility

τ1 is not a value
τ1 ∝ τ2

C_NonValue1

τ2 is not a value
τ1 ∝ τ2

C_NonValue2

H{τ} ψ ∝ H{τ ′} ψ
′ C_TyCon

τ ∝ τ ′

Πa:ρκ. τ ∝ Πa:ρκ′. τ ′
C_PiTy

Πc:φ. τ ∝ Πc:φ′. τ ′
C_PiCo

λδ. τ ∝ λδ′. τ ′
C_Lam

Figure 5.16: Type compatibility

is in dealing with S_KPush. The tricky bit is all in proving the correctness of
build_kpush_co; see Section 5.9. Otherwise, the proof of preservation is as expected.

On the other hand, progress is a challenge, as it has been in previous proofs of
type safety of System FC. We proceed, as before, by proving consistency and then
using that to prove progress. (The definition for ∝ is in the next subsection.)

Lemma (Consistency [Lemma C.74]). If Γ contains only irrelevant type variable
bindings and Σ; Γ c̀o γ : τ1 ∼ τ2 then τ1 ∝ τ2.

We restrict Γ not to have any coercion variables bound. Otherwise, a coercion
assumption might relate, say, Int and Bool and we would be unable to prove consistency.
As consistency is needed only during the progress proof, this restriction does not pose
a problem.

5.10.1 Compatibility

The statement of consistency depends on the τ1 ∝ τ2 relation (pronounced “τ1 is
compatible with τ2”), as given in Figure 5.16. The goal of compatibility is to relate
any two values (as defined in Section 5.7.1) that have the same head; non-values
are compatible with everything. Note, in particular, in C_TyCon, that we care
only that the two H are the same. The universals (τ/τ ′) and existentials (ψ/ψ′) are
allowed to differ. The one exception to this general scheme is in the C_PiTy rule,
where we require the bodies τ/τ ′ also to be compatible. This is necessary because
irrelevant binders are erased, and we must thus be sure that any exposed types are
also compatible.
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Consistency is used in the progress proof mainly in order to establish the typing
premises of the push rules (Section 5.7.4). A representative example is in the case
when we are trying to show that an application τ1 τ2 is either a value or can step (it is
clearly not a coerced value; recall the statement of the progress theorem from Section
5.7). The induction hypothesis tells us that τ1 is a value, a coerced value, or can step.
If it can step, we are done by S_App_Cong. If τ1 is a value, we can determine that
it is a λ-abstraction and thus we can do β-reduction. The remaining case is when τ1 is
a coerced value v B γ. We need to be able to show that γ relates two Π-types in order
to use S_PushRel. The right-hand type must be a Π-type because it is the function
in an application. But the only way we can show that the left-hand type is a Π-type
is by appealing to consistency.

We know, at this point, that the type being coerced is a value; thus its type is also
a value (Lemma C.76, also introduced in Section 5.7.1). At this point, now that we
know that both types involved in the type of the coercion γ are values, compatibility
becomes a much stronger definition, allowing us to conclude that if the types are
compatible and if one is a Π-type, the other must surely also be a Π-type. Because we
can rule out non-values in the places where we wish to invoke the consistency lemma,
the flexibility around non-values does not get in our way.

5.10.2 The parallel rewrite relation

To prove consistency, I (following prior work) define a parallel rewrite relation, written
τ1  τ2, and show that this relation includes pairs of compatible types only. A small
wrinkle with this definition is that the rewrite relation works over only types whose
coercions have been erased, as per the b·c operation, initially introduced along with
coherence coercions in Section 5.8.3. The operation, as you may recall, removes all
casts from a type, and replaces coercion arguments with an uninformative •. Stripping
out casts and coercions is important in the rewrite relation; if the rewrite relation
considered these features, the language would lose its coherence property. Going
forward, I use a convention where all types written as being related by  have had
their coercions erased.

The rewrite relation  appears in Figure 5.17 on the next page and Figure 5.18
on page 126. Following conventions in the rewriting literature, I write τ1  τ3  τ2 to
mean that τ1  τ3 and τ2  τ3, and I write τ1  ∗ τ2 to mean the reflexive, transitive
closure of  .

Note the Beta rules, which work over only unmatchable applications τ˜ψ. Thisfact allows us to conclude that matchable applications τ ψ never undergo β-reduction,
in turn allowing us to prove that the left and right coercions are sound.
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τ  τ ′ Type parallel reduction, over erased types

τ  τ
R_Refl

τ  τ ′

H{τ}  H{τ ′}
R_Con

τ  τ ′ σ  σ′

τ σ  τ ′ σ′
R_AppRel

τ  τ ′ σ  σ′

τ {σ} τ ′ {σ′}
R_AppIrrel

τ  τ ′

τ • τ ′ •
R_CApp

δ  δ′ τ  τ ′

Πδ. τ  Πδ′. τ ′
R_Pi

δ  δ′ τ  τ ′

λδ. τ  λδ′. τ ′
R_Lam

τ  τ ′

fix τ  fix τ ′
R_Fix

τ  τ ′

absurd • τ  absurd • τ ′
R_Absurd

κ κ′ τ  τ ′ σ  σ′

caseκ τ of π → σ  caseκ′ τ ′ of π → σ′
R_Case

τ1  τ ′1 τ2  τ ′2
(λa:Relκ. τ1)˜τ2  τ ′1[τ ′2/a]

R_BetaRel

τ1  τ ′1 τ2  τ ′2
(λa:Irrelκ. τ1)˜{τ2} τ ′1[τ ′2/a]

R_BetaIrrel

τ  τ ′

(λ•:φ. τ)˜• τ ′
R_CBeta

alti = H → τ0 ψ  ψ
′

τ0  τ ′0

caseκH{τ} ψ of alt  τ ′0 ψ
′ •

R_Match

alti = _→ σ no alternative in alt matches H σ  σ′

caseκH{τ} ψ of alt  σ′
R_Default

σ  σ′ κ κ′

fix (λa:Relκ. σ) σ′[fix (λa:Relκ′. σ′)/a]
R_Unroll

Figure 5.17: Parallel reduction over erased types
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δ  δ′ Parallel reduction of binders

κ κ′

a:ρκ a:ρκ′
R_TyBinder

τ  τ ′ κ1  κ′1 κ2  κ′2 σ  σ′

•:τ κ1∼κ2 σ  •:τ ′ κ′1∼κ′2 σ′
R_CoBinder

γ  γ′ “Reduction” of erased coercion

• •
R_ErasedCo

Figure 5.18: Parallel reduction auxiliary relations

5.10.2.1 Substitution

The relation  is almost a non-deterministic, strong version of normal reduction
(Σ; Γ s̀ τ −→ τ ′). In all the congruence forms (toward the top of Figure 5.17 on the
previous page), the relation definition recurs in every component, as necessary to
support the following lemma:

Lemma (Parallel reduction substitution in parallel [Lemma C.51]). Assume ψ  ψ
′
.

1. If τ1  τ2, then τ1[ψ/z ] τ2[ψ
′
/z ].

2. If δ1  δ2, then δ1[ψ/z ] δ2[ψ
′
/z ].

Note that all of the reductions are single-step.
Beyond the congruence rules, the rewrite relation includes parallel variants of

the reduction rules from the normal step relation, toward the bottom of the figure.
Note that these allow the components of a type to step as the reduction happens, as
required for the local diamond lemma needed to prove confluence.

5.10.2.2 Confluence

This reduction relation is confluent (that is, has the Church-Rosser property). I prove
this by proving a local diamond lemma:

Lemma (Local diamond [Lemma C.54]).

1. If τ0  τ1 and τ0  τ2, then there exists τ3 such that τ1  τ3  τ2.

2. If δ0  δ1 and δ0  δ2, then there exists δ3 such that δ1  δ3  δ2.

The proof of this lemma reasons by induction on the structure of τ0/δ0 and makes
heavy use of the substitution lemma above. It is not otherwise challenging. The local
diamond lemma implies confluence.
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5.10.3 Completeness of the rewrite relation

Having written a confluent rewrite relation, we must also connect this relation to our
equality relation. This is done via the following lemma:

Lemma (Completeness of type reduction [Lemma C.62]). If Σ; Γ c̀o γ : τ1
κ1∼κ2 τ2

and c #̃ γ for every c:φ ∈ Γ, then:

1. There exists some erased type ε such that bτ1c ∗ ε ∗  bτ2c.

2. There exists some erased type ε such that bκ1c ∗ ε ∗  bκ2c.

Both the statement and proof of this lemma are rather more challenging than
the previous ones. The proof proceeds by induction on the typing derivation. It is
necessary in the proof to use the induction hypothesis on a premise where the context
Γ is extended with a coercion variable (say, in the case for Co_PiCo). Thus, even
though we will only use this lemma in a context with no coercion variables, we must
strengthen the induction hypothesis to allow for coercion variables. Critically, though,
we restrict how all coercion variables in the context can appear in γ, according to the
definition of #̃, introduced in Section 5.8.5.2. This restriction allows us to skip the
impossible Co_Var case while still allowing induction in the Co_PiCo case.

The definition of c #̃ γ allows c to appear in the types related by a coherence ≈
coercion. Happily, in the Co_Coherence case (when proving clause 1 of the lemma),
we do not need to use the induction hypothesis, as a premise of Co_Coherence
states that the erased types are, in fact, already equal. It is for precisely this reason
that c #̃ γ can allow c in the types in a coherence coercion.

We also see that the statement of the completeness lemma requires us to prove
both that the types are joinable under and also that the kinds are. Otherwise, there
would be no way to handle the kind case.

Having strengthened the induction hypothesis appropriately, the actual proof is not
too hard. The case for transitivity uses confluence—this is the only place confluence is
used. The decomposition forms use the fact that when a value type reduces under  ,
the reduct has to have the same shape as the redex, with individual components in the
redex reducing to those same components in the reduct. To deal with step, we must
consider the different possibilities given by the Σ; Γ s̀ τ −→ τ ′ relation. The proper
reduction rules all have analogues in  , the congruence rules all follow from the
induction hypothesis, and the push rules cause no change to a type with its coercions
erased. To prove that the kinds are joinable, we must rely heavily on the deterministic
nature of the typing relation, but there are no other undue complications.

5.10.4 From completeness to consistency

Having established the relationship between Σ; Γ c̀o γ : φ and joinability with respect
to the rewrite relation, we must only show that the rewrite relation relates compatible
types. Here are the key lemmas:
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Lemma (Joinable types are consistent [Lemma C.72]). If ε1  ∗ ε3 ∗  ε2, then
ε1 ∝ ε2.

Lemma (Erasure/consistency [Lemma C.73]). If bτ1c ∝ bτ2c, then τ1 ∝ τ2.

Other than some care needed around irrelevant abstractions (which cause recursion
in the rules defining ∝), these lemmas are not hard to prove.

With all the groundwork laid, we can now conclude our consistency lemma, stated
near the top of this section.

5.10.5 Related consistency proofs

There are a few aspects of the consistency proof where it may be helpful to highlight
the differences between my proof here and those in prior work. The comments below
dispute other, published proofs of consistency. The authors of these proofs have
conceded to me in private communication that their proofs were incorrect and do not
disagree with my assertions here.

5.10.5.1 Non-linear, non-terminating rewrite systems are not confluent

As described in some detail by Eisenberg et al. [32], non-terminating rewrite systems
with non-linear left-hand sides are not confluent. We can easily see that the rewrite
relation  is not terminating. In this presentation, however, its “left-hand side” is
linear. Breaking from previous work, I have phrased type families in Pico as λ-
expressions that use case; thus the parallel to rewrite systems is not as apparent as
in previous work. In the context of my work here, a non-linear left-hand side would
look like a primitive equality check, as further explored in Section 5.13.2. Because the
formalization of Pico that I am presenting does not contain this equality operator, I
avoid the non-confluence problem described by Eisenberg et al. [32].

Nevertheless, promising new work in the term-rewriting community [50] suggests
that there is a way to prove consistency without confluence even after adding an
equality check. I leave it as future work to reconcile the approach here with the recent
result cited above.

5.10.5.2 The proof of consistency by Weirich et al. [105] is wrong

The type system presented in my prior work [105] is very similar to Pico, although
without dependency. Its treatment of Co_PiCo is subtly different, however. Although
there are numerous changes in how the syntax is structured, that work effectively
loosens the definition of c #̃ γ to allow c anywhere in a coherence coercion (τ1 ≈η τ2).
In contrast, Pico allows c only in τ1 or τ2, but not in η. When armed with the kind
coercion (identical in Pico to the version in the previous work), this allows us to
violate a key lemma used to prove consistency. Here is the counterexample coercion,
translated into Pico:
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γ =
˜
Πc:(〈Int〉, 〈Bool〉).kind (3 ≈c (3B c))

In the body of the abstraction, the coercion variable c has type Int ∼ Bool . We
can use a coherence coercion to relate 3 and 3B c; their kinds are also related by c.
We can then extract the kinds of the types related by the coherence coercion. Putting
it all together yields this fact:

Σ;∅ c̀o γ : (
˜
Πc:Int ∼ Bool . Int) ∼ (

˜
Πc:Int ∼ Bool .Bool)

The problem is that we can see that no rewrite relation will join the two types related
by γ. Because the prior work’s type system permits γ, its consistency proof must
be wrong. (Pico rules out γ for using c in an illegal spot—the kind coercion in the
subscript for ≈.) Note that the language in that work might indeed be consistent (I
have no counterexample to consistency), but its consistency surely cannot be proved
via the use of a rewrite relation in the way presented in that paper.

5.10.5.3 A one-variable version of Co_PiTy simplifies the consistency
proof

Weirich et al.’s language differs along a different dimension, using three binders instead
of one in its version of Co_PiTy. (See discussion in Section 5.8.5.1.) Apart from
the awkwardness of needing extra variable names, the three-binder approach poses
another problem: it introduces a coercion variable into the context. Unlike for their
Co_PiCo, Weirich et al. do not introduce a coercion variable restriction for this
coercion variable, as it is always a proof of equality between two variables. This extra
coercion variable cannot imperil consistency. To prove this in the consistency proof,
Weirich et al. employ a notion of “Good” contexts, which must be threaded through
their proofs. My one-variable version, with no bound coercion variable, avoids this
complication.

5.10.5.4 The proof of consistency by Gundry [37] is wrong

Gundry, in his thesis, takes a very different approach to proving consistency of
his evidence language, also closely related to Pico. He sets up, essentially, a step-
indexed logical relation and uses it to consider only closed coercions; when, say, a
coercion variable is added to the context, Gundry quantifies over all possible closing
substitutions.

A key property of Gundry’s logical relation is transitivity. Yet, in his proof of
transitivity, the indices do not work out. Gundry was not able to spot a straightforward
solution, and in unpublished work, Weirich also tackled this problem and failed. Neither
Gundry nor Weirich (nor I) have a proof that the step-indexed logical relation approach
is not able to work, but no one has been able to finish the proof, either.

The failure of this approach is disappointing, because Gundry’s evidence language
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does not have the coercion variable restriction inherent in Pico’s Co_PiCo rule.
Gundry’s language thus allows more coercions than does Pico.

Can a System-FC-like language be proven consistent without a coercion variable
restriction on its analogue of Co_PiCo? My personal belief is “yes”—given that I
believe such a language is, in fact, consistent—but researchers have yet to show it.

5.11 Metatheory: Type erasure
A critical property of any intermediate language used to compile Haskell is its ability to
support type erasure. Haskell takes pride in erasing all of its complicated, helpful types
before runtime, and the intermediate language must show that this is possible. Pico
achieves this goal through its relevance annotations, where irrelevant abstractions
and applications can be erased. In previous, non-dependent intermediate languages
for Haskell, irrelevant abstractions and applications were also erased, but these were
easier to spot, as they dealt with types instead of terms. In Pico, types and terms
are indistinguishable, so we are required to use relevance annotations.

I prove the type erasure property via defining an untyped λ-calculus with an
operational semantics, defining an erasure operation that translates from Pico to the
untyped calculus, and proving a simulation property between the two languages.

5.11.1 The untyped λ-calculus

The definition of our erased calculus appears in Figure 5.19 on the following page. It
is an untyped λ-calculus with datatypes (allowing for default patterns) and fix. The
language also contains two fixed constants, ’Π and

˜
Π, here only to have something for

Π-types to erase to.
The calculus also supports “coercion abstraction” via its λ•.e and e • forms. The

existence of these forms mean that coercion abstractions are not fully erased. We can
see why this must be so in the following example: let τ = λc:Int ∼ Bool . not (3B c).
The type τ is a valid Pico type. We do not have to worry about the nonsense in the
body of the abstraction because consistency guarantees that we will never be able
to apply τ to a (closed) coercion. As an abstraction, τ is a value and a normal form.
However, if our type erasure operation dropped coercion abstractions, then disaster
would strike. The erased expression would be not 3, which is surely stuck. We thus
retain coercion abstractions and applications, while dropping the coercions themselves
by rewriting all coercions with the uninformative •.

What has now happened to our claim of type erasure? Coercions exist only to
alter types, so have we kept some meddlesome vestige of types around? In a sense,
yes, we have kept some type information around until runtime. However, two critical
facts mean that this retention does not cause harm:

• Coercion applications contain no information, and therefore can be represented
by precisely 0 bits. Indeed, this is how coercions are currently compiled in GHC,
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Grammar:

e ::= a |H | e y |Π | case e of ealt |λa.e |λ•.e |fix e expression
y ::= e | • argument

ealt ::= π → e case alternative

e −→ e ′ Single-step operational semantics of expressions

(λa.e1) e2 −→ e1[e2/a]
E_Beta

(λ•.e) • −→ e
E_CBeta

ealti = H → e

caseH y of ealt −→ e y •
E_Match

ealti = _→ e no alternative in ealt matches H
caseH y of ealt −→ e

E_Default

fix (λa.e) −→ e[fix (λa.e)/a]
E_Unroll

e −→ e ′

e y −→ e ′ y
E_App_Cong

e −→ e ′

case e of ealt −→ case e ′ of ealt
E_Case_Cong

e −→ e ′

fix e −→ fix e ′
E_Fix_Cong

Erasure operation, e = TτU:

TaU= a
TH{τ}U= H
Tτ1 τ2U= Tτ1U Tτ2U

Tτ1 {τ2}U= Tτ1U
Tτ1 γU= Tτ1U •
TΠδ. τU= Π
Tτ B γU= TτU

Tcaseκ τ of altU= case TτUof TaltU
Tλa:Relκ. τU= λa.TτU
Tλa:Irrelκ. τU= TτU

Tλc:φ. τU= λ•.TτU
Tfix τU= fix TτU

Tabsurd γ τU= Π
Tπ → τU= π → TτU

Figure 5.19: The type-erased λ-calculus
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by using an unboxed representation that is 0 bits wide. Thus, no memory is
taken up at runtime.

• The coercion abstractions are not, in fact, meddlesome. The way in which
coercion abstractions could cause harm at runtime is by causing a program to be
a value when the user is not expecting it. For example, if a compiler translated
the Haskell program 1 + 2 into the expression λ•.1 + 2, then we would never
get 3. I thus make this claim: no Haskell program ever evaluates to a coercion
abstraction. This claim is properly a property of the type inference / elaboration
algorithm and so is deferred until Section 6.10.2.

One may wonder why Pico needs coercion abstractions at all. I can provide two
reasons: to preserve the simplified treatment of case that does not bind variables, and
in order to enable floating. An optimizer may decide to common up two branches of a
case expression (i.e., float the branches out), both of which bind the same coercion
variable. If there were no coercion abstraction form, this would be impossible. It is a
correctness property of the optimizer (well beyond the scope of this dissertation) to
make sure that the floated coercion abstraction does not halt evaluation prematurely.

5.11.2 Simulation

Here is the simulation property we seek:

Theorem (Type erasure [Theorem C.83]). If Σ; Γ s̀ τ −→ τ ′, then either TτU −→ Tτ ′U
or TτU = Tτ ′U.

Note that the untyped language might step once or not at all. For example, when
Pico steps by a push rule, the untyped language does not step. The proof of this
theorem is very straightforward.

5.11.3 Types do not prevent evaluation

Proving only that the erased calculus simulates Pico is not quite enough, as it still
might be possible that an expression in the erased calculus can step even though
the Pico type from which it was derived is a normal form. The property we need is
embodied in this theorem:

Theorem (Types do not prevent evaluation [Theorem C.86]). Suppose Σ; Γ t̀y τ : κ
and Γ has only irrelevant variable bindings. If TτU −→ e ′, then Σ; Γ s̀ τ −→ τ ′ and
either Tτ ′U = e ′ or Tτ ′U = TτU.

This theorem would be false if Pico did not step under irrelevant binders, for
example.

The proof depends on both the progress theorem and the type erasure (simulation)
theorem above, as well as this key lemma:
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Lemma (Expression redexes [Lemma C.84]). If TτU is not an expression value, then
τ is neither a value nor a coerced value.

This lemma is straightforward to prove inductively on the structure of τ , and then
the proof of the theorem above simply stitches together the pieces.

5.12 Design decisions
In the course of designing Pico, I have had to make quite a number of design decisions.
Some of these are forced by external constraints (such as the need for two Π-forms),
but others have been relatively free choices. In this section, I revisit some of these
decisions and try to motivate why I have built Pico in the way that I have. It is
my hope that this section will empower readers who wish to extend or alter Pico to
understand its design better.

5.12.1 Coercions are not types

One alternative I considered was to make a coercion γ a possible production of a type
τ . This would allow, for example, the form τ1 τ2 to encompass both type application
and coercion application. Going down this route, propositions φ would also have to
become kinds κ, and we would have a rule such as

Σ; Γ c̀o γ : φ

Σ; Γ t̀y γ : φ
Ty_Coercion

This alternative design does not cause trouble with type safety, because we are injecting
the safe coercions into the unsafe types. The other way around—injecting potentially
non-terminating types into coercions—would lead to chaos.

This injection would simplify aspects of the grammar and rules. For example, the
argk1 and argk2 coercions could be rewritten in terms of argk and nth.

In the end, I decided against this design because it simply moves the complexity
around. Instead of the syntactic complexity inherent in Pico’s actual design, this
injection would cause complexity in needing to rule out the presence of coercions in
various places where they would not appear. For example, the scrutinee of a case can
never be a coercion, and there is no good way to define what TγU should be. The
design I chose adds a little syntactic overhead to avoid these thorny proof obligations,
and that seems to be a win.

5.12.2 Putting braces around irrelevant arguments

A similar design decision was to put braces around irrelevant arguments. The syntactic
distinction between relevant arguments and irrelevant ones is not necessary for syntax-
directedness, because we can always look up the type of the function to see whether
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we should consider the type application to be relevant or irrelevant. Yet putting this
distinction directly in the syntax makes certain parts of the metatheory cleaner, when
relevant and irrelevant applications are treated separately. Marking relevance in the
syntax also allows us to define an erasure operation that is not type-directed.

5.12.3 Including types’ kinds in propositions

Given that we can always extract a type’s kind from the type, why is it necessary
to mark all propositions with the types’ kinds, as in τ1

κ1∼κ2 τ2? (Recall that all
propositions in Pico are so marked, even though the kinds are frequently elided in the
typesetting.) Once again, having details present directly in the syntax of propositions
is more convenient than having those details implicit in the kinds of types. In this
case, the kinds are necessary when defining argk1 and argk2. When proving the
completeness of the rewrite relation (Section 5.10.3), we must be able to show that the
kinds of the two types related by a coercion are joinable. Without having the kinds in
the types erased of coercions (that is, in the output of b·c), this is not provable.

An alternative here would be to have the erased language maintain the kinds
but to omit them from Pico proper, but that makes erasure type-directed and more
challenging. It seems simpler (and rather less error-prone) once again to make the
syntax more ornate and the proofs shorter.

5.13 Extensions
I conclude this chapter by considering several extensions one might want to make to
Pico to support a few more features of Haskell.

5.13.1 let

Haskell allows binding variables with let, and it would be convenient to do so in
Pico as well. We shall consider the non-recursive case first and then move on to the
complexities of letrec. Below, flouting Haskell convention, I use let to refer exclusively
to the non-recursive case and use letrec when considering recursive bindings.

Non-recursive let would be very easy to incorporate. At first blush, we could
consider let as a derived form, much as described in the literature [77, Section 11.5],
replacing let (x : κ) := τ inσ with (λx :Relκ. σ) τ . However, doing so would make
optimizations harder: with the explicit let form, the optimizer can know the value of x
in σ; this connection is lost with the applied λ-expression. Nevertheless, adding let as
a new proper type form would be straightforward. We could additionally incorporate
the ability to bind a coercion variable proving that, say, x ∼ τ in σ. We would also add
a new rule to the operational semantics expanding out all let definitions directly; an
implementation may wish to optimize this, however. The only real challenge we would
run into is adding a congruence coercion for let, which would share the complications
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of the other binding forms (see Section 5.8.5.1). The designer of this extension could
choose, however, to omit the congruence coercion for let, as the coercion is not strictly
necessary.

Recursive letrec has all of the complexities above, along with the challenge of
being recursive. In an expression such as letrec (x : κ) := τ inσ, we would not be able
to bind a coercion variable witnessing the equality between x and τ , as that would
bring us into the realm of very dependent types [42]. Even ignoring that complication,
we may also wish to consider the operational semantics of letrec. To my surprise, I
am unable to find a published account of an operational semantics that deals with
letrec, other than my own unproven version [26]. I can imagine rewriting a letrec
to a form where each recursive occurrence of a variable is replaced with a copy of
the entire letrec. I believe this would hold together, though I have not worked out
the details. I do not wish to begin to imagine what a congruence coercion for letrec
would look like.

Despite these challenges, I do think an implemented version of Pico could accom-
modate a primitive letrec rather easily, as the implementation of the language in an
optimizing compiler would not have to include the operational semantics rules verbatim.
Indeed, despite many published versions of the operational semantics of System FC
(e.g., [87]), GHC does not currently implement these rules directly. In a similar fashion,
an implementation of Pico would not need to include the hideously inefficient version
of letrec sketched above but could use existing techniques to implement recursion.

Given that Pico incorporates general recursion via fix, adding such constructs
should not imperil type safety.

5.13.2 A primitive equality check

Haskell also supports non-linear patterns in its type families, as canonically embodied
by this type function:

type family Equals x y where
Equals a a = ’True
Equals a b = ’False

The Equals type family effectively compares its two arguments. If they are identical
(reducing other type families as possible and necessary), Equals returns True. On the
other hand, if the two arguments are apart, in the sense described by Eisenberg et al.
[32],70 Equals reduces to False. If the arguments are neither identical nor apart, the
call cannot reduce.

Equals cannot be represented in Pico as described in this chapter; no typing rule
has a notion of apartness built into it. Thus we need a new primitive if we are to

70Briefly, two types are apart if there is no possibility of a coercion between them. Or, rather, it is
a conservative approximation of non-coercibility, as non-coercibility is undecidable.
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Σ; Γ t̀y τ1 : κ Σ; Γ t̀y τ2 : κ

Σ; Γ t̀y equals τ1 τ2 : Bool
Ty_Equals

Σ; Γ t̀y τ : κ

Σ; Γ c̀o axEquals τ : equals τ τ ∼ True
Co_AxEquals

Σ; Γ t̀y τ1 : κ Σ; Γ t̀y τ2 : κ
apart(τ1; τ2)

Σ; Γ c̀o axApart τ1 τ2 : equals τ1 τ2 ∼ False
Co_AxApart

Σ; Γ s̀ τ1 −→ τ ′1
Σ; Γ s̀ equals τ1 τ2 −→ equals τ ′1 τ2

S_Equals_Cong1

Σ; Γ s̀ τ2 −→ τ ′2
Σ; Γ s̀ equals v1 τ2 −→ equals v1 τ ′2

S_Equals_Cong2

Σ; Γ s̀ equals v v −→ True
S_EqTrue

v1 6= v2

Σ; Γ s̀ equals v1 v2 −→ False
S_EqFalse

Figure 5.20: Typing rules for primitive equality

compile Equals. Actually, we need three:

τ ::= . . . | equals τ1 τ2

γ ::= . . . | axEquals τ | axApart τ1 τ2

The typing rules appear in Figure 5.20. Other than the new coercions axEquals
and axApart, these rules might be what one would expect: the equals form evaluates
its two arguments and then tests for equality. However, just having this evaluation
behavior (without the two new coercions) is not quite enough to emulate Haskell’s
Equals: they cannot handle the case where Equals a a reduces to True, where a is
locally bound type variable. In Haskell, the equality condition arising from a non-linear
use of a variable in a pattern does not require that the arguments be reduced to any
normal form; we thus have to handle this possibility in Pico. The same is true for the
axApart coercion, necessary to handle the case (like equals Int (Maybe a), where a is
a local type variable) where the arguments are demonstrably apart but not normal
forms.

The typing rules above cause a challenge in proving the completeness of the rewrite
relation (Section 5.10.3). To prove completeness for Co_AxEquals, we would need
to show that equals τ τ eventually reduces to True, but that requires termination.
To prove completeness for Co_AxApart, we would need to show that τ1 and τ2
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reduce to distinct values whenever apart(τ1; τ2). This also requires termination, in
addition to certain properties of apartness. Since Pico is non-terminating, this direct
approach is hopeless. Instead, we might add new rules to the rewrite relation to deal
with these cases, but that moves the burden to the proof of the local diamond lemma
(Section 5.10.2.2). Eisenberg et al. [32] explore this territory in some detail, but with an
unsatisfying conclusion: that work assumes termination in order to get the consistency
proof to go through.

As mentioned above, it is possible that recent work in this area by Kahrs and
Smith [50] gives us a way to include equals without losing consistency, but I have yet
to formally connect my work to theirs.

5.13.3 Splitting type applications

Haskell type families permit an unusual operation I will call splitting:

type family Split x where
Split (a b) = ’Just ’(a, b)
Split other = ’Nothing

The Split function, inferred to have Haskell kind ∀ k1 k2. k2 → Maybe (k1 →
k2, k1), can detect a type application. It will return Just if it sees IO Int but Nothing
if it sees Bool . This function cannot be encoded into Pico as it stands.71 We instead
must add a new primitive, split.

At its most basic, a split expression would look like this: split τ intoσ1 orσ2. The
idea is that if τ is a type application τ1 τ2, then the split expression reduces to σ1

(applied to some details of τ); otherwise, the expression reduces to σ2. The result kind
of τ1 is known: it is the type of τ . However, the argument kind of τ1 is not apparent
and thus must be passed to σ1. The type σ1 would thus be

˜
Πa1:IrrelType, b1:Rel(’Πx :Rela1. κ), b2:Rela1, c:τ ∼ b1 b2. κ2

where κ is the kind of the scrutinee τ and κ2 is the result kind. Note the ’Π in the
type of b1, meaning that we can break apart only matchable applications. This is a
good thing, because we would not want to be able to separate arbitrary functions
from their arguments to inspect one or the other. In this formulation, the kind of σ2

would just be κ2.
Unfortunately, this “most basic” version does not quite cut it. The problem is

that the scrutinee τ might also be τ1 {τ2} or τ1 γ2, and thus the split form would
really need four branches (including one for the default, atomic case). Each case would
need its own rule in the operational semantics. We would also need a push rule in
case a coercion is in the way of examining a type application. The parallel rewrite

71Other type families, as long as their left-hand sides do not repeat variables, can be desugared
into Pico, by adapting work by Augustsson [2].
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relation would need to be extended as well, with analogues to all the new rules in the
operational semantics. In the end, it seems split is not paying its way, and so I have
kept it out of this presentation. Despite this omission, I do believe it would not be a
technical challenge to add, should this feature prove necessary.

5.13.4 Levity polymorphism

In version 8, GHC supports levity polymorphism [28]. The idea is embodied in the
following mutually recursive definitions:

data UnaryRep = PtrRep | IntRep | ...
type RuntimeRep = [UnaryRep ]
constant TYPE :: RuntimeRep → Type -- primitive constant
type Type = TYPE ’PtrRep

The idea here is that instead of having one sort, Type, the language would have a
family of sorts, all headed by TYPE and indexed by an element of type RuntimeRep.
At runtime, each sort corresponds to a different representation: values of a type of
kind TYPE ’[PtrRep ] are represented by pointers to potentially thunked data, whereas
values of a type of kind TYPE ’[ IntRep ] are represented directly as machine integers.
The use of a list to index TYPE is to support GHC’s unboxed tuples, which group
together values that would be passed in several registers; see a more detailed description
in my concurrent work [28].

As described in my concurrent work (and too much of a diversion here to repeat
in detail), abstracting over runtime representations must be quite restricted, lest the
code generator be hamstrung when trying to compile code involving an unknown
runtime representation.

Levity polymorphism is useful in Haskell because a number of constructs are truly
flexible in which representation they work over. Two telling examples are error and (→).
Regardless of the representation of the result of a function, error is always well typed,
and (→) works to connect types of varying representations (like Int#→ Bool , where
Int# has kind TYPE ’[ IntRep ] and Bool has kind Type—that is, TYPE ’[PtrRep ].)

Because levity polymorphism simply amounts to adding more sorts to a language,
it would seem not to run into trouble with type safety. And I indeed believe this is
true, that levity polymorphism does not threaten the type safety proof. However, it is
very syntactically painful to add to the formalism, essentially requiring annotating
every Π with the sort of its binder. This annotation becomes necessary for precisely
the same reasons that we must include kinds in the types of a proposition (Section
5.12.3): we cannot prove completeness of the rewrite relation (Section 5.10.3) without
it.

I thus leave adding levity polymorphism as an exercise to the reader; in my attempt
to add this feature, I encountered no real challenge other than fiddliness and lots of
syntactic noise.
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5.13.5 The (→) type constructor

Haskell allows programmers to use the function arrow, (→), as a type constructor of
kind Type→ Type→ Type.72 Here are two examples of how this works:73

-- a class of categories
class Category (cat :: k → k → Type) where
id :: ∀ (a :: k). cat a a
(◦) :: ∀ (a :: k) (b :: k) (c :: k). cat b c → cat a b → cat a c
-- the instance for (→)

instance Category (→) where
id x = x
(f ◦ g) x = f (g x)

-- a lightweight reader monad, based on (→)
instance Functor ((→) a) where
fmap f g x = f (g x)

instance Applicative ((→) x) where
pure x = λ → x
(f <∗> g) x = f x (g x)

instance Monad ((→) x) where
(f >>= g) x = g (f x) x

Unfortunately, Pico cannot, as written, easily accommodate (→). A non-depen-
dent arrow is rightly seen as a degenerate form of Π: the type a→ b is the same as

˜
Π_:Rela. b. Without introducing yet a new function type (on top of the six we already
have) and argument syntax, it seems hard to abstract over this degenerate form of Π.

Instead, we could add (→) as a new primitive constant with coercions relating it
to

˜
Π:

H ::= . . . |(→)
γ ::= . . . | arrow τ1 τ2

Σ t̀c (→) : ∅; a:RelType, b:RelType; Type
Tc_Arrow

Σ; Γ t̀y τ1 : Type Σ; Γ t̀y τ2 : Type

Σ; Γ c̀o arrow τ1 τ2 : (→) τ1 τ2 ∼
˜
Πa:Relτ1. τ2

Co_Arrow

The problem we are faced with at this point is consistency. Specifically, we will
surely be unable to prove completeness of the rewrite relation (Section 5.10.3) with the
Co_Arrow rule. To repair the damage, we can alter the coercion erasure operation

72The kind of (→) really is restricted to be Type→ Type→ Type, even though a saturated use
of it can relate unlifted types as well. This oddity is due to be explored, among other dark corners of
lifted vs. unlifted types, in a paper I am hoping to write in the next year.

73Recall that, in ((→) x), x is the parameter that is normally written to the left of the arrow.
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to also rewrite saturated arrow forms to be Π forms, where the following equation is
tried before other application forms:

b(→) τ1 τ2c =
˜
Πa:Relbτ1c. bτ2c

Now, completeness for Co_Arrow is trivial.
The problem will last surface in the erasure/consistency lemma (Section 5.10.4),

which states that whenever bτ1c ∝ bτ2c, we have τ1 ∝ τ2. This is now plainly false. We
must assert that arrow forms are consistent with Π-types:

(→) τ1 τ2 ∝
˜
Πa:Relτ1. τ2

C_Arrow1

˜
Πa:Relτ1. τ2 ∝ (→) τ1 τ2

C_Arrow2

The definition of ∝ is used in the proof of progress, where now we must consider
the possibility of encountering unexpected arrow types. This possibility, though, is
dispatched by adding one clause to the canonical forms lemma:

Lemma (Canonical form of arrow types). Σ; Γ 6 t̀y v : (→) τ1 τ2

That is, no value has an arrow type, because all λ-forms have Π-types instead.
With this in hand, the progress proof should go through unimpeded.

5.14 Conclusion
This chapter is a full consideration of Pico. The detail presented here is intended
to be useful to implementors of the language and researchers interested in adapting
Pico to be used as the internal language for a surface language other than Haskell.
I believe Pico is a viable candidate as a general-purpose intermediate language for
dependently typed surface languages.
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Chapter 6

Type inference and elaboration, or
How to Bake a Pico

Chapter 4 presents the additions to modern Haskell to make it Dependent Haskell,
and Chapter 5 presents Pico, the internal language to which we compile Dependent
Haskell programs. This chapter formally relates the two languages by defining a
type inference/elaboration algorithm,74 Bake, checking Dependent Haskell code and
producing a well typed Pico program.

At a high level, Bake is unsurprising. It simply combines the ideas of several
pieces of prior work [33, 37, 99] and targets Pico as its intermediate language. Despite
its strong basis in prior work, Bake exhibits a few novelties:

• Perhaps its biggest innovation is how it decides between dependent and non-
dependent pattern matching depending on whether the algorithm is in checking
or synthesis mode. (See also Section 6.4.)

• It turns out that checking the annotated expression (λ(x :: s)→ ...) :: ∀ x → ...
depends on whether or not the type annotation describes a dependent function.
This came as a surprise. See Section 6.6.4.

• The subsumption relation allows an unmatchable function to be subsumed by a
matchable one. That is, a function expecting an unmatchable function a→ b
can also accept a matchable one a ’→ b.

After presenting the elaboration algorithm, I discuss the metatheory in Section 6.8.
This section include a soundness result that the Pico program produced by Bake
is well typed. It also relates Bake both to OutsideIn and the bidirectional type
system (“System SB”) from Eisenberg et al. [33], arguing that Bake is a conservative
extension of both.

74I refer to Bake variously as an elaboration algorithm, a type inference algorithm, and a type
checking algorithm. This is appropriate, as it is all three. In general, I do not differentiate between
these descriptors.
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Full statements of all judgments appear in Appendix D, while theorems and
definitions, with proofs, appear in Appendix E.

6.1 Overview
Bake is a bidirectional [78] constraint-generation algorithm [79]. It walks over the
input syntax tree and generates constraints, which are later solved. It can operate in
either a synthesis mode (when the expected type of an expression is unknown) or in
checking mode (when the type is known). Like prior work [37, 99], I leave the details of
the solver unspecified; any solver that obeys the properties described in Section 6.10.1
will do. In practice, the solver will be the one currently implemented in GHC. Despite
the fact that the dependency tracking described here is omitted from Vytiniotis et al.
[99], the most detailed description of GHC’s solver,75 the solver as implemented does
indeed do dependency tracking and should support all of the innovations described in
this chapter.

Constraints in Bake are represented by unification telescopes, which are lists of
possibly dependent unification variables,76 with their types. Naturally, there are two
sorts of unification variables: types α and coercions ι. The solver finds concrete types
to substitute in for unification variables α and concrete coercions to substitute in
for unification variables ι. Implication constraints [84, 99] are handled by classifying
unification variables by quantified kinds and propositions. See Section 6.3.

The algorithm is stated as several judgments of the following general form:77

Σ; Ψ �̀ inputs  outputs a Ω

Most judgments are parameterized by a fixed signature Σ that defines the datatypes
that are in scope.78 The context Ψ is a generalization of contexts Γ; a context Ψ
contains both Pico variables and unification variables. Because this is an algorithmic
treatment of type inference, the notation is careful to separate inputs from outputs.
Everything to the left of  is an input; everything to the right is an output. Most
judgments also produce an output Ω, which is a unification telescope, containing
bindings for only unification variables. This takes the place of the emitted constraints

75In the paper describing OutsideIn [99], the authors separate out the constraint generation
from the solver. They call the constraint-generation algorithm OutsideIn and the solver remains
unnamed. I use the moniker OutsideIn to refer both to the constraint-generation algorithm and the
solver.

76Depending on the source, various works in the literature refer to unification variables as existential
variables (e.g., [24]) or metavariables (e.g., [37] and the GHC source code). I prefer unification
variables here, as I do not wish to introduce confusion with existentials of data constructors nor the
metavariables of my metatheory.

77The definitions for Ψ and Ω appear in Figure 6.2 on page 147.
78I do not consider in this dissertation how these signatures are formed. To my knowledge, there is

no formal presentation of the type-checking of datatype declarations, and I consider formalizing this
process and presenting an algorithm to be important future work.
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seen in other constraint-generation algorithms. It also serves as a context in which to
type-check the remainder of the syntax tree.

The solver’s interface looks like this:

Σ; Ψ �̀solv Ω ∆; Θ

That is, it takes as inputs the current environment and a unification telescope. It
produces outputs of ∆, a telescope of variables to quantify over, and Θ, the zonker
(Section 6.3.1), which is an idempotent substitution from unification variables to
other types/coercions. To understand the output ∆, consider checking the declaration
y = λx → x . The variable x gets assigned a unification variable type α. No constraints
then get put on that type. When trying to solve the unification telescope α:IrrelType,
we have nothing to do. The way forward is, of course, to generalize. So we get
∆ = a:IrrelType and Θ = a/α. In the constraint-generation rules for declarations, the
body of a declaration and its type are generalized over ∆. (See IDecl_Synthesize
in Section 6.7.)

Writing a type inference algorithm for a dependently typed language presents a
challenge in that the type of an expression can be very intricate. Yet we still wish to
infer types for unannotated expressions. To resolve this tension, Bake adheres to the
following:

Guiding Principle. In the absence of other information, infer a simple type.

Guiding Principle. Never make a guess.

For example, consider inferring a type for

compose f g = λx → f (g x)

The function compose could naively be given either of the following types:

compose :: (b → c)→ (a→ b)→ (a→ c)
compose :: ∀ (a :: Type)

(b :: a→ Type)
(c :: ∀ (x :: a)→ b x → Type)

. Π (f :: ∀ (x :: a). Π (y :: b x)→ c x y)
(g :: Π (x :: a)→ b x)
(x :: a)

→ c x (g x)

However, we surely want inference to produce the first one. If inference did not tend
toward simple types, there would be no hope of retaining principal types in the
system. I do not prove that Bake infers principal types, as doing so is meaningless
without some non-deterministic specification of the type system, which is beyond the
scope of this work. However, I wish to design Dependent Haskell with an eye toward
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establishing a principal types result in the future. Inferring only rank-1 types still
allows for higher-rank types in a bidirectional type system [74]. Accordingly, it is
my hope that inferring only simple types will allow for Dependent Haskell to retain
principal types.

The second guiding principle is that Bake should never make guesses. Guesses,
after all, are sometimes wrong. By “guess” here, I mean that the algorithm and solver
should never set the value of a unification variable unless doing so is the only possible
way an expression can be well typed. Up until this point, GHC’s type inference
algorithm has resolutely refused to guess. This decision manifests itself, among other
places, in GHC’s inability to work with a function f :: F a→ F a, where F is a type
function.79 The problem is that, from f 3, there is no way to figure out what a should
be, and GHC will not guess the answer.

A key consequence of not making any guesses is that Bake (more accurately, the
solver it calls) does no higher-order unification. Consider this example:

fun :: a→ (f $ a)
-- NB: The use of $ means that f is not a matchable function

bad :: Bool → Bool
bad x = fun x

In the body of bad , it is fairly clear that we should unify f with the identity function.
Yet the solver flatly refuses, because doing so amounts to a guess, given that there are
many ways to write the identity function.80

In my choice to avoid higher-order unification, my design diverges from the designs
of other dependently typed languages, where higher-order unification is common. Time
will tell whether the predictability gotten from avoiding guesses is worth the potential
annoyance of lacking higher-order unification. Avoiding guesses is also critical for
principal types. See Vytiniotis et al. [99, Section 3.6.2] for some discussion.

Now that we’ve seen the overview, let’s get down to details.

6.2 Haskell grammar
I must formalize a slice of Dependent Haskell in order to describe an elaboration
procedure over it. The subset of Haskell I will consider is presented in Figure 6.1 on
the next page. Note that all Haskell constructs are typeset in upright Latin letters;
this is to distinguish these from Pico constructs, typeset in italics and often using
Greek letters.

The version of Dependent Haskell presented here differs in a few details from the
language presented in Chapter 4. These differences are to enable an easier specification

79Unless F is known to be injective [86].
80Note that my development does not natively support functional extensionality, so that these

different ways of writing an identity function are not equal to one another.
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t, k ::= a |λqvar. t |Λqvar. t | t1 t2 | t1 @t2 | t :: s type/kind
| case t of alt | t1 → t2 | t1

′→ t2 |fix t
| let x := t1 in t2

qvar ::= aqvar |@aqvar quantified variable
aqvar ::= a | a :: s quantified variable (w/o vis.)

alt ::= p→ t case alternative
p ::= H x |_ pattern
s ::= quant qvar. s | t⇒ s | t type scheme/polytype

quant ::= ∀ | ′∀ |Π | ′Π quantifier

decl ::= x :: s := t | x := t declaration
prog ::= ∅ | decl; prog program

Figure 6.1: Formalized subset of Dependent Haskell

of the elaboration algorithm. Translating between the “real” Dependent Haskell of
Chapter 4 and this version can be done by a preprocessing step. Critically, (but with
one exception) no part of this preprocessor needs type information. For example,
∀ a b. ... is translated to ∀@a. ∀@b. ... so that it is easier to consider individual bound
variables.

The exception to the irrelevance of type information is in dealing with pattern
matches. Haskell pattern matches can be nested, support guards, perhaps view patterns,
perhaps pattern synonyms [76], etc. However, translating such a rich pattern syntax
into a simple one is a well studied problem with widely used solutions [2, 101] and
I thus consider the algorithm as part of the preprocessor and do not consider this
further.

6.2.1 Dependent Haskell modalities

Let’s now review some of the more unusual annotations in Dependent Haskell, originally
presented in Chapter 4. Each labeled paragraph below describes an orthogonal feature
(visibility, matchability, relevance).

The @ prefix Dependent Haskell uses an @ prefix to denote an argument that
would normally be invisible. It is used in two places in the grammar:

• An @-sign before an argument indicates that the argument is allowed to be
omitted, yet the user has written it explicitly. This follows the treatment in my
prior work on invisible arguments [33].

• An @-sign before a quantified variable (in the definition for qvar) indicates that
the actual argument may be omitted when calling a function. In a λ-expression,
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this would indicate a pattern that matches against an invisible argument (Section
4.2.3.1). In a Π- or ∀-expression, the @-sign is produced by the preprocessor
when it encounters a ∀ ... . or Π ... . quantification.

Ticked quantifiers Three of the quantifiers that can be written in Dependent
Haskell come in two varieties: ticked and unticked. A ticked quantifier introduces
matchable (that is, generative and injective) functions, whereas the unticked quantifier
describes an unrestricted function space. Recall that type constructors and data
constructors are typed by matchable functions, whereas ordinary λ-expressions are
not.

Relevance The difference between ∀ and Π in Dependent Haskell is that the former
defines an irrelevant abstraction (fully erased during compilation) while the latter de-
scribes a relevant abstraction (retained at runtime). In terms, an expression introduced
by λ is a relevant abstraction; one introduced by Λ is an irrelevant one.

6.2.2 let should not be generalized

Though the formalized Haskell grammar includes let, I will take the advice of Vytiniotis
et al. [98] that let should not be generalized. As discussed at some length in the work
cited, local, generalized lets are somewhat rare and can easily be generalized by a type
signature. For all the same reasons articulated in that work, generalizing let poses a
problem for Bake. We thus live with an ungeneralized let construct.

6.2.3 Omissions from the Haskell grammar

There are two notable omissions from the grammar in Figure 6.1 on the preceding
page.

Type constants The Haskell grammar contains no production for H , a type con-
stant. This is chiefly because type constants must be saturated with respect to
universals in Pico, whereas we do not need this restriction in Haskell. Accordingly,
type constants are considered variables that expand to type constants that have been
η-expanded to take their universal arguments in a curried fashion. For example, Just
in Haskell, which can appear fully unsaturated, becomes λa:IrrelType. Just{a} in Pico.

Recursive let Following the decision not to include a letrec construct in Pico
(Section 5.1.2), the construct is omitted from the formalized subset of Haskell as
well. Having a formal treatment of letrec would require a formalization of Haskell’s
consideration of polymorphic recursion [41, 62, 67], whereby definitions with type
signatures can participate in polymorphic recursion while other definitions cannot.
In turn, this would require a construct where a polymorphic function is treated
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Metavariables:

α, β unification type variable ι unification coercion variable

Grammar extensions:

τ ::= . . . |αψ type/kind
γ ::= . . . | ιψ coercion

ζ ::= α | ι unification variable
Θ ::= ∅ |Θ,∀ z .τ/α |Θ,∀ z .γ/ι zonker (Section 6.3.1)
ξ ::= ∅ | ξ, ζ 7→ ψ generalizer (Section 6.5)

u ::= α :ρ ∀∆.κ | ι : ∀∆.φ unif. var. binding
Ω ::= ∅ |Ω, u unification telescope
Ψ ::= ∅ |Ψ, δ |Ψ, u typing context

I elide the ∀ when the list of variables or telescope quantified over would be empty.

Figure 6.2: Additions to the grammar to support Bake.

monomorphically in a certain scope and polymorphically beyond that scope.81 The
problems faced here are not unique to (nor made particularly worse by) dependent
types. I thus have chosen to exclude this construct for simplicity.

We have now reviewed the source language of Bake, and the previous chapter
described its target language, Pico. I’ll now fill in the gap by introducing the additions
to the grammar needed to describe the inference algorithm.

6.3 Unification variables
The extensions to the grammar to support inference are in Figure 6.2. These extensions
all revolve around supporting unification variables, which are rather involved. One
might think that unification variables need not be so different from ordinary variables;
constraint generation could produce a telescope of these unification variables and
solving simply produces a substitution. However, this naive view does not work out
because of unification variable generalization.82

Consider a λ-abstraction over the variable x . When doing constraint generation
inside of the λ, the kinds of fresh unification variables might mention x . Here is a case
in point, which will serve as a running example:

81Readers familiar with the internals of GHC may recognize its AbsBinds data constructor in this
description. Formalizing all of its intricacies would indeed be required to infer the type of a letrec.

82The treatment of unification variables throughout Bake is essentially identical to the treatment
by Gundry [37], which is itself closely based on the work of Dunfield and Krishnaswami [24].
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poly :: ∀ j (b :: j)→ ...

example = λk a→ poly k a

Type inference can easily discover that the kind of a is k . But in order for the inference
algorithm to do this, it must be aware that k is in scope before a is. Note that when
we call the solver (after type-checking the entire body of example), k is not in scope.
Thus, as we produce the unification telescope during constraint generation over the
body of example, we must somehow note that the unification variable α (the type of
a) can mention k .

This means that unification variable bindings are quantified over a telescope ∆.
(You can see this in the definition for u in Figure 6.2 on the preceding page.) In the
vocabulary of OutsideIn, the bindings in ∆ are the givens under which a unification
variable should be solved for and a unification variable binding α :ρ ∀∆.κ or ι : ∀∆.φ
with a non-empty ∆ is an implication constraint.

6.3.1 Zonking

Solving produces a substitution from unification variables to types/coercions. Fol-
lowing the nomenclature within GHC, I call applying this substitution zonking. The
substitution itself, written Θ, is called a zonker.

Zonkers pose a naming problem. Consider solving to produce the zonker for example,
above. Suppose the type of a is assigned to be α. We would like to zonk α to k . However,
as before, k is out of scope when solving for α. We thus cannot just write k/α, as that
would violate the Barendregt convention, where we can never name a variable that is
out of scope (as it might arbitrarily change due to α-renaming).

The solution to this problem is to have all occurrences of unification variables
applied to vectors ψ.83 When we zonk a unification variable occurrence αψ, the vector
ψ is substituted for the variables in the telescope ∆ that α’s kind is quantified over.

Here is the formal definition of zonking:

Definition (Zonking [Definition E.19]). A zonker can be used as a postfix function.
It operates homomorphically on all recursive forms and as the identity operation on
leaves other than unification variables. Zonking unification variables is defined by these
equations:

∀ z .τ/α ∈ Θ =⇒ αψ[Θ] = τ [ψ[Θ]/z ]
otherwise αψ[Θ] = αψ[Θ]

∀ z .γ/ι ∈ Θ =⇒ ιψ[Θ] = γ[ψ[Θ]/z ]

otherwise ιψ[Θ] = ιψ[Θ]

Continuing the example from above, we would say that a has the type αk , where
we have α :Irrel ∀ k :IrrelType.Type. The solver will create a zonker with the mapping

83Recall that ψ is a metavariable that can stand for either a type or a coercion. Thus ψ is a mixed
list of types and coercions, suitable for substituting in for a list of type/coercion variables z .
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Σ; Ψ �ty τ : κ Extra rule to support unification variables in types

α :Rel ∀∆.κ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �ty αψ : κ[ψ/dom(∆)]
Ty_UVar

Σ; Ψ �co γ : φ Extra rule to support unification variables in coercions

ι : ∀∆.φ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �co ιψ : φ[ψ/dom(∆)]
Co_UVar

Σ �ctx Ψ ok Extra rules to support binding unification variables

Σ; Rel(Ψ,∆) �ty κ : Type Σ �ctx Ψ ok

Σ �ctx Ψ, α :ρ ∀∆.κ ok
Ctx_UTyVar

Σ; Rel(Ψ,∆) �prop φ ok Σ �ctx Ψ ok

Σ �ctx Ψ, ι : ∀∆.φ ok
Ctx_UCoVar

Figure 6.3: Extra rules in Pico judgments to support unification variables

∀ j .j/α (where I have changed the variable name for demonstration). This will zonk
αk to become j [k/j ] which is, of course k as desired.

Note that the quantification we see here is very different from normal Π-quantifica-
tion in Pico. These quantifications are fully second class and may be viewed almost
as suspended substitutions.

6.3.2 Additions to Pico judgments

The validity and typing judgments in Pico all work over signatures Σ and contexts Γ.
In Bake, however, we need to be able to express these judgments in an environment
where unification variables are in scope. I thus introduce mixed contexts Ψ, containing
both Pico variables and unification variables.

Accordingly, I must redefine all of the Pico judgments to support unification
variables in the context. These judgments are written with a � turnstile in place of
Pico’s ` turnstile. There are also several new rules that must be added to support
unification variables. These rules appear in Figure 6.3.

Note the rules Ty_UVar and Co_UVar that support unification variable
occurrences. The unification variables are applied to vectors ψ which must match the
telescope ∆ in the classifier for the unification variable. In addition, this vector is
substituted directly into the unification variable’s kind.

These definitions support all of the properties proved about the original Pico
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judgments, such as substitution and regularity. The statements and proofs are in
Appendix E.

6.3.3 Untouchable unification variables

Vytiniotis et al. [99, Section 5.2] introduces the notion of touchable unification variables,
as distinct from untouchable variables. Their observation is that it is harmful to assign a
value to a “global” unification variable when an equality constraint is in scope. “Global”
here means that the unification variable has a larger scope than the equality constraint.
We call the “local” unification variables touchable, and the “global” ones untouchable.
OutsideIn must manually keep track of touchability; the set of touchable unification
variables is an extra input to its solving judgment.

In Bake, on the other hand, tracking touchability is very easy with its use of unifi-
cation telescopes: all unification variables quantified by the same equality constraints
as the constraint under consideration are touchable; the rest are untouchable.

To make this all concrete, let’s look at a concrete example (taken from Vytiniotis
et al. [99]) where the notion of touchable variables is beneficial.

Suppose we have this definition:

data T a where
K :: (Bool ∼ a)⇒ Maybe Int → T a

I have written this GADT with an explicit equality constraint in order to make the
use of this constraint clearer. The definition for K is entirely equivalent to saying
K :: Maybe Int → T Bool .

We now wish to infer the type of

λx → case x of {K n→ isNothing n}

where isNothing :: ∀ a. Maybe a → Bool checks for an empty Maybe. Consider any
mention of a new unification variable to be fresh. We assign x to have type α0 and the
result of the function to have type β0. By the existence of the constructor K in the
case-match, we learn that α0 should really be T α1. Inside the case alternative, we
now have a given constraint Bool ∼ α1. We then instantiate the polymorphic isNothing
with a unification variable β1, so that the type of isNothing is Maybe β1 → Bool . We
can now emit two equality constraints:

• The argument type to isNothing , Maybe β1, must match the type of n, Maybe Int.

• The return type of the case expression (β0) is the return type of isNothing
(Bool).
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Pulling this all together, we get the following unification telescope:

Ω = [ α0:IrrelType,
β0:IrrelType,
α1:IrrelType,
ι0:α0 ∼ T α1,
β1 :Irrel ∀ (c:Bool ∼ α1).Type,
ι1 : ∀ (c:Bool ∼ α1).(Maybe β1c ∼ Maybe Int),
ι2 : ∀ (c:Bool ∼ α1).(β0 ∼ Bool)

Before we walk through what the solver does with such a telescope, what should
it do? That is, what’s the type of our original expression? It turns out that this is
not an easy question to answer! The expression has no principal type. Both of the
following are true:

(λx → case x of {K n→ isNothing n}) :: ∀ a. T a→ a
(λx → case x of {K n→ isNothing n}) :: ∀ a. T a→ Bool

Note that neither T a→ a nor T a→ Bool is more general than the other.
We would thus like the solver to fail when presented with this unification telescope.

This is true, even though there is a solution to the inference problem (that is, a valid
zonker Θ with a telescope of quantified variables ∆; see the specification of �̀solv, Section
6.1):

∆ = a:IrrelType

Θ = T a/α0,
Bool/β0,
a/α1,
〈T a〉/ι0,
∀ c.Int/β1,
∀ c.〈Maybe Int〉/ι1,
∀ c.〈Bool〉/ι2

The problem is that here is another valid substitution for β0 and ι2:

Θ = . . . ,
a/β0,
. . . ,
∀ c.sym c/ι2

These zonkers correspond to the overall type T a→ Bool and T a→ a, respectively.
We must thus ensure that the solver rejects Ω outright. This is achieved by

making β0 untouchable when considering solving the ι2 constraint.84 As described
84Why this particular mechanism works is discussed in some depth by Vytiniotis et al. [99, Section
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by Vytiniotis et al. [99, Section 5.5], the solver considers the constraints individually.
When simplifying (OutsideIn’s terminology for solving a simple, non-implication
constraint) the ι1 and ι2 constraints, any unification variable not quantified by c is
considered untouchable.85 Thus, β0 is untouchable when simplifying ι2, so the solver
will never set β0 to anything at all. It will remain an ambiguous variable and a type
error will be issued.

Contrast this with α1, which is also not set by the solver. This variable, however,
is fully unconstrained and can be quantified over and turned into the non-unification
variable a. There is no way to quantify over β0, however.

Despite not setting β0, the solver is free to set β1 which is considered touchable,
as it is also quantified by c. The unification variable β1 is fully local to the case
alternative body, and setting it can have no effect outside of the case expression. In
the terminology of OutsideIn, that unification would be introduced by ∃β1 in an
implication constraint. In our example, the ability to set β1 means that we get only
one type error reported, not two.

6.4 Bidirectional type-checking
Like previous algorithms for GHC/Haskell [33, 37, 74], Bake takes a bidirectional
approach [78]. The fundamental idea to bidirectional type-checking is that, sometimes,
the type inference algorithm knows what type to look for. When this happens, the
algorithm should take advantage of this knowledge.

Bidirectional type-checking works by defining two mutually recursive algorithms: a
type synthesis algorithm and a type checking algorithm. The former is used when we
have no information about the type of an expression, and the latter is used when we
do indeed know an expression’s expected type. The algorithms are mutually recursive
because of function applications: knowing the result type of a function call does not
tell you about the type of the function (meaning the checking algorithm must use
synthesis on the function), but once we know the function’s type, we know the type of
its arguments (allowing the synthesis algorithm to use the more informative checking
algorithm).

Historically, bidirectional type-checking in Haskell has been most useful when
considering higher-rank polymorphism—for example, in a type like (∀ a. a→ a)→ Int.
Motivating higher-rank types would bring us too far afield, but the literature has
helpful examples [33, 74] and there is a brief introduction in Section 2.5. Naturally,
Dependent Haskell continues to use bidirectional type-checking to allow for higher-rank
types, but there is now even more motivation for bidirectionality.

5.2].
85To make this a bit more formal, I would need to label the quantification by c by some label

drawn from an enumerable set of labels. The touchable unification variables would be those quantified
by the same label as the constraint being simplified. We cannot just use the name c, as names are
fickle due to potential α-variation.
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As discussed above (Section 6.3.3), bringing equality constraints into scope makes
some unification variables untouchable. In practice, this means that the result type of
a GADT pattern match must be known; programmers must put type annotations on
functions that perform a GADT pattern match.

In a dependently typed language, however, any pattern match might bring equality
constraints into scope, where the equality relates the scrutinee with the pattern. For
example, if I say something as simple as case b of {True → x ;False → y }, I may want
to use the fact that b ∼ True when type-checking x or b ∼ False when type-checking
y . This is, of course, dependent pattern matching (Section 4.3.3). Our problem now is
that it seems that every pattern match introduces an equality constraint, meaning
that the basic type inference of Haskell might no longer work, stymied by untouchable
variables.

The solution is to take advantage of the equality available by dependent pattern
matching only when the result type of the case expression is being propagated
downwards—that is, when the inference algorithm is in checking mode. If we do
not know a case expression’s overall type, then the pattern match is treated as a
traditional, non-dependent pattern match. Without bidirectional type-checking, the
user might have to annotate which kind of match is intended.86

6.4.1 Invisibility

As discussed in Section 4.2.3, Dependent Haskell programmers can choose the visibility
of their arguments: A visible argument must be provided at every function call, while
an invisible one may be elided. If the programmer wants to write an explicit value to
use for an invisible argument, prefixing the argument with @ allows it to stand for the
invisible parameter.

In the context of type inference, though, we must be careful. As explored in my
prior work [33], invisible arguments are sometimes introduced at the whim of the
compiler. For example, consider

-- isShorterThan :: [a ]→ [b ]→ Bool
isShorterThan xs ys = length xs < length ys

Note that the type signature is commented out. The function isShorterThan takes two
invisible arguments, a, and b. Which order should they appear in? Without the type
signature for guidance, it is, in general, impossible to predict what order these will be
generalized. See Eisenberg et al. [33, Section 3.1] for more discussion on this point.

Despite the existence of functions like isShorterThan with fully inferred type signa-
tures, we wish to retain principal types in our type system—at least in the subset of
the language that does not work with equality constraints. We thus must have three
different levels of visibility:

86The Dependent Haskell described by Gundry [37] indeed has the user annotate this choice for
case expressions. Due to Gundry’s restrictions on the availability of terms in types (see his Section
6.2.3), however, the bidirectional approach would have been inappropriate in his design.
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Required parameters (also called visible) must be provided at function call sites.

Specified parameters are invisible, but their order is user-controlled. These parame-
ters are to functions with type signatures or with an explicit ∀....

Inferred parameters (called “generalized” in Eisenberg et al. [33]) are ones invented by
the type inference algorithm (like the parameter a in the example used to explain
untouchable variables; see Section 6.3.3). They cannot ever be instantiated
explicitly. All coercion abstractions are inferred.

Note that these three levels of visibility are not a consequence of dependent types,
but of having an invisibility override mechanism; these three levels of visibility are
fully present in GHC 8. In the judgments that form Bake, I often write a subscript
Req, Spec, or Inf to Π symbols indicating the visibility of the binders quantified over.
These subscripts have no effect on well-formedness of types and are completely absent
from pure Pico.

Following my prior work, both the synthesis and checking algorithms are split into
two judgments apiece: one written �̀ty and one written �̀∗ty. The distinction is that the
latter works with types that may have invisible binders, while the former does not. For
example, a type produced by the �̀ty judgment in synthesis mode is guaranteed not to
have any invisible (that is, specified or inferred) binders at the outermost level. Thus
when synthesizing the type of t1 in the expression t1 t2, we use the �̀ty judgment, as
we want any invisible arguments to be inferred before applying t1 to t2. Considering
the algorithm in checking mode, when processing a traditional λ-expression, we want
the rule to be part of the �̀ty judgment, to be sure that the algorithm has already
skolemized (Section 6.4.3) the known type down to one that accepts a visible argument.
Conversely, the rule for an expression like λ @a→ ... must belong in the �̀∗ty judgment,
as we want to see the invisible binders in the type to match against the invisible
argument the programmer wishes to bind.

The interplay between the starred judgments and the unstarred nudges this system
toward principal types. Having these two different judgments is indeed one of the main
innovations in my prior work [33], where the separation is necessary to have principal
types.

6.4.2 Subsumption

Certain expression forms do not allow inward propagation of a type. As mentioned
above, if we are checking an expression f x against a type τ , we have no way of usefully
propagating information about τ into f or x . Instead, we use the synthesis judgment
for f and then check x ’s type against the argument type found for f . After all of this,
we will get a type τ ′ for f x . We then must check τ ′ against τ—but they do not have
to match exactly. For example, if τ ′ is ∀ a. a→ a and τ is Int → Int, then we’re fine,
as any expression of the former type can be used at the latter.
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�̀pre κ κ′ Convert a kind into prenex form.

ν ≤ Spec
�̀pre κ2  

˜
Π∆. κ′2

�̀pre
˜
Πνδ. κ2  

˜
Πδ,∆. κ′2

Prenex_Invis

�̀pre κ2  
˜
Π∆. κ′2

�̀pre
˜
ΠReqδ. κ2  

˜
Π∆.

˜
ΠReqδ. κ′2

Prenex_Vis

�̀pre κ κ
Prenex_NoPi

κ1 ≤∗ κ2 “κ1 subsumes κ2.” (κ2 is in prenex form)

¬(ρ1 = Rel ∧ ρ2 = Irrel)
κ3 ≤ κ1  τ κ2[τ1 b/a] ≤ κ4

ΠReqa:ρ1κ1. κ2 ≤∗
˜
ΠReqb:ρ2κ3. κ4

Sub_Fun

fresh ι:τ1 ∼ τ2

τ1 ≤∗ τ2

Sub_Unify

κ1 ≤ κ2 “κ1 subsumes κ2.”

�̀Spec
inst κ1  κ′1 �̀pre κ2  

˜
Π∆. κ′2

κ′1 ≤∗ κ′2
κ1 ≤ κ2

Sub_DeepSkol

Figure 6.4: Subsumption in Bake (simplified)

What we need here is a notion of subsumption, whereby we say that ∀ a. a → a
subsumes Int → Int, written

∀ a. a→ a ≤ Int → Int

For reasons well articulated in prior work [74, Section 4.6], my choice for the subsump-
tion relation does deep skolemization. This means that the types ∀ a. Int → a→ a and
Int → ∀ a. a→ a are fully equivalent. This choice is furthermore backward compatible
with the current treatment of non-prenex types in GHC.

Bake’s subsumption relation is in Figure 6.4. The rules in this figure are simplified
from the full rules (which appear in Section D.9), omitting constraint generation and
elaboration. The rules in each judgment are meant to be understood as an algorithm,
trying earlier rules before later ones. Thus, for example, rule Sub_Unify is not as
universal as it appears.

The entry point is the bottom, unstarred subsumption judgment. It computes
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the prenex form of κ2 using the auxiliary judgment �̀pre and instantiates κ1. (The
Spec superscript to �̀inst says to instantiate any argument that is no more visible than
Spec—that is, either Inf or Spec arguments.) The instantiated κ′1 and prenexed κ′2 are
then compared using the starred subsumption judgment.87

The starred judgment has the usual contravariance rule for functions. This rule,
however, has three interesting characteristics.

Dependency We cannot simply compare κ2 ≤ κ4. The problem is that κ2 has a
variable a of type κ1 in scope, whereas κ4 has a variable b of type κ3 in scope. Contrast
this rule to a rule for non-dependent functions where no such bother arises. In the
fully detailed versions of these judgments, learning that κ1 ≤ κ2 gives us a term τ
such that τ :

˜
Π_:Relκ1. κ2—that is, a way of converting a κ1 into a κ2. I include such

a τ when checking whether κ3 ≤ κ1. This τ is then used to convert b : κ3 into a value
of type κ1, suitable for substitution in for a. With this substitution completed, we
can perform the subsumption comparison against κ4 as desired.

Matchable functions subsume unmatchable ones Rule Sub_Fun includes a
subsumptive relationship among the two flavors of Π. Whenever an unmatchable

˜
Π-type is expected, surely a matchable ’Π-type will do. Thus we allow either Π on the
left of the ≤. Note that the other way would be wrong: not only might an unmatchable

˜
Π-type not work where a matchable ’Π-type is expected, but we also have no way of
creating the ’Π-type during elaboration. Our need to elaborate correctly keeps us from
getting this wrong.

Irrel subsumes Rel Finally, the rule also includes a subsumptive relationship among
relevances. If the relevances ρ1 and ρ2 match up, then all is well. But also if ρ1 is Irrel
and ρ2 is Rel, we are OK. If ρ2 is Rel, that says that the expression we are checking is
allowed to use its argument relevantly, but nothing goes wrong if the expression, in
fact, does not (that is, if ρ1 is Irrel). Once again, elaboration keeps us honest here; if
the rule is written the wrong way around, there is no sound way to elaborate.

6.4.3 Skolemization

In checking mode, the �̀∗ty judgment skolemizes any invisible quantifiers in the known
type.88 As an example, consider

(λx → x) :: ∀ a. a→ a

87The stars on these judgments have a different meaning than the star on �̀ty; they are borrowed
from the notation by Peyton Jones et al. [74], not Eisenberg et al. [33].

88I am following Peyton Jones et al. [74] in my use of the word “skolem”. I understand that this word
may have slightly different connotation in a logical context, but my use here has become standard in
the study of GHC/Haskell.
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When checking the λ-expression against that type, we first must dispose of the ∀ a.
This is done by essentially making a a fresh type constant, equal to no other. This act
is called skolemization; a becomes a skolem. The variable x is then given this type a,
and the body of the λ indeed has type a as desired.

As we look at more complicated examples, a question arises about how deeply to
skolemize. Here is an illustrative example, taken from prior work [34]:

x = λ5 z → z
-- x is inferred to have type ∀ a. Int → a→ a

y :: Int → ∀ b. b → b
y = x

In this example, we are checking x of type ∀ a. Int → a → a against the type
Int → ∀ b. b → b. We must be a bit careful here, though: x ’s type is fully inferred, and
thus its quantification over a is Inf, not Spec. With the right flags,89 GHC prints x ’s
type as ∀ {a}. Int → a→ a to denote that it is not available for a visibility override.

The type we are checking against does not have any invisible binders at the top
(its first binder is the visible one for Int), so we do not initially skolemize. We instead
discover that there is no checking rule for variables and have to use the fall-through
case for checking, which does synthesis and then a subsumption check. However, a
naive approach would be wrong here: if we synthesize the type of x , we will get
the instantiated Int → α → α. This is because Inf binders are always instantiated
immediately, much like in the original syntax-directed version of the Hindley-Milner
type system [18, 20]. In the subsumption check, we will want to set α to be b, the
skolem created from y ’s type signature. We will be unable to do so, however, because
doing so would be ill scoped: α occurs in the unification telescope before b is ever
brought into scope. This means that it would be ill scoped for the value chosen for
α to refer to b.90 It would quite unfortunate to reject this example, because the
subsumption judgment, with its deep skolemization, would have this work out if only
we didn’t instantiate that Inf binder so eagerly.

Instead, I have written the ITyC_Infer rule (details in Section 6.6.2) to eagerly
skolemize the known type deeply, effectively before ever looking at the expression.
This puts b firmly into scope when consider α, and the subsumption check (and later
solver) succeeds.

The solution to this problem proposed in prior work is to do deep skolemization
in the checking �̀∗ty judgment. This works in the System SB of Eisenberg et al. [33].
However, it fails us here. The problem is that Dependent Haskell allows for constructs
like λn @a → .... If we check that expression against Int → ∀ a. a → a, we want

89-fprint-explicit-foralls, specifically
90Saying that this example fails because of scoping is a vast improvement over the state of affairs

in Eisenberg et al. [34], where a delicate line of reasoning based on the subtleties of the Barendregt
convention is necessary to show how this example goes awry. By tracking our unification variables in
a telescope, problems like this become much clearer.
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the as to match up. Yet deeply skolemizing the type we are checking against will
eliminate the a and our algorithm will reject the code. We thus instead do shallow
skolemization in �̀∗

ty and instead save the deep skolemization until we are forced to
switch into synthesis mode.

Returning to the x/y example, here is how it plays out:

1. The variable x is inferred to have type ∀ {a}. Int → a→ a when processing the
declaration for x .

2. We then check the body of y against the type Int → ∀ b. b → b. As there are
no invisible binders, no skolemization happens right away.

3. We quickly find that no checking rules apply. We then deeply skolemize the
expected type, getting Int → b → b for a skolem b.

4. Now, we synthesize the type for the expression x , getting Int → α→ α.

5. The subsumption relation checks whether Int → α→ α subsumes Int → b → b.
This is indeed true with α := b, and the definition for y is accepted.91

We have thus accepted our problem example and remain in line with the declarative
system proposed in my prior work [33, Section 6.2].

6.5 Generalization
There is one final aspect of the inference algorithm that requires study before we
look at the individual pieces: the generalization operation.92 That said, in terms of
understanding the Bake algorithm, having a strong grasp on generalization is not
terribly important; this is merely a technical step needed to make the mathematics
hold together.

Suppose we are synthesizing the type of a λ-expression λx → τ . We choose a
unification variable α for the type of x . We then must put x :Relα into the context when
synthesizing the type for τ . Synthesizing this type will produce a unification telescope
Ω. Now we have a problem: what unification telescope will we return from synthesizing
the type of the entire λ-expression? It looks something like α:IrrelType, x :Relα,Ω but,
critically, that is not a unification telescope, as that context contains a binding for an
ordinary Pico variable, x .

91Although not visible in the simplified presentation of Sub_DeepSkol in Figure 6.4 on page 155,
it is critical that κ2 is skolemized before κ1 is instantiated, lest we end up with the same scoping
problem. This can be seen in the full rule (Section D.9) with the fact that we include Ω1 in the final
generalization step. In contrast to other potential pitfalls mentioned earlier, leaving Ω1 out of this
line does not imperil the soundness of elaboration; it is only a matter of expressiveness of the source
Haskell.

92What I call generalization here is precisely what Gundry [37, Section 7.5] calls “parameterisation”
and writes with ↗.
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Ω ↪→ ∆ Ω′; ξ Generalize Ω over ∆.

∅ ↪→ ∆ ∅;∅
IGen_Nil

ξ0 = α 7→ dom(∆) Ω[ξ0] ↪→ ∆ Ω′; ξ

α :ρ ∀∆′.κ,Ω ↪→ ∆ α :ρ ∀∆,∆′.κ,Ω′; ξ0, ξ
IGen_TyVar

ξ0 = ι 7→ dom(∆) Ω[ξ0] ↪→ ∆ Ω′; ξ

ι : ∀∆′.φ,Ω ↪→ ∆ ι : ∀∆,∆′.φ,Ω′; ξ0, ξ
IGen_CoVar

Figure 6.5: Bake’s generalization operation

It might be tempting at this point simply to return a mixed telescope of unification
variables and Pico variables, and just to carry on. The problem here is that we will
lose track of the local scope of x . Perhaps something later, outside of the λ-expression,
will end up unifying with x—which would be a disaster. No, we must get rid of it.

The solution is to generalize Ω over x . This operation is written Ω ↪→ x :RelType 
Ω′; ξ. (The mnemonic behind the choice of ↪→ is that we are essentially moving the
x :RelType binding to the right, past Ω.) The output unification telescope Ω′ binds
the same unification variables as Ω, but each one will be generalized with respect to x .
The definition of this judgment appears in Figure 6.5. The rules are a bit complicated
by the fact that we may generalize a unification variable binding multiple times; both
recursive rules thus assume a telescope ∆′ that has already been generalized.

The new construct ξ is a generalizer. It is a substitution-like construct that maps
unification variables to vectors, which you may recall are lists of arguments ψ. In
this case, we simply use the domain of ∆ as the vector, where my use of dom(∆)
as a list of arguments means to insert the irrelevance braces around irrelevantly
bound variables. Generalizers are necessary because generalizing changes the type of
unification variables; we must then change the occurrences of them as well.

Generalizers operate like this:

Definition (Generalizing [Definition E.31]). A generalizer is applied postfix as a
function. It operates homomorphically on all recursive forms and as the identity
operation on leaves other than unification variables. Generalizing unification variables
is defined by these equations:

α 7→ ψ1 ∈ ξ ⇒ αψ2
[ξ] = αψ1,ψ2

otherwise αψ[ξ] = αψ[ξ]

ι 7→ ψ1 ∈ ξ ⇒ ιψ2
[ξ] = ιψ1,ψ2

otherwise ιψ[ξ] = ιψ[ξ]

Just like the generalization judgment (Figure 6.5), the generalization operation [ξ]
prepends the newly generalized variables to those already there.
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Σ; Ψ �̀ty t τ : κ a Ω synthesize a type (no invis. binders)
Σ; Ψ �̀∗

ty t τ : κ a Ω synthesize a type
Σ; Ψ �̀ty t : κ τ a Ω check a type (no invis. binders)
Σ; Ψ �̀∗

ty t : κ τ a Ω check a type
Σ; Ψ �̀pt s τ a Ω check a polytype (always with kind Type)

Σ; Ψ; ρ �̀∗arg t : κ ψ; τ a Ω check an argument at relevance ρ
Σ; Ψ;κ0; τ0 �̀alt alt : κ alt a Ω check a case alt. against an unknown type
Σ; Ψ;κ0; τ0 �̀altc alt : κ alt a Ω check a case alt. against a known type

Σ; Ψ �̀q qvar a : κ; ν a Ω synth. type of a bound var.
Σ; Ψ �̀aq aqvar a : κ a Ω synth. type of a bound var. (w/o vis. marker)

Σ; Ψ �̀aq aqvar : κ a : κ′; x .τ a Ω check type of a bound var. (w/o vis. marker)
�̀pi quant Π; ρ interpret a quantifier

�̀fun κ; ρ1  γ; Π; a; ρ2;κ1;κ2 a Ω extract components of a function type
Σ; Ψ �̀scrut alt;κ γ; ∆;H ; τ a Ω extract components of a scrutinee type

�̀ν
inst κ ψ;κ′ a Ω instantiate a type

Σ; Γ �̀decl decl x : κ := τ check a declaration
Σ; Γ �̀prog prog Γ′; θ check a program

Figure 6.6: Bake judgments

6.6 Type inference algorithm
The schema of the judgments that define Bake appear in Figure 6.6. I will not walk
through each rule of each judgment to explain its inner workings. As discussed in
the introduction to this chapter, the individual rules are largely predictable. They
can be reviewed in their entirety in Appendix D, and the statements of lemmas that
assert the soundness of many of these judgments appear in Section 6.8.1.4. Instead
of a thorough review of the algorithm, this section will call out individual rules with
interesting characteristics.

6.6.1 Function application

As discussed above (Section 6.4) function applications can only synthesize their type.
The two rules for synthesizing the type of a function application (one for regular
application and one for application with @) appear in Figure 6.7 on the next page,
along with auxiliary judgments.

Walking through the ITy_App rule, we see that Bake first infers the type κ0

for the Haskell expression t1, elaborating t1 to become τ1 and producing a unification
telescope Ω1. The type for τ1, though, might not manifestly be a function. This would
happen, for example, when inferring the type of λx y → x y , where the type initially
assigned to x is just a unification variable α. Instead of writing κ0 as a function, Bake
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Σ; Ψ �̀ty t1  τ1 : κ0 a Ω1

�̀fun κ0; Rel γ; Π; a; ρ;κ1;κ2 a Ω2

Σ; Ψ,Ω1,Ω2; ρ �̀∗arg t2 : κ1  ψ2; τ2 a Ω3

Σ; Ψ �̀∗
ty t1 t2  (τ1 B γ)ψ2 : κ2[τ2/a] a Ω1,Ω2,Ω3

ITy_App

Σ; Ψ �̀∗
ty t1  τ1 : ΠSpeca:ρκ1. κ2 a Ω1

Σ; Ψ,Ω1; ρ �̀∗arg t2 : κ1  ψ2; τ2 a Ω2

Σ; Ψ �̀∗
ty t1 @t2  τ1 ψ2 : κ2[τ2/a] a Ω1,Ω2

ITy_AppSpec

�̀fun κ; ρ1  γ; Π; a; ρ2;κ1;κ2 a Ω Extract out the parts of a function kind.

�̀fun ΠReqa:ρκ1. κ2; ρ0  〈ΠReqa:ρκ1. κ2〉; Π; a; ρ;κ1;κ2 a ∅
IFun_Id

fresh ι fresh β1, β2

Ω = β1:IrrelType, β2:IrrelType, ι:κ0 ∼
˜
ΠReqa:ρβ1. β2

�̀fun κ0; ρ ι;
˜
Π; a; ρ; β1; β2 a Ω

IFun_Cast

Σ; Ψ; ρ �̀∗arg t : κ ψ; τ a Ω Check a function argument against its known type.

Σ; Ψ �̀∗
ty t : κ τ a Ω

Σ; Ψ; Rel �̀∗arg t : κ τ ; τ a Ω
IArg_Rel

Σ; Rel(Ψ) �̀∗ty t : κ τ a Ω

Σ; Ψ; Irrel �̀∗arg t : κ {τ}; τ a Ω
IArg_Irrel

Figure 6.7: Function applications in Bake

instead uses its �̀fun judgment, which extracts out the component parts of a function
type.

It may be helpful in understanding the �̀fun judgment to see its correctness property,
as proved in Section E.9:

Lemma (Function position [Lemma E.37]). If Σ; Ψ �ty κ : Type and �̀fun κ; ρ1  
γ; Π; a; ρ2;κ1;κ2 a Ω, then Σ; Ψ,Ω �co γ : κ ∼ ΠReqa:ρ2κ1. κ2.

We can see here that �̀fun produces a coercion γ that relates the input type κ to
the output type Πa:ρ2κ1. κ2. The input relevance ρ1 is to be used as a default—Bake
will assume that a function uses its argument relevantly unless told otherwise. Note
that relevance of arguments is not denoted in the user-written source code.

Looking at the definition of �̀fun, we see two cases:

• If the input type κ is manifestly a Π-type, Bake just returns its component
pieces along with a reflexive coercion.
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• Otherwise, it invents fresh unification variables as emits a constraint relating
this variables to the input.

It might be tempting to define �̀fun only by the second rule, IFun_Cast, but this
would greatly weaken Bake’s power. Doing so would mean that the bidirectional
algorithm would never be able to take advantage of knowing a function’s argument
type. Furthermore, note that β2, the result type of the function in IFun_Cast, is not
generalized with respect to a:ρβ1; a function type inferred via IFun_Cast will surely
be non-dependent. This decision was made in keeping with the guiding principle that
only simple types should be inferred.

Once we have extracted the component parts of the function type, we can check the
argument with the �̀∗arg judgment. This judgment takes the relevance of the argument
as an input; it simply uses the �̀∗ty checking judgment and insert braces as appropriate.

Contrast the behavior of ITy_App to that of ITy_AppSpec, which, crucially,
does not use �̀fun. Consider what would happen if the function’s type is not manifestly
a Π-type. We could, like in IFun_Cast invent unification variables and emit a
constraint. But this would mean that the argument is inferred, not specified. Using an
inferred argument with a visibility override violates the inference principles set forth
by Eisenberg et al. [33] and would surely eliminate the possibility of principal types.
Accordingly, ITy_AppSpec avoids such behavior and simply looks to make sure that
the function’s type is of the appropriate shape. If it is not, Bake issues an error.

6.6.2 Mediating between checking and synthesis

The two modes of Bake meet head-on when we are checking an expression (such as a
function application) that has no rules in the checking judgment. The fall-through
case of the checking judgment is this rule:

Σ; Ψ �̀∗
ty t τ : κ1 a Ω

�̀pre κ2  ∆;κ′2; τ2

Ω ↪→ ∆ Ω′; ξ1

κ1[ξ1] ≤∗ κ′2  τ ′2 a Ω2

Ω2 ↪→ ∆ Ω′2; ξ2

Σ; Ψ �̀ty t : κ2  τ2 (λ∆. τ ′2[ξ2] τ [ξ1]) a Ω′,Ω′2
ITyC_Infer

We are checking that t has type κ2. First, Bake synthesizes t’s type κ1, producing
unification telescope Ω. We then must, as described in Section 6.4.3, deeply skolemize
κ2. Pulling out the quantifiers in κ2 (according to the �̀pre judgment) gives us

˜
Π∆. κ′2.

We then generalize Ω by ∆. It is this generalization step that allows the solver to solve
unification variables in Ω with skolems in ∆ and allows the example from Section
6.4.3 to be accepted. Having generalized, we then do the subsumption check. We now
must generalize Ω2, the output unification telescope from the subsumption check, as
Ω2 might refer to skolems bound in ∆.
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Once again, the key interesting part of this rule is the first generalization step. It
is not necessary to do this in order to get correct elaboration, but the analysis in my
prior work [33, end of Section 6.1] suggests that this is necessary in order to have
principal types.

6.6.3 case expressions

We see in Figure 6.6 on page 160 that there are two judgments for checking case
alternatives. These correspond to the two rules for checking case expressions, one for
synthesis (ITy_Case) and one for checking (ITyC_Case). I refrain from including
the actual rules here, as their myriad and ornate details would be distracting; the
overly curious can see Appendix D for these details.

As discussed previously (Sections 4.3.3 and 6.4), a case expression is treated
differently depending on whether we can know its result type. In the case where
we do not (ITy_Case), Bake invents a new unification variable β for the result
type and checks each case alternative against it. This is why the �̀alt judgment takes
a result type, even though it is used during synthesis. After all, we do require all
alternatives to produce the same result type. Producing the unification variable within
each alternative would risk running into a skolem escape, whereby the result type
might mention a variable locally bound within the alternative. It is simpler just to
propagate the β down into �̀alt. The �̀alt judgment, in turn, does not use the equality
gotten from dependent pattern matching when checking alternatives. Recall that doing
so during synthesis mode would cause trouble because the equality assumption would
make the β unification variable untouchable when solving constraints emitted while
processing the alternatives.

On the other hand, the �̀altc judgment is used from ITyC_Case, in checking mode.
This judgment is almost identical to �̀alt except that it allows the alternatives to make
use of the dependent-pattern-match equality.

6.6.4 Checking λ-expressions

Consider checking this expression:

(λ(f :: Int → Int)→ f 5) :: (∀ a. a→ a)→ Int (6.6.1)

This expression should be accepted. The λ takes a function over Ints and applies
it. The type signature then says that the λ should actually be applicable to any
polymorphic endofunction. Of course, such a function can be specialized to Int, so all
is well. Indeed, the expression above is accepted by GHC.

The example above, however, is not dependent. Surprisingly, the intuition in the
above paragraph does not generalize to the dependent case. Consider this (contrived)
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example:

(λ(f :: Bool → Bool)→ P) :: Π (g :: ∀ a. a→ a)→ Proxy ’(g 5, g ’True) (6.6.2)

where we have

data Proxy :: ∀ k . k → Type where
P :: ∀ k (a :: k). Proxy a
-- equivalent to data Proxy a = P

Once again, the annotation on the λ argument is a specialized version of the argument’s
type as given in the type signature. And yet, this expression must be rejected.

One way to boil this problem down is to consider what type we check the expression
P against. When we are checking P , we clearly have f :: Bool → Bool in scope. Yet
the natural type to check P against is Proxy ’(g 5, g ’True), which mentions g , not
f . Even if the names were to be fixed, we would still have the problem that g 5 is
certainly not well typed if g has type Bool → Bool . We are stuck.

Another way to see this problem is to think about elaborating the subsumption
judgment. In example (6.6.1), type inference will check whether ∀ a. a→ a ≤ Int → Int.
When it discovers that this is true, the subsumption algorithm will also produce a
function that takes something of type ∀ a. a→ a to something of type Int → Int. If the
expression in example (6.6.1) is applied to an argument (naturally, of type ∀ a. a→ a),
then this conversion function readies the argument to pass to the λ-expression.

In example (6.6.2), however, we need conversions both ways. We still need the
conversion from ∀ a. a→ a to Bool → Bool , for exactly the same reason that we need
it for example (6.6.1). We also need the conversion in the other direction (in this case,
the impossible conversion from Bool → Bool to ∀ a. a → a) when checking that P ,
with f :: Bool → Bool in scope, has type Proxy ’(g 5, g ’True), using g :: ∀ a. a→ a.

The solution to this is to have two separate rules, one in the non-dependent case
and one in the dependent case. Bake looks at the type being checked against (let’s
call it τ). If τ uses its argument dependently, then Bake requires that the annotation
on the λ argument and the function type as found in τ can be proved equal—that
is, that there is a coercion between them. Otherwise, we use subsumption, just as in
example (6.6.1). You can view the two rules in Section D.5; as usual, the rules are a
bit cluttered to present here.

6.7 Program elaboration
Up until now, this chapter has focused more on the gate-keeping services provided by
Bake, preventing ill formed programs from being accepted. In this section, we will
discuss elaboration, the process of creating the Pico program that corresponds to an
input Haskell program. Let’s look in particular on the highest levels of elaboration,
processing Haskell declarations and programs. See Figure 6.8 on the next page for the
two judgments of interest.
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Σ; Γ �̀decl decl x : κ := τ Check a Haskell declaration.

Σ; Γ �̀ty t τ : κ a Ω
Σ; Γ �̀solv Ω ∆; Θ
τ ′ = λ∆. (τ [Θ]) κ′ =

˜
ΠInf∆. (κ[Θ])

Σ; Γ �̀decl x := t x : κ′ := τ ′
IDecl_Synthesize

Σ; Γ �̀pt s σ a Ω1

Σ; Rel(Γ) �̀solv Rel(Ω1) ∆1; Θ1

σ′ =
˜
ΠInf∆1. (σ[Θ1])

Σ; Γ �̀∗
ty t : σ′  τ a Ω2

Σ; Γ �̀solv Ω2  ∅; Θ2

τ ′ = τ [Θ2]

Σ; Γ �̀decl x :: s := t x : σ′ := τ ′
IDecl_Check

Σ; Γ �̀prog prog Γ′; θ Check a Haskell program.

Σ; Γ �̀prog ∅ ∅;∅
IProg_Nil

Σ; Γ �̀decl decl x : κ := τ
Σ; Γ, x :Relκ, c:x ∼ τ �̀prog prog Γ′; θ

Σ; Γ �̀prog decl; prog x :Relκ, c:x ∼ τ,Γ′; (τ/x , 〈τ〉/c) ◦ θ
IProg_Decl

Figure 6.8: Elaborating declarations and programs

6.7.1 Declarations

The �̀decl judgment processes the two forms of declaration included in the Haskell
subset formalized here: unannotated variable declarations and annotated variable
declarations. It outputs the name of the new variable, its type κ and its value τ .
Note that the environment used in �̀decl is Σ; Γ, with a context containing only Pico
variables, no unification variables. These are top-level declarations only.

Rule IDecl_Synthesize simply ties together the pieces of using the synthesis
judgment and the solver. Note that the definitions of τ ′ and κ′ in the rule generalize
over the telescope ∆ produced by the solver, and that the Π-type formed marks the
binders as inferred, never specified.

Rule IDecl_Check is a bit more involved. It first must check the type signature
using the �̀pt judgment, to make sure s it is a well formed polytype. This process might
emit constraints, and we must solve these before tackling the term-level expression.
This would happen, for example, in the type ∀ a. Proxy a → (), as a’s kind is
unspecified. The solver may produce a telescope ∆1 to generalize by. In our example,
this telescope would include k :IrrelType, the type of a. Having sorted out the type
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signature, we can now proceed to the expression t, which is checked against σ′ the
generalized Pico translation of the user-written polytype s. We must solve once again.
In this invocation of the solver, we insist that no further generalization be done because
the user has already written the entire type of the expression. This decision is in
keeping with standard Haskell, where a declaration like

bad :: a→ String
bad x = show x

is rejected, because accepting the function body requires generalizing over an extra
Show a constraint.

6.7.2 Programs

The elaboration of whole programs is generally straightforward. This algorithm appears
in Figure 6.8 on the preceding page. The judgment Σ; Γ �̀prog prog Γ′; θ produces as
output an extension to the context, Γ′, as well as a closing substitution θ which maps
the newly bound variable to its definition. (Recall that this formalization of Bake
ignores recursion; thus no variable can be mentioned in its own declaration.)

The one non-trivial rule, IProg_Decl, checks a declaration and then incorporates
this declaration into the context Γ used to check later declarations. There is one small
twist here, though: because declared variables can be used in types as well as in terms,
we wish the typing context to remember the equality between the variable and its
definition. This is done via the coercion variable c included in the context in the
second premise to IProg_Decl.

6.8 Metatheory
This chapter has explained the Bake algorithm in some detail, but what theoretical
properties does it have? A type inference algorithm is often checked for soundness
and completeness against a specification. However, as argued by Vytiniotis et al. [99,
Section 6.3], lining up an algorithm such as Bake against a declarative specification
is a challenge. Instead of writing a separate, non-algorithmic form of Bake, I present
three results in this section:

• I prove that the elaborated Pico program produced by Bake is indeed a well
typed Pico program. This result—which I call soundness—marks an upper limit
on the set of programs that Bake accepts. If it cannot be typed in Pico, Bake
must reject.93

93I do not prove a correspondence between the Haskell program and the Pico program produced
by elaboration. It would thus theoretically be possible to design Bake to accept all input texts and
produce a trivial elaborated program. But that wouldn’t be nearly as much fun, and I have not done
so.

166



• In two separate subsections, I argue that Bake is a conservative extension
both of the OutsideIn algorithm and the SB algorithm of Eisenberg et al. [33].
That is, if OutsideIn or SB accepts a program, so does Bake. This results
suggests that a version of GHC based on Bake will accept all Haskell programs
currently accepted. These arguments—I dare not quite call them proofs—are
stated in less formal terms than other proofs in this dissertation. While it is likely
possible to work out the details fully, the presentation of the other systems and
of Bake/Pico differ enough that the translation between the systems would
be fiddly, and artifacts of the translation would obscure the main point. The
individual differences are discussed below.

These conservativity results provide a lower bound on the power of Bake,
declaring that some set of Haskell programs must be accepted by the algorithm.

The results listed above bound the power of the algorithm both from below and
from above, serving roughly as soundness and completeness results. It is left as future
work to define a precise specification of Bake and prove that it meets the specification.

6.8.1 Soundness

Here is the fundamental soundness result:

Theorem (Soundness of Bake elaboration [Theorem E.44]). If Σ c̀tx Γ ok and
Σ; Γ �̀prog prog Γ′; θ, then:

1. Σ c̀tx Γ,Γ′ ok

2. Σ; Γ s̀ubst θ : Γ′

3. dom(prog) ⊆ dom(Γ′)

This theorem assumes that the starting environment is well formed Σ c̀tx Γ ok and
that Bake accepts the source language program prog. In return, the theorem claims
that the context extension Γ′ is well formed (assuming it is appended after Γ), that
the substitution θ is a valid closing substitution (see below), and that indeed the new
context Γ′ binds the variables declared in prog.

Closing substitutions are recognized by the new judgment s̀ubst, which appears in
Figure 6.9 on the next page. (Note the turnstile `; this is a pure Pico judgment with
no unification variables in sight.) It uses a new notation θ|z which restricts the domain
of a substitution θ to operate only on the variables z . Informally, Σ; Γ s̀ubst θ : ∆ holds
when the substitution θ eliminates the appearance of any of the variables in ∆. Here
is the key lemma that asserts the correctness of the judgment:

Lemma (Closing substitution [Lemma E.30]). If Σ; Γ s̀ubst θ : ∆ and Σ; Γ,∆,Γ′ ` J ,
then Σ; Γ,Γ′[θ|dom(∆)] ` J [θ|dom(∆)].
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Σ; Γ s̀ubst θ : ∆ “θ substitutes the variables in ∆ away.”

Σ; Γ s̀ubst θ : ∅
Subst_Nil

Σ; Γ t̀y a[θ] : κ
Σ; Γ s̀ubst θ : ∆[θ|a ]

Σ; Γ s̀ubst θ : a:Relκ,∆
Subst_TyRel

Σ; Rel(Γ) t̀y a[θ] : κ
Σ; Γ s̀ubst θ : ∆[θ|a ]

Σ; Γ s̀ubst θ : a:Irrelκ,∆
Subst_TyIrrel

Σ; Rel(Γ) c̀o c[θ] : φ
Σ; Γ s̀ubst θ : ∆[θ|c]
Σ; Γ s̀ubst θ : c:φ,∆

Subst_Co

Figure 6.9: Validity of closing substitutions

Here, I use a notation where J stands for a judgment chosen from t̀y, c̀o, p̀rop, àlt,
v̀ec, c̀tx, or s̀.

The use of s̀ubst in the conclusion of the elaboration soundness theorem means that
the variable values stored in θ actually have the types as given in Γ′.

Naturally, proving this theorem requires proving the soundness of all the individual
judgments that form Bake. These proofs all appear in Section E.9.

6.8.1.1 Adapting lemmas on ` to �

The first step in establishing the soundness result is to ensure that the structural
lemmas proved for ` judgments still hold over the � judgments. While doing this
for the definitions as given does not pose a challenge, it is in getting these proofs to
work that all of the complications around unification variables (to wit, zonkers and
generalizers) arise.

Relating the two sets of judgments is accomplished by this key lemma:

Lemma (Extension [Lemma E.3]). Σ; Γ ` J if and only if Σ; Γ � J .

Note that the context must contain only Pico variables, never unification variables.
This fact is what allows the larger Σ; Γ � J to imply the smaller Σ; Γ ` J .
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Σ; Ψ �z Θ : Ω “Θ zonks all the unification variables in Ω.”

Σ; Ψ �z ∅ : ∅
Zonk_Nil

Σ; Ψ,∆ �ty τ : κ
Σ; Ψ �z Θ : Ω[∀ dom(∆).τ/α]

Σ; Ψ �z ∀ dom(∆).τ/α,Θ : α :Rel ∀∆.κ,Ω
Zonk_TyVarRel

Σ; Rel(Ψ,∆) �ty τ : κ
Σ; Ψ �z Θ : Ω[∀ dom(∆).τ/α]

Σ; Ψ �z ∀ dom(∆).τ/α,Θ : α :Irrel ∀∆.κ,Ω
Zonk_TyVarIrrel

Σ; Ψ,∆ �co γ : φ
Σ; Ψ �z Θ : Ω[∀ dom(∆).γ/ι]

Σ; Ψ �z ∀ dom(∆).γ/ι,Θ : ι : ∀∆.φ,Ω
Zonk_CoVar

Figure 6.10: Zonker validity

6.8.1.2 Soundness of the solver

The solver Σ; Ψ �̀solv Ω ∆; Θ produces a generalization telescope and a zonker. In
order to define a correctness property for this solver, we first need a judgment that
asserts the validity of the zonker. This judgment appears in Figure 6.10. The judgment
is quite similar to the judgment classifying closing substitutions ( s̀ubst, in Figure 6.9
on the previous page), but it deals also with the complexity of having unification
variables quantified over telescopes.

Naturally, we must require that the solver produce a valid zonker. We also require
that the zonker be idempotent, as that is a necessary requirement to prove the zonking
lemma, below. Here is the soundness property we are assuming of the solver. Note
that this property is the only one we need to prove soundness of elaboration.

Property (Solver is sound [Property E.24]). If Σ �ctx Ψ,Ω ok and Σ; Ψ �̀solv Ω ∆; Θ,
then Θ is idempotent, Σ �ctx Ψ,∆ ok, and Σ; Ψ,∆ �z Θ : Ω.

Lemma (Zonking [Lemma E.23]). If Θ is idempotent, Σ; Ψ �z Θ : Ω, and Σ; Ψ,Ω,∆ �
J , then Σ; Ψ,∆[Θ] � J [Θ].

6.8.1.3 Soundness of generalization

The following lemma asserts the correctness of the generalization judgment:

Lemma (Generalization [Lemma E.35]). If Ω ↪→ ∆ Ω′; ξ and Σ; Ψ,∆,Ω � J , then
Σ; Ψ,Ω′,∆ � J [ξ].

The proof of this lemma relies on the following smaller lemma (and its counterpart
for coercion variables):
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Lemma (Generalization by type variable [Lemma E.32]). If Σ; Ψ,∆, α :ρ ∀∆′.κ,Ψ′ �
J , then Σ; Ψ, α :ρ ∀∆,∆′.κ,∆,Ψ′[α 7→ dom(∆)] � J [α 7→ dom(∆)].

6.8.1.4 Soundness lemmas for individual judgments

Lemma (Instantiation [Lemma E.36]). If Σ; Ψ �ty τ : κ and �̀νinst κ ψ;κ′ a Ω, then
Σ; Ψ,Ω �ty τ ψ : κ′ and κ′ is not a Π-type with a binder (with visibility ν2) such that
ν2 ≤ ν.
Lemma (Scrutinee position [Lemma E.38]). If Σ; Ψ �ty τ : κ and Σ; Ψ �̀scrut alt;κ 
γ; ∆;H ′; τ a Ω, then Σ; Ψ,Ω �ty τ B γ : ’Π∆.H ′ τ and Σ; Rel(Ψ,Ω) �ty H ′ τ : Type.
Lemma (Prenex [Lemma E.40]). If Σ; Rel(Ψ) �ty κ : Type and �̀pre κ ∆;κ′; τ , then
Σ; Ψ �ty τ :

˜
Πx :Rel(

˜
Π∆. κ′). κ.

Lemma (Subsumption [Lemma E.41]). Assume Σ; Rel(Ψ) �ty κ1 : Type and
Σ; Rel(Ψ) �ty κ2 : Type. If either

1. κ1 ≤∗ κ2  τ a Ω, or

2. κ1 ≤ κ2  τ a Ω,
then Σ; Ψ,Ω �ty τ :

˜
Πx :Relκ1. κ2.

Lemma (Type elaboration is sound [Lemma E.42]).
1. If any of the following:

(a) Σ �ctx Ψ ok and Σ; Ψ �̀ty t τ : κ a Ω, or
(b) Σ �ctx Ψ ok and Σ; Ψ �̀∗

ty t τ : κ a Ω, or
(c) Σ; Rel(Ψ) �ty κ : Type and Σ; Ψ �̀ty t : κ τ a Ω, or
(d) Σ; Rel(Ψ) �ty κ : Type and Σ; Ψ �̀∗

ty t : κ τ a Ω,

then Σ; Ψ,Ω �ty τ : κ.

2. If Σ �ctx Ψ ok and Σ; Ψ �̀pt s σ a Ω, then Σ; Rel(Ψ,Ω) �ty σ : Type.

3. If Σ; Ψ �ty τ1 : Πνa:ρκ1. κ2 and Σ; Ψ; ρ �̀∗arg t2 : κ1  ψ2; τ2 a Ω, then Σ; Ψ,Ω �ty
τ1 ψ2 : κ2[τ2/a].

4. If Σ; Rel(Ψ) �ty κ : Type, Σ; Ψ �ty τ0 : ’Π∆.H τ , Σ; Rel(Ψ) �ty H τ : Type, and
Σ; Ψ; ’Π∆.H τ ; τ0 �̀alt alt : κ alt a Ω, then Σ; Ψ,Ω; ’Π∆.H τ �τ0alt alt : κ.

5. If Σ; Rel(Ψ) �ty κ : Type, Σ; Ψ �ty τ0 : ’Π∆.H τ , Σ; Rel(Ψ) �ty H τ : Type, and
Σ; Ψ;κ0; τ0 �̀altc alt : κ alt a Ω, then Σ; Ψ,Ω;κ0 �

τ0
alt alt : κ.

6. If Σ �ctx Ψ ok and Σ; Ψ �̀q qvar a : κ; ν a Ω, then Σ; Rel(Ψ,Ω) �ty κ : Type.

7. If Σ �ctx Ψ ok and Σ; Ψ �̀aq aqvar a : κ a Ω, then Σ; Rel(Ψ,Ω) �ty κ : Type.

8. If Σ; Ψ �ty τ0 : κ and Σ; Ψ �̀aq aqvar : κ a : κ′; x .τ a Ω, then Σ; Ψ,Ω �ty τ [τ0/x ] :
κ′.
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OutsideIn construct Pico form Notes
Axiom scheme Q Γ instances, etc.; implications are func-

tions; type family instances are via
unfoldings

Given constraint Qg, Qr ∆ constraints are named in Pico
Wanted constraint Qw Ω we must separate wanteds & givens

Figure 6.11: Translation from OutsideIn to Pico

6.8.2 Conservativity with respect to OutsideIn

I do not endeavor to give a full accounting of the OutsideIn algorithm here, instead
referring readers to the original [99]. I will briefly explain judgments, etc., as they
appear and refer readers to Figure numbers from the original text.

There are several mismatches between concepts in OutsideIn and in Pico. Chief
among these is that OutsideIn does not track unification variables in any detail.
All unification variables (and type variables, in general) in OutsideIn have kind
Type, and thus there is no need for dependency tracking. In effect, many judgments in
OutsideIn are parameterized by an unwritten set of in-scope unification variables. We
have no such luxury of concision available in Bake, and so there must be consideration
given to tracking the unification variables.

To partly bridge the gap between OutsideIn and Bake, I define encode which
does the translation, according to Figure 6.11. encodeing a construct from the left
column results in a member of the syntactic class depicted in the middle column.

OutsideIn differentiates between algorithm-generated constraints C and user-
written ones Q; the former contain implication constraints. I do not discern between
these classes, considering implication constraints simply as functions. I will use Q
metavariables in place of OutsideIn’s C.94

A further difference between OutsideIn and Bake is that the latter is bidirectional.
When OutsideIn knows the type which it wishes to assign to a term, it synthesizes
the term’s type and then emits an equality constraint. In the comparison between the
systems, we will pretend that Bake’s checking judgments do the same.

The fact that I must change my judgments does not imperil the practical impact
of the conservativity result—namely, programs that GHC accepts today will still be
accepted tomorrow. GHC already uses bidirectional type-checking and so has already
obviated the unidirectional aspect of OutsideIn. However, in order to make a formal
comparisons between that published algorithm, it is helpful to restrict ourselves to a
unidirectional viewpoint.

A final difference is that Bake does elaboration, while OutsideIn does not. I
94This conflation of Q and C does not mean that Dependent Haskell is now required to implement

implication constraints; it would be easy to add a post-type-checking pass (a “validity” check, in the
vocabulary of the GHC implementation) that ensures that no constraints have implications.
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shall use the symbol · to denote an elaborated type that is inconsequential in this
comparison.

6.8.2.1 Expressions

Claim (Expressions [Claim E.45]). If Γ �̀oi t : κ  Qw under axiom set Q and
signature Σ, then Σ; Γ, encode(Q) �̀ty t  · : κ a α:IrrelType, encode(Qw) where
α = fuv(κ) ∪ fuv(Qw).

This claim relates OutsideIn’s Γ �̀oi t : κ  Qw judgment (Figures 6 and 13
from Vytiniotis et al. [99]) to Bake’s synthesis �̀ty judgment. Note that the output
Ω from Bake’s judgment must include both the wanteds (encode(Qw)) and also any
unification variables required during synthesis (α).

To argue this claim, we examine the different rules that make up OutsideIn’s
judgment, using structural induction. The details appear in Section E.10.

6.8.2.2 The solver

Property (Solver). If Q;Qg;α1 �̀oi
solv Qw  Qr; Θ where Σ and Γ capture the signature

and typing context for the elements of that judgment, then

Σ; Γ, encode(Q), encode(Qg) �̀solv α1:IrrelType, encode(Qw) 

a2:IrrelType, encode(Qr)[a2/α2]; a2/α2,Θ,

where the a2 are fresh replacements for the α2 which are free in Qr or unconstrained
variables in α1.

This property is a bit more involved than we would hope, but all of the complication
deals with Bake’s requirement of tracking unification variables more carefully than
does OutsideIn. Underneath all of the faffing about with unification variables, the
key point here is that Bake’s solver will produce the same residual constraint Qr as
OutsideIn’s and the same zonking substitution Θ.

I do not try to argue this property directly, as I do not present the implemen-
tation for the solver. However, this property shows a natural generalization of the
solver in an environment that includes dependencies among variables. Indeed, GHC’s
implementation of the solver already handles such dependency.

6.8.2.3 Programs

Claim (Bind). If Γ �̀oi t : κ Qw and Q; ε; fuv(κ) ∪ fuv(Qw) �̀oi
solv Qw  Qr; Θ, then

Σ; Γ, encode(Q) �̀decl x := t x :
˜
ΠInfa:IrrelType. (

˜
ΠInfencode(Qr). κ[Θ])[a/α] := τ for

some τ , where α = fuv(κ[Θ]) ∪ fuv(Qr) and a are fresh replacements for the α.

This claim relates OutsideIn’s Bind rule (Figure 12) to Bake’s IDecl_Syn-
thesize rule. It is a consequence of the claim on expressions and the property above
of the solver.
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Claim (Conservativity over OutsideIn). If Q; Γ �̀oi prog, prog contains no annotated
bindings, and Σ captures the signature of the environment prog is checked in, then
Σ; Γ, encode(Q) �̀prog prog Γ′; θ.

This claim relates the overall action of the OutsideIn algorithm (Figure 12) to
Bake’s algorithm for checking programs. It follows directly from the previous claim.

Because of this, I believe that any program without top-level annotations accepted
by OutsideIn is also accepted by Bake.

6.8.3 Conservativity with respect to System SB

Here, I compare Bake with the bidirectional algorithm (called SB) in Figure 8 of
Eisenberg et al. [33]. That algorithm is proven to be a conservative extension both
of Hindley-Milner inference and also of the bidirectional algorithm presented by
Peyton Jones et al. [74]. This SB algorithm, along with OutsideIn, is part of the
basis for the algorithm currently implemented in GHC 8.

Before we can successfully relate these systems, we must tweak both a bit to bring
their approaches more in line with one another:

• System SB assumes an ability to guess monotypes. This is evident, for example,
in the SB_Abs rule, where an unannotated λ-expression is processed and the
monotype of the argument is guessed. Bake, of course, uses unification variables.
I thus modify System SB to always guess a unification variable when it guesses.
The modified rules are SB_Abs, SB_InstS, and SB_Var.

• Because of the previous change, it is now unfair in rule SB_App to insist that
the result of synthesis be a function type. Instead, the result of synthesizing the
type of e1 is an arbitrary monotype, and the �̀fun judgment is used to expand this
out to a proper function type. Note that we do not make a similar change in
SB_TApp; doing so would be tantamount to saying that a unification variable
might unify with a type with an invisible binder, something we have forbidden.
(See Section 6.10.1.3.) We similarly must modify SB_DAbs to allow for the
possibility of a unification variable being checked against.

• There is no convenient equivalent of integers in Bake; I omit the rule SB_Int.

• Bake does not do let-generalization. I thus modify SB_Let and SB_DLet
to use the ∗̀

sb judgment instead of the generalizing judgment.

• System SB skolemizes deeply in its checking ∗̀sb judgment, while Bake skolemizes
only shallowly. We thus move the prenex operation from SB_DeepSkol to
SB_Infer. I claim that this change does not alter the set of programs that
System SB accepts, due to the fact that neither non-Infer rule in the s̀b

judgment interacts with ∀s.
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• Bake expends a great deal of effort tracking telescopes of unification variables,
requiring the notion of a generalizer ξ. However, in the language supported by
System SB, all type variables always have kind Type and so these telescopes are
unnecessary. We thus simply ignore generalizers and the generalization judgment
(which always succeeds, regardless).

The theorem below also needs to relate a context Ψ used in Bake with the more
traditional context Γ used in System SB. In the claim below, I use Ψ ≈ Γ to mean that
all Ψ has no coercion bindings, that all irrelevant bindings in Ψ are of kind Type, and
that no relevant bindings depend on any other. Furthermore, all unification variables
bound in Ψ are absent from Γ.

I can now make the following claim:

Claim (Conservativity with respect to System SB [Claim E.47]). Assume Ψ ≈ Γ.

1. If Γ s̀b t⇒ κ, then Σ; Ψ �̀ty t · : κ a Ω.

2. If Γ ∗̀
sb t⇒ κ, then Σ; Ψ �̀∗

ty t · : κ a Ω.

3. If Γ s̀b t⇐ κ, then Σ; Ψ �̀ty t : κ · a Ω.

4. If Γ ∗̀
sb t⇐ κ, then Σ; Ψ �̀∗

ty t : κ · a Ω.

A detailed argument for this claim appears in Section E.11.

6.9 Practicalities
I have designed Bake with an eye toward implementing this algorithm directly in
GHC. This section discusses some of the practical opportunities and challenges in
integrating Bake with the rest of GHC/Haskell.

6.9.1 Class constraints

In both Pico and Bake, I conspicuously ignore the possibility of Haskell’s type classes
and instances. However, this is because classes and instances are already subsumed by
these formalizations’ handling of regular variables.

Classes in Haskell are already compiled into record types that store the imple-
mentations of methods, and instances are record values (often called dictionaries)
(Section 2.1). As Pico supports datatypes, it also supports classes. Nothing about
the type class system should matter at all in Pico. Indeed, System FC as currently
implemented in does not GHC 8 cares about type classes, to no ill effect.

During type inference, on the other hand, we need to care a bit about classes and
instances, because these are values that the type inference mechanism fills in for us.
However, with Bake’s ability to distinguish visible arguments from invisible ones and
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its orthogonal ability to work with variables of different relevances, the answer is right
in front of us: an instance is simply an inferred, relevant argument. That’s it! These
are handled in the following rule, part of the judgment that converts a user-written
polytype into Pico:

Σ; Ψ �̀ty t : Type τ a Ω1

Σ; Ψ,Ω1, $a:Relτ �̀pt s σ a Ω2

Ω2 ↪→ $a:Relτ  Ω′2; ξ

Σ; Ψ �̀pt t⇒ s 
˜
ΠInf$a:Relτ. (σ[ξ]) a Ω1,Ω′2

IPtC_Constrained

This rule checks the constraint t, making sure it is well typed as a constraint (see
Section 6.9.5) and then checks the rest of the type, assuming the constraint. The use
of a $ sign in the name of the constraint ($a) is meant to convey that the variable $a
cannot appear in the Haskell source.

Note that “given” class constraints (that is, a user-written context on a function
type signature) are also handled without any effort, as a member of a telescope that
unification variables are quantified over.

In contrast to the Bake constraint generation algorithm, the solver must treat
instances separately and have a way of finding instances in the global set. However,
this remains out of scope for this dissertation.

6.9.2 Scoped type variables

Scoped type variables in GHC/Haskell have an idiosyncratic set of rules detailing
when variables are to be brought into scope [72]. Consider the following two examples,
where t is an arbitrary term:

example1 = (t :: ∀ a. a→ a)

higherRank :: (∀ a. a→ a)→ ()
example2 = higherRank t

In example1, the type variable a is in scope in t. In example2, however, a is not in
scope. This is true despite the fact that, in both cases, Bake would check t against
the same Pico type.

Instead of trying to track all of this in the constraint generation algorithm, however,
Bake divides its pool of variable names into those names that can appear in a source
program (a, b, x ) and those that cannot ($a, $b, $x ). When Bake must put a variable in
the context that should not be available in Haskell, it uses the $a variant. Scoped type
variables are explicitly brought into scope by λ or Λ. It is thus up to the preprocessor
which must introduce abstractions as necessary to bring the scoped type variables
into scope; as this process is not type-directed, incorporated this into the preprocessor
should not be a challenge.
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Bake judgment GHC function
�̀fun matchExpectedFunTys
�̀scrut matchExpectedTyConApp
�̀inst topInstantiate
�̀pre tcDeepSplitSigmaTy_maybe
≤∗ tcSubTypeDS
≤ tcSubType
�̀prog tcPolyBinds

Figure 6.12: GHC functions that already implement Bake judgments

6.9.3 Correspondence between Bake and GHC

The design of Bake is already quite close to that of GHC’s constraint-generation
algorithm. Figure 6.12 lists correspondences between Bake judgments and functions
already existent in GHC.

Notably absent from Figure 6.12 are the main judgments such as �̀ty. These are
implemented in GHC via its tcExpr function, which handles both directions of the
bidirectional type system at the same time through its use of expected types, a
mechanism where the synthesis judgment is implemented by checking against a hole—
essentially, a unification variable that can unify with a polytype. A full accounting of
GHC’s expected types and holes is out of scope here, but there should be no trouble
adapting Bake’s bidirectional algorithm to GHC as previous bidirectional algorithms
have been adapted.

6.9.4 Unification variables in GHC

The GHC implementation takes a very different approach to unification variables
and zonking than does Bake. A GHC unification variable (called a metavariable in
the source code) is a mutable cell. The solver fills in the mutable cells. Though the
implementation details differ a bit, the same is currently true for unification coercion
variables (called coercion holes in GHC)—they are still mutable cells. The zonking
operation walks through a type (or coercion or expression) and replaces pointers to
mutable cells with the cells’ contents. On the other hand, Bake’s treatment of filling
in unification variables requires building up an explicit zonker Θ; in effect, the implicit
substitution GHC builds in the heap using mutable cells is made explicit in Bake.

Another key difference between GHC and my formalization (and every other) is
that GHC variables track their own kinds. The implementation does track a context
used in looking up user-written variable occurrences, but no context is needed to, say,
extract a type’s kind from the type itself. Because of this design, GHC does not need
to track unification telescopes, even though GHC 8 already can have arbitrarily long
chains of variables that depend on others. Instead, the solver takes (essentially) the
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set of unification variables to solve for. Dependency checking is done after the fact as
a simple pass making sure all variables in kinds are in scope.

A further consequence of GHC’s design is that there is no need for the concept of
generalizers ξ as I have described. Unification variable occurrences are not, in fact,
applied to vectors. Along with the fact that GHC does not track contexts, it also uses
stable names powered by a enumerable collection of Uniques. We thus do not have to
worry about arbitrary α-renaming during constraint generation and solving. Taken
together, the need for generalizers is lost, and thus the generalization operation ↪→
disappears.

6.9.5 Constraint vs. Type

Haskell includes the kind Constraint that classifies all constraints; we thus have
Show :: Type→ Constraint. However, due to the datatype encoding of classes and the
dictionary encoding of instances, Pico manipulates constraints just as it does ordinary
types. For this reason, Pico makes no distinction between Constraint and Type. This
choice follows GHC’s current practice, where Constraint and Type are distinct in the
source language but indistinguishable in the intermediate language. This design has
some unfortunate consequences; see GHC ticket #11715 for a considerable amount of
discussion.

Extending the language with dependent types is orthogonal to the problems
presented there, however. For simplicity, Bake as described here does not recognize
Constraint, putting all constraints in the kind Type with all the other types.

6.10 Discussion

6.10.1 Further desirable properties of the solver

Thus far, I have stated only one property (in Section 6.8.1.2) that the solver must
maintain, that it must output a valid zonker. However, it is helpful to describe further
properties of the solver in order to make type inference more predictable and to
maintain the properties stated by Vytiniotis et al. [99], such as the fact that all
inferred types are principal and that the solver makes no guesses. The full set of extra
properties are listed in Figure 6.13 on the next page.

6.10.1.1 Entailment

These properties are stated with respect to an entailment relation, defined as follows:

Definition (Entailment). We say that an environment Σ; Ψ entails a telescope ∆,
written Σ; Ψ ( ∆, if there exists a vector ψ such that Σ; Ψ �vec ψ : ∆.
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Property 6.1 (Solver is guess-free). If Σ; Ψ �̀solv Ω  ∆; Θ, then Σ; Ψ,Ω ( ∆, EΘ,
where EΘ = {_:α ∼ τ | ∀ z .τ/α ∈ Θ} is the equational constraint induced by the
zonker Θ.

The above property is adapted from Vytiniotis et al. [99, Definition 3.2 (P1)].

Property 6.2 (Solver avoids non-simple types). If Σ; Ψ �̀solv Ω ∆; Θ and ∀ z .τ/α ∈
Θ, then τ is a simple type, with no invisible binders (at any level of structure) and no
dependency.

Property 6.3 (Solver does not generalize over coercions). If Σ; Ψ �̀solv Ω  ∆; Θ,
then ∆ binds no coercion variables.

Figure 6.13: Additional solver properties

As this section expands upon the ideas from Vytiniotis et al. [99], it is necessary to
check whether this definition of entailment satisfies the entailment requirements from
that work. These requirements are presented in Figure 6.14 on the following page.

All of this properties are easily satisfied, except for property (R8) (both components)
which requires congruence. As explored in some depth in Section 5.8.5.3, Pico simply
does not have this property. However, that same section argues that equality in Pico
is “almost congruent”, suggesting that the equality relation truly is congruent in the
absence of coercion abstractions. The proof that the OutsideIn algorithm infers
principal types does require property R8 [99, Theorem 3.2], and so it is possible that
Pico’s lack of congruence prevents Bake from inferring principal types. The details
have yet to be worked out.

6.10.1.2 A guess-free solver

One of the guiding principles I set forth at the beginning of this chapter is that the
algorithm and solver be guess-free. We thus must assert that the solver is guess-free,
an important step along the way to the proof of principal types in Vytiniotis et al.
[99]. See Property 6.1.

6.10.1.3 Solver does not introduce impredicativity

An important but previously unstated property is that that solver must not set a
unification variable to anything but a simple type, one with no invisible binders nor
dependency. (Such types are sometimes called τ -types, referring to the τ/σ split in the
typical presentation of the Hindley-Milner type system.) In the context of Dependent
Haskell, impredicativity has perhaps an unusual definition: no type variable is ever
instantiated with a non-simple type. For this to hold, however, we must make sure
that this property extends to unification variables as well, as those are sometimes used
to instantiate regular variables.
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Reflexivity Σ; Ψ,∆ ( ∆ (R1)
Transitivity Σ; Ψ,∆1 ( ∆2 ∧ Σ; Ψ,∆2 ( ∆3 =⇒ Σ; Ψ,∆1 ( ∆3 (R2)
Substitution Σ; Ψ,∆1,Ψ

′ ( ∆2 ∧ Σ; Ψ �subst θ : ∆1 (R3)
=⇒ Σ; Ψ,Ψ′[θ] ( ∆2[θ]

Type eq. reflexivity Σ; Ψ �ty τ : κ =⇒ Σ; Ψ ( _:τ ∼ τ (R4)
Type eq. symmetry Σ; Ψ ( _:τ1 ∼ τ2 =⇒ Σ; Ψ ( _:τ2 ∼ τ1 (R5)
Type eq. transitivity Σ; Ψ ( _:τ1 ∼ τ2 ∧ Σ; Ψ ( _:τ2 ∼ τ3 (R6)

=⇒ Σ; Ψ ( _:τ1 ∼ τ3

Conjunctions Σ; Ψ ( ∆1 ∧ Σ; Ψ ( ∆2 =⇒ Σ; Ψ ( ∆1,∆2 (R7)
Substitutivity Σ; Ψ ( _:τ1 ∼ τ2 ∧ Σ; Ψ, a:Relκ0 �ty τ : κ (R8a)

=⇒ Σ; Ψ ( _:τ [τ1/a] ∼ τ [τ2/a]
Σ; Rel(Ψ) ( _:τ1 ∼ τ2 ∧ Σ; Ψ, a:Irrelκ0 �ty τ : κ (R8b)

=⇒ Σ; Ψ ( _:τ [τ1/a] ∼ τ [τ2/a]

Figure 6.14: Required properties of entailment, following [99, Figure 3]

Solving unification variables with simple types is also important in the context
of the theory around principal types developed in my prior work [33]. Specifically,
we must ensure that there are no invisible binders that are hidden underneath a
unification variable. By forbidding filling a unification variable with a non-simple type,
we have achieved this goal. See Property 6.2.

6.10.2 No coercion abstractions

In stating that Pico supports type erasure (Section 5.11), I admit that type erasure
does not mean that we can erase coercion abstractions or applications, even though
we can erase the coercions themselves. Nevertheless, I argue that Pico can claim to
support full type erasure because Bake never produces a Pico program that evaluates
to a coercion abstraction. To support this claim, we can look at the elaborated program
produced by Bake and where coercion abstractions can be inserted:

Around subsumption: Three rules extract out a telescope of binders using the �̀pre
judgment and then use these binders in the elaboration. If the telescope includes
a coercion binder, the elaboration will include a coercion abstraction. However,
I am arguing that there should be no coercion binders there in the first place, so
we can handle this case essentially by induction. (Rules affected: ITyC_Infer,
rules in the �̀pre judgment, and ISub_DeepSkol)

During generalization after running the solver: If the solver produces a tele-
scope that binds coercions, Bake will similarly include a coercion abstract in its
elaboration. We must thus assert Property 6.3. This property is not as restrictive
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as it may seem, as the solver may still abstract over a class constraint whose
instances store a coercion.95 (Rule affected: IDecl_Synthesize)

Elaborating case alternatives: When elaborating a case alternative, coercion ab-
stractions are inserted. This is necessary for two reasons:

• GADT equalities can be brought into scope in a case alternative. These
are bound by coercion abstractions.

• The dependent-pattern-match equality (Section 4.3.3) must be brought
into scope by a coercion abstraction.

However, when a case expression is evaluated (by evaluation rule S_Match),
these coercion abstractions will be applied to arguments and thus cannot be the
final value of evaluating the outer Pico expression. (Rules affected: IAlt_Con,
IAltC_Con)

These are the only Bake rules that can include a coercion abstraction in their
elaborated types. I thus conclude that type erasure is valid, with no possibility of
having evaluation be stuck on a coercion abstraction.

6.10.3 Comparison to Gundry [37]

The Bake algorithm presented here is very similar to the type inference algorithm
presented by Gundry [37, Chapter 7]. Here I review some of the salient differences.

• Gundry includes both a non-deterministic elaboration process and a deterministic
one, proving that the deterministic process is sound with respect to the non-
deterministic process (at least, in the absence of case). I have omitted a non-
deterministic version of the algorithm, instead using the soundness of the resultant
Pico program to set an upper limit on the programs that Bake can accept.

• Gundry’s inch source language and his evidence intermediate language have
two forms of case statement: one for traditional, non-dependent pattern match-
ing; and one for dependent pattern matching. Bake chooses between these
possibilities using the difference between checking and synthesis modes.

• While Gundry uses two separate judgments in synthesis mode, he uses only one
checking judgment. The need for two checking judgments here is an innovation
that derives from the need for principal types, as explored in my prior work [33].

• The inch language does not allow annotations on the binders of a λ-abstraction
and so Gundry did not encounter the thorny case detailed in Section 6.6.4.

95For example, the Haskell equality constraint ∼ is such a class, distinct from the primitive equality
operator in Pico. In the terminology of Vytiniotis et al. [100], the Haskell equality is lifted while the
Pico equality is unlifted.
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• Gundry’s approach to delayed instantiation for function arguments follows
along the lines of Dunfield and Krishnaswami [24], using an auxiliary judgment
to control function application. While Bake has its �̀∗arg judgment, which is
superficially similar, Bake’s judgment can only handle one argument at a time.

• Gundry’s algorithm does not do deep skolemization. It would thus not be
backward compatible with GHC’s current treatment of higher-rank types.

• Gundry gives more details about the solver in his algorithm [37, Section 7.5.1].
However, this solver is a novel algorithm that remains to be implemented. Instead,
Bake targets the OutsideIn solver. Nevertheless, I do not think it would be
hard for Gundry’s general approach to target OutsideIn, as well.

• As a point of similarity, Gundry’s and Bake’s treatment of unification variables
are very closely aligned. This is not actually intentional—after reading Gundry’s
approach, I believed I could make the whole treatment of unification variables
much simpler. Yet despite a variety of attempts, I was unable to make the
basic lemmas that hold together a type system (e.g., substitution, regularity) go
through without something as ornate as we have both used. I would love to see
a simpler treatment in the future, but I do not hold out much hope.

6.11 Conclusion
This chapter has presented Bake, a type checking / inference / elaboration algorithm
that converts type-correct Dependent Haskell types and expressions into Pico. It is
proven to produce type-correct Pico code, and it is designed in the hope of supporting
principal types. Formulating a statement and proof of principal types in Bake is
important future work.

This algorithm is also designed to work well with GHC’s existing type checker
infrastructure, and in particular, its constraint solver. It is my hope and plan to
implement this algorithm, quite closely to how it is stated here, in GHC in the near
future.
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Chapter 7

Implementation

This chapter reviews a number of practical issues that arise in the course of imple-
menting the theory presented in this dissertation. Perhaps the most interesting of
these is that the function that computes equality in GHC does not simply check for
α-equivalence; see Section 7.2.

7.1 Current state of implementation
As of this writing (August 2016), only a portion of the improvements to Haskell
described in this dissertation are implemented. This section describes the current state
of play and future plans.

7.1.1 Implemented in GHC 8

The language supported by GHC 8 is already a large step toward the language
in this dissertation. The features beyond those available in GHC 7 are enabled by
GHC’s TypeInType extension. I personally implemented essentially all aspects of this
extension and merged my work in with the development stream. I have had feedback
and bug reports from many users,96 indicating that my new features are already
gaining traction in the community. Here are its features, in summary:

• The core language is very closely as described in my prior work [105].

• The kind of types ? is now treated as described in Section 7.4.

• Types and kinds are indistinguishable and fully interchangeable.

• Kind variables may be explicitly quantified:

96According to the GHC bug tracker, 19 users (excluding myself) have posted bugs against my
implementation.
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data Proxy :: ∀ k . k → Type where
Proxy :: ∀ k (a :: k). Proxy a

• The same variable can be used in a type and in a kind:

data T where
MkT :: ∀ k (a :: k). k → Proxy a→ T

• Type families can be used in kinds.

• Kind-indexed GADTs:

data G :: ∀ k . k → Type where
GInt :: G Int
GMaybe :: G Maybe

data (:≈:) :: ∀ k1 k2. k1 → k2 → Type where
HRefl :: a :≈: a

• Higher-rank kinds are now possible:

class HTestEquality (f :: ∀ k . k → Type) where
hTestEquality :: ∀ k1 k2 (a :: k1) (b :: k2). f a→ f b → Maybe (a :≈: b)

instance HTestEquality TypeRep where -- from Section 3.2.2
hTestEquality = eqT

• GADT data constructors can now be used in types.

• The type inference algorithm used in GHC over types directly corresponds to
those rules in Bake that deal with the constructs that are available in types
(that is, missing case, let, and λ). This algorithm in GHC is bidirectional, as is
Bake.

7.1.2 Implemented in singletons

Alongside my work implementing dependent types in GHC, I have also continued
the development of my singletons package [29, 30]. This package has some enduring
popularity: it has over 7,000 downloads, 31 separate users reporting bugs, is the
primary subject of several blog posts97 and has even made its way into a textbook on
Haskell [81, Chapter 13]. The singletons package uses Template Haskell [83], GHC’s

97Here are a sampling:
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meta-programming facility, to transform normal term-level declarations into type-level
equivalents.

I use my work in singletons as a proof-of-concept for implementing dependent types.
My goal with the dependent types work is to make this package fully obsolete. In the
meantime, it is an invaluable playground of ideas both for me and other Haskellers
who do not wish to wait for dependent types proper.

Because of its function as a proof-of-concept, I include here a list of features
supported by singletons. By their support in the library, we can be confident that
these features can also be supported in GHC without terrible difficulty. The singletons
currently supports code using the following features in types:

• All term-level constructs supported by Template Haskell except: view patterns,
do, list comprehensions, arithmetic sequences. (Template Haskell does not
support GHC’s arrow notation.) The library specifically does support case, let
(including recursive definitions) and λ-expressions. See my prior work for the
details [29].

• Unsaturated type families and the distinction between matchable and unmatch-
able arrows

• Type classes and instances

• Constrained types

• Pattern guards

• Overloaded numeric literals

• Deriving of Eq, Ord , Bounded , and Enum

• Record syntax, including record updates

• Scoped type variables

The latest major effort at improving singletons targeted GHC 7, though the library
continues to work with GHC 8. I am confident more constructs could be supported
with a thorough update to GHC 8—in particular, do-notation cannot be supported in
GHC 7 because it would require a higher-kinded type variable. Such type variables
are fully supported in GHC 8, and so I believe singletons could support do-notation

• https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/
dependent-types-in-haskell

• https://ocharles.org.uk/blog/posts/2014-02-25-dependent-types-and-plhaskell.html

• http://lambda.jstolarek.com/2014/09/promoting-functions-to-type-families-in-haskell/

• https://blog.jle.im/entry/practical-dependent-types-in-haskell-1.html

all by different authors—not to mention my own posts.
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and list/monad comprehensions relatively easily now. However, I wish to spend my
implementation efforts on getting dependent types in Haskell for real instead of faking
it with singletons, and so may not complete these upgrades.

7.1.3 Implementation to be completed

There is still a fair amount of work to be done before the implementation of dependent
types in Haskell is complete. Here I provide a listing of the major tasks to be completed
and my thoughts on each task:

• Implement Pico as written in this dissertation. The biggest change over the
current implementation of GHC’s intermediate language is that Pico combines
the grammar of types and of terms. The current intermediate language already
supports, for example, heterogeneous equality and the asymmetric binding
coercion forms (Section 5.8.5.1). While combining the internal datatypes for
types and terms will be the furthest reaching change, I think the most challenging
change will be the addition of the many different quantifier forms in Pico (with
relevance markers, visibility markers, and matchability markers).

• Combine the algorithms that infer the types of terms and the kinds of types.
Currently, GHC maintains two separate, but similar, algorithms: one that type-
checks terms and one that kind-checks types. These would be combined, as
prescribed by Bake. I expect this to be a simplification when it is all done,
as one algorithm will serve where there is currently two—and both are quite
complex.

• Interleave type-checking with desugaring. Currently, GHC maintains two separate
phases when compiling terms: type-checking ensures that the source expression
is well typed and also produces information necessary for elaboration into its
intermediate language. Afterwards, GHC desugars the type-checked program,
translating it to the intermediate language. Desugaring today is done only after
the whole module is type-checked. However, if some declarations depend on
evaluating other declarations (because the latter are used in the former’s types),
then desugaring and type-checking will have to be interleaved. I do not expect
this to be a challenge, however, for two reasons:

– Type-checking and desugaring are already interleaved, at least in types.
Indeed, the kind checker for types produces a type in the intermediate
language today, effectively type-checking and desugaring all at once.

– Type-checking happens by going in order through a sequence of mutually
recursive groups. One expression cannot depend on another within the same
group, and so we can just process each group one at a time, type-checking
and then desugaring.

185



• The source language will have to be changed to accept the new features. To be
honest, I am a little worried about this change, as it will require updating the
parser. Currently, the parsers for types and expressions are separate, but this
task would require combining them. Will this be possible? I already know of one
conflict: the ’ used in Template Haskell quoting (which made a brief appearance
in Section 3.1.3.2) and the ’ used in denoting a namespace change. Both of these
elements of the syntax are pre-existing, and so I will have to find some way of
merging them.

At this point, I do not foresee realistically beginning these implementation tasks
before the summer of 2017. If that process goes swimmingly, then perhaps we will see
Dependent Haskell released in early 2018. More likely, it will be delayed until 2019.

During the process of writing this dissertation, I worked on merging my implemen-
tation of TypeInType into the GHC main development stream. This process was much
harder than I anticipated, taking up two more months than expected, working nearly
full-time. I am thus leery of over-promising about the rest of the implementation
task embodied in this dissertation. However, my success in emulating so many of
the features in Dependent Haskell in singletons gives me hope that the worst of the
implementation burden is behind me.

Despite not having fully implemented Dependent Haskell, I still have learned much
by implementing one portion of the overall plan. The rest of this chapter shares this
hard-won knowledge.

7.2 Type equality
The notion of type equality used in the definition of Pico is quite restrictive: it is
simple α-equivalence. This equality relation is very hard to work with in practice,
because it is not proof-irrelevant. That is, Int . 〈Type〉 6= Int. This is true despite the
fact that the ∼ relation is proof-irrelevant.

The proof-relevant nature of = poses a challenge in transforming Pico expressions
into other well typed Pico expressions. This challenge comes to a head in the unifier
(Section 7.3) where, given τ1 and τ2, we must find a substitution θ such that τ1 = τ2.
Unification is used, for example, when matching class instances. However, with proof-
relevant equality, such a specification is wrong; it would fail to find an instance
C (Maybe a) when we seek an instance for C (Maybe Int . 〈Type〉). Instead, we want
θ and γ such that Σ; Γ c̀o γ : τ1[θ] ∼ τ2[θ] (for an appropriate Σ and Γ). Experience
has shown that constructing the γ is a real challenge.98

98When I attempted this implementation, the coercion language was a bit different than presented
in Pico. In particular, I did not have the ≈ coercion form, instead having the much more restricted
version of coherence that appears in my prior work [105]. The new form ≈ is admissible given the
older form, but it is not easy to derive. It is conceivable that, with ≈, this implementation task would
now be easier.
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7.2.1 Properties of a new definitional equality ≡
The problem, as noted, is that the = relation is too small. How can we enlarge this
relation? Since the relation we seek deviates both from α-equivalence and from ∼,
we need a new name: let’s call it ≡, as it will be the form of definitional equality in
the implementation. (The relation is checked by the GHC function eqType, called
whenever two types must be compared for equality.) We will define a new type system,
Pico≡, based on ≡. Here are several properties we require of ≡, if we are to adapt
the existing metatheory for Pico:

Property 7.1. The ≡ relation must be an equivalence. That is, it must be reflexive,
symmetric, and transitive.

Property 7.2. The ≡ relation must be a superset of =. That is, if τ1 = τ2, then
τ1 ≡ τ2.

Property 7.3. The ≡ relation must be a subset of ∼. That is, if τ1 ≡ τ2, then there
must be a proof of τ1 ∼ τ2 (in appropriate contexts).

Property 7.4. The ≡ relation must be congruent. That is, if corresponding components
of two types are ≡, then so are the two types.

Property 7.5. The ≡ relation must be proof-irrelevant. That is, τ ≡ τ B γ for all τ .

Property 7.6. The ≡ relation must be homogeneous. That is, it can relate two types
of the same kind only.

Property 7.7. Computing whether τ1 ≡ τ2 must be quick.

We need Properties 7.1-7.4 for soundness. I will argue below that we can transform
the typing rules for Pico to use ≡ where they currently use =. This argument relies
on these first four properties.

Property 7.5 means that our new definition of ≡ indeed simplifies the imple-
mentation. After all, seeking a proof-irrelevant (that is, coherent) equality is what
started this whole line of inquiry. However, despite Property 7.5 masquerading as
only a desired property, it turns out that with my proof technique, this is a necessary
property. Indeed, it seems that once ≡ is any relation strictly larger than =, it must
be proof irrelevant. This is because the translation from a derivation in Pico≡ to one
in Pico (see next subsection) will use coercions as obtained through Property 7.3.
These coercions must not interfere with ≡-equivalence.

Property 7.6 arises from the use of ≡ (that is, eqType) in the implementation.
There are many places where we compare two types for equality and, if they are equal,
arbitrarily choose one or the other. Thus, ≡ must be substitutive and accordingly
homogeneous.

Property 7.7 arises because we use eqType very frequently. A slow computation or
a search simply is not feasible.
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Beyond these requirements, a larger ≡ relation is better. Having a larger ≡ makes
implementing Pico easier, as we will be able to replace one type with another type,
as long as the two are ≡. Thus, having more types be related makes the system more
flexible.

7.2.2 Replacing = with ≡
We can take the typing rules of Pico and mechanically replace uses of = (over types)
with ≡ to form the rules of Pico≡. This is done by looking for every duplicated use
of a type in the premises of a rule, and putting in a ≡ instead.

For example, the application rule is transformed from

Σ; Γ t̀y τ1 : Πa:Relκ1. κ2 Σ; Γ t̀y τ2 : κ1

Σ; Γ t̀y τ1 τ2 : κ2[τ2/a]
Ty_AppRel

to
Σ; Γ 
ty τ1 : κ0 κ0

→≡ Πa:Relκ1. κ2

Σ; Γ 
ty τ2 : κ′1 κ1 ≡ κ′1
Σ; Γ 
ty τ1 τ2 : κ2[τ2/a]

DTy_AppRel

This new rule allows κ1 and κ′1 not to be α-equivalent, as long as they are ≡. It
also makes use of an extraction operator

→≡ that pulls out the component pieces of
a type, respecting ≡-equivalence. The full set of rules that define Pico≡ appear in
Appendix F.

Continuing the notational convention where J can stand for any of the judgments
t̀y, c̀o, àlt, p̀rop, c̀tx, v̀ec, or s̀, we have following lemmas, relating Pico≡ to Pico:

Lemma (Pico≡ is an extension of Pico). If Σ; Γ ` J then Σ; Γ 
 J .

Proof. Corollary of Property 7.2 of the definition of ≡.

We also need a lemma where a result in Pico≡ implies one in Pico. This is harder
to state, as it requires an operation that translates a term τ that is well typed in Pico≡

into one well typed in Pico. We write the latter as dτe. The translation operation d·e
is actually a deterministic operation on the typing derivation in Pico≡; the conversion
is valid only when the original type is well formed in Pico≡. The full statement of the
lemma relating Pico≡ to Pico appears in Appendix F, but the following informal
statement will serve us well here:

Lemma (Pico≡ is sound [Lemma F.10]). If Σ; Γ 
 J , then Σ; dΓe ` dJ e.

With both of these lemmas in hand, we can see that Pico and Pico≡ are equivalent
systems and that all of the results from Pico carry over to Pico≡.
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7.2.3 Implementation of ≡
Having laid out the properties we require of ≡, my choice of implementation of ≡ is
this:

Definition (Definitional equality ≡). We have τ1 ≡ τ2 whenever bκ1c = bκ2c and
bτ1c = bτ2c, where τ1 : κ1 and τ2 : κ2.

The operation bτc here is the coercion erasure operation from Section 5.8.3. It
simply removes all casts and coercions from a type. In the implementation, we can
easily go from a type to its kind, as all type variables in GHC store their kinds directly
(as also described in Section 6.9.4), with no need for a separate typing context. The
implementation actually optimizes this equality check a bit, by comparing the kinds
only when the type contains a cast—this avoids the extra check in the common case
of a simple type.

This equality check easily satisfies the properties described above. It also supports
the extraction operation, which simply looks through casts.

7.3 Unification
It is often necessary to unify two types. This is done in rule Alt_Match in Pico
but is also necessary in several places during type inference—for example, when
matching up a class instance with a constraint that must be solved. With dependent
types, however, how should such a unifier work? For example, should (a b) unify with
(τ σ) B γ? The top-level forms of these are different, and yet, intuitively, we would
want them to unify. In other words, we want an algorithm that does unification up to
≡.

I have thus implemented a novel unification algorithm in GHC that does indeed
unify the forms above. To first order, this algorithm simply ignores casts and coercions.
The problem if we ignore coercions altogether is that the resulting substitution might
not be well kinded. As a simple example, consider unifying a with τ B γ. If we just
ignore casts, then we get the substitution τ/a—but τ and a might have different kinds.
In the type application example, we similarly do not want the substitution τ/a, σ/b
but instead (τ B γ1)/a, (σ B γ2)/b for appropriate γ1 and γ2.

My approach, then, is for the algorithm to take three inputs: the two types to
unify and a coercion between their kinds. At the leaves (matching a variable against a
type), we insert this coercion to make the substitution well kinded. At interior nodes,
we simply ensure that we have a new kind coercion to pass to recursive calls.

The unification algorithm is in Figure 7.1 on the next page. It works in the context
of a UM monad that can handle failure and stores the ambient substitution produced
by unification. I will highlight a few interesting points in this algorithm:

• The unify function considers only those types which might be values. It specifically
avoids treating case or fix. This is because non-values are flattened away before
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unify :: Type → Type → Coercion→ UM ()
unify (τ1 . γ) τ2 η = unify τ1 τ2 (γ # η)
unify τ1 (τ2 . γ) η = unify τ1 τ2 (η # sym γ)
unify a τ2 η = unifyVar a τ2 η
unify τ1 a η = unifyVar a τ1 (sym η)
unify H{τ1} H{τ2} = unifyTys τ 1 τ 2

unify (τ1 σ1) (τ2 σ2) = unifyTyApp τ1 σ1 τ2 σ2

unify (τ1 {σ1}) (τ2 {σ2}) = unifyTyApp τ1 σ1 τ2 σ2

unify (τ1 ) (τ2 ) = unifyApp τ1 τ2

unify (Πa:ρκ1.τ1) (Πa:ρκ2.τ2) = do unify κ1 κ2 〈Type〉
unify τ1 τ2 〈Type〉

unify (Πc:φ1.τ1) (Πc:φ2.τ2) = do unifyProp φ1 φ2

unify τ1 τ2 〈Type〉
unify (λa:ρκ1.τ1) (λa:ρκ2.τ2) = do unify κ1 κ2 〈Type〉

unify τ1 τ2 〈typeKind τ1〉
unify (λc:φ1.τ1) (λc:φ2.τ2) = do unifyProp φ1 φ2

unify τ1 τ2 〈typeKind τ1〉
unify = mzero
unifyVar :: TyVar → Type → Coercion→ UM ()
unifyVar a τ2 η = do mt1 ← substTyVar a

case mt1 of
Nothing → bindTv a (τ2 . sym η)
Just τ1 → unify τ1 τ2 η

unifyTys :: [Type ]→ [Type ]→ UM ()
unifyTys [ ] [ ] = return ()
unifyTys (τ1:τ 1) (τ2:τ 2) = do unify τ1 τ2 〈typeKind τ1〉

unifyTys τ 1 τ 2

unifyTys = mzero
unifyTyApp :: Type → Type → Type → Type → UM ()
unifyTyApp τ1 σ1 τ2 σ2 = do unifyApp τ1 τ2

unify σ1 σ2 〈typeKind σ1〉
unifyApp :: Type → Type → UM ()
unifyApp τ1 τ2 = do let κ1 = typeKind τ1

κ2 = typeKind τ2

unify κ1 κ2 〈Type〉
unify τ1 τ2 〈κ1〉

unifyProp :: Prop → Prop → UM ()

unifyProp (τ1
κ1∼κ′1 τ ′1) (τ2

κ2∼κ′2 τ ′2) = unifyTys [κ1, κ
′
1, τ1, τ

′
1 ] [κ2, κ

′
2, τ2, τ

′
2 ]

Figure 7.1: A unification algorithm up to ≡
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the unification algorithm runs, as described in my prior work Eisenberg et al.
[32, Section 3.3].

• Examine unifyApp. After unifying the types’ kinds, it just passes a reflexive
coercion when unifying the types themselves. This is correct because, by the
time we are unifying the types, we know that the ambient substitution unifies
the kinds. The coercion relating the types’ kinds is thus now reflexive.

• In the H{τ} case, the algorithm does not make a separate call to unify kinds. This
is because the τ are always well typed under a closed telescope. Since unifyTys
works left-to-right, the kinds of any later arguments must be unified by the time
those types are considered.

I claim, but do not prove, that this unification algorithm satisfies the properties
necessary for type safety. See Section C.3. For further discussion about the neces-
sary properties of this algorithm, see Note [Specification of Unification] in
compiler/types/Unify.hs in the GHC source code repository at https://github.
com/ghc/ghc.

7.4 Parsing ?
As described in Section 2.3.1, the kind of types in Haskell has long been denoted
as ?. This choice poses a parsing challenge in a language where types and kinds
are intermixed. Types can include binary type operators (via the TypeOperators
extension), and Haskellers have been using ? as a binary infix operator on types for
some time. (For example, in the standard library GHC.TypeLits.) The parsing problem
is thus: is ? an infix operator, or is it the kind of types?

GHC 8 offers two solutions to this problem, both already fully implemented. Firstly,
forward-looking code should use the new constant Type to classify types. That is, we
have Int :: Type. So as not to conflict with existing uses of datatypes named Type,
this new Type is not always available but must be imported, from the new standard
module Data.Kind . Type is available whether or not TypeInType is specified.

The other solution to this problem is to let the parsing of ? depend on what ?
is in scope. This approach is to enable a smoother migration path for legacy code.
Without TypeInType specified, ? is available under its traditional meaning in code
that is syntactically obviously a kind (for example, after a :: in a datatype declaration).
When TypeInType is turned on, ? is no longer available but must be imported from
Data.Kind . This way, a module can choose to import Data.Kind ’s ? or a different ?,
depending on its needs. Of course, the module could import these symbols qualified
and use a module prefix at occurrence sites to choose which ? is meant. Because ? is
treated as an ordinary imported symbol under TypeInType, module authors can now
use standard techniques for managing name conflicts and migration.
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In order to implement this second solution, the parser treats a space-separated
sequence of type tokens as just that, without further interpretation. Only later, when
we have a symbol table available, can we figure out how to deal with ?. This extra
step of converting a sequence of tokens to a structured type expression outside of the
parser actually dovetails with the existing step of fixity resolution, which similarly
must happen only after a symbol table is available.

7.5 Promoting base types
This dissertation has dwelt a great deal on using algebraic datatypes in types and
kinds. What about non-algebraic types, like Int, Double, or Char? These can be used
in types just as easily as other values. The problem is in reducing operations on these
types. For example, if a type mentions 5− 8, the normal type reduction process in
the type-checker can replace this with (−3). However, what if we see 5 + x − x for an
unknown x? We would surely like to be able to discover that (5 + x − x) ∼ 5. Proving
such equalities is difficult however.

It is here that a new innovation in GHC will come in quite handy: type-checker
plugins. Diatchki [22] has already used the plugin interface (also described by Gundry
[38]) to integrate an SMT solver into GHC’s type-checker, in order to help with GHC’s
existing support for some type-level arithmetic. As more capabilities are added to
types, the need for a powerful solver to deal with arithmetic equalities will grow.
By having a plugin architecture, it is possible that individual users can use solvers
tailored to their needs, and it will be easy for the community to increase the power of
type-level reasoning in a distributed way. These plugins can easily be distributed with
application code and so are appropriate for use even in deployment.
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Chapter 8

Related and future work

There is a great deal of work related to this dissertation, looking at designs of similar
surface languages, designs of similar intermediate languages, and similar type inference
algorithms. This chapter reviews this related work, starting with a thorough comparison
with the work of Gundry [37], which covers all of the areas above.

8.1 Comparison to Gundry’s thesis
The most apt comparison of my work is to that of Gundry [37]. His dissertation is
devoted to much the same goal as mine: adding dependent types to Haskell. I have
tried to compare my work to his as this has been topical throughout this work. Here I
summarize some of the key points of difference and explain how my work expands
upon what he has done.

8.1.1 Unsaturated functions in types

Gundry’s intermediate language uses one element of the grammar to represent both
terms and types. But he offers separate typing judgments, as controlled by his use
of a phase modality. In Gundry’s type system, every typing judgment holds at one
of three phases:99 runtime, compile time, or shared (Gundry’s Section 6.2). Gundry
describes an access policy (Gundry’s Section 6.2.1) whereby an expression well typed
at the shared phase can also be used in either the runtime or compile-time phases.
Gundry’s use of phases is not unlike my use of relevance, where an expression well
typed at Gundry’s compile-time phase would be irrelevant in my formulation.

The big difference between my treatment and Gundry’s is that I essentially combine
the shared and runtime phases. That is, anything that is allowed at runtime is also
allowed in types. Gundry prevents λ-expressions and unsaturated functions from
being used in types. These constructs can be typed only at the runtime phase, never

99Actually, one of four, but both Gundry and I keep coercion typing so separate from other typing
judgments that I am excluding it here.
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the shared or compile-time phases. Because of this restriction around unsaturated
functions, Gundry’s system must carefully track where unsaturated functions appear
and prevent any expression containing one from being used in a type or a dependent
context.

I avoid Gundry’s restriction by tracking matchable functions separate from un-
matchable ones (Sections 4.2.4 and 5.8.6.4). This innovation permits me to allow
unsaturated functions while retaining the useful left and right coercions. As a part of
this aspect of my work, I also lift the matchable/unmatchable distinction into surface
Dependent Haskell, giving the user access to the ’→, ’Π, and ’∀ quantifiers.

8.1.2 Support for type families

Both Gundry’s and my treatments favor λ-abstractions and case expressions over type
families. In my case, I would support type families via compilation into those more
primitive forms. Gundry’s work, however, explicitly does not support type families
(Gundry’s Section 6.7.4). This lack of support is revealed in two missing features:

Matching on Type Through the way I have constructed my case expressions—
specifically, treating Type as just another type constant—I allow pattern-matching
on elements of Type. Gundry’s treatment requires a scrutinee to be a member of a
closed algebraic datatype.

Unsaturated matching Haskell type families can match on unsaturated uses of
data and type constructors, something not supported in Gundry’s work but supported
in Pico.

8.1.3 Axioms

Gundry’s evidence language includes support for axioms. While the notion of type-level
axioms has been used in much prior work to represent type families, Gundry uses them
to represent notions beyond those possible in type families, such as the commutativity
of some primitive addition operation. In order to set up his consistency proof, he
needs to establish that the axioms are good, as defined in Gundry’s Definition 6.4 of
his Section 6.5.1. Gundry does not provide an algorithm for determining whether a
set of axioms are good, however.

Pico, in contrast, has no built-in support for axioms. One could try adding axioms
as global coercion variables available in every context, but that would interfere with
the current consistency proof (Section 5.10) which severely limits the use of coercion
variables. It is conceivable that adding axioms to Pico is possible by establishing
some condition, like Gundry’s good, that claims that the axioms do not interfere with
consistency. This remains as future work, however.
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8.1.4 Type erasure

Gundry proves a type erasure property similar to mine. However, there is one key
difference: my type erasure erases irrelevant abstractions (as does today’s implementa-
tion of System FC in GHC), while Gundry’s does not. It is not clear, however, that
this change is significant, in that it might easily be possible to tweak Gundry’s system
to allow erasure of irrelevant abstractions, too.

See also Section 5.10.5.4 and Section 6.10.3 for further comments comparing my
work to Gundry’s.

8.2 Comparison to Idris
Of the available dependently typed language implementations, Idris is the most like
Dependent Haskell. Idris was designed explicitly to answer the question “What if
Haskell had full dependent types?” [9, Introduction] The Idris implementation is
available100 and is actively developed. So, how does Idris compare with Dependent
Haskell? I review the main points of difference, below.

8.2.1 Backward compatibility

From a practical standpoint, the biggest difference between Dependent Haskell and
Idris is that the former joins an already existing ecosystem of Haskell libraries and
developers. Dependent Haskell is a conservative extension over existing implementations
of Haskell, and all legacy programs will continue to work under Dependent Haskell.
Although Idris is certainly Haskell-like (and has a foreign-function interface available
to call Haskell code from Idris and vice versa) it is still not Haskell.

Pushing on this idea a bit more, for a project to be started in Idris, the programmers
must decide, at the outset, that they wish to use dependent types, as its type system is
Idris’s most distinctive feature. With Dependent Haskell, on the other hand, developers
can choose to take a part of a larger Haskell application and rewrite just that part
with dependent types. This allows for gradual adoption, something that is much easier
for the general public to swallow.

8.2.2 Type erasure

Dependent Haskell and Idris take different approaches to type erasure. Idris’s approach
is explained by Tejiščák and Brady [90] as a whole-program analysis, seeking out places
where an expression is needed and ensuring that all such expressions are available at
runtime. Naturally, such an approach hinders separate compilation, which the authors
admit is important future work (Tejiščák and Brady’s Section 8.1).

100http://www.idris-lang.org/
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By contrast, Dependent Haskell depends on user-written choices—specifically,
whether to use Π or ∀ when writing a type.

Which approach is better? It is hard to say at this point. The Idris approach has
the advantage of automation. It may be hard for a user to know what expressions
(especially those stored in datatypes) will be necessary at runtime. The choice between
Π and ∀ may also motivate library-writers to duplicate their data structures providing
both options. This is much like the fact that many current libraries provide both strict
and lazy implementations of core data structures, as the better choice depends on a
client’s usage. Perhaps the option for library-writers to provide multiple versions of a
datatype is an advantage, however: in Idris, a datatype’s parameter may be marked
as relevant even if it is used only once. In that case, the Idris programmer is perhaps
better served by using one data structure (with the field irrelevant) in most places
and the other data structure (with the field relevant) just where necessary. Time will
tell whether the Dependent Haskell approach or the Idris approach is better.

8.2.3 Type inference

All Idris top-level definitions must be accompanied with type annotations. Even local
definitions must have type annotations, sometimes requiring scoped type variables.
One might say, then, that Idris does no type inference, only type checking. For this
reason, studying the type inference properties of the language might be less compelling.
Indeed, Brady claims [9, Section 6] that Idris “avoid[s] such difficulties since, in general,
type inference is undecidable for full dependent types. Indeed, it is not clear that type
inference is even desirable in many cases...”

While I admit that considering a principal-types property is much less compelling
when all bindings are annotated, I still believe that writing a type inference algorithm
or specification is helpful. I am unaware of a description in the literature of Idris’s
algorithm beyond Brady [9, Section 4], describing the elaboration of an Idris program
in terms of the tactics that generate code in Idris’s intermediate language, TT.
Accordingly, it is hard to predict when an Idris program will be accepted. I tested the
following program against the latest version of Idris (0.12.1):

ty :Bool → Type
ty x = case x of True ⇒ Integer ;False ⇒ Char
f :(x :Bool)→ ty x
f x = case x of True ⇒ 5;False ⇒ ’x’

g :(x :Bool)→ ty x
g x = the (ty x)

(case x of True ⇒ 5;False ⇒ ’x’)

h:(x :Bool)→ ty x
h x = the (case x of True ⇒ Integer ;False ⇒ Char)

(case x of True ⇒ 5;False ⇒ ’x’)
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Idris’s the is its form of type annotation, with the:(a:Type)→ a → a. Both f and
g are accepted, while h is rejected. Note that the only difference between g and h is
that the body of ty is expanded in h. Is this a bug or the correct behavior? It is hard
to know.

In contrast, Chapter 6 describes a bidirectional inference algorithm that details
how to treat such expressions. (All of f , g , and h are accepted in Dependent Haskell
and today’s approximation thereof using singletons.)

Beyond just having a specification, Dependent Haskell also retains Damas-Milner
let-generalization for top-level expressions (as implemented by the IDecl_Synthe-
size rule of Bake). This means that simply typed functions and local declarations need
not have type ascriptions. Indeed, in translating Idris’s Effects library to Dependent
Haskell (Section 3.2.3), I was able to eliminate several type annotations, needed in
Idris but redundant in Haskell. Having let-generalization also powers examples like
inferring the schema from the use of a dependently typed database access library
(Section 3.1.3), the equivalent of which would be impossible in Idris.

8.2.4 Editor integration

One arena where Idris is clearly out ahead is in its user interface. Indeed, despite
the fact that Idris is considerably younger, GHC has been clamoring to catch up to
Idris’s user interface for some time now. Its emacs integration means that users can
interactively peruse error messages, expanding out the parts of interest and easily
ignoring the unhelpful parts [17]. Dependent Haskell and GHC have much to learn
from Idris in this respect; dependently typed programming in Haskell will demand
improvement.

8.3 Comparison to Cayenne
Beyond Idris, there are many other languages one might want a comparison against.
The most frequent comparison I have been asked for, however, is to compare against
Cayenne [3], which I shall do here.

Cayenne is a language introduced in 1998 by Augustsson essentially as a dependently
typed variant of Haskell. Of particular interest, it shares Dependent Haskell’s cavalier
attitude toward termination: Cayenne supports general recursion and all types are
thus inhabited by ⊥. Accordingly, Augustsson admits that Cayenne is not useful as a
proof assistant. However, he also argues that this admission does not mean it is useless
as a programming language. My argument in support of allowing general recursion in
a dependently typed language (Section 4.4.5) broadly echoes Augustsson’s Section 5,
claiming that a verification of partial correctness is better than no verification at all.

Despite the similarities between my work here and Augustsson’s, there are a
number of key differences:
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8.3.1 Type erasure

Augustsson’s approach to type erasure is much simpler than mine. Cayenne erases
all expressions of type Type—that’s the full description of type erasure in Cayenne.
This simplistic view has two shortcomings, however:

Cayenne erases too much Because every expression of type Type is lost, Cayenne
must restrict its pattern-match facility not to work over scrutinees of type Type.
Dependent Haskell allows matching on Type.

Cayenne erases too little Sometimes expressions of a type other than Type can be
erased. For example, consider this function over length-indexed vectors (Section
3.1.1):

safeHead :: Vec a ( ’Succ n)→ a
safeHead (x :> ) = x

The n parameter to safeHead has type Nat and yet it can be erased in the call
to safeHead . Cayenne would have no way of erasing this parameter.

8.3.2 Coercion assumptions

Cayenne has no support for equality assumptions. This means that it does not support
GADTs (Section 2.4) or dependent pattern matching (Section 4.3.3). Lacking these
features significantly simplifies the design of the language and implementation, meaning
that many of the type inference issues (specifically, untouchability of type variables)
described by Vytiniotis et al. [99] are avoided. The lack of equality assumptions also
severely weakens Cayenne’s ability to support intrinsic proofs—that is, types whose
structure ensure that all values of those types are valid (like Vec , which ensures
that the vector is of the given length). Cayenne thus truly supports only extrinsic
proofs: proofs written separately from the functions and data structures they reason
about. These proofs must be written explicitly (intrinsic proofs are often encoded
into the structure of a function) and offer more opportunity to accidentally use a
non-terminating proof.

8.3.3 A hierarchy of sorts

Cayenne uses an infinite hierarchy of sorts, similar to many other dependently typed
languages, but in contrast to Dependent Haskell, with its Type:Type axiom. Au-
gustsson describes this design decision as working in support of Cayenne’s treatment
as logical framework (if the user takes on the burden of termination checking) as well
as to support Cayenne’s implementation of type erasure.
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8.3.4 Metatheory

While Augustsson presents typing rules for Cayenne, he offers no metatheory analysis
for Cayenne beyond proving that the evaluation of a type-erased program simulates the
evaluation of the original. Similarly, Augustsson does not describe any type inference
properties in detail. The language requires top-level type annotations on all definitions,
but inference is still necessary to check a dependently typed expression. Instead,
Augustsson claims that “Type signatures can be omitted in many places” but does not
elaborate [3, fourth-to-last bullet in Section 3.2]. Cayenne does syntactically require
all function arguments to be annotated, however.

8.3.5 Modules

Cayenne has a robust module system, more advanced than Haskell’s. As such, its
module system is more advanced also than Dependent Haskell’s. Cayenne uses depen-
dent records as its modules, as a dependent record can store types as easily as other
expressions. It remains as future work to see whether or not Dependent Haskell can
incorporate these ideas and use records as modules.

8.3.6 Conclusion

As an early attempt to bring dependent types to Haskell, Cayenne deserves much
credit. Despite being declared dead in 2005101, Haskellers still discuss this language. It
may have been the first thought-out vision of what a Haskell-like dependently typed
language would look like and thus serves as an inspiration for both Agda and Idris.

8.4 Comparison to Liquid Haskell
Liquid Haskell [93–95] is an ongoing project seeking to add refinement types to Haskell.
A refinement type specifies a head type and a condition; any value of the refinement
type is asserted to meet the condition. For example, we might write the type of the
length function thus:

length :: [a ]→ {n:Int | n > 0}

The return type tells us that the return value will always be non-negative.
The Liquid Haskell implementation works by reading in such annotations with

a Haskell file and checking that the refinements are satisfied. The check is done via
an SMT solver. No user intervention—other than writing the refinements in the first
place—is required.

101http://lambda-the-ultimate.org/node/802
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Liquid Haskell and Dependent Haskell are, in some ways, two different solutions
to (nearly) the same problem: the desire to rule out erroneous programs. By speci-
fying tight refinements on our function types, we can have Liquid Haskell check the
correctness of our programs. And doing so is easy, thanks to the power of the SMT
solver working in the background.

However, the refinement types of Liquid Haskell exist outside of the type system
proper: it is not possible to write a type-level program that can manipulate refinements,
and it is also not possible to write refinements that can reason about Haskell’s type
classes or other advanced type-level features. Along similar lines, it is not possible to
use refinement types to write a program inadmissible in regular Haskell; for example,
refinement types are not powerful enough to encode something like Idris’s algebraic
effects library (Section 3.2.3).

The beauty of Liquid Haskell is in its user interface. Proving that a program matches
its specification is fully automatic—something very much not true of Dependent Haskell
programs. The project has shown without a doubt that using an SMT solver to help
type-checking will lessen users’ proof burden. (Liquid Haskell is hardly the only tool
that uses an SMT solver for type-checking. See also, for example, Leino [54] and
Swamy et al. [89], among others.)

It is my hope that, someday, Dependent Haskell can be the backend for Liquid
Haskell. The merged language would have the type refinement syntax much like
Liquid Haskell’s current syntax, but it would desugar to proper dependent types
under the hood. An SMT solver would remain as part of the system, possibly as a
type-checker plugin. For function arguments, supporting refinement types is already
possible: a type like {n:Int | n > 0} can be encoded as a dependent parameter n and
a Haskell constraint. Much more problematic is a refined return type. For that same
refinement, we would need a existential package, saying that a function returns some
n with n > 0. While Dependent Haskell supports existentials, packing and unpacking
these must be done manually. In practice, this packing and unpacking clutters the
code considerably and makes the refinement approach distasteful. Perhaps worse,
the packing and unpacking would be performed at runtime, making end users pay
a cost for this compile-time checking. Overcoming these barriers—coming up with
a lightweight syntax for existentials as well as zero runtime overhead—is important
future work, perhaps my highest-priority new research direction.

8.5 Comparison to Trellys
The Trellys project [13, 14, 85] aims toward a similar goal to my work here: including
dependent types in a language with non-termination. However, the Trellys approach
is quite different from what I have done here, in that the language is formed of two
fragments: a logical fragment and a programmatic fragment. The two halves share
a syntax, but some constructs (such as general recursion) are allowed only in the
programmatic fragment. Proofs in the logical fragment can be trusted (and never have
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to be run) but can still mention definitions in the programmatic fragment in limited
ways.

Zombie [85], one of the languages of the Trellys project, allows potentially non-
terminating functions in types but retains decidable type-checking by forcing the user
to indicate how much to β-reduce the types. This stands in contract to Dependent
Haskell, where type-checking is undecidable.

8.6 Invisibility in other languages
Section 4.2.3 describes how Dependent Haskell deals with both visible and invisible
function arguments. Here, I review how this feature is handled in several other
dependently typed languages.

Agda In Agda, an argument in single braces { ...} is invisible and is instantiated
via unification. An argument in double braces {{...}} is invisible and is instantiated
by looking for an in-scope variable of the right type. One Agda encoding of, say, the
Show class and its Show Bool instance would be to make Show a record containing
a show field (much like GHC’s dictionary for Show) and a top-level variable of type
Show Bool . The lookup process for {{...}} arguments would then find this top-level
variable.

Thus, show ’s type in Agda might look like ∀ {a } → {{ Show a }} → a → String .

Idris Idris supports type classes in much the same way as Haskell. A constraint
listed before a (⇒) is solved just like a Haskell type class is. However, other invis-
ible arguments can also have custom solving tactics. An Idris argument in single
braces { ...} is solved via unification, just like in Agda. But a programmer may in-
sert a proof script in the braces as well to trigger that proof script whenever the
invisible parameter needs to be instantiated. For example, a type signature like
func :{default proof {trivial} pf :τ } → ... names a (possibly dependent) parameter
pf , of type τ . When func is called, Idris will run the trivial tactic to solve for a value of
type τ . This value will then be inserted in for pf . Because a default proof script of trivial
is so common, Idris offers an abbreviation auto which means default proof {trivial}.

Coq Coq has quite a different view of invisible arguments than do Dependent Haskell,
Agda, and Idris. In all three of those languages, the visibility of an argument is part
of a type. In Coq, top-level directives allow the programmer to change the visibility of
arguments to already-defined functions. For example, if we have the definition

Definition id A (x :A) := x .

(without having used Set Implicit Arguments) both the A and x parameters are
visible. Thus the following line is accepted:
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Definition mytrue1 := id bool true.

However, we can now change the visibility of the arguments to id with the directive

Arguments id {A} x .

allowing the following to be accepted:

Definition mytrue2 := id true.

Although Coq does not allow the programmer to specify an instantiation technique
for invisible arguments, it does allow the programmer to specify whether or not
invisible arguments should be maximally inserted. A maximally inserted invisible
argument is instantiated whenever possible; a non-maximally inserted argument is
only instantiated when needed. For example, if the A argument to id were invisible and
maximally inserted, then any use of id would immediately try to solve for A; if this
were not possible, Coq would report a type error. If A were not maximally inserted,
than a use of id would simply have the type forall A,A → A, with no worry about
invisible argument instantiation.

The issue of maximal insertion in Dependent Haskell is solved via its bidirectional
type system (Section 6.4). The subsumption relation effectively ensures that the correct
number of invisible parameters are provided, depending on the context.

8.7 Type erasure and relevance in other languages
Pico’s approach to relevance and type erasure is distinctive and pervasive in its
definition. Here I review several other approaches to type erasure in other languages
and calculi.

Gundry’s evidence language, Idris, and Cayenne See Sections 8.1.4, 8.2.2,
and 8.3.1, respectively.

Agda The Agda wiki contains a comprehensive page on Agda’s support for irrel-
evance annotations.102 The user can annotate certain definitions and parameters as
irrelevant, by preceding them with a . prefix. Irrelevant values can be used in irrelevant
contexts only, much like how Pico treats irrelevantly bound variables. Irrelevant fields
to a data constructor are ignored in an equality check, a feature that Pico does not
currently support. For example, consider the following Agda program:

data T :Set where
mkT : .(n:N)→ T

data S :T → Set where

102http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Irrelevance
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mkS : .(n:N)→ S (mkT n)

x :S (mkT 3)
x = mkS 3

y :S (mkT 4)
y = x

This program is accepted despite the fact that x and y have manifestly different types.
Yet because the parameter to mkT is denoted as irrelevant, the types are considered
equal. Note that, due to the restrictions around irrelevant contexts, if we remove the .
prefix to the parameter to mkT , the constructor type for mkS would fail to type-check,
because it uses its irrelevant argument n in a relevant context (as the argument to the
now-relevant mkT constructor). Conversely, dropping the . in the type of mkS would
not affect type checking.

It would be interesting future work to see how using relevance in this way might
affect Dependent Haskell.

Despite having support for these irrelevance annotations, it seems that Agda does
not have a well articulated type erasure property, instead depending on the extraction
mechanism used to run Agda code.

Coq Coq uses an altogether different approach to relevance and erasure. Coq has
two primary sorts, Prop and Set. (I am ignoring the infinite hierarchy of Types that
exist above Prop and Set.) All inhabitants of Prop are considered irrelevant and
are erased during extraction. Coq thus enforces restrictions on the use of elements of
types in Prop: chiefly, in the definition of an element of a type in Set, a program may
not pattern-match on an element of a type in Prop unless that type has exactly 0 or
1 constructors. In other words, the choice of a value of a type in Set may not depend
on any information from a type in Prop. This is sensible, because that information
will disappear during extraction.

Because of Coq’s separation between Set and Prop, it is sometimes necessary
to have duplicate data structures, some with Set types and some with Prop types.
(For example, the Coq standard library has three different variants of an existential
package—ex , sig and sigT—depending on which parts are in Prop vs. Set.) Such
duplication might also appear in Dependent Haskell, as I argue in Section 8.2.2.

ICC∗ Barras and Bernardo [7] introduce ICC∗ as a variant of Miquel’s Implicit
Calculus of Constructions [64]. ICC∗ contains two forms of Π-type as well as two forms
of λ-extraction, in much the same way as Pico. The ICC literature uses “implicit”
and “explicit” to refer to the concepts I call “irrelevant” and “relevant”, respectively; I
will continue to use my own terminology here. (Further muddying these waters, the
original ICC also makes irrelevant arguments invisible. I have endeavored to keep
visibility and relevance quite separate in this dissertation.) ICC∗ includes an erasure
operation that converts ICC∗ expressions to ICC expressions by erasing irrelevant
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arguments. In order to enforce appropriate use of irrelevant arguments, irrelevantly
bound variables are forbidden from appearing in the erased, ICC-form of the body of
an abstraction. This restriction is enforced by a simple check for free variables in the
typing rule of the irrelevant λ-abstraction, in contrast to Pico’s approach of tracking
relevance in contexts. The Pico equivalent to ICC∗’s approach would resemble this
rule:

Σ; Γ, a:σ t̀y τ : κ a 6∈ fv(TτU)

Σ; Γ t̀y λa:Irrelσ. τ :
˜
Πa:Irrelσ. κ

Ty_Lam’

It is possible that such a rule would simplify the statement of Pico, but I imagine it
would complicate the proofs—especially of type erasure—as there would have to be a
way of propagating the information about where irrelevant variables can appear.

8.8 Future directions
With the design for Dependent Haskell laid out here, what work is left to do? First and
foremost, I must tackle the remainder of the implementation as sketched in Section
7.1.3. However, beyond that, there are many more research questions left unanswered:

• With the added complexity of dependent types, type error messages will surely
become even harder to read and act on. How can these be improved? Idris’s
technique of displaying interactive error messages (Section 8.2.4) may be a step
in the right direction, but it would be even better to have some theory of error
messages to use as a guiding principle in solving this problem.

• Relatedly, dependent types work wonders for authors who wish to write an
embedded domain-specific language. Programs might be written in such an
EDSL by practitioners who do not know much type theory or Haskell. How can
we expose a way for the DSL writer to customize the type error messages?

• What editor support is necessary to make dependent types in Haskell practical?
Leading dependently typed languages (specifically, Coq, Agda, and Idris) all have
quite advanced editor integration in order to make development more interactive.
Haskell has some integration, but likely not enough to make dependently typed
programming comfortable. What is missing here?

• Some dependently typed languages have found tactics a useful way of constructing
proofs. Would such a technique be feasible in Dependent Haskell? What would
such a facility look like?

• One of GHC’s chief strengths is its optimizer. Once we have dependent types, can
type-level information inform optimization in any meaningful way? In particular,
using dependent types, an author might be able to write down “proofs” that a
Monad instance is lawful. Can the optimizer take advantage of these proofs?
Will we have to trust that they terminate to do so?

204



• How will dependent types interact with type-checker plugins? How can we use
an SMT solver to make working with dependent types easier?

• Dependent types will allow for proper dependent pairs (Σ-types). Is it worth
introducing new syntax to support these useful constructs directly? Would this
new syntax also pave the way for better integration with Liquid Haskell (Section
8.4)?

• This dissertation has proved that the output of the Bake algorithm is a type-
correct Pico program. It has not rigorously established, however, a principal
types property or conservativity over today’s Haskell. What steps are missing
before we can prove these?

• One might reasonably ask whether all the fancy type-level bells and whistles
affect parametricity. I do not believe they do, but it would be informative to try
to prove this directly.

8.9 Conclusion
This chapter has really only scraped the surface of related work. There are simply
too many dependently typed languages and calculi available to compare against all of
them. In this crowd, however, Dependent Haskell stands out chiefly for its unapologetic
embrace of non-termination and partial correctness. Dependent Haskell is, first and
foremost, a programming language, and many valuable programs are indeed non-
terminating or hard to prove to be total. These programs are welcome as first-class
citizens in Dependent Haskell.
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Appendix A

Typographical conventions

This dissertation is typeset using LATEX with considerable help from lhs2TeX103 and
ott [82]. The lhs2TeX software allows Haskell code to be rendered more stylistically
than a simple verbatim environment would allow. The table below maps Haskell
source to glyphs appearing in this dissertation:

Haskell Typeset Description
-> → function arrow and other arrows
=> ⇒ constraint arrow
* ? the kind of types

forall ∀ dependent irrelevant quantifier
pi Π dependent relevant quantifier
++ ++ list concatenation

:~~: :≈: heterogeneous propositional equality
:~> : lambda-calculus arrow (from Section 3.1.2)

undefined ⊥ canonical looping term

Figure A.1: Typesetting of Haskell constructs

In addition to the special formatting above, I assume a liberal overloading of number
literals, including in types. For example, I write 2 where I really mean Succ (Succ Zero),
depending on the context.

103http://www.andres-loeh.de/lhs2tex/
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Appendix B

Pico typing rules, in full

B.1 Type constants

Σ t̀c H : ∆1; ∆2;H ′
Type constant kinds, with universals ∆1,
existentials ∆2, and result H ′

Σ t̀c Type : ∅;∅; Type
Tc_Type

T :(a:κ) ∈ Σ

Σ t̀c T : ∅; a:Relκ; Type
Tc_ADT

K :(∆;T ) ∈ Σ T :(a:κ) ∈ Σ

Σ t̀c K : a:Irrelκ; ∆;T
Tc_DataCon

B.2 Types

Σ; Γ t̀y τ : κ Type formation

Σ c̀tx Γ ok a:Relκ ∈ Γ

Σ; Γ t̀y a : κ
Ty_Var

Σ t̀c H : ∆1; ∆2;H ′ Σ c̀tx Γ ok
Σ; Rel(Γ) v̀ec τ : Rel(∆1)

Σ; Γ t̀y H{τ} : ’Π(∆2[τ/dom(∆1)]).H ′ τ
Ty_Con

Σ; Γ t̀y τ1 : Πa:Relκ1. κ2 Σ; Γ t̀y τ2 : κ1

Σ; Γ t̀y τ1 τ2 : κ2[τ2/a]
Ty_AppRel
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Σ; Γ t̀y τ1 : Πa:Irrelκ1. κ2 Σ; Rel(Γ) t̀y τ2 : κ1

Σ; Γ t̀y τ1 {τ2} : κ2[τ2/a]
Ty_AppIrrel

Σ; Γ t̀y τ : Πc:φ. κ Σ; Rel(Γ) c̀o γ : φ

Σ; Γ t̀y τ γ : κ[γ/c]
Ty_CApp

Σ; Γ,Rel(δ) t̀y κ : Type

Σ; Γ t̀y Πδ. κ : Type
Ty_Pi

Σ; Rel(Γ) c̀o γ : κ1 ∼ κ2

Σ; Γ t̀y τ : κ1 Σ; Rel(Γ) t̀y κ2 : Type

Σ; Γ t̀y τ B γ : κ2

Ty_Cast

Σ; Rel(Γ) t̀y κ : Type Σ; Γ t̀y τ : σ
σ = ’Π∆.H σ Σ; Rel(Γ) t̀y H σ : Type
∀i , Σ; Γ;σ `τalt alti : κ

alt are exhaustive and distinct for H , (w.r.t. Σ)
Σ; Γ t̀y caseκ τ of alt : κ

Ty_Case

Σ; Γ, δ t̀y τ : κ

Σ; Γ t̀y λδ. τ :
˜
Πδ. κ

Ty_Lam

Σ; Γ t̀y τ :
˜
Πa:Relκ. κ

Σ; Γ t̀y fix τ : κ
Ty_Fix

Σ; Rel(Γ) c̀o γ : H1{τ1} ψ1 ∼ H2{τ2} ψ2 H1 6= H2

Σ; Rel(Γ) t̀y τ : Type

Σ; Γ t̀y absurd γ τ : τ
Ty_Absurd

Σ; Γ;σ `τalt alt : κ Case alternatives

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[σ/dom(∆1)]
dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ
Σ; Γ t̀y τ : ?Π∆3, c:τ0 ∼ H{σ} dom(∆3). κ

Σ; Γ; ’Π∆′.H ′ σ `τ0alt H → τ : κ
Alt_Match
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Σ; Γ t̀y τ : κ

Σ; Γ;σ `τ0alt _→ τ : κ
Alt_Default

B.3 Coercions
Σ; Γ c̀o γ : φ Coercion formation

Σ c̀tx Γ ok c:φ ∈ Γ

Σ; Γ c̀o c : φ
Co_Var

Σ; Γ t̀y τ : κ

Σ; Γ c̀o 〈τ〉 : τ ∼ τ
Co_Refl

Σ; Γ c̀o γ : τ1 ∼ τ2

Σ; Γ c̀o sym γ : τ2 ∼ τ1

Co_Sym

Σ; Γ c̀o γ1 : τ1 ∼ τ2 Σ; Γ c̀o γ2 : τ2 ∼ τ3

Σ; Γ c̀o γ1 # γ2 : τ1 ∼ τ3

Co_Trans

Σ; Γ c̀o η : κ1 ∼ κ2 bτ1c = bτ2c
Σ; Γ t̀y τ1 : κ1 Σ; Γ t̀y τ2 : κ2

Σ; Γ c̀o τ1 ≈η τ2 : τ1 ∼ τ2

Co_Coherence

∀i , Σ; Γ c̀o γi : σi ∼ σ′i
Σ; Γ t̀y H{σ} : κ1 Σ; Γ t̀y H{σ′} : κ2

Σ; Γ c̀o H{γ} : H{σ} ∼ H{σ′}
Co_Con

Σ; Γ c̀o γ1 : τ1 ∼ τ2

Σ; Γ c̀o γ2 : σ1 ∼ σ2

Σ; Γ t̀y τ1 σ1 : κ1 Σ; Γ t̀y τ2 σ2 : κ2

Σ; Γ c̀o γ1 γ2 : τ1 σ1 ∼ τ2 σ2

Co_AppRel

Σ; Γ c̀o γ1 : τ1 ∼ τ2

Σ; Γ c̀o γ2 : σ1 ∼ σ2

Σ; Γ t̀y τ1 {σ1} : κ1 Σ; Γ t̀y τ2 {σ2} : κ2

Σ; Γ c̀o γ1 {γ2} : τ1 {σ1} ∼ τ2 {σ2}
Co_AppIrrel
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Σ; Γ c̀o γ0 : τ1 ∼ τ2

Σ; Γ t̀y τ1 γ1 : κ1 Σ; Γ t̀y τ2 γ2 : κ2

Σ; Γ c̀o γ0 (γ1, γ2) : τ1 γ1 ∼ τ2 γ2

Co_CApp

Σ; Γ c̀o η : κ1
Type∼Type κ2

Σ; Γ, a:Relκ1 c̀o γ : σ1
Type∼Type σ2

Σ; Γ c̀o Πa:ρη. γ : (Πa:ρκ1. σ1) ∼ (Πa:ρκ2. (σ2[a B sym η/a]))
Co_PiTy

Σ; Γ c̀o η1 : τ1 ∼ τ2 Σ; Γ c̀o η2 : σ1 ∼ σ2

Σ; Γ, c:τ1 ∼ σ1 c̀o γ : κ1
Type∼Type κ2 c #̃ γ

η3 = η1 # c # sym η2

Σ; Γ c̀o Πc:(η1, η2). γ : (Πc:τ1 ∼ σ1. κ1) ∼ (Πc:τ2 ∼ σ2. (κ2[η3/c]))
Co_PiCo

Σ; Γ c̀o η : κ1 ∼ κ2 Σ; Γ c̀o γ0 : τ1 ∼ τ2

∀i , Σ; Γ c̀o γi : σi ∼ σ′i
alt1 = πi → σi alt2 = πi → σ′i
Σ; Γ t̀y caseκ1 τ1 of alt1 : κ1 Σ; Γ t̀y caseκ2 τ2 of alt2 : κ2

Σ; Γ c̀o caseη γ0 of πi → γi : caseκ1 τ1 of alt1 ∼ caseκ2 τ2 of alt2

Co_Case

Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ, a:ρκ1 c̀o γ : τ1 ∼ τ2

Σ; Γ, a:ρκ1 t̀y τ1 : σ1 Σ; Γ, a:ρκ1 t̀y τ2 : σ2

Σ; Γ c̀o λa:ρη. γ : λa:ρκ1. τ1 ∼ λa:ρκ2. (τ2[a B sym η/a])
Co_Lam

Σ; Γ c̀o η1 : τ1 ∼ τ2 Σ; Γ c̀o η2 : σ1 ∼ σ2

Σ; Γ, c:τ1 ∼ σ1 c̀o γ : κ1 ∼ κ2 c #̃ γ
η3 = η1 # c # sym η2

Σ; Γ c̀o λc:(η1, η2). γ : (λc:τ1 ∼ σ1. κ1) ∼ (λc:τ2 ∼ σ2. (κ2[η3/c]))
Co_CLam

Σ; Γ c̀o γ : τ1 ∼ τ2

Σ; Γ t̀y fix τ1 : κ1 Σ; Γ t̀y fix τ2 : κ2

Σ; Γ c̀o fix γ : fix τ1 ∼ fix τ2

Co_Fix

Σ; Γ c̀o γ1 : H1{τ1} ψ1 ∼ H ′1{τ ′1} ψ
′
1 H1 6= H ′1

Σ; Γ c̀o γ2 : H2{τ2} ψ2 ∼ H ′2{τ ′2} ψ
′
2 H2 6= H ′2

Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ c̀o absurd (γ1, γ2) η : absurd γ1 κ1 ∼ absurd γ2 κ2

Co_Absurd
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Σ; Γ c̀o γ : (Πa:ρκ1. σ1) ∼ (Πa:ρκ2. σ2)

Σ; Γ c̀o argk γ : κ1 ∼ κ2

Co_ArgK

Σ; Γ c̀o γ : (Πc:(τ1 ∼ τ ′1). σ1) ∼ (Πc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk1 γ : τ1 ∼ τ2

Co_CArgK1

Σ; Γ c̀o γ : (Πc:(τ1 ∼ τ ′1). σ1) ∼ (Πc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk2 γ : τ ′1 ∼ τ ′2
Co_CArgK2

Σ; Γ c̀o γ : (λa:ρκ1. σ1) ∼ (λa:ρκ2. σ2)

Σ; Γ c̀o argk γ : κ1 ∼ κ2

Co_ArgKLam

Σ; Γ c̀o γ : (λc:(τ1 ∼ τ ′1). σ1) ∼ (λc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk1 γ : τ1 ∼ τ2

Co_CArgKLam1

Σ; Γ c̀o γ : (λc:(τ1 ∼ τ ′1). σ1) ∼ (λc:(τ2 ∼ τ ′2). σ2)

Σ; Γ c̀o argk2 γ : τ ′1 ∼ τ ′2
Co_CArgKLam2

Σ; Γ c̀o γ : ?Π∆1. τ1 ∼ ?Π∆2. τ2 |∆1| = |∆2| = n
Σ; Γ t̀y τ1 : Type Σ; Γ t̀y τ2 : Type

Σ; Γ c̀o resn γ : τ1 ∼ τ2

Co_Res

Σ; Γ c̀o γ : λ∆1. τ1 ∼ λ∆2. τ2 |∆1| = |∆2| = n
Σ; Γ t̀y τ1 : κ1 Σ; Γ t̀y τ2 : κ2

Σ; Γ c̀o resn γ : τ1 ∼ τ2

Co_ResLam

Σ; Γ c̀o γ : Πa:Relκ1. σ1 ∼ Πa:Relκ2. σ2

Σ; Γ c̀o η : τ1
κ1∼κ2 τ2

Σ; Γ c̀o γ@η : σ1[τ1/a] ∼ σ2[τ2/a]
Co_InstRel

Σ; Γ c̀o γ : Πa:Irrelκ1. σ1 ∼ Πa:Irrelκ2. σ2

Σ; Γ c̀o η : τ1
κ1∼κ2 τ2

Σ; Γ c̀o γ@{η} : σ1[τ1/a] ∼ σ2[τ2/a]
Co_InstIrrel

211



Σ; Γ c̀o η1 : Πc:φ1. σ1 ∼ Πc:φ2. σ2

Σ; Γ c̀o γ1 : φ1 Σ; Γ c̀o γ2 : φ2

Σ; Γ c̀o η1@(γ1, γ2) : σ1[γ1/c] ∼ σ2[γ2/c]
Co_CInst

Σ; Γ c̀o γ : λa:Relκ1. τ1 ∼ λa:Relκ2. τ2

Σ; Γ c̀o η : σ1
κ1∼κ2 σ2

Σ; Γ c̀o γ@η : τ1[σ1/a] ∼ τ2[σ2/a]
Co_InstLamRel

Σ; Γ c̀o γ : λa:Irrelκ1. τ1 ∼ λa:Irrelκ2. τ2

Σ; Γ c̀o η : σ1
κ1∼κ2 σ2

Σ; Γ c̀o γ@{η} : τ1[σ1/a] ∼ τ2[σ2/a]
Co_InstLamIrrel

Σ; Γ c̀o γ : λc:φ1. σ1 ∼ λc:φ2. σ2

Σ; Γ c̀o η1 : φ1 Σ; Γ c̀o η2 : φ2

Σ; Γ c̀o γ@(η1, η2) : σ1[η1/c] ∼ σ2[η2/c]
Co_CInstLam

Σ; Γ c̀o γ : H{κ} ψ ∼ H{κ′} ψ
′

ψi = τ ψ′i = σ
Σ; Γ t̀y τ : κ1 Σ; Γ t̀y σ : κ2

Σ; Γ c̀o nthi γ : τ ∼ σ
Co_NthRel

Σ; Γ c̀o γ : H{κ} ψ ∼ H{κ′} ψ
′

ψi = {τ} ψ′i = {σ}
Σ; Rel(Γ) t̀y τ : κ1 Σ; Rel(Γ) t̀y σ : κ2

Σ; Γ c̀o nthi γ : τ ∼ σ
Co_NthIrrel

Σ; Γ c̀o γ : τ1 ψ1 ∼ τ2 ψ2

Σ; Γ t̀y τ1 : ’Πδ1. κ1 Σ; Γ t̀y τ2 : ’Πδ2. κ2

Σ; Γ c̀o η : ’Πδ1. κ1 ∼ ’Πδ2. κ2

Σ; Γ c̀o leftη γ : τ1 ∼ τ2

Co_Left

Σ; Γ c̀o γ : τ1 σ1 ∼ τ2 σ2

Σ; Γ t̀y σ1 : κ1 Σ; Γ t̀y σ2 : κ2 Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ c̀o rightη γ : σ1 ∼ σ2

Co_RightRel
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Σ; Γ c̀o γ : τ1 {σ1} ∼ τ2 {σ2}
Σ; Γ t̀y σ1 : κ1 Σ; Γ t̀y σ2 : κ2 Σ; Γ c̀o η : κ1 ∼ κ2

Σ; Γ c̀o rightη γ : σ1 ∼ σ2

Co_RightIrrel

Σ; Γ c̀o γ : τ1
κ1∼κ2 τ2

Σ; Γ c̀o kind γ : κ1 ∼ κ2

Co_Kind

Σ; Γ t̀y τ : κ Σ; Γ t̀y τ
′ : κ

Σ; Γ s̀ τ −→ τ ′

Σ; Γ c̀o step τ : τ ∼ τ ′
Co_Step

Σ; Γ p̀rop φ ok Proposition formation

Σ; Γ t̀y τ1 : κ1

Σ; Γ t̀y τ2 : κ2

Σ; Γ p̀rop τ1
κ1∼κ2 τ2 ok

Prop_Equality

B.4 Vectors
Σ; Γ v̀ec ψ : ∆ Type vector formation

Σ c̀tx Γ ok

Σ; Γ v̀ec ∅ : ∅
Vec_Nil

Σ; Γ t̀y τ : κ

Σ; Γ v̀ec ψ : ∆[τ/a]

Σ; Γ v̀ec τ, ψ : a:Relκ,∆
Vec_TyRel

Σ; Rel(Γ) t̀y τ : κ

Σ; Γ v̀ec ψ : ∆[τ/a]

Σ; Γ v̀ec {τ}, ψ : a:Irrelκ,∆
Vec_TyIrrel

Σ; Rel(Γ) c̀o γ : φ

Σ; Γ v̀ec ψ : ∆[γ/c]

Σ; Γ v̀ec γ, ψ : c:φ,∆
Vec_Co

Σ; Γ c̀ev ψ : ∆ Vector formation, reversed
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Σ c̀tx Γ ok

Σ; Γ c̀ev ∅ : ∅
Cev_Nil

Σ; Γ c̀ev ψ : ∆

Σ; Γ t̀y τ : κ[ψ/dom(∆)]

Σ; Γ c̀ev ψ, τ : ∆, a:Relκ
Cev_TyRel

Σ; Γ c̀ev ψ : ∆

Σ; Rel(Γ) t̀y τ : κ[ψ/dom(∆)]

Σ; Γ c̀ev ψ, τ : ∆, a:Irrelκ
Cev_TyIrrel

Σ; Γ c̀ev ψ : ∆

Σ; Rel(Γ) c̀o γ : φ[ψ/dom(∆)]

Σ; Γ c̀ev ψ, γ : ∆, c:φ
Cev_Co

B.5 Contexts

s̀ig Σ ok Signature formation

s̀ig ∅ ok
Sig_Nil

Σ c̀tx a:Irrelκ ok T # Σ

s̀ig Σ,T :(a:κ) ok
Sig_ADT

T :(a:κ) ∈ Σ Σ c̀tx a:Irrelκ,∆ ok K # Σ

s̀ig Σ,K :(∆;T ) ok
Sig_DataCon

Σ c̀tx Γ ok Context formation

s̀ig Σ ok

Σ c̀tx ∅ ok
Ctx_Nil

Σ; Rel(Γ) t̀y κ : Type a # Γ Σ c̀tx Γ ok

Σ c̀tx Γ, a:ρκ ok
Ctx_TyVar
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Σ; Rel(Γ) p̀rop φ ok c # Γ Σ c̀tx Γ ok

Σ c̀tx Γ, c:φ ok
Ctx_CoVar

B.6 Small-step operational semantics

Σ; Γ s̀ σ −→ σ′ Small-step operational semantics

Σ; Γ s̀ (λa:Relκ. σ1)˜σ2 −→ σ1[σ2/a]
S_BetaRel

Σ; Γ s̀ (λa:Irrelκ. v1)˜{σ2} −→ v1[σ2/a]
S_BetaIrrel

Σ; Γ s̀ (λc:φ. σ)˜γ −→ σ[γ/c]
S_CBeta

alti = H → τ0

Σ; Γ s̀ caseκH{τ} ψ of alt −→ τ0 ψ 〈H{τ} ψ〉
S_Match

alti = _→ σ no alternative in alt matches H
Σ; Γ s̀ caseκH{τ} ψ of alt −→ σ

S_Default

alti = _→ σ no alternative in alt matches H
Σ; Γ s̀ caseκH{τ} ψ B γ of alt −→ σ

S_DefaultCo

τ = λa:Relκ. σ

Σ; Γ s̀ fix τ −→ σ[fix τ/a]
S_Unroll

Σ; Γ s̀ (v B γ1)B γ2 −→ v B (γ1 # γ2)
S_Trans

Σ; Γ, a:Irrelκ s̀ σ −→ σ′

Σ; Γ s̀ λa:Irrelκ. σ −→ λa:Irrelκ. σ′
S_IrrelAbs_Cong

Σ; Γ s̀ σ −→ σ′

Σ; Γ s̀ σ ψ −→ σ′ ψ
S_App_Cong
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Σ; Γ s̀ σ −→ σ′

Σ; Γ s̀ σ B γ −→ σ′ B γ
S_Cast_Cong

Σ; Γ s̀ σ −→ σ′

Σ; Γ s̀ caseτ σ of alt −→ caseτ σ′ of alt
S_Case_Cong

Σ; Γ s̀ τ −→ τ ′

Σ; Γ s̀ fix τ −→ fix τ ′
S_Fix_Cong

Σ; Rel(Γ) c̀o γ0 : Πa:Relκ. σ ∼ Πa:Relκ
′. σ′

γ1 = sym (argk γ0) γ2 = γ0@(τ B γ1 ≈sym γ1 τ)

Σ; Γ s̀ (v B γ0) τ −→ v (τ B γ1)B γ2

S_PushRel

Σ; Rel(Γ) c̀o γ0 : Πa:Irrelκ. σ ∼ Πa:Irrelκ
′. σ′

γ1 = sym (argk γ0) γ2 = γ0@(τ B γ1 ≈sym γ1 τ)

Σ; Γ s̀ (v B γ0) {τ} −→ v {τ B γ1}B γ2

S_PushIrrel

Σ; Rel(Γ) c̀o γ0 : Πc:φ. σ ∼ Πc:φ′. σ′

γ1 = argk1 γ0 γ2 = argk2 γ0

η′ = γ1 # η # sym γ2 γ3 = γ0@(η′, η)

Σ; Γ s̀ (v B γ0) η −→ v η′ B γ3

S_CPush

γ1 =
˜
Πa:Irrel〈κ〉. γ γ2 = τ1 ≈〈Type〉 τ2

τ1 =
˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a]) τ2 =

˜
Πa:Irrelκ. κ1

Σ; Γ s̀ λa:Irrelκ. (v B γ) −→ (λa:Irrelκ. v)B (γ1 # γ2)
S_APush

γ1 = γ0@(a ≈γ2 a B γ2) # sym γ2

γ2 = argk γ0

Σ; Γ s̀ fix ((λa:Relκ. σ)B γ0) −→ (fix (λa:Relκ. (σ B γ1)))B γ2

S_FPush
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Σ t̀c H : a:Irrelκ; ∆;H ′ ∆ = ∆1,∆2 n = |∆2|
κ = ’Πa:Irrelκ,∆.H

′ a

σ = ’Π(∆2[τ/a][ψ/dom(∆1)]).H ′ τ

σ′ = ’Π(∆2[τ ′/a][ψ
′
/dom(∆1)]).H ′ τ ′

Σ; Rel(Γ) c̀o η : σ ∼ σ′

Σ; Rel(Γ) v̀ec τ
′ : a:Relκ

∀i , γi = build_kpush_co(〈κ〉@(nths (resn η));ψ1...i−1)
∀i , ψ′i = cast_kpush_arg(ψi ; γi)

H → κ′ ∈ alt

Σ; Γ s̀ caseκ0 (H{τ} ψ)B η of alt −→ caseκ0 H{τ ′} ψ
′
of alt

S_KPush

B.7 Consistency
τ1 ∝ τ2 Type compatibility

τ1 is not a value
τ1 ∝ τ2

C_NonValue1

τ2 is not a value
τ1 ∝ τ2

C_NonValue2

H{τ} ψ ∝ H{τ ′} ψ
′ C_TyCon

τ ∝ τ ′

Πa:ρκ. τ ∝ Πa:ρκ′. τ ′
C_PiTy

Πc:φ. τ ∝ Πc:φ′. τ ′
C_PiCo

λδ. τ ∝ λδ′. τ ′
C_Lam

τ  τ ′ Parallel reduction over erased types

τ  τ
R_Refl
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τ  τ ′

H{τ}  H{τ ′}
R_Con

τ  τ ′ σ  σ′

τ σ  τ ′ σ′
R_AppRel

τ  τ ′ σ  σ′

τ {σ} τ ′ {σ′}
R_AppIrrel

τ  τ ′

τ • τ ′ •
R_CApp

δ  δ′ τ  τ ′

Πδ. τ  Πδ′. τ ′
R_Pi

κ κ′ τ  τ ′ σ  σ′

caseκ τ of π → σ  caseκ′ τ ′ of π → σ′
R_Case

δ  δ′ τ  τ ′

λδ. τ  λδ′. τ ′
R_Lam

τ  τ ′

fix τ  fix τ ′
R_Fix

τ  τ ′

absurd • τ  absurd • τ ′
R_Absurd

τ1  τ ′1 τ2  τ ′2
(λa:Relκ. τ1)˜τ2  τ ′1[τ ′2/a]

R_BetaRel

τ1  τ ′1 τ2  τ ′2
(λa:Irrelκ. τ1)˜{τ2} τ ′1[τ ′2/a]

R_BetaIrrel

τ  τ ′

(λ•:φ. τ)˜• τ ′
R_CBeta
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alti = H → τ0 ψ  ψ
′

τ0  τ ′0

caseκH{τ} ψ of alt  τ ′0 ψ
′ •

R_Match

alti = _→ σ no alternative in alt matches H σ  σ′

caseκH{τ} ψ of alt  σ′
R_Default

σ  σ′ κ κ′

fix (λa:Relκ. σ) σ′[fix (λa:Relκ′. σ′)/a]
R_Unroll

δ  δ′ Parallel reduction of binders

κ κ′

a:ρκ a:ρκ′
R_TyBinder

τ  τ ′ κ1  κ′1 κ2  κ′2 σ  σ′

•:τ κ1∼κ2 σ  •:τ ′ κ′1∼κ′2 σ′
R_CoBinder

γ  γ′ “Reduction” of erased coercion

• •
R_ErasedCo

B.8 Small-step operational semantics of erased ex-
pressions

e −→ e ′ Single-step operational semantics of expressions

(λa.e1) e2 −→ e1[e2/a]
E_Beta

(λ•.e) • −→ e
E_CBeta

ealti = H → e

caseH y of ealt −→ e y •
E_Match

ealti = _→ e no alternative in ealt matches H
caseH y of ealt −→ e

E_Default
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fix (λa.e) −→ e[fix (λa.e)/a]
E_Unroll

e −→ e ′

e y −→ e ′ y
E_App_Cong

e −→ e ′

case e of ealt −→ case e ′ of ealt
E_Case_Cong

e −→ e ′

fix e −→ fix e ′
E_Fix_Cong
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Appendix C

Proofs about Pico

You may find the full grammar for Pico in Figure 5.1 on page 76 and its notation
conventions in Figure 5.2 on page 77. The definition for values is in Section 5.7.1 and
of the #̃ operator in Section 5.8.5.2.

C.1 Auxiliary definitions
Definition C.1 (Free variables). Define fv to be a function extracting free variables,
overloaded to work over types τ , coercions γ, propositions φ, vectors ψ, alternatives
alt , and telescopes ∆. The definitions are entirely standard.

Definition C.2 (Context extension). Define the relation Γ ⊆ Γ′ to mean that Γ is a
(not necessarily contiguous) subsequence of Γ′.

C.2 Structural properties

C.2.1 Relevant contexts

Lemma C.3 (dom/Rel). dom(Rel(Γ)) = dom(Γ)

Proof. By its definition Rel(Γ) binds the same variables as Γ.

Lemma C.4 (Subsequence/Rel). If Γ ⊆ Γ′ then Rel(Γ) ⊆ Rel(Γ′).

Proof. By the definitions of ⊆ and Rel.

Lemma C.5 (Rel is idempotent). Rel(Rel(Γ)) = Rel(Γ)

Proof. By the definition of Rel.

Lemma C.6 (Increasing relevance). Let Γ and Γ′ be the same except that some
bindings in Γ′ are labeled Rel where those same bindings in Γ are labeled Irrel.
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1. If Σ; Γ t̀y τ : κ, then Σ; Γ′ t̀y τ : κ.

2. If Σ; Γ c̀o γ : φ, then Σ; Γ′ c̀o γ : φ.

3. If Σ; Γ p̀rop φ ok, then Σ; Γ′ p̀rop φ ok.

4. If Σ; Γ;σ0 `τ0alt alt : κ, then Σ; Γ′;σ0 `τ0alt alt : κ.

5. If Σ; Γ v̀ec ψ : ∆, then Σ; Γ′ v̀ec ψ : ∆.

6. If Σ c̀tx Γ ok, then Σ c̀tx Γ′ ok.

7. If Σ; Γ s̀ τ −→ τ ′, then Σ; Γ′ s̀ τ −→ τ ′.

Proof. By straightforward mutual induction, appealing to Lemma C.5.

C.2.2 Regularity, Part I

Lemma C.7 (Type variable kinds). If Σ c̀tx Γ ok and a:ρκ ∈ Γ, then there exists Γ′

such that Γ′ ⊆ Rel(Γ) and Σ; Γ′ t̀y κ : Type. Furthermore, the size of the derivation
of Σ; Γ′ t̀y κ : Type is smaller than that of Σ c̀tx Γ ok.

Proof. Straightforward induction on Σ c̀tx Γ ok.

Lemma C.8 (Coercion variable kinds). If Σ c̀tx Γ ok and c:φ ∈ Γ, then there exists
Γ′ such that Γ′ ⊆ Rel(Γ) and Σ; Γ′ p̀rop φ ok. Furthermore, the size of the derivation
of Σ; Γ′ p̀rop φ ok is smaller than that of Σ c̀tx Γ ok.

Proof. Straightforward induction on Σ c̀tx Γ ok.

Lemma C.9 (Context regularity). If:

1. Σ; Γ t̀y τ : κ, OR

2. Σ; Γ c̀o γ : φ, OR

3. Σ; Γ p̀rop φ ok, OR

4. Σ; Γ;σ0 `τ0alt alt : κ, OR

5. Σ; Γ v̀ec ψ : ∆, OR

6. Σ c̀tx Γ ok

Then Σ c̀tx prefix(Γ) ok and s̀ig Σ ok, where prefix(Γ) is an arbitrary prefix of Γ.
Furthermore, both resulting derivations are no larger than the input derivations.

Proof. Straightforward mutual induction.
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C.2.3 Weakening

Lemma C.10 (Weakening). Assume Σ c̀tx Γ′ ok and Γ ⊆ Γ′.

1. If Σ; Γ t̀y τ : κ then Σ; Γ′ t̀y τ : κ.
2. If Σ; Γ c̀o γ : φ, then Σ; Γ′ c̀o γ : φ.
3. If Σ; Γ p̀rop φ ok, then Σ; Γ′ p̀rop φ ok.
4. If Σ; Γ;σ0 `τ0alt alt : κ, then Σ; Γ′;σ0 `τ0alt alt : κ.
5. If Σ; Γ v̀ec ψ : ∆, then Σ; Γ′ v̀ec ψ : ∆.
6. If Σ c̀tx Γ,∆ ok, then Σ c̀tx Γ′,∆ ok.
7. If Σ; Γ s̀ τ −→ τ ′, then Σ; Γ′ s̀ τ −→ τ ′.

Proof. By straightforward mutual induction, appealing to Lemma C.4, Lemma C.6
(in order to be able to use the induction hypothesis in, e.g., Ty_AppIrrel), and
Lemma C.9 (in order to use the induction hypothesis in, e.g., Ty_Pi).

Lemma C.11 (Strengthening). Assume Γ′ ⊆ Γ and the variables
{dom(Γ)} \{dom(Γ′)} are never used.

1. If Σ; Γ t̀y τ : κ then Σ; Γ′ t̀y τ : κ.
2. If Σ; Γ c̀o γ : φ, then Σ; Γ′ c̀o γ : φ.
3. If Σ; Γ p̀rop φ ok, then Σ; Γ′ p̀rop φ ok.
4. If Σ; Γ;σ0 `τ0alt alt : κ, then Σ; Γ′;σ0 `τ0alt alt : κ.
5. If Σ; Γ v̀ec ψ : ∆, then Σ; Γ′ v̀ec ψ : ∆.
6. If Σ c̀tx Γ ok, then Σ c̀tx Γ′ ok.
7. If Σ; Γ s̀ τ −→ τ ′, then Σ; Γ′ s̀ τ −→ τ ′.

Proof. Similar to previous proof.

C.2.4 Scoping

Lemma C.12 (Scoping).

1. If Σ; Γ t̀y τ : κ, then fv(τ) ⊆ {dom(Γ)} and fv(κ) ⊆ {dom(Γ)}.
2. If Σ; Γ c̀o γ : φ, then fv(γ) ⊆ {dom(Γ)} and fv(φ) ⊆ {dom(Γ)}.
3. If Σ; Γ p̀rop φ ok, then fv(φ) ⊆ {dom(Γ)}.
4. If Σ; Γ;σ0 `τ0alt H → τ : κ, then fv(τ) ⊆ {dom(Γ)}.
5. If Σ; Γ v̀ec ψ : ∆, then fv(ψ) ⊆ {dom(Γ)} and fv(∆) ⊆ {dom(Γ)}.
6. If Σ c̀tx Γ ok, then fv(Γ) = ∅.
7. If s̀ig Σ ok and Σ t̀c H : ∆1; ∆2;H ′, then fv(∆1) = ∅ and fv(∆2) ⊆ {dom(∆1)}.

Proof. By straightforward mutual induction, appealing to Lemma C.3, Lemma C.7,
Lemma C.8, and Lemma C.9.
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C.3 Unification
We assume the following properties of our unification algorithm.

Property C.13 (Domain of match). If matchV(τ 1; τ 2) = Just θ, then θ = ψ/z for
some ψ and z with V = {z}. In other words, the domain of the substitution returned
by a successful use of match is the variables V passed into match.

Property C.14 (match is sound). If matchV(τ 1; τ 2) = Just θ, then τ 1[θ] = τ 2.

Property C.15 (match/substitution). If matchV(τ 1; τ 2) = Just θ and dom(θ0)∩V =
∅, matchV(τ 1[θ0]; τ 2[θ0]) = Just θ′ for some θ′.

C.4 Determinacy
Lemma C.16 (Uniqueness of signatures). Assume s̀ig Σ ok.

1. If T :(a:κ1) ∈ Σ and T :(a:κ2) ∈ Σ, then κ1 = κ2.

2. If K :(∆1;T1) ∈ Σ and K :(∆2;T2) ∈ Σ, then ∆1 = ∆2 and T1 = T2.

Proof. By the freshness conditions on s̀ig Σ ok.

Lemma C.17 (Uniqueness of contexts). Assume Σ c̀tx Γ ok.

1. If a:ρ1κ1 ∈ Γ and a:ρ2κ2 ∈ Γ, then ρ1 = ρ2 and κ1 = κ2.

2. If c:φ1 ∈ Γ and c:φ2 ∈ Γ, then φ1 = φ2.

Proof. By the freshness conditions on Σ c̀tx Γ ok.

Lemma C.18 (Determinacy of type constants). If s̀ig Σ ok, Σ t̀c H : ∆1; ∆′1;H1, and
Σ t̀c H : ∆2; ∆′2;H2, then ∆1 = ∆2, ∆′1 = ∆′2, and H1 = H2.

Proof. From Lemma C.16.

Lemma C.19 (Values do not step). There exists no τ such that Σ; Γ s̀ v −→ τ .

Proof. By induction on the structure of v .

Lemma C.20 (Determinacy).

1. If Σ; Γ t̀y τ : κ1 and Σ; Γ t̀y τ : κ2, then κ1 = κ2.

2. If Σ; Γ c̀o γ : φ1 and Σ; Γ c̀o γ : φ2, then φ1 = φ2.

3. If Σ; Γ s̀ τ −→ σ1 and Σ; Γ s̀ τ −→ σ2, then σ1 = σ2.

Proof. By mutual induction, appealing to Lemma C.17, Lemma C.18 (which requires
a use of Lemma C.9 first), and Lemma C.19.
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C.5 Vectors
Lemma C.21. If Σ; Γ t̀y τ : κ and Σ; Γ c̀ev ψ : ∆[τ/a], then Σ; Γ c̀ev τ, ψ : a:Relκ,∆.

Proof. By induction on Σ; Γ c̀ev ψ : ∆[τ/a].

Case Cev_Nil: In this case, ψ and ∆ are both empty, and so we are done by
Cev_Nil and Cev_TyRel.

Case Cev_TyRel: We now have ψ = ψ
′
, σ and ∆ = ∆′, b:Relκ0, with Σ; Γ t̀y σ :

κ0[τ/a][ψ
′
/dom(∆′)] and Σ; Γ c̀ev ψ

′
: ∆′[τ/a]. The induction hypothesis gives

us Σ; Γ c̀ev τ, ψ
′
: a:Relκ,∆

′. We are done by Cev_TyRel.

Other cases: Similar.

Lemma C.22. If Σ; Rel(Γ) t̀y τ : κ and Σ; Γ c̀ev ψ : ∆[τ/a], then Σ; Γ c̀ev τ, ψ :
a:Irrelκ,∆.

Proof. Similar to previous proof.

Lemma C.23. If Σ; Rel(Γ) c̀o γ : φ and Σ; Γ c̀ev ψ : ∆[γ/c], then Σ; Γ c̀ev γ, ψ :
c:φ,∆.

Proof. Similar to previous proof.

Lemma C.24. If Σ; Γ v̀ec ψ : ∆ and Σ; Γ t̀y τ : κ[ψ/dom(∆)], then Σ; Γ v̀ec ψ, τ :
∆, a:Relκ.

Proof. By induction on Σ; Γ v̀ec ψ : ∆.

Case Vec_Nil: In this case, ψ and ∆ are both empty, and so we are done by
Vec_Nil and Vec_TyRel.

Case Vec_TyRel: We now have ψ = σ, ψ
′ and ∆ = b:Relκ0,∆

′ with Σ; Γ t̀y

σ : κ0 and Σ; Γ v̀ec ψ
′

: ∆′[σ/b]. We know, by assumption, that Σ; Γ t̀y τ :

κ[ψ/dom(∆)]. This expands to Σ; Γ t̀y τ : κ[σ/b][ψ
′
/dom(∆′)] (noting that

Lemma C.12 assures us that σ has no variables in dom(∆′) free). We can thus
use the induction hypothesis to get Σ; Γ v̀ec ψ

′
, τ : ∆′[σ/b], a:Relκ[σ/b], or,

equivalently, Σ; Γ v̀ec ψ
′
, τ : (∆′, a:Relκ)[σ/b]. We are done by Vec_TyRel.

Other cases: Similar.

Lemma C.25. If Σ; Γ v̀ec ψ : ∆ and Σ; Rel(Γ) t̀y τ : κ[ψ/dom(∆)], then Σ; Γ v̀ec

ψ, τ : ∆, a:Irrelκ.
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Proof. Similar to previous proof.

Lemma C.26. If Σ; Γ v̀ec ψ : ∆ and Σ; Rel(Γ) c̀o γ : φ[ψ/dom(∆)], then Σ; Γ v̀ec

ψ, γ : ∆, c:φ.

Proof. Similar to previous proof.

Lemma C.27 (Vec/Cev). We have Σ; Γ v̀ec ψ : ∆ if and only if Σ; Γ c̀ev ψ : ∆.

Proof. We’ll prove the forward direction first, by induction on the typing derivation:

Case Vec_Nil: We are done by Cev_Nil.

Case Vec_TyRel: By the induction hypothesis and Lemma C.21.

Case Vec_TyIrrel: By the induction hypothesis and Lemma C.22.

Case Vec_Co: By the induction hypothesis and Lemma C.23.

The reverse direction is similar, appealing to Lemma C.24, Lemma C.25, and
Lemma C.26.

Lemma C.28 (Vector lengths). If Σ; Γ v̀ec ψ : ∆, then |ψ| = |∆|.

Proof. Straightforward induction on Σ; Γ v̀ec ψ : ∆.

Lemma C.29 (Vector kinds). If Σ; Γ v̀ec ψ : ∆, then for every ψ ∈ ψ, we have one
of the following:

1. ψ = τ and Σ; Γ t̀y τ : κ for some κ

2. ψ = {τ} and Σ; Rel(Γ) t̀y τ : κ for some κ

3. ψ = γ and Σ; Rel(Γ) c̀o γ : φ for some φ

The resulting derivation is smaller than the input derivation.

Proof. Straightforward induction on Σ; Γ v̀ec ψ : ∆.

Lemma C.30 (Application inversion). If Σ; Γ t̀y τ ψ : κ where ψ = ψ0, ψ1, then
Σ; Γ t̀y τ ψ0 : ?Π∆. κ0, Σ; Γ v̀ec ψ1 : ∆ and κ = κ0[ψ1/dom(∆)].

Proof. Straightforward induction on ψ1.

Lemma C.31 (Telescope application). If Σ; Γ t̀y τ : ?Π∆. σ and Σ; Γ v̀ec ψ : ∆, then
Σ; Γ t̀y τ ψ : σ[ψ/dom(∆)].

Proof. By straightforward induction on Σ; Γ v̀ec ψ : ∆.

Lemma C.32 (Telescope instantiation). If Σ; Γ c̀o η : ’Π∆. σ ∼ ’Π∆′. σ′, (∀i ,Σ; Γ c̀o

γi : τi ∼ τ ′i ), Σ; Γ v̀ec τ : ∆, and Σ; Γ v̀ec τ
′ : ∆′, then Σ; Γ c̀o η@γ : σ[τ/dom(∆)] ∼

σ′[τ ′/dom(∆′)].
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Proof. By induction on the structure of the list γ.

Case γ = ∅: By Lemma C.28, we can see that ∆ and ∆′ must both be empty. We
are done by assumption.

Case γ = γ0, γ1: In this case, we know Σ; Γ v̀ec τ0, τ 1 : ∆ and thus that ∆ =
a:Relκ0,∆1 with Σ; Γ t̀y τ0 : κ0 and Σ; Γ v̀ec τ 1 : ∆1[τ0/a]. Similarly, we have
Σ; Γ t̀y τ

′
0 : κ′0 and Σ; Γ v̀ec τ

′
1 : ∆′1[τ

′
0/a]. We must show Σ; Γ c̀o (η@γ0)@γ1 :

σ[τ0/a, τ 1/dom(∆1)] ∼ σ′[τ ′0/a, τ
′
1/dom(∆′1)]. We can rewrite our assumption

(expanding ∆ and ∆′) to be Σ; Γ c̀o η : ’Πa:Relκ0,∆1. σ ∼ ’Πa:Relκ
′
0,∆

′
1. σ

′ and
thus derive Σ; Γ c̀o η@γ0 : ’Π(∆1[τ0/a]). (σ[τ0/a]) ∼ ’Π(∆′1[τ

′
0/a]). (σ′[τ ′0/a]).

We can then use the induction hypothesis to get Σ; Γ c̀o (η@γ0)@γ :
σ[τ0/a][τ 1/dom(∆1)] ∼ σ′[τ ′0/a][τ ′1/dom(∆′1)], which (noting that τ0 cannot
have any of the dom(∆1) free) is what we wish to prove.

Remark. The above Lemma C.32 could be made more general, to work with
˜
Π as well

as ’Π. However, doing so would make the statement and proof more cluttered, and it
is only ever needed with ’Π.

C.6 Substitution
Lemma C.33 (Value substitution). If v is a value with a free variable a, then v [σ/a]
is also a value.

Proof. By the definition of values.

Lemma C.34 (Substitution/erasure). bτc[bσc/a] = bτ [σ/a]c

Proof. By induction on the structure of τ .

Lemma C.35 (Type substitution). Assume Σ; Γ t̀y σ : κ.

1. If Σ; Γ, a:ρκ,Γ
′

t̀y τ : κ0, then Σ; Γ,Γ′[σ/a] t̀y τ [σ/a] : κ0[σ/a].

2. If Σ; Γ, a:ρκ,Γ
′

c̀o γ : φ, then Σ; Γ,Γ′[σ/a] c̀o γ[σ/a] : φ[σ/a].

3. If Σ; Γ, a:ρκ,Γ
′

p̀rop φ ok, then Σ; Γ,Γ′[σ/a] p̀rop φ[σ/a] ok.

4. If Σ; Γ, a:ρκ,Γ
′;σ0 `τ0alt alt : κ, then Σ; Γ,Γ′[σ/a];σ0[σ/a] `τ0[σ/a]

alt alt [σ/a] : κ[σ/a].

5. If Σ; Γ, a:ρκ,Γ
′

v̀ec ψ : ∆, then Σ; Γ,Γ′[σ/a] v̀ec ψ[σ/a] : ∆[σ/a].

6. If Σ c̀tx Γ, a:ρκ,Γ
′ ok, then Σ c̀tx Γ,Γ′[σ/a] ok.

7. If Σ; Γ, a:ρκ,Γ
′

s̀ τ −→ τ ′, then Σ; Γ,Γ′[σ/a] s̀ τ [σ/a] −→ τ ′[σ/a].

Proof. By mutual induction. Some interesting cases are below.
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Case Ty_Var: Here, we know τ is some variable b. There are three cases to
consider:

Case b:Relκ0 ∈ Γ: We must derive Σ; Γ,Γ′[σ/a] t̀y b : κ0[σ/a]. We will use
Ty_Var. We establish Σ c̀tx Γ,Γ′[σ/a] ok by the induction hypothesis.
Scoping (Lemma C.12) tells us that a 6∈ fv(κ0), and so we are done by the
fact that b:Relκ0 ∈ Γ.

Case b = a: By weakening (Lemma C.10).
Case b:Relκ0 ∈ Γ′: Once again, we get Σ c̀tx Γ,Γ′[σ/a] ok by the induction

hypothesis. Furthermore, we get b:Relκ0[σ/a] ∈ Γ′[σ/a] from b:Relκ0 ∈ Γ′.

Case Ty_Con: By Lemma C.12, Lemma C.9, and induction.

Case Alt_Match: We adopt the metavariable names from the rule:

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[σ/dom(∆1)]
dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ
Σ; Γ t̀y τ : ?Π∆3, c:τ0 ∼ H{σ} dom(∆3). κ

Σ; Γ; ’Π∆′.H ′ σ `τ0alt H → τ : κ
Alt_Match

We will use Alt_Match to prove our desired conclusion. Several premises are
unchanged. The remaining ones we will have to prove:

∆′3,∆
′
4 = ∆2[σ[σ/a]/dom(∆1)]: By our choice of ∆′3 = ∆3[σ/a] and ∆′4 =

∆4[σ/a].
match{dom(∆3)}(types(∆4[σ/a]); types(∆′[σ/a])) = Just θ′: We can freely choose

θ′, but we still need to make sure that the match succeeds. This is by
Property C.15.

Case Co_Var: Similar to Ty_Var.

Case Co_PiTy: We adopt the metavariable names from the rule (renaming the
variable to be substituted to b):

Σ; Γ c̀o η : κ1
Type∼Type κ2

Σ; Γ, a:Relκ1 c̀o γ : σ1
Type∼Type σ2

Σ; Γ c̀o Πa:ρη. γ : (Πa:ρκ1. σ1) ∼ (Πa:ρκ2. (σ2[a B sym η/a]))
Co_PiTy

The induction hypothesis gives us:

• Σ; Γ,Γ′[σ/b] c̀o η[σ/b] : κ1[σ/b] ∼ κ2[σ/b]

• Σ; Γ,Γ′[σ/b], a:Relκ1[σ/b] c̀o γ[σ/b] : σ1[σ/b] ∼ σ2[σ/b]
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By Co_PiTy, we get

Σ; Γ,Γ′[σ/b] c̀o Πa:ρη[σ/b]. γ[σ/b] :

(Πa:ρκ1[σ/b]. σ1[σ/b]) ∼ (Πa:ρκ2[σ/b]. (σ2[σ/b][a B sym η[σ/b]/a]))

All that remains to show is that σ2[σ/b][a B sym η[σ/b]/a] = σ2[a B
sym η/a][σ/b], but this follows from the fact that a # σ, guaranteed by the
Barendregt convention. We are done with this case.

Case Co_PiCo: We adopt the metavariable names from the rule:

Σ; Γ c̀o η1 : τ1 ∼ τ2 Σ; Γ c̀o η2 : σ1 ∼ σ2

Σ; Γ, c:τ1 ∼ σ1 c̀o γ : κ1
Type∼Type κ2 c #̃ γ

η3 = η1 # c # sym η2

Σ; Γ c̀o Πc:(η1, η2). γ : (Πc:τ1 ∼ σ1. κ1) ∼ (Πc:τ2 ∼ σ2. (κ2[η3/c]))
Co_PiCo

For the most part, this follows the pattern of case Co_PiTy, but we must make
sure that c #̃ γ[σ/a]. This fact follows from the Barendregt convention, which
asserts that c cannot appear in σ.

Other cases: By the induction hypothesis, using Lemma C.33 for certain step rules,
and using the Barendregt convention to rearrange substitutions (as in the
Co_PiTy case).

Lemma C.36 (Coercion substitution). Assume Σ; Γ c̀o γ : φ.

1. If Σ; Γ, c:φ,Γ′ t̀y τ : κ0, then Σ; Γ,Γ′[γ/c] t̀y τ [γ/c] : κ0[γ/c].

2. If Σ; Γ, c:φ,Γ′ c̀o η : φ′, then Σ; Γ,Γ′[γ/c] c̀o η[γ/c] : φ′[γ/c].

3. If Σ; Γ, c:φ,Γ′ p̀rop φ
′ ok, then Σ; Γ,Γ′[γ/c] p̀rop φ

′[γ/c] ok.

4. If Σ; Γ, c:φ,Γ′;σ0 `τ0alt alt : κ, then Σ; Γ,Γ′[γ/c];σ0[γ/c] `τ0[γ/c]
alt alt [γ/c] : κ[γ/c].

5. If Σ; Γ, c:φ,Γ′ v̀ec ψ : ∆, then Σ; Γ,Γ′[γ/c] v̀ec ψ[γ/c] : ∆[γ/c].

6. If Σ c̀tx Γ, c:φ,Γ′ ok, then Σ c̀tx Γ,Γ′[γ/c] ok.

7. If Σ; Γ, c:φ,Γ′ s̀ τ −→ τ ′, then Σ; Γ,Γ′[γ/c] s̀ τ [γ/c] −→ τ ′[γ/c].

Proof. Similar to proof for Lemma C.35.

Lemma C.37 (Vector substitution). If Σ; Γ v̀ec ψ : ∆ and Σ; Γ,∆,Γ′ t̀y τ : κ, then
Σ; Γ,Γ′[ψ/dom(∆)] t̀y τ [ψ/dom(∆)] : κ[ψ/dom(∆)].

Proof. By induction on the structure of ∆.

Case ∆ = ∅: By assumption.
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Case ∆ = a0:Relκ0,∆
′: We know ψ = σ0, ψ

′, Σ; Γ t̀y σ0 : κ0, and Σ; Γ v̀ec ψ
′

:
∆′[σ0/a]. Lemma C.35 tells us Σ; Γ,∆′[σ0/a],Γ′[σ0/a] t̀y τ [σ0/a] : κ[σ0/a]. We
are done by a use of the induction hypothesis.

Other cases: Similar.

C.7 Type constants
Lemma C.38 (Type-in-type). If s̀ig Σ ok, then Σ;∅ t̀y Type : Type.

Proof. Working backward, use Ty_Con so that we must show the following:

Σ t̀c Type : ∅;∅; Type: By Tc_Type.

Σ c̀tx ∅ ok: By Ctx_Nil.

Σ;∅ v̀ec ∅ : ∅: By Vec_Nil.

We are thus done.

Lemma C.39 (Telescopes). If Σ c̀tx Γ,∆ ok, then Σ; Γ,∆ v̀ec dom(∆) : ∆.

Proof. Proceed by induction on the structure of ∆.

Case ∆ = ∅: By Vec_Nil.

Case ∆ = a:Relκ,∆
′: We must show Σ; Γ, a:Relκ,∆

′
v̀ec a, dom(∆′) : a:Relκ,∆

′. By
Vec_TyRel, we must show Σ; Γ, a:Relκ,∆

′
t̀y a : κ and Σ; Γ, a:Relκ,∆

′
v̀ec

dom(∆′) : ∆′. The first is by Ty_Var and the second is by the induction
hypothesis.

Other cases: Similar.

Lemma C.40 (Type constant telescopes). If s̀ig Σ ok and Σ t̀c H : ∆1; ∆2;H ′, then
Σ c̀tx ∆1,∆2 ok.

Proof. By case analysis on Σ t̀c H : ∆1; ∆2;H ′.

Case Tc_ADT: Here ∆1 = ∅ and ∆2 = a:Relκ We see that Σ c̀tx a:Irrelκ ok from
s̀ig Σ ok (Sig_ADT). A use of Lemma C.6 solves our goal.

Case Tc_DataCon: Here ∆1 = a:Irrelκ. We must show Σ c̀tx a:Irrelκ,∆2 ok. From
s̀ig Σ ok, we see that Σ c̀tx a:Irrelκ,∆2 ok (Sig_DataCon).

Case Tc_Type: Here ∆1 = ∆2 = ∅. We are done by Ctx_Nil.
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Lemma C.41 (Type constant kinds). If s̀ig Σ ok and Σ t̀c H : ∆1; ∆2;H
′, then

Σ;∅ t̀y ’Π∆1,∆2.H
′ dom(∆1) : Type.

Proof. To prove Σ;∅ t̀y ’Π∆1,∆2.H
′ dom(∆1) : Type, we will use Ty_Pi (repeat-

edly). We thus must show Σ; Rel(∆1,∆2) t̀y H
′ dom(∆1) : Type. This, in turn, will

be by Ty_AppRel (repeatedly). We thus must show

Σ; Rel(∆1,∆2) t̀y H
′ : ’ΠRel(∆1).Type (We are being a bit more specific here than

necessary.) Case analysis of Σ t̀c H : ∆1; ∆2;H ′ gives us several cases:

Case Tc_ADT: Here, ∆1 = ∅ and H ′ = Type, and we must show
Σ; Rel(∆2) t̀y Type : Type. According to Ty_Con we must show only
that Σ c̀tx Rel(∆2) ok, which follows from Lemma C.40 and Lemma C.6.

Case Tc_DataCon: Here, ∆1 = a:Irrelκ and H ′ = T . We must show
Σ; a:Relκ,Rel(∆2) t̀y T : ’Πa:Relκ.Type. Using Ty_Con means we must
show Σ t̀c T : ∅; a:Relκ; Type and Σ c̀tx a:Relκ,Rel(∆2) ok. The latter
comes from s̀ig Σ ok and Lemma C.40. The former comes directly from
Tc_ADT.

Case Tc_Type: By Lemma C.38.

Σ; Rel(∆1,∆2) v̀ec dom(∆1) : Rel(∆1) This last judgment expands out to be all the
typing judgments we need in Ty_AppRel. See Vec_TyRel. To prove this,
we use Lemma C.39, meaning that we need only show Σ c̀tx Rel(∆1,∆2) ok,
which we get from Lemma C.40. We are done.

Lemma C.42 (Type constant inversion). If Σ; Γ t̀y H{τ} ψ : κ, then:

1. Σ t̀c H : a:Irrelκ; ∆;H ′

2. Σ; Rel(Γ) v̀ec τ : a:Relκ

3. ∆1,∆2 = ∆[τ/a]

4. Σ; Γ v̀ec ψ : ∆1

5. κ = ’Π(∆2[ψ/dom(∆1)]).H ′ τ

Proof. By Lemma C.30, Lemma C.31, and Lemma C.20, and inversion and application
of typing rules.

C.8 Regularity, Part II
Lemma C.43 (Kind regularity). If Σ; Γ t̀y τ : κ, then Σ; Rel(Γ) t̀y κ : Type.

Proof. By induction on the typing derivation.
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Case Ty_Var: By Lemma C.7 (and Lemma C.10).

Case Ty_Con: We’ll adopt the metavariable names from the rule:

Σ t̀c H : ∆1; ∆2;H ′ Σ c̀tx Γ ok
Σ; Rel(Γ) v̀ec τ : Rel(∆1)

Σ; Γ t̀y H{τ} : ’Π(∆2[τ/dom(∆1)]).H ′ τ
Ty_Con

Use Lemma C.9 to get s̀ig Σ ok. Then use Lemma C.41 to get
Σ;∅ t̀y ’Π∆1,∆2.H

′ dom(∆1) : Type. Repeated inversion on Ty_Pi
gives us Σ; Rel(∆1) t̀y ’Π∆2.H

′ dom(∆1) : Type. Lemma C.10 gives us
Σ; Rel(Γ),Rel(∆1) t̀y ’Π∆2.H

′ dom(∆1) : Type. Lemma C.37 gives us
Σ; Rel(Γ) t̀y ’Π(∆2[τ/dom(∆1)]).H ′ τ : Type as desired.

Case Ty_AppRel: We’ll adopt the metavariable names from the rule:

Σ; Γ t̀y τ1 : Πa:Relκ1. κ2 Σ; Γ t̀y τ2 : κ1

Σ; Γ t̀y τ1 τ2 : κ2[τ2/a]
Ty_AppRel

The induction hypothesis gives us Σ; Rel(Γ) t̀y Πa:Relκ1. κ2 : Type. Inversion on
Ty_Pi gives us Σ; Rel(Γ), a:Relκ1 t̀y κ2 : Type. Lemma C.6 gives us Σ; Rel(Γ) t̀y

τ2 : κ1, and then Lemma C.35 applies, giving us Σ; Rel(Γ) t̀y κ2[τ2/a] : Type as
desired.

Case Ty_AppIrrel: Similar to last case, noting that inverting Ty_Pi converts
the Irrel to a Rel and without the need for Lemma C.6.

Case Ty_CApp: Similar to previous case.

Case Ty_Pi: By Lemma C.9 and Lemma C.38.

Case Ty_Cast: By inversion.

Case Ty_Case: By inversion.

Case Ty_Lam: We’ll adopt the metavariable names from the rule:

Σ; Γ, δ t̀y τ : κ

Σ; Γ t̀y λδ. τ :
˜
Πδ. κ

Ty_Lam

We must show Σ; Rel(Γ) t̀y
˜
Πδ. κ : Type. Working backward, use Ty_Pi so

that we must show Σ; Rel(Γ, δ) t̀y κ : Type, which is true by induction.

Case Ty_Fix: We’ll adopt the metavariable names from the rule:

Σ; Γ t̀y τ :
˜
Πa:Relκ. κ

Σ; Γ t̀y fix τ : κ
Ty_Fix

The induction hypothesis tells us Σ; Rel(Γ) t̀y
˜
Πa:Relκ. κ : Type. Inversion on

Ty_Pi tells us Σ; Rel(Γ), a:Relκ t̀y κ : Type. Lemma C.7 gives us Σ; Rel(Γ) t̀y
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κ : Type as desired.
Case Ty_Absurd: Immediate.

Lemma C.44 (Proposition regularity). If Σ; Γ c̀o γ : φ, then Σ; Rel(Γ) p̀rop φ ok.

Proof. By induction on the typing derivation.

Case Co_Var: By Lemma C.8, Lemma C.9, and Lemma C.10.
Case Co_Refl: Immediate.
Case Co_Sym: By induction.
Case Co_Trans: By induction.
Case Co_Coherence: Immediate.
Case Co_Con: Immediate.
Case Co_AppRel: Immediate.
Case Co_AppIrrel: Immediate.
Case Co_CApp: Immediate.
Case Co_PiTy: We adopt the metavariable names from the statement of the rule:

Σ; Γ c̀o η : κ1
Type∼Type κ2

Σ; Γ, a:Relκ1 c̀o γ : σ1
Type∼Type σ2

Σ; Γ c̀o Πa:ρη. γ : (Πa:ρκ1. σ1) Type∼Type (Πa:ρκ2. (σ2[a B sym η/a]))
Co_PiTy

The induction hypothesis (and inversion) give us the following:

• Σ; Rel(Γ) t̀y κ1 : Type

• Σ; Rel(Γ) t̀y κ2 : Type

• Σ; Rel(Γ), a:Relκ1 t̀y σ1 : Type

• Σ; Rel(Γ), a:Relκ1 t̀y σ2 : Type

We can straightforwardly use Ty_Pi to show that Σ; Rel(Γ) t̀y Πa:ρκ1. σ1 :
Type. Choose a fresh b. We know Σ c̀tx Rel(Γ), a:Relκ1 ok by Lemma C.9.
We can then use Ctx_TyVar (with Lemma C.6) to show that Σ c̀tx

Rel(Γ), b:Relκ2, a:Relκ1 ok (along with a little inversion and rebuilding to re-
order the variables). We established above that Σ; Rel(Γ), a:Relκ1 t̀y σ2 :
Type. Use weakening, Lemma C.10, (here and elsewhere in this case) to
get Σ; Rel(Γ), b:Relκ2, a:Relκ1 t̀y σ2 : Type. We can use Co_Sym to see
that Σ; Rel(Γ), b:Relκ2 c̀o sym η : κ2 ∼ κ1 and then Ty_Cast to see that
Σ; Rel(Γ), b:Relκ2 t̀y bBsym η : κ1. Lemma C.35 then gives us Σ; Rel(Γ), b:Relκ2 t̀y

σ2[b B sym η/a] : Type. Use Ty_Pi to get Σ; Rel(Γ) t̀y Πb:ρκ2. (σ2[b B
sym η/a]) : Type and α-equivalence to get Σ; Rel(Γ) t̀y Πa:ρκ2. (σ2[a B
sym η/a]) : Type. We are done by Prop_Equality.
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Case Co_PiCo: We adopt the metavariable names from the statement of the rule:

Σ; Γ c̀o η1 : τ1
κ3∼κ4 τ2 Σ; Γ c̀o η2 : σ1

κ5∼κ6 σ2

Σ; Γ, c:τ1
κ3∼κ5 σ1 c̀o γ : κ1

Type∼Type κ2 c #̃ γ
η3 = η1 # c # sym η2

Σ; Γ c̀o Πc:(η1, η2). γ : (Πc:τ1 κ3∼κ5 σ1. κ1) Type∼Type (Πc:τ2 κ4∼κ6 σ2. (κ2[η3/c]))
Co_PiCo

The induction hypothesis (and inversion) give us the following:

• Σ; Rel(Γ) t̀y τ1 : κ3

• Σ; Rel(Γ) t̀y τ2 : κ4

• Σ; Rel(Γ) t̀y σ1 : κ5

• Σ; Rel(Γ) t̀y σ2 : κ6

• Σ; Rel(Γ), c:τ1 ∼ σ1 t̀y κ1 : Type

• Σ; Rel(Γ), c:τ1 ∼ σ1 t̀y κ2 : Type

We can straightforwardly use Ty_Pi to show that Σ; Rel(Γ) t̀y Πc:τ1 ∼ σ1. κ1 :
Type. Choose a fresh b. We know Σ c̀tx Rel(Γ), c:τ1 ∼ σ1 ok by Lemma
C.9. We can then use Ctx_CoVar (with Lemma C.6) to show that Σ c̀tx

Rel(Γ), c2:τ2 ∼ σ2, c:τ1 ∼ σ1 ok (along with a little inversion and rebuilding to
reorder the variables). We also know Σ; Rel(Γ), c:τ1 ∼ σ1 t̀y κ2 : Type. Use
weakening, Lemma C.10, (here and elsewhere in this case) to get Σ; Rel(Γ), c2:τ2 ∼
σ2, c:τ1 ∼ σ1 t̀y κ2 : Type. We can use typing rules straightforwardly to see
that Σ; Rel(Γ), c2:τ2 ∼ σ2 c̀o η1 # c2 # sym η2 : τ1 ∼ σ1. Lemma C.36 then gives
us Σ; Rel(Γ), c2:τ2 ∼ σ2 t̀y κ2[η1 # c2 # sym η2/c] : Type. Use Ty_Pi to get
Σ; Rel(Γ) t̀y Πc2:τ2 ∼ σ2. (κ2[η1 # c2 # sym η2/c]) : Type and α-equivalence to
get Σ; Rel(Γ) t̀y Πc:τ2 ∼ σ2. (κ2[η1 # c # sym η2/c]) : Type. We are done.

Case Co_Case: Immediate.
Case Co_Lam: We adopt the metavariable names from the statement of the rule:

Σ; Γ c̀o η : κ1
Type∼Type κ2

Σ; Γ, a:ρκ1 c̀o γ : τ1
σ1∼σ2 τ2

Σ; Γ, a:ρκ1 t̀y τ1 : σ1 Σ; Γ, a:ρκ1 t̀y τ2 : σ2

Σ; Γ c̀o λa:ρη. γ : λa:ρκ1. τ1 ˜
Πa:ρκ1. σ1∼˜

Πa:ρκ2. (σ2[aBsym η/a]) λa:ρκ2. (τ2[a B sym η/a])
Co_Lam

We can use Ty_Lam to get Σ; Γ t̀y λa:ρκ1. τ1 :
˜
Πa:ρκ1. σ1. Proceeding similarly

to the case for Co_PiTy, we can get Σ; Γ t̀y λa:ρκ2. (τ2[a B sym η/a]) :

˜
Πa:ρκ2. (σ2[a B sym η/a]) and we are done by Lemma C.6.

Case Co_CLam: Similar to previous case and the case for Co_PiCo.

Case Co_Fix: Immediate.

Case Co_Absurd: By induction and Ty_Absurd.

Case Co_ArgK: By induction, inversion, Lemma C.9, and Lemma C.7.

Case Co_CArgK1: By induction, inversion, Lemma C.9, and Lemma C.8.
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Case Co_CArgK2: Similar to previous case.

Case Co_ArgKLam: Similar to case for Co_ArgK.

Case Co_CArgKLam1: Similar to case for Co_CArgK1.

Case Co_CArgKLam2: Similar to previous case.

Case Co_Res: Immediate.

Case Co_ResLam: Immediate.

Case Co_InstRel: We adopt the metavariable names from the statement of the
rule:

Σ; Γ c̀o γ : Πa:Relκ1. σ1 ∼ Πa:Relκ2. σ2

Σ; Γ c̀o η : τ1
κ1∼κ2 τ2

Σ; Γ c̀o γ@η : σ1[τ1/a] ∼ σ2[τ2/a]
Co_InstRel

We will prove that σ1[τ1/a] is well-typed; the proof for σ2[τ2/a] is similar. The
induction hypothesis (and some inversion) tells us Σ; Rel(Γ) t̀y Πa:Relκ1. σ1 :
Type. Further inversion gives us Σ; Γ, a:Relκ1 t̀y σ1 : Type. The induction
hypothesis and an inversion also gives us Σ; Rel(Γ) t̀y τ1 : κ1. Lemma C.35 gives
us Σ; Rel(Γ) t̀y σ1[τ1/a] : Type as desired.

Case Co_InstIrrel: Similar to previous case.

Case Co_CInst: Similar to previous case.

Case Co_InstLamRel: Similar to previous case.

Case Co_InstLamIrrel: Similar to previous case.

Case Co_CInstLam: Similar to previous case.

Case Co_NthRel: Immediate.

Case Co_NthIrrel: Immediate.

Case Co_Left: Immediate.
Case Co_RightRel: We adopt the metavariable names from the statement of

the rule:

Σ; Γ c̀o γ : τ1 σ1
κ3[σ1/a]∼κ4[σ2/a] τ2 σ2

Σ; Γ t̀y σ1 : κ1 Σ; Γ t̀y σ2 : κ2 Σ; Γ c̀o η : κ1
Type∼Type κ2

Σ; Γ c̀o rightη γ : σ1
κ1∼κ2 σ2

Co_RightRel

The induction hypothesis tells us Σ; Rel(Γ) p̀rop τ1 σ1
κ3[σ1/a]∼κ4[σ2/a] τ2 σ2 ok,

and thus inversion gives us Σ; Rel(Γ) t̀y τ1 σ1 : κ3[σ1/a]. We know Σ; Γ t̀y τ1 :
’Πa:Relκ1. κ3, and thus we can invert the type application to get Σ; Rel(Γ) t̀y σ1 :
κ1 as desired. We can similarly derive the type for σ2, and we are thus done.

Case Co_RightIrrel: Similar to previous case.

Case Co_Kind: By Lemma C.43.

Case Co_Step: Immediate.
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C.9 Preservation
Lemma C.45 (Correctness of build_kpush_co). Assume Σ; Γ c̀ev ψ : ∆[τ/a], and let
γi = build_kpush_co(η;ψ1...i−1) and ψ′i = cast_kpush_arg(ψi ; γi). If Σ; Rel(Γ) c̀o η :
(’Π∆. σ)[τ/a] ∼ (’Π∆. σ)[τ ′/a], then:

1. Σ; Rel(Γ) c̀o build_kpush_co(η;ψ) : σ[τ/a][ψ/dom(∆)] ∼ σ[τ ′/a][ψ
′
/dom(∆)]

2. Σ; Γ c̀ev ψ
′
: ∆[τ ′/a]

Proof. Proceed by induction on Σ; Γ c̀ev ψ : ∆[τ/a].

Case Cev_Nil: In this case, both ψ and ∆ are empty. We must prove
Σ; Rel(Γ) c̀o build_kpush_co(η;∅) : σ[τ/a] ∼ σ[τ ′/a]. By definition,
build_kpush_co(η;∅) = η. We are done by assumption and Cev_Nil.

Case Cev_TyRel: In this case, we have ψ = ψ0, τ0 and ∆ = ∆0, b:Relκ with
Σ; Γ c̀ev ψ0 : ∆0[τ/a] and Σ; Γ t̀y τ0 : κ[τ/a][ψ0/dom(∆0)]. We can see that
build_kpush_co(η;ψ0, τ0) = let c := build_kpush_co(η;ψ0) in c@(τ0 ≈argk c

τ0 B argk c). The induction hypothesis tells us that Σ; Rel(Γ) c̀o c :

(’Πb:Relκ. σ)[τ/a][ψ0/dom(∆0)] ∼ (’Πb:Relκ. σ)[τ ′/a][ψ
′
0/dom(∆0)]. We can thus

deduce the following:

• Σ; Rel(Γ) c̀o argk c : κ[τ/a][ψ0/dom(∆0)] ∼ κ[τ ′/a][ψ
′
0/dom(∆0)]

• Σ; Rel(Γ) t̀y τ0 B argk c : κ[τ ′/a][ψ
′
0/dom(∆0)]

• Σ; Rel(Γ) c̀o τ0 ≈argk c τ0 B argk c : τ0 ∼ τ0 B argk c

• Σ; Rel(Γ) c̀o c@(τ0 ≈argk c τ0 B argk c) : σ[τ/a][ψ0/dom(∆0)][τ0/b] ∼
σ[τ ′/a][ψ

′
0/dom(∆0)][τ0 B argk c/b]

Note that cast_kpush_arg(τ0; c) = τ0 B argk c and thus that we can say
τ ′0 = τ0 B argk c. Noting that the ψ0 cannot have b free due to the Barendregt
convention, we can rewrite the substutition [ψ0/dom(∆0)][τ0/b] as [ψ/dom(∆)]
and rewrite the last judgment above as Σ; Rel(Γ) c̀o build_kpush_co(η;ψ) :

σ[τ/a][ψ/dom(∆)] ∼ σ[τ ′/a][ψ
′
/dom(∆)], which is what we are trying to prove.

We are done proving result (1).

For result (2), we must prove Σ; Γ c̀ev ψ
′
0, τ0 B argk c : ∆0[τ

′/a], b:Relκ[τ ′/a].
This fact comes from a straightforward use of Cev_TyRel.

Case Cev_TyIrrel: Similar to previous case.

Case Cev_Co: In this case, we have ψ = ψ0, γ0 and ∆ =
∆0, c0:φ0 with Σ; Γ c̀ev ψ0 : ∆0[τ/a] and Σ; Rel(Γ) c̀o γ0 :
φ0[τ/a][ψ0/dom(∆0)]. We can see that build_kpush_co(η;ψ0, γ0) = let c :=

236



build_kpush_co(η;ψ0) in c@(γ0, sym (argk1 c) # γ0 # argk2 c). The induction
hypothesis tells us that Σ; Rel(Γ) c̀o c : (’Πc0:φ0. σ)[τ/a][ψ0/dom(∆0)] ∼
(’Πc0:φ0. σ)[τ ′/a][ψ

′
0/dom(∆0)]. Let φ0 = σ1 ∼ σ2. We can thus deduce the

following:

• Σ; Rel(Γ) c̀o sym (argk1 c) : σ1[τ
′/a][ψ

′
0/dom(∆0)] ∼

σ1[τ/a][ψ0/dom(∆0)]

• Σ; Rel(Γ) c̀o argk2 c : σ2[τ/a][ψ0/dom(∆0)] ∼ σ2[τ ′/a][ψ
′
0/dom(∆0)]

• Σ; Rel(Γ) c̀o sym (argk1 c) # γ0 # argk2 c : σ1[τ
′/a][ψ

′
0/dom(∆0)] ∼

σ2[τ ′/a][ψ
′
0/dom(∆0)]

• Σ; Rel(Γ) c̀o c@(γ0, sym (argk1 c) # γ0 # argk2 c) :

σ[τ/a][ψ0/dom(∆0)][γ0/c0] ∼ σ[τ ′/a][ψ
′
0/dom(∆0)][sym (argk1 c) #

γ0 # argk2 c/c0]

Note that cast_kpush_arg(γ0; c) = sym (argk1 c) # γ0 # argk2 c and thus that
we can say γ′0 = sym (argk1 c) # γ0 # argk2 c. Noting that the ψ0 cannot
have c0 free due to the Barendregt convention, we can rewrite the substitution
[ψ0/dom(∆0)][γ0/c0] as [ψ/dom(∆)] and rewrite the last judgment above as
Σ; Rel(Γ) c̀o build_kpush_co(η;ψ) : σ[τ/a][ψ/dom(∆)] ∼ σ[τ ′/a][ψ

′
/dom(∆)],

which is what we are trying to prove. We are done proving result (1).

To prove result (2), we must show Σ; Γ c̀ev ψ
′
0, sym (argk1 c) # γ0 # argk2 c :

∆0[τ ′/a], c0:φ0[τ ′/a], which we get from a straightforward use of Cev_Co.

Remark. Lemma C.45 could also be rewritten to work with
˜
Π, but with no need.

Theorem C.46 (Preservation). If Σ; Γ t̀y τ : κ and Σ; Γ s̀ τ −→ τ ′, then Σ; Γ t̀y τ
′ :

κ.

Proof. By induction on the typing derivation.

Case Ty_Var: Impossible, as variables do not step.

Case Ty_Con: Impossible, as constants do not step.

Case Ty_AppRel: We now have several cases, depending on how the expression
has stepped:

Case S_BetaRel: By Lemma C.35.
Case S_App_Cong: By induction.

237



Case S_PushRel: We adopt the metavariable names from the statement of
the rule:

Σ; Rel(Γ) c̀o γ0 : Πa:Relκ. σ ∼ Πa:Relκ
′. σ′

γ1 = sym (argk γ0) γ2 = γ0@(τ B γ1 ≈sym γ1 τ)

Σ; Γ s̀ (v B γ0) τ −→ v (τ B γ1)B γ2

S_PushRel

Inversion on Σ; Γ t̀y (v B γ0) τ : κ0 gives us Σ; Γ t̀y τ : κ′ and Σ; Γ t̀y v :
Πa:ρκ. σ. Straightforward application of typing rules gives us Σ; Rel(Γ) c̀o

γ1 : κ′ ∼ κ and Σ; Rel(Γ) c̀o γ2 : σ[τ B γ1/a] ∼ σ′[τ/a]. We can then
derive Σ; Γ t̀y τ B γ1 : κ and thus Σ; Γ t̀y v (τ B γ1) : σ[τ B γ1/a] and
Σ; Γ t̀y v (τ B γ1)B γ2 : σ′[τ/a] as desired.

Case Ty_AppIrrel: We now have several cases:

Case S_BetaIrrel: By Lemma C.35.
Case S_App_Cong: By induction.
Case S_PushIrrel: Similar to the case for S_PushRel.

Case Ty_CApp: We now have several cases:

Case S_CBeta: By Lemma C.36.
Case S_App_Cong: By induction.
Case S_CPush: We adopt the metavariable names of the rule:

Σ; Rel(Γ) c̀o γ0 : Πc:φ. σ ∼ Πc:φ′. σ′

γ1 = argk1 γ0 γ2 = argk2 γ0

η′ = γ1 # η # sym γ2 γ3 = γ0@(η′, η)

Σ; Γ s̀ (v B γ0) η −→ v η′ B γ3

S_CPush

We can see that Σ; Γ t̀y (v B γ0) η : σ′[η/c]. Let φ = τ1 ∼ τ2 and
φ′ = τ3 ∼ τ4. Inversion and application of typing rules tells us the following:
• Σ; Γ t̀y v : Πc:φ. σ
• Σ; Rel(Γ) c̀o η : τ3 ∼ τ4

• Σ; Rel(Γ) c̀o γ1 : τ1 ∼ τ3

• Σ; Rel(Γ) c̀o γ2 : τ2 ∼ τ4

• Σ; Rel(Γ) c̀o η
′ : τ1 ∼ τ2

• Σ; Rel(Γ) c̀o γ3 : σ[η′/c] ∼ σ′[η/c]
• Σ; Γ t̀y v η

′ : σ[η′/c]
• Σ; Γ t̀y v η

′ B γ3 : σ′[η/c]

Note that the last fact proves this case.

Case Ty_Pi: Impossible, as Π-types do not step.

Case Ty_Cast: We now have several cases:
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Case S_Trans: We adopt the metavariable names of the rule:

Σ; Γ s̀ (v B γ1)B γ2 −→ v B (γ1 # γ2)
S_Trans

We know Σ; Γ t̀y (v B γ1)B γ2 : κ. Inversion and typing rules give us the
following:

• Σ; Rel(Γ) c̀o γ2 : κ2 ∼ κ
• Σ; Rel(Γ) c̀o γ1 : κ3 ∼ κ2

• Σ; Γ t̀y v : κ3

• Σ; Rel(Γ) c̀o γ1 # γ2 : κ3 ∼ κ
• Σ; Γ t̀y v B (γ1 # γ2) : κ

Note that the last fact proves this case.
Case S_Cast_Cong: By induction.

Case Ty_Case: We now have several cases:

Case S_Match: We adopt the metavariable names of the rule:

alti = H → τ0

Σ; Γ s̀ caseκH{τ} ψ of alt −→ τ0 ψ 〈H{τ} ψ〉
S_Match

Inversion and typing rules tell us the following:

• Σ; Γ t̀y H{τ} ψ : ’Π∆′.H ′ σ (premise of Ty_Case)
• Using Lemma C.42:

– Σ t̀c H : a:Irrelκ; ∆2;H ′

– ∆0,∆1 = ∆2[τ/a]
– Σ; Γ v̀ec ψ : ∆0

– ∆′ = ∆1[ψ/dom(∆0)] and σ = τ (Lemma C.20)
• The premises of Alt_Match (also using Lemma C.18):

– ∆3,∆4 = ∆2[τ/a]
– |∆4| = |∆1|
– Σ; Γ t̀y τ0 : ?Π∆3, c:H{τ} ψ ∼ H{τ} dom(∆3). κ

• ∆3 = ∆0 and ∆4 = ∆1 (from |∆4| = |∆1| and the definitions of ∆0,
∆1, ∆3, and ∆4)
• Σ; Γ t̀y τ0 : ?Π∆0, c:H{τ} ψ ∼ H{τ} dom(∆0). κ (rewriting)
• Σ; Γ t̀y τ0 ψ : ?Πc:H{τ} ψ ∼ H{τ} ψ. κ (Lemma C.31, where the κ needs

no substitution by Lemma C.12)
• Σ; Γ t̀y τ0 ψ 〈H{τ} ψ〉 : κ (Co_Refl and Ty_CApp, where the κ

needs no substitution by Lemma C.12)

Note that this last fact proves this case.
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Case S_Default: We adopt the metavariable names of the rule:

alti = _→ σ no alternative in alt matches H
Σ; Γ s̀ caseκH{τ} ψ of alt −→ σ

S_Default

By Ty_Case, the redex has kind κ; inversion also gives us Σ; Γ; σ0 `τalt
_→ σ : κ. Inverting Alt_Default gives us our goal.

Case S_DefaultCo: Similar to previous case.
Case S_Case_Cong: By induction.
Case S_KPush: We adopt the metavariable names of the rule:

Σ t̀c H : a:Irrelκ; ∆;H ′ ∆ = ∆1,∆2 n = |∆2|
κ = ’Πa:Irrelκ,∆.H

′ a

σ = ’Π(∆2[τ/a][ψ/dom(∆1)]).H ′ τ

σ′ = ’Π(∆2[τ ′/a][ψ
′
/dom(∆1)]).H ′ τ ′

Σ; Rel(Γ) c̀o η : σ ∼ σ′

Σ; Rel(Γ) v̀ec τ
′ : a:Relκ

∀i , γi = build_kpush_co(〈κ〉@(nths (resn η));ψ1...i−1)
∀i , ψ′i = cast_kpush_arg(ψi ; γi)

H → κ′ ∈ alt

Σ; Γ s̀ caseκ0 (H{τ} ψ)B η of alt −→ caseκ0 H{τ ′} ψ
′
of alt

S_KPush

Note that we need to prove only that the type of (H{τ} ψ)B η matches that
of H{τ ′} ψ

′, namely ’Π(∆2[τ
′/a][ψ

′
/dom(∆1)]).H

′ τ ′. We can derive these
facts:
• Σ; Γ t̀y H{τ} ψ : ’Π(∆2[τ/a][ψ/dom(∆1)]).H

′ τ (by inversion of the
typing judgment on the redex)
• Σ; Γ t̀y H{τ} : ’Π(∆1[τ/a],∆2[τ/a]).H ′ τ (by Lemma C.30 followed by

inverting Ty_Con)
• Σ; Γ v̀ec ψ : ∆1[τ/a] (also from Lemma C.30)
• Σ; Γ v̀ec τ : a:Relκ (by inversion)
• Σ; Rel(Γ) v̀ec τ

′ : a:Relκ (from S_KPush)
• Σ; Rel(Γ) c̀o resn η : H ′ τ ∼ H ′ τ ′ (with the well-formedness of τ and
τ ′ telling us that the τ and τ ′ do not have any variables in dom(∆2)
free)
• ∀i ,∃κi , Σ; Rel(Γ) t̀y τi : κi (by Lemma C.29)
• ∀i ,∃κ′i , Σ; Rel(Γ) t̀y τ

′
i : κ′i (by Lemma C.29)

• ∀i , Σ; Rel(Γ) c̀o nthi (resn η) : τi ∼ τ ′i (from Co_NthRel)
• Σ; Γ t̀y κ : Type, recalling that κ = ’Πa:Irrelκ,∆.H

′ a (by Lemma C.9,
Lemma C.41, and Lemma C.10)
• Σ; Γ c̀o 〈κ〉 : κ ∼ κ (by Co_Refl)
• Σ; Γ c̀o 〈κ〉@(nths (resn η)) : (’Π∆1,∆2.H

′ a)[τ/a] ∼
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(’Π∆1,∆2.H
′ a)[τ ′/a] (by Lemma C.32)

• Σ; Γ c̀ev ψ : ∆1[τ/a] (by Lemma C.27)
• Σ; Γ c̀ev ψ

′
: ∆1[τ ′/a] (by Lemma C.45)

• Σ; Γ v̀ec ψ
′
: ∆1[τ ′/a] (by Lemma C.27)

• Σ; Γ t̀y H{τ ′} : ’Π(∆1[τ
′/a],∆2[τ

′/a]).H ′ τ ′ (by a use of Ty_Con,
along with Lemma C.9)
• Σ; Γ t̀y H{τ ′} ψ

′
: ’Π(∆2[τ ′/a][ψ

′
/dom(∆1)]).H ′ τ ′

This last fact is what we are trying to prove, and so we are done.

Case Ty_Lam: We now have several cases:

Case S_IrrelAbs_Cong: By induction.
Case S_APush: We adopt the metavariable names from the rule:

γ1 =
˜
Πa:Irrel〈κ〉. γ γ2 = τ1 ≈〈Type〉 τ2

τ1 =
˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a]) τ2 =

˜
Πa:Irrelκ. κ1

Σ; Γ s̀ λa:Irrelκ. (v B γ) −→ (λa:Irrelκ. v)B (γ1 # γ2)
S_APush

Inversion and typing rules then give us the following facts:

• Σ; Γ t̀y λa:Irrelκ. (v B γ) :
˜
Πa:Irrelκ. κ1

• Σ; Γ, a:Irrelκ t̀y v B γ : κ1

• Σ; Rel(Γ), a:Relκ c̀o γ : κ0 ∼ κ1

• Σ; Γ, a:Irrelκ t̀y v : κ0

• Σ; Γ t̀y λa:Irrelκ. v :
˜
Πa:Irrelκ. κ0

• Σ; Rel(Γ) t̀y κ : Type (by Lemma C.9 and Lemma C.7)
• Σ; Rel(Γ) c̀o 〈κ〉 : κ ∼ κ (by Co_Refl)
• Σ; Rel(Γ) c̀o

˜
Πa:Irrel〈κ〉. γ :

˜
Πa:Irrelκ. κ0 ∼

˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a])

(by Co_PiTy)
• Σ; Rel(Γ) t̀y

˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a]) : Type (by Lemma C.44)

• Σ; Rel(Γ) t̀y
˜
Πa:Irrelκ. κ1 : Type (by Lemma C.43)

• Σ; Rel(Γ) c̀o (
˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a])) ≈〈Type〉 (

˜
Πa:Irrelκ. κ1) :

(
˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a])) ∼ (

˜
Πa:Irrelκ. κ1) (by Co_Coherence)

We can then conclude, by Co_Trans and Ty_Cast, that the result has
the same type,

˜
Πa:Irrelκ. κ1 as the redex.

Case Ty_Fix: We now have several cases:

Case S_Unroll: We adopt the variable names from the rule:

τ = λa:Relκ. σ

Σ; Γ s̀ fix τ −→ σ[fix τ/a]
S_Unroll

We can then derive the following:
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• Σ; Γ t̀y λa:Relκ. σ :
˜
Πa:Relκ. κ (by inversion)

• Σ; Γ, a:Relκ t̀y σ : κ (by inversion)
• Σ; Γ t̀y fix (λa:Relκ. σ) : κ (by Ty_Fix)
• Σ; Γ t̀y σ[fix (λa:Relκ. σ)/a] : κ (by Lemma C.35)

This last judgment is what we are trying to prove; we are done.
Case S_Fix_Cong: By induction.
Case S_FPush: We adopt the metavariable names from the rule:

γ1 = γ0@(a ≈γ2 a B γ2) # sym γ2

γ2 = argk γ0

Σ; Γ s̀ fix ((λa:Relκ. σ)B γ0) −→ (fix (λa:Relκ. (σ B γ1)))B γ2

S_FPush

We can derive the following facts:
• Σ; Γ t̀y fix ((λa:Relκ. σ)B γ0) : κ1 (conclusion of Ty_Fix)
• Σ; Γ t̀y (λa:Relκ. σ)B γ0 :

˜
Πa:Relκ1. κ1 (premise of Ty_Fix)

• Σ; Rel(Γ) c̀o γ0 : κ0 ∼
˜
Πa:Relκ1. κ1 (inversion on Ty_Cast)

• Σ; Γ t̀y λa:Relκ. σ : κ0 (same inversion)
• Σ; Γ t̀y λa:Relκ. σ :

˜
Πa:Relκ. κ2 (inversion by Ty_Lam)

• κ0 =
˜
Πa:Relκ. κ2 (Lemma C.20)

• Σ; Γ, a:Relκ t̀y σ : κ2 (inversion by Ty_Lam)
• Σ; Rel(Γ) c̀o γ0 : (

˜
Πa:Relκ. κ2) ∼ (

˜
Πa:Relκ1. κ1) (substitution)

• Σ; Rel(Γ) c̀o argk γ0 : κ ∼ κ1 (Co_ArgK)
• γ2 = argk γ0 (premise of S_FPush)
• Σ; Γ, a:Relκ t̀y a B γ2 : κ1 (Ty_Cast)
• Σ; Γ, a:Relκ c̀o a ≈γ2 a B γ2 : a ∼ a B γ2 (Co_Coherence)
• Σ; Γ, a:Relκ c̀o γ0@(a ≈γ2 a B γ2) : κ2 ∼ κ1[a B γ2/a] (Co_InstRel)
• Σ; Rel(Γ) t̀y

˜
Πa:Relκ1. κ1 : Type (Lemma C.43)

• Σ; Rel(Γ), a:Relκ1 t̀y κ1 : Type (inversion on Ty_Pi)
• Σ; Rel(Γ) t̀y κ1 : Type (Lemma C.7 and Lemma C.10)
• κ1[a B γ2/a] = κ1 (Lemma C.12, noting that a # κ1)
• Σ; Γ, a:Relκ c̀o γ0@(a ≈γ2 a B γ2) : κ2 ∼ κ1 (substitution)
• Σ; Γ, a:Relκ c̀o sym γ2 : κ1 ∼ κ (Co_Sym with Lemma C.10)
• γ1 = γ0@(a ≈γ2 a B γ2) # sym γ2 (premise of S_FPush)
• Σ; Γ, a:Relκ c̀o γ1 : κ2 ∼ κ (Co_Trans)
• Σ; Γ, a:Relκ t̀y σ B γ1 : κ (Ty_Cast and Lemma C.6)
• Σ; Γ t̀y λa:Relκ. (σ B γ1) :

˜
Πa:Relκ. κ (Ty_Lam)

• Σ; Γ t̀y fix (λa:Relκ. (σ B γ1)) : κ (Ty_Fix)
• Σ; Γ t̀y (fix (λa:Relκ. (σ B γ1)))B γ2 : κ1 (Ty_Cast)

The last item proves this case.

Case Ty_Absurd: Impossible, as absurd γ τ does not step.
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C.10 Consistency
Definition C.47 (Coercion erasure). Define the erasure of a type ε = bτc by the
following function (including auxiliary functions):

bac = a

bH{τ}c = H{bτc}

bτ1 τ2c = bτ1c bτ2c
bτ1 {τ2}c = bτ1c {bτ2c}
bτ γc = bτc •
bΠδ. τc = Πbδc. bτc
bτ B γc = bτc

bcaseκ τ of altc = casebκc bτcof baltc
bλδ. τc = λbδc. bτc
bfix τc = fix bτc

babsurd γ τc = absurd • bτc

ba:ρκc = a:ρbκc
bc:φc = •:bφc

bτ1
κ1∼κ2 τ2c = bτ1c bκ1c∼bκ2c bτ2c

bπ → τc = π → bτc

Notation C.48 (Erased types in consistency proof). The rewrite relation  is defined
only over erased types. We use a convention that the occurrence of a metavariable
in a mention of the  relation indicates that the metavariable represents an erased
element.

Notation C.49 (Reduction).

• We write ψ  ψ
′ to mean ∀i , ψi  ψ′i .

• We write τ1  τ3  τ2 to mean τ1  τ3 and τ2  τ3.

• We write  ∗ to mean the reflexive, transitive closure of  .

• We write τ1  ∗ τ3
∗  τ2 to mean τ1  ∗ τ3 and τ2  ∗ τ3.

Lemma C.50 (Parallel reduction substitution). Assume ψ  ψ
′
. We can then

conclude:

1. τ [ψ/z ] τ [ψ
′
/z ]

2. δ[ψ/z ] δ[ψ
′
/z ]
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Proof. By straightforward mutual induction on the structure of τ/δ.

Lemma C.51 (Parallel reduction substitution in parallel). Assume ψ  ψ
′
.

1. If τ1  τ2, then τ1[ψ/z ] τ2[ψ
′
/z ].

2. If δ1  δ2, then δ1[ψ/z ] δ2[ψ
′
/z ].

Proof. By induction on τ1  τ2/δ1  δ2.

Case R_Refl: By Lemma C.50.

Congruence rules: By induction.

Case R_BetaRel: It must be that τ1 = (λb:Relκ1. τ3) τ4 and τ2 = τ ′3[τ ′4/b] where
τ3  τ ′3 and τ4  τ ′4. We must show that (λb:Relκ1[ψ/z ]. τ3[ψ/z ]) τ4[ψ/z ]  
τ ′3[τ ′4/b][ψ

′
/z ]. Proceeding by R_BetaRel, the left-hand-side steps to τ5[τ6/b]

where τ3[ψ/z ]  τ5 and τ4[ψ/z ]  τ6. (We can choose τ5 and τ6.) We must
thus show that τ5[τ6/b] = τ ′3[τ ′4/b][ψ

′
/z ]. First, we reorder substitutions to get

τ ′3[τ
′
4/b][ψ

′
/z ] = τ ′3[ψ

′
/z ][τ ′4[ψ

′
/z ]/b], noting that b # ψ

′ by the Barendregt
convention. Choose τ5 = τ ′3[ψ

′
/z ] and τ6 = τ ′4[ψ

′
/z ]. We must show that

τ3[ψ/z ] τ5 and τ4[ψ/z ] τ6; expanding gives us that we must show τ3[ψ/z ] 
τ ′3[ψ

′
/z ] and τ4[ψ/z ] τ ′4[ψ

′
/z ]. Both of these follow directly from the induction

hypothesis, and so we are done.

Case R_BetaIrrel: Similar to previous case.

Case R_CBeta: By induction.

Case R_Match: It must be that:

• τ1 = caseκH{σ} ψ0 of alt

• τ2 = τ4 ψ
′
0 • where H → τ3 ∈ alt , τ3  τ4, and ψ0  ψ

′
0.

We must show that caseκ[ψ/z ] H{σ[ψ/z ]} ψ0[ψ/z ] of alt [ψ/z ] τ4[ψ
′
/z ]ψ

′
0[ψ
′
/z ] •.

Proceeding by R_Match, the left-hand side steps to τ5 ψ
′′
0 • where τ3[ψ/z ] τ5

and ψ0[ψ/z ]  ψ
′′
0, and we get to choose τ5 and ψ

′′
0. We must show that

τ5 ψ
′′
0 • = τ4[ψ

′
/z ]ψ

′
0[ψ
′
/z ] •. Choose τ5 = τ4[ψ

′
/z ] and ψ

′′
0 = ψ

′
0[ψ
′
/z ]. We

must show that τ3[ψ/z ] τ4[ψ
′
/z ] and ψ0[ψ/z ] ψ

′
0[ψ
′
/z ]. Both of these follow

from the induction hypothesis, and so we are done.

Case R_Default: It must be that:

• τ1 = caseκH{σ} ψ0 of _→ σ0; alt

• τ2 = σ′0 where σ0  σ′0

We are done by the induction hypothesis.

Case R_Unroll: It must be that:
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• τ1 = fix (λa:Relκ1. τ3)

• τ2 = τ4[fix (λa:Relκ2. τ4)/a] where κ1  κ2 and τ3  τ4.

We must show that fix (λa:Relκ1[ψ/z ]. τ3[ψ/z ])  τ4[fix (λa:Relκ2. τ4)/a][ψ
′
/z ].

Proceeding by R_Unroll, the left-hand side steps to τ5[fix (λa:Relκ3. τ5)/a]
where τ3[ψ/z ]  τ5 and κ1[ψ/z ]  κ3. We must show that
τ5[fix (λa:Relκ3. τ5)/a] = τ4[fix (λa:Relκ2. τ4)/a][ψ

′
/z ]. Reorder substitutions on

the right to get

τ4[fix (λa:Relκ2. τ4)/a][ψ
′
/z ] = τ4[ψ

′
/z ][fix (λa:Relκ2[ψ

′
/z ]. τ4[ψ

′
/z ])/a],

where a # ψ
′ by the Barendregt convention. Choose τ5 = τ4[ψ

′
/z ] and κ3 =

κ2[ψ
′
/z ]. It remains only to show that τ3[ψ/z ]  τ4[ψ

′
/z ] and κ1[ψ/z ]  

κ2[ψ
′
/z ], both of which follow from the induction hypothesis. We are done.

Lemma C.52 (Parallel repeated reduction substitution). If τ1  ∗ τ2 and ψ  ∗ ψ
′
,

then τ1[ψ/z ] ∗ τ2[ψ
′
/z ].

Proof. By iterated induction on the lengths of the reduction chains.

Lemma C.53 (Application reduction). If H{τ} ψ  σ, then σ = H{τ ′} ψ
′
where

τ  τ ′ and ψ  ψ
′
.

Proof. Straightforward induction on the structure of σ0 = H{τ} ψ.

Lemma C.54 (Local diamond). Let τi denote an erased type and δi an erased binder.

1. If τ0  τ1 and τ0  τ2, then there exists τ3 such that τ1  τ3  τ2.

2. If δ0  δ1 and δ0  δ2, then there exists δ3 such that δ1  δ3  δ2.

Proof. By induction on the structure of τ0/δ0 followed by case analysis on the reduction
of τ0/δ0. We ignore overlap with the R_Refl rule, as this is always trivially handled.

Case τ0 = a: τ1 = τ2 = τ3 = a.

Case τ0 = H{τ}: By induction.

Case τ0 = σ1 σ2: We now have several cases:

Case R_AppRel/R_AppRel: By induction.
Case R_AppRel/R_BetaRel: It must be that:

• τ0 = (λa:ρκ1. σ3)σ4

• τ1 = (λa:ρκ2. σ5)σ6, where κ1  κ2, σ3  σ5, and σ4  σ6, and
• τ2 = σ3[σ4/a].
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Choose τ3 = σ5[σ6/a]. We must show τ1  τ3 and τ2  τ3. The first is by
R_BetaRel. The second is by Lemma C.51.

Case R_BetaRel/R_BetaRel: It must be that:

• τ0 = (λa:ρκ. σ3)σ4

• τ1 = σ′3[σ′4/a], where σ3  σ′3 and σ4  σ′4
• τ2 = σ′′3 [σ′′4/a], where σ3  σ′′3 and σ4  σ′′4 .

Using the induction hypothesis, we can get σ5 and σ6 such that

• σ′3  σ5  σ′′3
• σ′4  σ6  σ′′4 .

Choose τ3 = σ5[σ6/a]. We must show σ′3[σ′4/a] σ5[σ6/a] and σ′′3 [σ′′4/a] 
σ5[σ6/a]. Both of these follow from Lemma C.51.

Case τ0 = σ1 {σ2}: Similar to τ0 = σ1 σ2.

Case τ0 = σ •: We now have several cases:

Case R_CApp/R_CApp: By induction.
Case R_CApp/R_CBeta: It must be that:

• τ0 = (λ•:κ1 ∼ κ2. σ3) •
• τ1 = (λ•:κ3 ∼ κ4. σ4) • where κ1  κ3, κ2  κ4, and σ3  σ4.
• τ2 = σ5 where σ3  σ5

The induction hypothesis gives us σ6 such that σ4  σ6  σ5. Choose
τ3 = σ6. We must show τ1  τ3 and τ2  τ3. The first is by R_CBeta.
The second is immediate.

Case R_CBeta/R_CBeta: By induction.

Case τ0 = Πδ. σ0: By induction and R_Pi.

Case τ0 = caseκ σ0 of alt : We now have several cases:

Case R_Case/R_Case: By induction and R_Case.
Case R_Case/R_Match: It must be that:

• τ0 = caseκH{σ} ψ of H → ε

• τ1 = caseκ′ H{σ′} ψ
′
of H → ε′ where κ  κ′, σ  σ′, ψ  ψ

′, and
ε ε′ (appealing to Lemma C.53)
• τ2 = ε′′i ψ

′′ •, where Hi = H , εi  ε′′i , and ψ  ψ
′′.

Using the induction hypothesis, we can get ε′′′i such that ε′i  ε′′′i  ε′′i and
ψ
′′′ such that ψ′  ψ

′′′
 ψ
′′. Choose τ3 = ε′′′i ψ

′′′ •. We must show both
τ1  τ3 and τ2  τ3. The first is by R_Match. The second is by repeated
use of R_AppRel/R_AppIrrel/R_CApp.

Case R_Case/R_Default: It must be that:
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• τ0 = caseκH{σ} ψ of _→ σ0; alt

• τ1 = caseκ′ H{σ′} ψ
′
of _ → σ′0; alt

′ where κ  κ′, σ  σ′, ψ  ψ
′,

σ0  σ′0, and alt  alt
′

• τ2 = σ′′0 where σ0  σ′′0

The induction hypothesis gives us ε such that σ′0  ε  σ′′0 . We can see
that τ1 can step by R_Default (as the type constant H does not change),
and thus that τ1  ε  τ2. We are done.

Case R_Match/R_Match: It must be that:

• τ0 = caseκH{σ} ψ of alt
• alti = H → κ1

• τ1 = κ′1 ψ
′ • where κ1  κ′1 and ψ  ψ

′.
• τ2 = κ′′1 ψ

′′ • where κ1  κ′′1 and ψ  ψ
′′.

The induction hypothesis gives us κ′′′1 and ψ′′′ such that:

• κ′1  κ′′′1  κ′′1
• ψ′  ψ

′′′
 ψ
′′

Choose τ3 = κ′′′1 [ψ
′′′
/z ] and we are done by Lemma C.51.

Case R_Match/R_Default: Impossible, as the premises contradict each
other.

Case R_Default/R_Default: By induction.

Case τ0 = λδ0. σ0: By induction and R_Lam.

Case τ0 = fixσ0: We have several cases:

Case R_Fix/R_Fix: By induction.
Case R_Fix/R_Unroll: It must be that:

• τ0 = fix (λa:Relκ1. σ1)
• τ1 = fix (λa:Relκ2. σ2) where κ1  κ2 and σ1  σ2

• τ2 = σ3[fix (λa:Relκ3. σ3)/a] where κ1  κ3 and σ1  σ3

The induction hypothesis gives us κ4 and σ4 such that κ2  κ4  κ3

and σ2  σ4  σ3. Choose τ3 = σ4[fix (λa:Relκ4. σ4)/a]. We must show
τ1  τ3 and τ2  τ3. The first is by R_Unroll, and the second is by
Lemma C.51.

Case R_Unroll/R_Unroll: It must be that:

• τ0 = fix (λa:Relκ1. σ1)
• τ1 = σ2[fix (λa:Relκ2. σ2)/a] where κ1  κ2 and σ1  σ2

• τ2 = σ3[fix (λa:Relκ3. σ3)/a] where κ1  κ3 and σ1  σ3

The induction hypothesis gives us κ4 and σ4 such that κ2  κ4  κ3 and
σ2  σ4  σ3. Choose τ3 = σ4[fix (λa:Relκ4. σ4)/a] and we are done by
Lemma C.51.
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Case τ0 = absurd γ σ0: By induction and R_Absurd.

Case δ0 = a:ρκ0: By induction and R_TyBinder.

Case δ0 = •:τ1 ∼ τ1: By induction and R_CoBinder.

Lemma C.55 (Confluence). Let τi denote an erased type. If τ1  ∗ τ2 and τ1  ∗ τ3,
then there exists τ4 such that τ2  ∗ τ4

∗  τ3.

Proof. Consequence of Lemma C.54.

Lemma C.56 (Π-reduction). If Πδ. τ  σ, then there exist δ′ and τ ′ such that
σ = Πδ′. τ ′, δ  δ′, and τ  τ ′.

Proof. Case anlysis on Πδ. τ  σ.

Lemma C.57 (λ-reduction). If λδ. τ  σ, then there exist δ′ and τ ′ such that
σ = λδ′. τ ′, δ  δ′, and τ  τ ′.

Proof. Case anlysis on λδ. τ  σ.

Lemma C.58 (Matchable application reduction). If τ ψ  σ, then there exist τ ′ and
ψ′ such that σ = τ ′ ψ′, τ  τ ′, and ψ  ψ′.

Proof. Case analysis on τ ψ  σ.

Lemma C.59 (Coercion substitution/erasure). bτ [γ/c]c = bτc

Proof. By induction on the structure of τ .

Lemma C.60 (Type constant kinds shape). If Σ; Γ t̀y H{τ1} ψ1 : κ1 and Σ; Γ t̀y

H{τ2} ψ2 : κ2 (where the lengths of ψ1 and ψ2 are the same), then there exists a κ such
that fv(κ) = {a} ∪ {z}, κ1 = κ[τ 1/a, ψ1/z ], and κ2 = κ[τ 2/a, ψ2/z ].

Proof. Lemma C.30 tells us that there exist κ3 and κ4 such that Σ; Γ t̀y H{τ1} :
κ3 and Σ; Γ t̀y H{τ2} : κ4. Inversion (via the only applicable rule, Ty_Con)
then tells us that Σ t̀c H : ∆1; ∆2;H

′, κ3 = ’Π(∆2[τ 1/dom(∆1)]).H
′ τ 1,

and κ4 = ’Π(∆2[τ 2/dom(∆1)]).H
′ τ 2. Lemma C.30 also tells us that Σ; Γ v̀ec

ψ1 : prefix(∆2[τ 1/dom(∆1)]) and Σ; Γ v̀ec ψ2 : prefix(∆2[τ 2/dom(∆1)]). Let
∆3,∆4 = ∆2, where the length of ∆3 matches that of ψ1. Thus Lemma
C.31 tells us that κ1 = ’Π(∆4[τ 1/dom(∆1), ψ1/dom(∆3)]).H

′ τ 1 and κ2 =
’Π(∆4[τ 2/dom(∆1), ψ2/dom(∆3)]).H

′ τ 2. Thus, we are done, with a = dom(∆1),
z = dom(∆2), and κ = ’Π∆4.H

′ a.

Definition C.61 (Joinability). We say that two types τ1 and τ2 are joinable if there
exists an erased type ε such that bτ1c ∗ ε ∗  bτ2c.
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Lemma C.62 (Completeness of type reduction). If Σ; Γ c̀o γ : τ1
κ1∼κ2 τ2 and

c #̃ γ for every c:φ ∈ Γ, then:

1. There exists some erased type ε such that bτ1c ∗ ε ∗  bτ2c.
2. There exists some erased type ε such that bκ1c ∗ ε ∗  bκ2c.

Proof. By induction on the typing derivation. For the purposes of exposition, we
present the types cases separately from the kinds cases, but in a formal proof, they
would be interleaved. First, the types cases:

Case Co_Var: Impossible.

Case Co_Refl: Choose ε = bτ1c and we are done.

Case Co_Sym: By induction.

Case Co_Trans: Use the metavariable names from the rule:

Σ; Γ c̀o γ1 : τ1 ∼ τ2 Σ; Γ c̀o γ2 : τ2 ∼ τ3

Σ; Γ c̀o γ1 # γ2 : τ1 ∼ τ3

Co_Trans

The induction hypothesis gives us ε1 such that bτ1c  ∗ ε1 ∗  bτ2c. It also
gives us ε2 such that bτ2c  ∗ ε2 ∗  bτ3c. Lemma C.55 gives us ε3 such that
ε1  ∗ ε3 ∗  ε2. Thus, ε3 is a common reduct of bτ1c and bτ3c as desired.

Case Co_Coherence: We know that bτ1c = bτ2c and thus either can be the
common reduct.

Case Co_Con: By induction and repeated use of R_Con.

Case Co_AppRel: By induction and repeated use of R_AppRel.

Case Co_AppIrrel: By induction and repeated use of R_AppIrrel.

Case Co_CApp: By induction.

Case Co_PiTy: By induction. Note that the substitution in the conclusion is
erased by coercion erasure and so poses no complications.

Case Co_PiCo: By induction. Note that we need the c #̃ γ premise of Co_PiCo
in order to use the induction hypothesis here. Once again, the substitution in
the conclusion causes no bother.

Case Co_Case: By induction and R_Case.

Case Co_Lam: Similar to Co_PiTy, noting that the substitution in the result of
Co_Lam is erased by coercion erasure and so poses no complications.

Case Co_CLam: Similar to Co_PiCo. Once again, the premise of c #̃ γ is
critical.

Case Co_Fix: By induction and repeated use of R_Fix.

Case Co_Absurd: By induction.
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Case Co_ArgK: The induction hypothesis gives us ε0 such that bΠa:ρκ1. σ1c ∗
ε0
∗  bΠa:ρκ2. σ2c. By repeated use of Lemma C.56, we see that ε0 = Πa:ρκ3. σ3

such that bκ1c ∗ κ3
∗  bκ2c and bσ1c ∗ σ3

∗  bσ2c. Thus κ3 is a reduct of
bκ1c and bκ2c as desired.

Case Co_CArgK1: Like previous case.

Case Co_CArgK2: Like previous case.

Case Co_ArgKLam: Like case Co_ArgK, but appealing to Lemma C.57.

Case Co_CArgKLam1: Like previous case.

Case Co_CArgKLam2: Like previous case.

Case Co_Res: By induction and Lemma C.56.

Case Co_ResLam: By induction and Lemma C.57.

Case Co_InstRel: We use the metavariable names from the rule:

Σ; Γ c̀o γ : Πa:Relκ1. σ1 ∼ Πa:Relκ2. σ2

Σ; Γ c̀o η : τ1
κ1∼κ2 τ2

Σ; Γ c̀o γ@η : σ1[τ1/a] ∼ σ2[τ2/a]
Co_InstRel

The induction hypothesis (along with Lemma C.56) gives us ε0 and ε1 such that
bσ1c ∗ ε0 ∗  bσ2c and bτ1c ∗ ε1 ∗  bτ2c. Lemma C.52 (with Lemma C.34)
then tells us that bσ1[τ1/a]c ∗ ε0[ε1/a] ∗  bσ2[τ2/a]c as desired.

Case Co_InstIrrel: Similar to previous case.

Case Co_CInst: By induction, Lemma C.56, and Lemma C.59.

Case Co_InstLamRel: Like case Co_Inst, but appealing to Lemma C.57.

Case Co_InstLamIrrel: Like previous case.

Case Co_CInstLam: Like case Co_CInst, but appealing to Lemma C.57.

Case Co_NthRel: By induction and Lemma C.53.

Case Co_NthIrrel: By induction and Lemma C.53.

Case Co_Left: By induction and Lemma C.58.

Case Co_RightRel: By induction and Lemma C.58.

Case Co_RightIrrel: By induction and Lemma C.58.

Case Co_Kind: By induction.

Case Co_Step: We now must consider the different step rules:

Case S_BetaRel: By R_BetaRel.
Case S_BetaIrrel: By R_BetaIrrel.
Case S_CBeta: By R_CBeta and Lemma C.59.
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Case S_Match: By R_Match.
Case S_Default: By R_Default.
Case S_DefaultCo: By R_Default.
Case S_Unroll: By R_Unroll.
Case S_Trans: bτ1c = bτ2c in this case.
Congruence rules: By induction.
Case S_KPush: We adopt the metavariable names from the statement of

the rule:

Σ t̀c H : a:Irrelκ; ∆;H ′ ∆ = ∆1,∆2 n = |∆2|
κ = ’Πa:Irrelκ,∆.H

′ a

σ = ’Π(∆2[τ/a][ψ/dom(∆1)]).H ′ τ

σ′ = ’Π(∆2[τ ′/a][ψ
′
/dom(∆1)]).H ′ τ ′

Σ; Rel(Γ) c̀o η : σ ∼ σ′

Σ; Rel(Γ) v̀ec τ
′ : a:Relκ

∀i , γi = build_kpush_co(〈κ〉@(nths (resn η));ψ1...i−1)
∀i , ψ′i = cast_kpush_arg(ψi ; γi)

H → κ′ ∈ alt

Σ; Γ s̀ caseκ0 (H{τ} ψ)B η of alt −→ caseκ0 H{τ ′} ψ
′
of alt

S_KPush

The only differences between τ1 (the redex) and τ2 (the reduct) are the
τ becoming the τ ′ and the ψ becoming ψ′, along with the dropped cast
by η. Casting is erased, so losing η is inconsequential. By the definition
of cast_kpush_arg, we can see that bcast_kpush_arg(ψ; γ)c = bψc for
any ψ, so bψc = bψ′c. This leaves us only the τ , but we can see that
bτc ∗ ε ∗  bτ ′c (for some ε) by the induction hypothesis. We are done
by Lemma C.52.

Other push rules: bτ1c = bτ2c in these cases.

We now proceed to the kinds cases.

Case Co_Var: Impossible.

Case Co_Refl: Choose ε = bκ1c and we are done.

Case Co_Sym: By induction.

Case Co_Trans: Similar to the Co_Trans case for types, above.

Case Co_Coherence: By induction.

Case Co_Con: We adopt the metavariable names from the rule:

∀i , Σ; Γ c̀o γi : σi ∼ σ′i
Σ; Γ t̀y H{σ} : κ1 Σ; Γ t̀y H{σ′} : κ2

Σ; Γ c̀o H{γ} : H{σ} ∼ H{σ′}
Co_Con
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We invert Σ; Γ t̀y H{σ} : κ1 and Σ; Γ t̀y H{σ′} : κ2. These both can be proved
only by Ty_Con. The H in both judgments is the same, and so by Lemma
C.9 and Lemma C.18, we have unique ∆1, ∆2, and H ′ such that Σ t̀c H :
∆1; ∆2;H

′. We can thus see that κ1 = ’Π(∆2[σ/dom(∆1)]).H
′ σ and κ2 =

’Π(∆2[σ
′/dom(∆1)]).H

′ σ′. The induction hypothesis gives us ε′ such that, ∀i ,
bσic  ∗ ε′i ∗  bσ′ic. Choose ε = ’Π(b∆2c[ε′/dom(∆1)]).H

′ ε′. We must show
the following:

• ’Π(b∆2c[bσc/dom(∆1)]).H ′ bσc ∗ ε
• ’Π(b∆2c[bσ′c/dom(∆1)]).H ′ bσ′c ∗ ε

Both of these follow from Lemma C.52.

Case Co_AppRel: We adopt the metavariable names from the rule:

Σ; Γ c̀o γ1 : τ1 ∼ τ2

Σ; Γ c̀o γ2 : σ1 ∼ σ2

Σ; Γ t̀y τ1 σ1 : κ1 Σ; Γ t̀y τ2 σ2 : κ2

Σ; Γ c̀o γ1 γ2 : τ1 σ1 ∼ τ2 σ2

Co_AppRel

We invert both Σ; Γ t̀y τ1 σ1 : κ1 and Σ; Γ t̀y τ2 σ2 : κ2. Both must be proved by
Ty_AppRel. We thus get all of the following:

• Σ; Γ t̀y τ1 : Π1a:Relκ3. κ4

• Σ; Γ t̀y σ1 : κ3

• κ1 = κ4[σ1/a]

• Σ; Γ t̀y τ2 : Π2a:Relκ5. κ6

• Σ; Γ t̀y σ2 : κ5

• κ2 = κ6[σ2/a].

The (kind) induction hypothesis gives us ε1 such that Π1a:Relbκ3c. bκ4c ∗ ε1 ∗  
Π2a:Relbκ5c. bκ6c. Lemma C.56 tells us Π1 = Π2 and gives us ε3 and ε4 such
that ε1 = Π1a:Relε3. ε4. The (type) induction hypothesis also gives us ε2 such
that bσ1c  ∗ ε2 ∗  bσ2c. Choose ε = ε4[ε2/a]. We must show bκ4[σ1/a]c  ∗
ε4[ε2/a] ∗  bκ6[σ2/a]c. Lemma C.34 reduces this to bκ4c[bσ1c/a] ∗ ε4[ε2/a] ∗  
bκ6c[bσ2c/a]. We are done by two uses of Lemma C.52.

Case Co_AppIrrel: Similar to previous case.

Case Co_CApp: Similar to (but easier than—no argument to worry about) previ-
ous case.

Case Co_PiTy: Immediate. Both kinds are Type.

Case Co_PiCo: Immediate. Both kinds are Type.

Case Co_Case: By induction.
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Case Co_Lam: We adopt the metavariable names from the rule:

Σ; Γ c̀o η : κ1
Type∼Type κ2

Σ; Γ, a:ρκ1 c̀o γ : τ1
σ1∼σ2 τ2

Σ; Γ, a:ρκ1 t̀y τ1 : σ1 Σ; Γ, a:ρκ1 t̀y τ2 : σ2

Σ; Γ c̀o λa:ρη. γ : λa:ρκ1. τ1 ˜
Πa:ρκ1. σ1∼˜

Πa:ρκ2. (σ2[aBsym η/a]) λa:ρκ2. (τ2[a B sym η/a])
Co_Lam

The induction hypothesis tells us both that κ1 and κ2 are joinable and also that
σ1 and σ2 are joinable. We are done by R_Pi.

Case Co_CLam: Similar to previous case, again requiring the c #̃ γ condition in
order to use the induction hypothesis.

Case Co_Fix: We adopt the metavariable names from the rule:

Σ; Γ c̀o γ : τ1 ∼ τ2

Σ; Γ t̀y fix τ1 : κ1 Σ; Γ t̀y fix τ2 : κ2

Σ; Γ c̀o fix γ : fix τ1 ∼ fix τ2

Co_Fix

Inversion on Σ; Γ t̀y fix τ1 : κ1 tells us that Σ; Γ t̀y τ1 : Π1a:Relκ1. κ1. Similarly,
we can see that Σ; Γ t̀y τ2 : Π2a:Relκ2. κ2. The induction hypothesis gives us ε0
such that bΠ1a:Relκ1. κ1c ∗ ε0 ∗  bΠ2a:Relκ2. κ2c. Use of Lemma C.56 gives us
ε1 such that bκ1c ∗ ε1 ∗  bκ2c and we are done.

Case Co_Absurd: By induction.

Case Co_ArgK: Here is the rule with all kinds included:

Σ; Γ c̀o γ : (Πa:ρκ1. σ1) Type∼Type (Πa:ρκ2. σ2)

Σ; Γ c̀o argk γ : κ1
Type∼Type κ2

Co_ArgK

Both kinds are Type and so we are done.
Case Co_CArgK1: Examine the typing rule with kinds included:

Σ; Γ c̀o γ : (Πc:(τ1
κ1∼κ2 τ ′1). σ1) Type∼Type (Πc:(τ2

κ3∼κ4 τ ′2). σ2)

Σ; Γ c̀o argk1 γ : τ1
κ1∼κ3 τ2

Co_CArgK1

The induction hypothesis (with Lemma C.56) gives us our result.

Case Co_CArgK2: Similar to previous caes.

Case Co_ArgKLam: Immediate. Both kinds are Type.

Case Co_CArgKLam1: Similar to case Co_CArgK1.

Case Co_CArgKLam2: Similar to previous case.

Case Co_Res: Immediate. Both kinds are Type.
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Case Co_ResLam: Examine the typing rule with kinds included:

Σ; Γ c̀o γ : λ∆1. τ1 ˜
Π∆1. κ1∼˜

Π∆2. κ2 λ∆2. τ2 |∆1| = |∆2| = n
Σ; Γ t̀y τ1 : κ1 Σ; Γ t̀y τ2 : κ2

Σ; Γ c̀o resn γ : τ1
κ1∼κ2 τ2

Co_ResLam

We are done by the induction hypothesis and Lemma C.56.

Case Co_InstRel: Immediate. Both kinds are Type.

Case Co_InstIrrel: Immediate. Both kinds are Type.

Case Co_CInst: Immediate. Both kinds are Type.

Case Co_InstLamRel: Here is the rule with kinds shown:

Σ; Γ c̀o γ : λa:Relκ1. τ1 ˜
Πa:Relκ1. κ3∼˜

Πa:Relκ2. κ4 λa:Relκ2. τ2

Σ; Γ c̀o η : σ1
κ1∼κ2 σ2

Σ; Γ c̀o γ@η : τ1[σ1/a] κ3[σ1/a]∼κ4[σ2/a] τ2[σ2/a]
Co_InstLamRel

Our desired result follows from the induction hypothesis and Lemma C.52.

Case Co_InstLamIrrel: Similar to previous case.

Case Co_CInstLam: Here is the rule with kinds shown:

Σ; Γ c̀o γ : λc:φ1. σ1 ˜
Πc:φ1. κ1∼˜

Πc:φ2. κ2 λc:φ2. σ2

Σ; Γ c̀o η1 : φ1 Σ; Γ c̀o η2 : φ2

Σ; Γ c̀o γ@(η1, η2) : σ1[η1/c] κ1[η1/c]∼κ2[η2/c] σ2[η2/c]
Co_CInstLam

Our desired result follows by the induction hypothesis and Lemma C.59.

Case Co_NthRel: We adopt metavariable names from the statement of the rule:

Σ; Γ c̀o γ : H{κ} ψ
σ1∼σ2 H{κ′} ψ

′

ψi = τ ψ′i = σ
Σ; Γ t̀y τ : κ1 Σ; Γ t̀y σ : κ2

Σ; Γ c̀o nthi γ : τ κ1∼κ2 σ
Co_NthRel

The induction hypothesis gives us ε′ such that H{bκc} bψc ∗ ε′ ∗  H{bκ′c} bψ
′c.

Furthermore, we know that the number of ψ is non-zero. The reductions must
thus be combinations of R_AppRel, R_AppIrrel, and R_CApp, and we
can thus consider the reduction of prefixes of the original types. Specifically, we
can deduce H{bκc} bψ0c bτc ∗ ε0 ∗  H{bκ′c} bψ

′
0c bσc, where bψ0c is a prefix of

ψ and ψ
′
0 is a prefix of ψ′ (and τ and σ are as in the statement of the rule).

Let τ3 = H{κ} ψ0 and τ4 = H{κ′} ψ
′
0. Lemma C.44 (and inversion) tell us that

Σ; Rel(Γ) t̀y H{κ} ψ : σ1 and Σ; Rel(Γ) t̀y H{κ′} ψ
′

: σ2. By Lemma C.30, there
must be σ3 and σ4 such that Σ; Rel(Γ) t̀y τ3 : σ3 and Σ; Rel(Γ) t̀y τ4 : σ4. Lemma
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C.60 tells us that σ3 = σ5[κ/a, ψ/z ] and σ4 = σ5[κ′/a, ψ
′
/z ] for some σ5, a, and

z . Lemma C.53 tells us that κ and κ′ are joinable, as are ψ and ψ′. We thus have,
by Lemma C.52 that σ3 and σ4 are joinable. Inversion on Σ; Rel(Γ) t̀y τ3 τ : σ6

and Σ; Rel(Γ) t̀y τ4 σ : σ7 tell us that σ3 and σ4 must have the form Π1a:ρκ1. σ8

and Π2a:ρκ2. σ9, where Σ; Rel(Γ) t̀y τ : κ1 and Σ; Rel(Γ) t̀y σ : κ2. By Lemma
C.56, we can see that the joinability of σ3 and σ4 imply the joinability of κ1 and
κ2, as desired.

Case Co_NthIrrel: Similar to previous case.

Case Co_Left: By induction.

Case Co_RightRel: By induction.

Case Co_RightIrrel: By induction.

Case Co_Kind: Immediate, as both kinds are Type.

Case Co_Step: With kinds shown, the rule is as follows:

Σ; Γ t̀y τ : κ Σ; Γ t̀y τ
′ : κ

Σ; Γ s̀ τ −→ τ ′

Σ; Γ c̀o step τ : τ κ∼κ τ ′
Co_Step

We can see that the desired result is immediate, as both types have the same
kind κ.

Definition C.63 (Erased values). An erased value is an erased type ε such that there
exists a value v with bvc = ε.

Definition C.64 (Consistency over erased types). We overload the notation τ1 ∝ τ2

to include relating erased types, where the rules are the same except that all types are
erased.

Lemma C.65 (Consistency is reflexive). ε ∝ ε

Proof. By induction on the structure of ε.

Lemma C.66 (Consistency is symmetric). If τ1 ∝ τ2, then τ2 ∝ τ1.

Proof. By induction on τ1 ∝ τ2.

Lemma C.67 (Reduction preserves values). If ε1  ε2 and ε1 is an erased value,
then ε2 is an erased value.

Proof. By induction. The induction hypothesis in needed only in the ε1 = λa:Irrelκ. σ
case.
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Lemma C.68 (Consistency of reduction). If ε1  ε2, then ε1 ∝ ε2.

Proof. If ε1 is not an erased value, the result is immediate. We thus assume ε1 is an
erased value. By induction over ε1  ε2.

Case R_Refl: By Lemma C.65.

Case R_Con: Immediate.

Case R_AppRel: Since ε1 is an erased value, it must be H{τ} ψ. We are done by
Lemma C.53.

Case R_AppIrrel: Similar to previous case.

Case R_CApp: Similar to previous case.

Case R_Pi: By induction.

Case R_Case: Impossible.

Case R_Lam: Immediate.

Case R_Fix: Impossible.

Case R_Absurd: Impossible.

Case R_BetaRel: Impossible.

Case R_BetaIrrel: Impossible.

Case R_CBeta: Impossible.

Case R_Match: Impossible.

Case R_Default: Impossible.

Case R_Unroll: Impossible.

Lemma C.69 (Consistency of reductions). If ε1  ∗ ε2, then ε1 ∝ ε2.

Proof. By induction on the length of the reduction chain, appealing to Lemma
C.68.

Lemma C.70 (Π-expansion). If ε1 is an erased value and ε1  Πδ. τ , then there exist
δ′ and τ ′ such that ε1 = Πδ′. τ ′ where δ  δ′ and τ  τ ′.

Proof. By case analysis on ε1  Πδ. τ .

Lemma C.71 (Π-expansions). If ε1 is an erased value and ε1  ∗ Πδ. τ , then there
exist δ′ and τ ′ such that ε1 = Πδ′. τ ′ where δ  ∗ δ′ and τ  ∗ τ ′.

Proof. By induction on the length of the reduction chain, using Lemma C.67 to
establish the value condition and appealing to Lemma C.70.
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Lemma C.72 (Joinable types are consistent). If ε1  ∗ ε3 ∗  ε2, then ε1 ∝ ε2.

Proof. By induction on the structure of ε1. In all cases: If either ε1 or ε2 is not an
erased value, the result is immediate. We thus assume both are values. We know (from
Lemma C.69) that ε1 ∝ ε3 and ε2 ∝ ε3 and (from Lemma C.67) that ε3 is a value.

Now, suppose ε1 is not a Π-type or is a Π-type over a proposition. We can see
from inversion on ε1 ∝ ε3 that ε3 must have the same head. We can further see from
inversion on ε2 ∝ ε3 that ε2 must have the same shape, and thus that ε1 ∝ ε2 as
desired.

Finally, we consider ε1 = Πa:ρκ. τ . We see (from Lemma C.56) that ε3 = Πa:ρκ
′. τ ′

with κ ∗ κ′ and τ  ∗ τ ′. Now we can use Lemma C.71 to see that ε2 = Πa:ρκ
′′. τ ′′

with κ′′  ∗ κ′ and τ ′′  ∗ τ ′. The induction hypothesis tells us τ ∝ τ ′′, which gives us
ε1 ∝ ε2 by C_PiTy.

Lemma C.73 (Erasure/consistency). If bτ1c ∝ bτ2c, then τ1 ∝ τ2.

Proof. If either τ1 or τ2 is not a value, the result is immediate. We thus assume both
are values. Proceed by induction on the structure of τ1.

Case τ1 = a: Impossible.

Case τ1 = H{τ}: We have bτ1c = H{bτc}, and thus bτ2c = H{τ ′} ψ. From the defini-
tion of bτ2c, we can see that τ2 must be headed by H or be a cast. The latter is
impossible, as a cast is not a value. Thus τ2 is headed by H and we are done.

Case τ1 = σ1 σ2: For τ1 to be a value, it must be headed by some constant H . Proceed
as in the previous case.

Case τ1 = Πa:ρκ. τ : Similar to case for H{τ}, but also using the induction hypothesis.

Case τ1 = Πc:φ. τ : Similar to case for H{τ}.

Case τ1 = τ B γ: Impossible.

Case τ1 = γ: Impossible.

Case τ1 = caseκ τ of alt : Impossible.

Case τ1 = λδ. σ: Similar to case for H{τ}.

Case τ1 = fixσ: Impossible.

Case τ1 = absurd γ τ0: Impossible.

Lemma C.74 (Consistency). If Γ contains only irrelevant type variable bindings and
Σ; Γ c̀o γ : τ1 ∼ τ2 then τ1 ∝ τ2.

Proof. If either τ1 or τ2 is not a value, then we are done. So, we assume that both
are values. Lemma C.62 gives us ε such that bτ1c  ∗ ε ∗  bτ2c. (This lemma is
applicable because there are no coercion bindings in Γ.) Lemma C.72 then tell us that
bτ1c ∝ bτ2c. Finally, Lemma C.73 gives us τ1 ∝ τ2 as desired.
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C.11 Progress
Lemma C.75 (Canonical forms).

1. If Σ; Γ t̀y v :
˜
Πδ. κ, then v = λδ. σ.

2. If Σ; Γ t̀y v : ’Πδ. κ, then v = H{τ} ψ.

3. If Σ; Γ t̀y v : H σ, then v = H ′{σ} ψ.

Proof. By case analysis on the shape of values (along with Lemma C.20).

Lemma C.76 (Value types). If Σ; Γ t̀y v : κ, then κ is a value.

Proof. By case analysis on the possible shapes of values.

Lemma C.77 (Type constant parents). If s̀ig Σ ok and Σ t̀c H : ∆1; ∆2;H
′, then

Σ t̀c H
′ : ∅; Rel(∆1); Type.

Proof. By case analysis on Σ t̀c H : ∆1; ∆2;H ′

Theorem C.78 (Progress). Assume Γ has only irrelevant variable bindings. If Σ; Γ t̀y

τ : κ, then either τ is a value v , τ is a coerced value v B γ, or there exists τ ′ such that
Σ; Γ s̀ τ −→ τ ′.

Proof. By induction on the typing judgment.

Case Ty_Var: Impossible.

Case Ty_Con: τ is a value.

Case Ty_AppRel: We adopt the metavariable names from the rule:

Σ; Γ t̀y τ1 : Πa:Relκ1. κ2 Σ; Γ t̀y τ2 : κ1

Σ; Γ t̀y τ1 τ2 : κ2[τ2/a]
Ty_AppRel

Use the induction hypothesis on τ1, giving us several cases:

Case τ1 = v : We now use Lemma C.75 to give us two cases:

Case τ1 = H{τ} ψ: Then τ = H{τ} ψ τ2 is a value and we are done.
Case τ1 = λa:Relκ1. σ: We are done by S_BetaRel.

Case τ1 = v B γ: We wish to use S_PushRel but we must prove Σ; Rel(Γ) c̀o

γ : Πa:Relκ. σ ∼ Πa:Relκ
′. σ′ (for some Π, a, κ, σ, κ′, and σ′). We know

by inversion that Σ; Γ t̀y v B γ : Πa:Relκ1. κ2. Further inversion gives
us Σ; Rel(Γ) c̀o γ : κ0 ∼ Πa:Relκ1. κ2 and Σ; Γ t̀y v : κ0. Lemma C.74
tells us that κ0 ∝ Πa:Relκ1. κ2. Lemma C.76 tells us that κ0 is a value.
Inversion on κ0 ∝ Πa:Relκ1. κ2 must happen via C_PiTy, telling us that
κ0 = Πa:Relκ

′
1. κ
′
2 for some κ′1 and κ′2. We can thus use S_PushRel and

are done with this case.
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Case Σ; Γ s̀ τ1 −→ τ ′1: We are done by S_AppRel_Cong.

Case Ty_AppIrrel: We adopt the metavariable names from the rule:

Σ; Γ t̀y τ1 : Πa:Irrelκ1. κ2 Σ; Rel(Γ) t̀y τ2 : κ1

Σ; Γ t̀y τ1 {τ2} : κ2[τ2/a]
Ty_AppIrrel

Use the induction hypothesis on τ1, giving us several cases:

Case τ1 = v : We now use Lemma C.75 to give us two cases, which are han-
dled like the Ty_AppRel case, but using S_BetaIrrel in place of
S_BetaRel.

Case τ1 = v B γ: As in Ty_AppRel, but using S_PushIrrel.
Case Σ; Γ s̀ τ1 −→ τ ′1: By S_AppIrrel_Cong.

Case Ty_CApp: Like previous application cases, but using S_CBeta, S_CPush,
and S_CApp_Cong. (The S_CPush rule looks a bit different than
S_PushRel, but the typing premise of that rule has the identical structure as
the previous case.)

Case Ty_Pi: Immediate, as all Π-types are values.

Case Ty_Cast: In this case, we know τ = τ0 B γ. Using the induction hypothesis
on τ0 gives us several cases:

Case τ0 = v : v B γ is a coerced value and so we are done.
Case τ0 = v B η: We have τ = (v B η)B γ. We are done by S_Trans.
Case Σ; Γ s̀ τ0 −→ τ ′0: We are done by Cast_Cong.

Case Ty_Case: We know here that τ = caseκ τ0 of alt . Using the induction
hypothesis on τ0 gives us several cases:

Case τ0 = v : We can derive the following:

• Σ; Γ t̀y v : ’Π∆.H ′ σ (from a premise of Ty_Case)
• v = τ0 = H{τ} ψ (by Lemma C.75). Note that it does not matter
whether |∆| = 0 when using Lemma C.75.
• Σ; Γ t̀y H{τ} ψ : ’Π∆′.H ′′ τ (Lemma C.42)
• Σ t̀c H : ∆1; ∆2;H ′′ (same invocation of Lemma C.42)
• ∆′ = ∆, H ′ = H ′′, and τ = σ (Lemma C.20)

Since we have Σ t̀c H : ∆1; ∆2;H
′ and

alt are exhaustive and distinct for H ′, (w.r.t. Σ), we can conclude
that either there exists H → τ1 ∈ alt or there exists _→ τ1 ∈ alt . In the
former case, we use S_Match and we are done; in the latter case, we use
S_Default.

Case τ0 = v B γ: We can derive the following:
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• Σ; Γ t̀y v B γ : ’Π∆.H ′ σ (from a premise of Ty_Case)
• Σ; Rel(Γ) c̀o γ : κ0 ∼ ’Π∆.H ′ σ (inversion of Ty_Cast)
• Σ; Γ t̀y v : κ0 (same inversion)
• κ0 ∝ ’Π∆.H ′ σ (Lemma C.74)
• κ0 is a value (Lemma C.76)
• κ0 = ’Πδ1. κ1 (inversion on κ0 ∝ ’Π∆.H ′ σ)
• v = H{τ} ψ (Lemma C.75)
• Σ t̀c H : a:Irrelκ; ∆2;H ′′ (Lemma C.42)
• Σ; Γ t̀y H{τ} ψ : ’Π(∆4[ψ/dom(∆3)]).H

′′ τ where ∆3,∆4 = ∆2[τ/a]
(same invocation of Lemma C.42)
• κ0 = ’Π(∆4[ψ/dom(∆3)]).H ′′ τ (Lemma C.20)
• H ′′ = H ′ and |∆| = |∆4| (repeated inversion on κ0 ∝ ’Π∆.H ′ σ)

There are now two possibilities: either H → σ0 ∈ alt or there is a default
case that matches. In the latter case, we are done by S_DefaultCo. We
thus assume the former.
• Σ; Γ; ’Π∆.H ′ σ `vBγalt H → σ0 : κ (a premise of Ty_Case)
• From the premises of Alt_Match:

– ∆0,∆1 = ∆2[σ/a]
– dom(∆1) = dom(∆)

– match{dom(∆0)}(types(∆1); types(∆)) = Just (ψ
′
/dom(∆0)) (also us-

ing Property C.13)
• |∆1| = |∆| (from the fact that their domains are the same)
• |∆1| = |∆4| (transitivity of =)
• dom(∆0) = dom(∆3) (from the definitions of ∆0, ∆1, ∆3, and ∆4 and

the fact that |∆1| = |∆4|)
• Let n = |∆1| and ∆5 be the suffix of ∆2 of length n.
• ∆ = ∆5[σ/a][ψ

′
/dom(∆0)] (Property C.14)

• Σ; Rel(Γ) c̀o γ : ’Π(∆5[τ/a][ψ/dom(∆0)]).H
′ τ ∼

’Π(∆5[σ/a][ψ
′
/dom(∆0)]).H

′ σ (substitution in the kind of γ as
stated above)
• Σ; Rel(Γ) t̀y H

′ σ : Type (premise of Ty_Case)
• Σ t̀c H

′ : ∅; a:Relκ; Type (Lemma C.77)
• Σ; Rel(Γ) v̀ec σ : a:Relκ (Lemma C.42 with Lemma C.18)

We have now proved the premises of S_KPush and so stepping is possible.
We are done with this case.

Case Σ; Γ s̀ τ0 −→ τ ′0: We are done by S_Case_Cong.

Case Ty_Lam: We know that τ = λδ. τ0. If δ is anything but an irrelevant-type-
variable binder, we are done. So we assume that we have τ = λa:Irrelκ0. τ0. Using
the induction hypothesis on τ0 gives us several cases:

Case τ0 = v : We are done, as λa:Irrelκ0. v is a value.
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Case τ0 = v B γ: We are done by S_APush.
Case Σ; Γ, a:Irrelκ0 s̀ τ0 −→ τ ′0: We are done by S_IrrelAbs_Cong.

Case Ty_Fix: We know that τ = fix τ0. Using the induction hypothesis on τ0

gives us several cases:

Case τ0 = v : We know Σ; Γ t̀y v :
˜
Πa:Relκ. κ. Lemma C.75 tells us v =

λa:Relκ. σ0 and we are done by S_Unroll.
Case τ0 = v B γ: We can derive the following facts:

• Σ; Γ t̀y v B γ :
˜
Πa:Relκ. κ (premise of Ty_Fix)

• Σ; Rel(Γ) c̀o γ : κ0 ∼
˜
Πa:Relκ. κ (inversion on Ty_Cast)

• Σ; Γ t̀y v : κ0 (same inversion)
• κ0 ∝

˜
Πa:Relκ. κ (Lemma C.74)

• κ0 is a value (Lemma C.76)
• κ0 =

˜
Πa:Relκ1. κ2 (inversion on C_PiTy)

• v = λa:Relκ1. σ (Lemma C.75)

We are done by S_FPush.
Case Σ; Γ s̀ τ0 −→ τ ′0: We are done by S_Fix_Cong.

Case Ty_Absurd: We know here that τ = absurd γ τ0 where Σ; Rel(Γ) c̀o γ :
H1{τ1} ψ1 ∼ H2{τ2} ψ2. By Lemma C.74, we also know that H1{τ1} ψ1 ∝ H2{τ2} ψ2.
Both of these types are values, so this could only be by C_TyCon, but that
rule requires H1 = H2, which is a contradiction. This case cannot happen.

C.12 Type erasure
The type erasure operation e = TτU is defined in Figure 5.19 on page 131.

Definition C.79 (Expression values). Let values w be defined by the following sub-
grammar of e:

w ::=H y |Π |λa.e |λ•.e

Lemma C.80 (Expression substitution). Tτ [σ/a]U = TτU[TσU/a]

Proof. By induction on the structure of τ .

Lemma C.81 (Irrelevant expression substitution). If Σ; Γ t̀y τ : κ and a:Irrelκ
′ ∈ Γ,

then Tτ [σ/a]U = TτU.

Proof. By induction on the typing derivation.
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Case Ty_Var: Here is the rule:

Σ c̀tx Γ ok a:Relκ ∈ Γ

Σ; Γ t̀y a : κ
Ty_Var

We see that τ 6= a, because the rule would require a to be relevant. Thus τ = b
(for some b 6= a) and thus the substitution causes no change.

Case Ty_Con: Immediate from the definition of T·U.
Case Ty_AppRel: By induction.

Case Ty_AppIrrel: By induction. Note that we do not need to use the induction
hypothesis on the argument; we would not be able to because of the use of the
Rel(Γ) context.

Case Ty_CApp: By induction, not looking at the coercion.

Case Ty_Pi: Immediate from the definition of T·U.
Case Ty_Cast: By induction, not looking at the coercion.

Case Ty_Case: By induction, not looking at the kind.

Case Ty_Lam: By induction, not looking at the classifier of the binder.

Case Ty_Fix: By induction.

Case Ty_Absurd: Immediate from the definition of T·U.

Lemma C.82 (Expression substitution of coercions). Tτ [γ/c]U = TτU

Proof. By induction on the structure of τ .

Theorem C.83 (Type erasure). If Σ; Γ s̀ τ −→ τ ′, then either TτU −→ Tτ ′U or
TτU = Tτ ′U.

Proof. By induction on Σ; Γ s̀ τ −→ τ ′.

Case S_BetaRel: By E_Beta and Lemma C.80.

Case S_BetaIrrel: Both expressions are equal by Lemma C.81.

Case S_CBeta: By E_CBeta and Lemma C.82.

Case S_Match: By E_Match.

Case S_Default: By E_Default.

Case S_DefaultCo: By E_Default.

Case S_Unroll: By E_Unroll.

Case S_Trans: Both expressions are equal by the definition of T·U.
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Case S_IrrelAbs_Cong: By the induction hypothesis.

Case S_App_Cong: By the induction hypothesis and E_App_Cong.

Case S_Cast_Cong: By the induction hypothesis.

Case S_Case_Cong: By the induction hypothesis and E_Case_Cong.

Case S_Fix_Cong: By the induction hypothesis and E_Fix_Cong.

Push rules: Both expressions are equal by the definition of T·U.

Lemma C.84 (Expression redexes). If TτU is not an expression value, then τ is
neither a value nor a coerced value.

Proof. By induction on the structure of τ .

Case τ = a: Immediate.

Case τ = H{τ}: Impossible.

Case τ = τ0 ψ0: We have two cases here:

Case τ1 = H{τ} ψ: Impossible, as TτU is an expression value.
Otherwise: Immediate, as τ is neither a value nor a coerced value.

Case τ = Πδ. τ0: Impossible.

Case τ = τ0 B γ: Since Tτ0 B γU is not an expression value, we know that Tτ0U is
not an expression value, because these expressions are the same. We thus use
the induction hypothesis to discover that τ0 is not a value or a coerced value.
We thus know that τ0 B γ is not a coerced value (and is obviously not a value).

Case τ = caseκ τ0 of alt : Immediate.

Case τ = λa:Relκ0. τ0: Impossible.

Case τ = λa:Irrelκ0. τ0: We have two cases:

Case Tτ0U is an expression value: In this case Tλa:Irrelκ0. τ0U is also an ex-
pression value, a contradiction.

Case Tτ0U is not an expression value: By induction, τ0 is neither a value
nor a coerced value. Thus, τ = λa:Irrelκ0. τ0 must also not be a value. (It is
clearly not a coerced value.)

Case τ = λc:φ. τ0: Impossible.

Case τ = fix τ0: Immediate.

Case τ = absurd γ σ: Impossible.
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Lemma C.85 (Expression values do not step). There is no e ′ such that w −→ e ′.

Proof. Straightforward case analysis on w .

Theorem C.86 (Types do not prevent evaluation). Suppose Σ; Γ t̀y τ : κ and Γ
has only irrelevant variable bindings. If TτU −→ e ′, then Σ; Γ s̀ τ −→ τ ′ and either
Tτ ′U = e ′ or Tτ ′U = TτU.

Proof. We know that TτU is not an expression value via the contrapositive of Lemma
C.85. We thus know that τ is neither a value nor a coerced value by Lemma C.84.
We can now use Theorem C.78 to get τ ′ such that Σ; Γ s̀ τ −→ τ ′. Finally, we use
Theorem C.83 to see that Tτ ′U = e ′ or Tτ ′U = TτU as desired.

Remark. Note in the statement of Theorem C.86 that the context Γ must have only
irrelevant variable bindings. This means that the expression TτU is closed, as one
would expect of a program that we wish to evaluate.

C.13 Congruence
Definition C.87 (Unrestricted coercion variables). Define a new judgment ∗̀co to be
identical to c̀o, except with the c #̃ γ premises removed from rules Co_PiCo and
Co_CLam and all recursive uses of c̀o replaced with ∗̀

co.

Remark. It is not necessary to introduce a ∗̀ty judgment that uses ∗̀co. Thus, for example,
the Co_Refl rule of ∗̀co has a t̀y premise that may contain proofs of c̀o.

Lemma C.88 (Subsumption of coercion typing). If Σ; Γ c̀o γ : φ, then Σ; Γ ∗̀
co γ : φ.

Proof. Straightforward induction.

Lemma C.89 (Unrestricted proposition regularity). If Σ; Γ ∗̀
co γ : φ, then Σ; Γ p̀rop

φ ok.

Proof. Identical to the proof for Lemma C.44.

Theorem C.90 ((Almost) Congruence). If Σ; Rel(Γ) c̀o γ : σ1
κ∼κ σ2 and

Σ; Γ, a:ρκ,Γ
′

t̀y τ : κ0 where none of τ , κ0, κ and the types in Γ and Γ′ bind any coercion
variables, then there exists η such that Σ; Rel(Γ,Γ′[σ1/a]) ∗̀co η : τ [σ1/a] κ0[σ1/a]∼κ0[σ2/a]

τ [σ2/a].

Proof. By induction on the size of the derivation of Σ; Γ, a:ρκ,Γ
′

t̀y τ : κ0, using
Lemma C.88 frequently to convert between the coercion typing relations.

Case Ty_Var: Here τ = b. We have several cases:

Case b ∈ dom(Γ): By Lemma C.12, a # κ0. We are done, choosing η = 〈b〉.
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Case b = a: By Lemma C.12, a # κ0. We are done, choosing η = γ.
Case b ∈ dom(Γ′): We know Γ′ = Γ1, b:Relκ0,Γ2. Lemma C.9 and Lemma

C.7 give us Σ; Rel(Γ, a:ρκ,Γ1) t̀y κ0 : Type with a derivation smaller
than that with which we started. Use the induction hypothesis to get
Σ; Rel(Γ,Γ1[σ1/a]) ∗̀

co η0 : κ0[σ1/a] ∼ κ0[σ2/a]. Choose η = b ≈η0 b B η0

and we are done.

Case Ty_Con: By Lemma C.29, repeated use of the induction hypothesis, Lemma
C.35, and Co_Con.

Case Ty_AppRel: By the induction hypothesis, Lemma C.35, and Co_AppRel.

Case Ty_AppIrrel: By the induction hypothesis, Lemma C.35, and
Co_AppIrrel.

Case Ty_CApp: We adopt the metavariable names from the rule (changing the
name of the coercion used to γ′):

Σ; Γ t̀y τ : Πc:φ. κ Σ; Rel(Γ) c̀o γ : φ

Σ; Γ t̀y τ γ : κ[γ/c]
Ty_CApp

The induction hypothesis gives us η1 such that Σ; Rel(Γ,Γ′[σ1/a]) ∗̀
co η1 :

τ [σ1/a] ∼ τ [σ2/a]. Choose η = η1 (γ′[σ1/a], γ′[σ2/a]). We are done by Lemma
C.35 and Co_CApp.

Case Ty_Pi: We have several cases, depending on the shape of the binder:

Type variable binder: In this case, we know that τ = Πb:ρ′κ1. τ0

and κ0 = Type. The induction hypothesis gives us η1 such that
Σ; Rel(Γ,Γ′[σ1/a]), b:Relκ1[σ1/a] ∗̀co η1 : τ0[σ1/a] ∼ τ0[σ2/a]. We can also
use Lemma C.9 and Lemma C.7 to see that Σ; Rel(Γ, a:ρκ,Γ

′) t̀y κ1 : Type,
with a smaller derivation height than Σ; Γ, a:ρκ,Γ

′
t̀y Πb:ρ′κ1. τ0 : Type.

We can thus use the induction hypothesis again to get η2 such that
Σ; Rel(Γ,Γ′[σ1/a]) ∗̀co η2 : κ1[σ1/a] ∼ κ1[σ2/a]. Choose η = (Πb:ρ′η2. η1)#η3,
where

• η3 = σ3 ≈〈Type〉 σ4

• σ3 = Πb:ρ′κ1[σ2/a]. (τ0[σ2/a][b B sym η2/b])
• σ4 = Πb:ρ′κ1[σ2/a]. τ0[σ2/a]

We must show Σ; Rel(Γ,Γ′[σ1/a]) ∗̀
co η : (Πb:ρ′κ1. τ0)[σ1/a] ∼

(Πb:ρ′κ1. τ0)[σ2/a]. We will do this by proving both of these:

Σ; Rel(Γ,Γ′[σ1/a]) ∗̀co Πb:ρ′η2. η1 : (Πb:ρ′κ1[σ1/a]. τ0[σ1/a]) ∼ σ3 This is
straightforward from Co_PiTy.

Σ; Rel(Γ,Γ′[σ1/a]) ∗̀co σ3 ≈〈Type〉 σ4 : σ3 ∼ σ4 We must prove that both the
left-hand type and right-hand type have kind Type. The left-hand re-
sult comes from Lemma C.89 on the result of the previous branch
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of this list of things to prove. The right-hand result comes from
Lemma C.44 on our assumption about γ and Lemma C.35 (us-
ing Lemma C.6 in the ρ = Irrel case). Now we must prove that
the erasure of the two types equal, which boils down to proving
bτ0[σ2/a][b B sym η2/b]c = bτ0[σ2/a]c. By Lemma C.34, the LHS be-
comes bτ0[σ2/a]c[bb B sym η2c/b]. We can see that bb B sym η2c = b
and thus the two sides of the equation are equal.

Coercion variable binder: In this case, we know that τ = Πc:φ. τ0

and κ0 = Type. The induction hypothesis gives us η1 such that
Σ; Rel(Γ,Γ′[σ1/a]), c:φ[σ1/a] ∗̀

co η1 : τ0[σ1/a] ∼ τ0[σ2/a]. Let φ =
κ1

κ′1∼κ′2 κ2. We can also use Lemma C.9, Lemma C.8, and inver-
sion on Prop_Equality to see that Σ; Rel(Γ, a:ρκ,Γ

′) t̀y κ1 : κ′1 and
Σ; Rel(Γ, a:ρκ,Γ

′) t̀y κ2 : κ′2, both with a smaller derivation height than
Σ; Γ, a:ρκ,Γ

′
t̀y Πc:φ. τ0 : Type. We can thus use the induction hypothesis

again to get η2 and η3 such that Σ; Rel(Γ,Γ′[σ1/a]) ∗̀
co η2 : κ1[σ1/a] ∼

κ1[σ2/a] and Σ; Rel(Γ,Γ′[σ1/a]) ∗̀
co η3 : κ2[σ1/a] ∼ κ2[σ2/a]. Choose

η = (Πc:(η2, η3). η1) # η4, where

• η4 = σ3 ≈〈Type〉 σ4

• σ3 = Πc:φ[σ2/a]. (τ0[σ2/a][η5/c])
• σ4 = Πc:φ[σ2/a]. τ0[σ2/a]
• η5 = η2 # c # sym η3

We must show Σ; Rel(Γ,Γ′[σ1/a]) ∗̀co η : (Πc:φ. τ0)[σ1/a] ∼ (Πc:φ. τ0)[σ2/a].
We will do this by proving both of these:

Σ; Rel(Γ,Γ′[σ1/a]) ∗̀co Πc:(η2, η3). η1 : (Πc:φ[σ1/a]. τ0[σ1/a]) ∼ σ3 This is
straightforward from Co_PiCo. Note that we cannot guarantee the
c #̃ η1 condition here, necessitating the use of ∗̀co instead of c̀o.

Σ; Rel(Γ,Γ′[σ1/a]) ∗̀co σ3 ≈〈Type〉 σ4 : σ3 ∼ σ4 We must prove that both the
left-hand type and right-hand type have kind Type. The left-hand
result comes from Lemma C.89 on the result of the previous branch of
this list of things to prove. The right-hand result comes from Lemma
C.44 on our assumption about γ and Lemma C.35 (using Lemma C.6
in the ρ = Irrel case). Now we must prove that the erasure of the two
types equal, which boils down to proving bτ0[σ2/a][η5/c]c = bτ0[σ2/a]c.
This holds by Lemma C.59.

Case Ty_Cast: We adopt the metavariable names from the rule (but renaming
the coercion used in the cast to γ′):

Σ; Rel(Γ) c̀o γ : κ1 ∼ κ2

Σ; Γ t̀y τ : κ1 Σ; Rel(Γ) t̀y κ2 : Type

Σ; Γ t̀y τ B γ : κ2

Ty_Cast
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The induction hypothesis gives us η1 such that Σ; Rel(Γ,Γ′[σ1/a]) ∗̀
co η1 :

τ [σ1/a] κ1[σ1/a]∼κ1[σ2/a] τ [σ2/a]. Let η2 = ((τ [σ1/a] B γ′[σ1/a]) ≈sym γ′[σ1/a]

τ [σ1/a]) and η3 = (τ [σ2/a] ≈γ′[σ2/a] (τ [σ2/a] B γ′[σ2/a])). It is easy to see
(using Lemma C.89 and Lemma C.35) that η2 and η3 are well-typed. Choose
η = η2 # η1 # η3, and we are done.

Case Ty_Case: By repeated use of the induction hypothesis, Lemma C.35, and
Co_Case.

Case Ty_Lam: Like the case for Ty_Pi.

Case Ty_Fix: By the induction hypothesis, Lemma C.35, and Co_Fix.

Case Ty_Absurd: We adopt the metavariable names from the rule (but renaming
the coercion used to γ′):

Σ; Rel(Γ) c̀o γ : H1{τ1} ψ1 ∼ H2{τ2} ψ2 H1 6= H2

Σ; Rel(Γ) t̀y τ : Type

Σ; Γ t̀y absurd γ τ : τ
Ty_Absurd

The induction hypothesis gives us η1 such that Σ; Rel(Γ,Γ′[σ1/a]) ∗̀
co η1 :

τ [σ1/a] ∼ τ [σ2/a]. Choose η = absurd (γ′[σ1/a], γ′[σ2/a]) η1. We know γ′[σi/a]
(for i ∈ {1, 2}) is well-typed by Lemma C.35. We are thus done.
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Appendix D

Type inference rules, in full

D.1 Closing substitution validity

Σ; Γ s̀ubst θ : ∆ “θ substitutes the variables in ∆ away.”

Σ; Γ s̀ubst θ : ∅
Subst_Nil

Σ; Γ t̀y a[θ] : κ
Σ; Γ s̀ubst θ : ∆[θ|a ]

Σ; Γ s̀ubst θ : a:Relκ,∆
Subst_TyRel

Σ; Rel(Γ) t̀y a[θ] : κ
Σ; Γ s̀ubst θ : ∆[θ|a ]

Σ; Γ s̀ubst θ : a:Irrelκ,∆
Subst_TyIrrel

Σ; Rel(Γ) c̀o c[θ] : φ
Σ; Γ s̀ubst θ : ∆[θ|c]
Σ; Γ s̀ubst θ : c:φ,∆

Subst_Co

D.2 Additions to Pico judgments

Σ; Ψ �ty τ : κ Extra rule to support unification variables in types

α :Rel ∀∆.κ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �ty αψ : κ[ψ/dom(∆)]
Ty_UVar
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Σ; Ψ �co γ : φ Extra rule to support unification variables in coercions

ι : ∀∆.φ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �co ιψ : φ[ψ/dom(∆)]
Co_UVar

Σ �ctx Ψ ok Extra rules to support binding unification variables

Σ; Rel(Ψ,∆) �ty κ : Type Σ �ctx Ψ ok

Σ �ctx Ψ, α :ρ ∀∆.κ ok
Ctx_UTyVar

Σ; Rel(Ψ,∆) �prop φ ok Σ �ctx Ψ ok

Σ �ctx Ψ, ι : ∀∆.φ ok
Ctx_UCoVar

D.3 Zonker validity

Σ; Ψ �z Θ : Ω “Θ zonks all the unification variables in Ω.”

Σ; Ψ �z ∅ : ∅
Zonk_Nil

Σ; Ψ,∆ �ty τ : κ
Σ; Ψ �z Θ : Ω[∀ dom(∆).τ/α]

Σ; Ψ �z ∀ dom(∆).τ/α,Θ : α :Rel ∀∆.κ,Ω
Zonk_TyVarRel

Σ; Rel(Ψ,∆) �ty τ : κ
Σ; Ψ �z Θ : Ω[∀ dom(∆).τ/α]

Σ; Ψ �z ∀ dom(∆).τ/α,Θ : α :Irrel ∀∆.κ,Ω
Zonk_TyVarIrrel

Σ; Ψ,∆ �co γ : φ
Σ; Ψ �z Θ : Ω[∀ dom(∆).γ/ι]

Σ; Ψ �z ∀ dom(∆).γ/ι,Θ : ι : ∀∆.φ,Ω
Zonk_CoVar

D.4 Synthesis

Σ; Ψ �̀ty t τ : κ a Ω Synthesize a type with no invisible binders.
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Σ; Ψ �̀∗
ty t τ : κ a Ω1

�̀Spec
inst κ ψ;κ′ a Ω2

Σ; Ψ �̀ty t τ ψ : κ′ a Ω1,Ω2

ITy_Inst

Σ; Ψ �̀∗
ty t τ : κ a Ω Synthesize a type, perhaps with specified binders.

a:Relκ ∈ Ψ �̀Inf
inst κ ψ;κ′ a Ω

Σ; Ψ �̀∗
ty a  a ψ : κ′ a Ω

ITy_Var

Σ; Ψ �̀ty t1  τ1 : κ0 a Ω1

�̀fun κ0; Rel γ; Π; a; ρ;κ1;κ2 a Ω2

Σ; Ψ,Ω1,Ω2; ρ �̀∗arg t2 : κ1  ψ2; τ2 a Ω3

Σ; Ψ �̀∗
ty t1 t2  (τ1 B γ)ψ2 : κ2[τ2/a] a Ω1,Ω2,Ω3

ITy_App

Σ; Ψ �̀∗
ty t1  τ1 : ΠSpeca:ρκ1. κ2 a Ω1

Σ; Ψ,Ω1; ρ �̀∗arg t2 : κ1  ψ2; τ2 a Ω2

Σ; Ψ �̀∗
ty t1 @t2  τ1 ψ2 : κ2[τ2/a] a Ω1,Ω2

ITy_AppSpec

Σ; Rel(Ψ) �̀pt s σ a Ω1

Σ; Ψ,Ω1 �̀∗ty t : σ  τ a Ω2

Σ; Ψ �̀∗
ty (t :: s) τ : σ a Ω1,Ω2

ITy_Annot

Σ; Ψ �̀ty t0  τ0 : κ0 a Ω0

Σ; Ψ,Ω0 �̀scrut alt;κ0  γ; ∆;H ′; τ a Ω′0
freshα Ω′ = Ω0,Ω

′
0, α:IrrelType

∀i , Σ; Ψ,Ω′; ’Π∆.H ′ τ ; τ0 B γ �̀alt alti : α alti a Ωi

alt
′

= make_exhaustive(alt ;κ)

Σ; Ψ �̀∗
ty case t0 of alt caseα (τ0 B γ) of alt

′
: α a Ω′,Ω

ITy_Case

Σ; Ψ �̀q qvar a : κ1; ν a Ω1

Σ; Ψ,Ω1, a:Relκ1 �̀∗ty t τ : κ2 a Ω2

Ω2 ↪→ a:Relκ1  Ω′2; ξ

Σ; Ψ �̀∗
ty λqvar. t λa:Relκ1. (τ [ξ]) :

˜
Πνa:Relκ1. (κ2[ξ]) a Ω1,Ω′2

ITy_Lam

Σ; Ψ �̀q qvar a : κ1; ν a Ω1

Σ; Ψ,Ω1, a:Irrelκ1 �̀∗ty t τ : κ2 a Ω2

Ω2 ↪→ a:Irrelκ1  Ω′2; ξ

Σ; Ψ �̀∗
ty Λqvar. t λa:Irrelκ1. (τ [ξ]) :

˜
Πνa:Relκ1. (κ2[ξ]) a Ω1,Ω′2

ITy_LamIrrel
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Σ; Ψ �̀ty t1 : Type τ1 a Ω1

Σ; Ψ �̀ty t2 : Type τ2 a Ω2

a # τ2

Σ; Ψ �̀∗
ty t1 → t2  

˜
ΠReqa:Relτ1. τ2 : Type a Ω1,Ω2

ITy_Arrow

Σ; Ψ �̀ty t1 : Type τ1 a Ω1

Σ; Ψ �̀ty t2 : Type τ2 a Ω2

a # τ2

Σ; Ψ �̀∗
ty t1

′→ t2  ’ΠReqa:Relτ1. τ2 : Type a Ω1,Ω2

ITy_MArrow

Σ; Ψ �̀ty t τ : κ a Ω1

�̀fun κ; Rel γ;
˜
Π; a; Rel;κ1;κ2 a Ω2

Σ; Rel(Ψ,Ω1,Ω2) �ty κ2 : Type
fresh ι Ω = Ω1,Ω2, ι:κ2 ∼ κ1

Σ; Ψ �̀∗
ty fix t fix (τ B (γ #

˜
Πa:Rel〈κ1〉. ι)) : κ1 a Ω

ITy_Fix

Σ; Ψ �̀∗
ty t1  τ1 : κ1 a Ω

Σ; Ψ,Ω, x :Relκ1 �̀∗ty t2  τ2 : κ2 a Ω2

Ω2 ↪→ x :Relκ1  Ω′2; ξ

Σ; Ψ �̀∗
ty let x := t1 in t2  (λx :Relκ1. (τ2[ξ])) τ1 : κ2[ξ][τ1/x ] a Ω,Ω′2

ITy_Let

D.5 Checking

Σ; Ψ �̀ty t : κ τ a Ω Check against a type with no invisible binders.

Σ; Ψ �̀ty t0  τ0 : κ0 a Ω0

Σ; Ψ,Ω0 �̀scrut alt;κ0  γ; ∆;H ′; τ a Ω′0
Ω′ = Ω0,Ω

′
0

∀i , Σ; Ψ,Ω′; ’Π∆.H ′ τ ; τ0 B γ �̀altc alti : κ alti a Ωi

alt
′

= make_exhaustive(alt ;κ)

Σ; Ψ �̀ty case t0 of alt : κ caseκ (τ0 B γ) of alt
′ a Ω′,Ω

ITyC_Case
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�̀fun κ; Rel γ;
˜
Π; a; Rel;κ1;κ2 a Ω0

¬(a # κ2)
Σ; Rel(Ψ) �̀pt s κ′1 a Ω1

Ω = Ω0,Ω1, ι:κ1 ∼ κ′1
Σ; Ψ,Ω, b:Relκ

′
1
�̀∗
ty t : κ2[b B sym ι/a] τ a Ω2

Ω2 ↪→ b:Relκ
′
1  Ω′2; ξ

η = κ2[(a B ι)B sym ι/a] ≈〈Type〉 κ2

τ0 = (λa:Relκ1. (τ [ξ][a B ι/b]B η))B sym γ

Σ; Ψ �̀ty λ(a :: s). t : κ τ0 a Ω,Ω′2
ITyC_LamDep

�̀fun κ; Rel γ;
˜
Π; a; Rel;κ1;κ2 a Ω0

Σ; Ψ �̀aq aqvar : κ1  b : κ′1; x .τ1 a Ω1

Σ; Ψ,Ω0,Ω1, b:Relκ
′
1
�̀∗
ty t : κ2  τ a Ω2

Ω2 ↪→ b:Relκ
′
1  Ω′2; ξ

Ω′ = Ω0,Ω1,Ω
′
2

Σ; Ψ �̀ty λaqvar. t : κ (λa:Relκ1. τ [ξ][τ1[a/x ]/b])B sym γ a Ω′
ITyC_Lam

�̀fun κ; Irrel γ;
˜
Π; a; Irrel;κ1;κ2 a Ω0

¬(a # κ2)
Σ; Rel(Ψ) �̀pt s κ′1 a Ω1

Ω = Ω0,Ω1, ι:κ1 ∼ κ′1
Σ; Ψ,Ω, b:Irrelκ

′
1
�̀∗
ty t : κ2[b B sym ι/a] τ a Ω2

Ω2 ↪→ b:Irrelκ
′
1  Ω′2; ξ

η = κ2[(a B ι)B sym ι/a] ≈〈Type〉 κ2

τ0 = (λa:Irrelκ1. (τ [ξ][a B ι/b]B η))B sym γ

Σ; Ψ �̀ty Λ(a :: s). t : κ τ0 a Ω,Ω′2
ITyC_LamIrrelDep

�̀fun κ; Irrel γ;
˜
Π; a; Irrel;κ1;κ2 a Ω0

Σ; Ψ �̀aq aqvar : κ1  b : κ′1; x .τ1 a Ω1

Σ; Ψ,Ω0,Ω1, b:Irrelκ
′
1
�̀∗
ty t : κ2  τ a Ω2

Ω2 ↪→ b:Irrelκ
′
1  Ω′2; ξ

τ0 = (λa:Irrelκ1. τ [ξ][τ1[a/x ]/b])B sym γ

Σ; Ψ �̀ty Λaqvar. t : κ τ0 a Ω0,Ω1,Ω′2
ITyC_LamIrrel

Σ; Ψ �̀ty t :
˜
ΠReqa:Relκ. κ τ a Ω

Σ; Ψ �̀ty fix t : κ fix τ a Ω
ITyC_Fix
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Σ; Ψ �̀∗
ty t τ : κ1 a Ω

�̀pre κ2  ∆;κ′2; τ2

Ω ↪→ ∆ Ω′; ξ1

κ1[ξ1] ≤∗ κ′2  τ ′2 a Ω2

Ω2 ↪→ ∆ Ω′2; ξ2

Σ; Ψ �̀ty t : κ2  τ2 (λ∆. τ ′2[ξ2] τ [ξ1]) a Ω′,Ω′2
ITyC_Infer

Σ; Ψ �̀∗
ty t : κ τ a Ω Check against a type that may have specified binders.

¬(a # κ2)
Σ; Rel(Ψ) �̀pt s κ′1 a Ω1

Ω = Ω1, ι:κ1 ∼ κ′1
Σ; Ψ,Ω, b:Relκ

′
1
�̀∗
ty t : κ2[b B sym ι/a] τ a Ω2

Ω2 ↪→ b:Relκ
′
1  Ω′2; ξ

η = κ2[(a B ι)B sym ι/a] ≈〈Type〉 κ2

τ0 = λa:Relκ1. (τ [ξ][a B ι/b]B η)

Σ; Ψ �̀∗
ty λ@(a :: s). t :

˜
ΠSpeca:Relκ1. κ2  τ0 a Ω,Ω′2

ITyC_LamInvisDep

Σ; Ψ �̀aq aqvar : κ1  b : κ′1; x .τ1 a Ω1

Σ; Ψ,Ω1, b:Relκ
′
1
�̀∗
ty t : κ2  τ a Ω2

Ω2 ↪→ b:Relκ
′
1  Ω′2; ξ

τ0 = λa:Relκ1. τ [ξ][τ1[a/x ]/b]

Σ; Ψ �̀∗
ty λ@aqvar. t :

˜
ΠSpeca:Relκ1. κ2  τ0 a Ω1,Ω′2

ITyC_LamInvis

¬(a # κ2)
Σ; Rel(Ψ) �̀pt s κ′1 a Ω1

Ω = Ω1, ι:κ1 ∼ κ′1
Σ; Ψ,Ω, b:Irrelκ

′
1
�̀∗
ty t : κ2[b B sym ι/a] τ a Ω2

Ω2 ↪→ b:Irrelκ
′
1  Ω′2; ξ

η = κ2[(a B ι)B sym ι/a] ≈〈Type〉 κ2

τ0 = λa:Irrelκ1. (τ [ξ][a B ι/b]B η)

Σ; Ψ �̀∗
ty Λ@(a :: s). t :

˜
ΠSpeca:Irrelκ1. κ2  τ0 a Ω,Ω′2

ITyC_LamInvisIrrelDep

Σ; Ψ �̀aq aqvar : κ1  b : κ′1; x .τ1 a Ω1

Σ; Ψ,Ω1, b:Irrelκ
′
1
�̀∗
ty t : κ2  τ a Ω2

Ω2 ↪→ b:Irrelκ
′
1  Ω′2; ξ

τ0 = λa:Irrelκ1. τ [ξ][τ1[a/x ]/b]

Σ; Ψ �̀∗
ty Λ@aqvar. t :

˜
ΠSpeca:Irrelκ1. κ2  τ0 a Ω1,Ω′2

ITyC_LamInvisIrrel
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Σ; Ψ �̀∗
ty t1  τ1 : κ1 a Ω

Σ; Ψ,Ω, x :Relκ1 �̀∗ty t2 : κ τ2 a Ω2

Ω2 ↪→ x :Relκ1  Ω′2; ξ

Σ; Ψ �̀∗
ty let x := t1 in t2 : κ (λx :Relκ1. (τ2[ξ])) τ1 a Ω,Ω′2

ITyC_Let

ν ≤ Spec
Σ; Ψ, $a:ρκ1 �̀∗ty t : κ2  τ a Ω
Ω ↪→ $a:ρκ1  Ω′; ξ

Σ; Ψ �̀∗
ty t :

˜
Πν$a:ρκ1. κ2  λ$a:ρκ1. τ [ξ] a Ω′

ITyC_Skol

Σ; Ψ �̀ty t : κ τ a Ω

Σ; Ψ �̀∗
ty t : κ τ a Ω

ITyC_Otherwise

Σ; Ψ �̀pt s τ a Ω Check a poly-type (which always has type Type).

�̀pi quant Π; ρ
Σ; Ψ �̀q qvar a : κ; ν a Ω
Σ; Ψ,Ω, a:ρκ �̀pt s σ a Ω2

Ω2 ↪→ a:ρκ Ω′2; ξ

Σ; Ψ �̀pt ∀ qvar. s Πνa:ρκ. (σ[ξ]) a Ω,Ω′2
IPtC_Pi

Σ; Ψ �̀ty t : Type τ a Ω1

Σ; Ψ,Ω1, $a:Relτ �̀pt s σ a Ω2

Ω2 ↪→ $a:Relτ  Ω′2; ξ

Σ; Ψ �̀pt t⇒ s 
˜
ΠInf$a:Relτ. (σ[ξ]) a Ω1,Ω′2

IPtC_Constrained

Σ; Ψ �̀ty t : Type τ a Ω

Σ; Ψ �̀pt t τ a Ω
IPtC_Mono

D.6 Inference for auxiliary syntactic elements

Σ; Ψ; ρ �̀∗arg t : κ ψ; τ a Ω Check a function argument against its known type.

Σ; Ψ �̀∗
ty t : κ τ a Ω

Σ; Ψ; Rel �̀∗arg t : κ τ ; τ a Ω
IArg_Rel

Σ; Rel(Ψ) �̀∗ty t : κ τ a Ω

Σ; Ψ; Irrel �̀∗arg t : κ {τ}; τ a Ω
IArg_Irrel
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Σ; Ψ;κ0; τ0 �̀alt alt : κ alt a Ω Synth. a case alt. against a unification variable.

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[τ/dom(∆1)]
dom(∆3) = x dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ
Σ; Ψ,∆3 �̀ty t : κ τ a Ω
Ω ↪→ ∆3  Ω′; ξ
∆′3 = ∆3, c:τ0 ∼ H{τ} x

Σ; Ψ; ’Π∆′.H ′ τ ; τ0 �̀alt H x → t : κ H → λ∆′3. (τ [ξ]) a Ω′
IAlt_Con

Σ; Ψ �̀ty t : κ τ a Ω

Σ; Ψ;κ0; τ0 �̀alt _→ t : κ _→ τ a Ω
IAlt_Default

Σ; Ψ;κ0; τ0 �̀altc alt : κ alt a Ω Check a case alt. against a known result type.

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[τ/dom(∆1)]
dom(∆3) = x dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ0

∆′3 = ∆3, c:τ0 ∼ H{τ} x
Σ; Ψ,∆′3 �̀ty t : κ τ a Ω
Ω ↪→ ∆′3  Ω′; ξ

Σ; Ψ; ’Π∆′.H ′ τ ; τ0 �̀altc H x → t : κ H → λ∆′3. (τ [ξ]) a Ω′
IAltC_Con

Σ; Ψ �̀ty t : κ τ a Ω

Σ; Ψ;κ0; τ0 �̀altc _→ t : κ _→ τ a Ω
IAltC_Default

Σ; Ψ �̀q qvar a : κ; ν a Ω Synthesize a bound variable.

Σ; Ψ �̀aq aqvar a : κ a Ω

Σ; Ψ �̀q aqvar a : κ; Req a Ω
IQVar_Req

Σ; Ψ �̀aq aqvar a : κ a Ω

Σ; Ψ �̀q @aqvar a : κ; Spec a Ω
IQVar_Spec

Σ; Ψ �̀aq aqvar a : κ a Ω Synthesize a bound variable (w/o vis. marker).

fresh β

Σ; Ψ �̀aq a  a : β a β:IrrelType
IAQVar_Var

Σ; Rel(Ψ) �̀pt s σ a Ω

Σ; Ψ �̀aq (a :: s) a : σ a Ω
IAQVar_Annot
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Σ; Ψ �̀aq aqvar : κ a : κ′; x .τ a Ω Check a bound variable (w/o vis. marker).

Σ; Ψ �̀aq a : κ a : κ; x .x a ∅
IAQVarC_Var

Σ; Rel(Ψ) �̀pt s σ a Ω1

κ ≤ σ  τ a Ω2

Σ; Ψ �̀aq (a :: s) : κ a : σ; x .τ x a Ω1,Ω2

IAQVarC_Annot

�̀pi quant Π; ρ Interpret a quantifier.

�̀pi ∀ 
˜
Π; Irrel

IQu_ForAll

�̀pi ′∀ ’Π; Irrel
IQu_MForAll

�̀pi Π 
˜
Π; Rel

IQu_Pi

�̀pi ′Π ’Π; Rel
IQu_MPi

D.7 Kind conversions
�̀fun κ; ρ1  γ; Π; a; ρ2;κ1;κ2 a Ω Extract out the parts of a function kind.

�̀fun ΠReqa:ρκ1. κ2; ρ0  〈ΠReqa:ρκ1. κ2〉; Π; a; ρ;κ1;κ2 a ∅
IFun_Id

fresh ι fresh β1, β2

Ω = β1:IrrelType, β2:IrrelType, ι:κ0 ∼
˜
ΠReqa:ρβ1. β2

�̀fun κ0; ρ ι;
˜
Π; a; ρ; β1; β2 a Ω

IFun_Cast

Σ; Ψ �̀scrut alt;κ γ; ∆;H ; τ a Ω Extract out the parts of a scrutinee’s kind.

Σ; Rel(Ψ) �ty H τ : Type

Σ; Ψ �̀scrut alt; ’Π∆.H τ  〈’Π∆.H τ〉; ∆;H ; τ a ∅
IScrut_Id
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Σ t̀c H : a:Irrelκ; ∆2;H ′

freshα fresh ι
Ω = α:Irrelκ[α/a], ι:κ ∼ H ′ α

Σ; Ψ �̀scrut (H x → t; alt);κ ι;∅;H ′;α a Ω
IScrut_Cast

D.8 Instantiation
�̀ν
inst κ ψ;κ′ a Ω Instantiate so that a type’s first binder is more visible than ν.

freshα ν2 ≤ ν1

�̀ν1
inst κ2[α/a] ψ;κ′2 a Ω

�̀ν1
inst Πν2a:Relκ1. κ2  α, ψ;κ′2 a α:Relκ1,Ω

IInst_Rel

freshα ν2 ≤ ν1

�̀ν1
inst κ2[α/a] ψ;κ′2 a Ω

�̀ν1
inst Πν2a:Relκ1. κ2  {α}, ψ;κ′2 a α:Irrelκ1,Ω

IInst_Irrel

fresh ι
�̀ν1
inst κ2[ι/c] ψ;κ′2 a Ω

�̀ν1
inst ΠInfc:φ. κ ι, ψ;κ′2 a ι:φ,Ω

IInst_Co

�̀ν1
inst κ ∅;κ a ∅

IInst_Done

ν1 ≤ ν2 “Less-visible-than“ relation

ν ≤ ν
IVis_Refl

ν1 ≤ ν2 ν2 ≤ ν3

ν1 ≤ ν3

IVis_Trans

Inf ≤ Spec
IVis_InfSpec

Spec ≤ Req
IVis_SpecReq
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D.9 Subsumption

�̀pre κ ∆;κ′; τ Convert a kind into prenex form.

ν ≤ Spec
�̀pre κ2  ∆;κ′2; τ

�̀pre
˜
Πνδ. κ2  δ,∆;κ′2;λ(x :Rel

˜
Πδ,∆. κ′2), δ. τ (x dom(δ))

IPrenex_Invis

�̀pre κ2  ∆;κ′2; τ
τ0 = λ(x :Rel

˜
Π∆, δ. κ′2), δ. τ (λ∆. x dom(∆) dom(δ))

�̀pre
˜
ΠReqδ. κ2  ∆;

˜
ΠReqδ. κ′2; τ0

IPrenex_Vis

�̀pre κ ∅;κ;λx :Relκ. x
IPrenex_NoPi

κ1 ≤∗ κ2  τ a Ω “κ1 subsumes κ2.” (κ2 is in prenex form)

κ3 ≤ κ1  τ1 a Ω1 κ2[τ1 b/a] ≤ κ4  τ2 a Ω2

Ω2 ↪→ b:Relκ3  Ω′2; ξ
τ0 = λx :Rel(Πa:Relκ1. κ2), b:Relκ3. τ2[ξ] (x (τ1 b))

ΠReqa:Relκ1. κ2 ≤∗
˜
ΠReqb:Relκ3. κ4  τ0 a Ω1,Ω′2

ISub_FunRel

κ3 ≤ κ1  τ1 a Ω1 κ2[τ1 b/a] ≤ κ4  τ2 a Ω2

Ω2 ↪→ b:Relκ3  Ω′2; ξ
τ0 = λx :Rel(Πa:Irrelκ1. κ2), b:Relκ3. τ2[ξ] (x {τ1 b})

ΠReqa:Irrelκ1. κ2 ≤∗
˜
ΠReqb:Relκ3. κ4  τ0 a Ω1,Ω′2

ISub_FunIrrelRel

κ3 ≤ κ1  τ1 a Ω1 κ2[τ1 b/a] ≤ κ4  τ2 a Ω2

Ω2 ↪→ b:Irrelκ3  Ω′2; ξ
τ0 = λx :Rel(Πa:Irrelκ1. κ2), b:Irrelκ3. τ2[ξ] (x {τ1 b})

ΠReqa:Irrelκ1. κ2 ≤∗
˜
ΠReqb:Irrelκ3. κ4  τ0 a Ω1,Ω′2

ISub_FunIrrel

fresh ι

τ1 ≤∗ τ2  λx :Relτ1. (x B ι) a ι:τ1 ∼ τ2

ISub_Unify

κ1 ≤ κ2  τ a Ω “κ1 subsumes κ2.”

�̀pre κ2  ∆;κ′2; τ1

�̀Spec
inst κ1  ψ;κ′1 a Ω1

κ′1 ≤∗ κ′2  τ2 a Ω2

Ω1,Ω2 ↪→ ∆ Ω′; ξ

κ1 ≤ κ2  λx :Relκ1. τ1 (λ∆. τ2[ξ] (x ψ[ξ])) a Ω′
ISub_DeepSkol
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D.10 Generalization
Ω ↪→ ∆ Ω′; ξ Generalize Ω over ∆.

∅ ↪→ ∆ ∅;∅
IGen_Nil

ξ0 = α 7→ dom(∆) Ω[ξ0] ↪→ ∆ Ω′; ξ

α :ρ ∀∆′.κ,Ω ↪→ ∆ α :ρ ∀∆,∆′.κ,Ω′; ξ0, ξ
IGen_TyVar

ξ0 = ι 7→ dom(∆) Ω[ξ0] ↪→ ∆ Ω′; ξ

ι : ∀∆′.φ,Ω ↪→ ∆ ι : ∀∆,∆′.φ,Ω′; ξ0, ξ
IGen_CoVar

D.11 Programs

Σ; Γ �̀decl decl x : κ := τ Check a Haskell declaration.

Σ; Γ �̀ty t τ : κ a Ω
Σ; Γ �̀solv Ω ∆; Θ
τ ′ = λ∆. (τ [Θ]) κ′ =

˜
ΠInf∆. (κ[Θ])

Σ; Γ �̀decl x := t x : κ′ := τ ′
IDecl_Synthesize

Σ; Γ �̀pt s σ a Ω1

Σ; Rel(Γ) �̀solv Rel(Ω1) ∆1; Θ1

σ′ =
˜
ΠInf∆1. (σ[Θ1])

Σ; Γ �̀∗
ty t : σ′  τ a Ω2

Σ; Γ �̀solv Ω2  ∅; Θ2

τ ′ = τ [Θ2]

Σ; Γ �̀decl x :: s := t x : σ′ := τ ′
IDecl_Check

Σ; Γ �̀prog prog Γ′; θ Check a Haskell program.

Σ; Γ �̀prog ∅ ∅;∅
IProg_Nil
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Σ; Γ �̀decl decl x : κ := τ
Σ; Γ, x :Relκ, c:x ∼ τ �̀prog prog Γ′; θ

Σ; Γ �̀prog decl; prog x :Relκ, c:x ∼ τ,Γ′; (τ/x , 〈τ〉/c) ◦ θ
IProg_Decl
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Appendix E

Proofs about the Bake algorithm

Throughout this appendix, I use a convention whereby in any case where the rule under
consideration is printed, any metavariable names in the rule shadow any metavariable
names in the lemma or theorem statement.

E.1 Type inference judgment properties
Definition E.1 (Judgments with unification variables). I write judgments with a new
turnstile �; these judgments are identical to the corresponding judgments written with
a ` except with the new rules as given in Appendix D. All lemmas proved over the old
judgments hold over the new ones, noting that the new UVar rules are unaffected by
context extension.

Definition E.2 (Generalized judgments). I sometimes write Σ; Ψ � J , where J
stands for a judgment, one of the judgments headed by �ty, �co, �prop, �alt, �vec, �ctx, or �s.
Similarly, I write J [θ] to denote substitution in the component parts of the judgment
J .

Lemma E.3 (Extension).

1. If Σ; Γ ` J , then Σ; Γ � J .
2. If Σ; Γ � J and J mentions no unification variables, then Σ; Γ ` J .

Proof. The difference between the ` judgments and the � judgments is only the
addition of new rules for new forms. No previously valid derivations are affected.
Note that, although we can’t prove it now, the “mentions no unification variables” is
redundant, as shown by Lemma E.11, below.

E.2 Properties adopted from Appendix C
Remark. By the straightforward extension of the Rel(·) operation, all previous lemmas
(Lemma C.3, Lemma C.4, Lemma C.5, Lemma C.6) dealing with contexts and relevance
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remain true under the � judgments.

Lemma E.4 (Type variable kinds [Lemma C.7]). (as stated previously, but with
reference to � judgments)

Proof. As before; the new forms do not pose any problems.

Lemma E.5 (Unification type variable kinds). If Σ �ctx Ψ ok and α :ρ ∀∆.κ ∈ Ψ, then
there exists Ψ′ such that Ψ′ ⊆ Rel(Ψ) and Σ; Ψ′,Rel(∆) �ty κ : Type. Furthermore, the
size of the derivation of Σ; Ψ′,Rel(∆) �ty κ : Type is smaller than that of Σ �ctx Ψ ok.

Proof. Straightforward induction on Σ �ctx Ψ ok.

Lemma E.6 (Coercion variable kinds [Lemma C.8]). (as stated previously, but with
reference to � judgments)

Proof. As before; the new forms do not pose any problems.

Lemma E.7 (Unification coercion variable kinds). If Σ �ctx Ψ ok and ι : ∀∆.φ ∈ Ψ,
then there exists Ψ′ such that Ψ′ ⊆ Rel(Ψ) and Σ; Ψ′,Rel(∆) �prop φ ok. Furthermore,
the size of the derivation of Σ; Ψ′,Rel(∆) �prop φ ok is smaller than that of Σ �ctx Ψ ok.

Proof. Straightforward induction on Σ �ctx Ψ ok.

Lemma E.8 (Context regularity [Lemma C.9]). (as stated previously, but with refer-
ence to � judgments)

Proof. As before; the new forms do not pose any problems.

Lemma E.9 (Weakening [Lemma C.10]). Assume Σ �ctx Ψ′ ok and Ψ ⊆ Ψ′. If
Σ; Ψ � J , then Σ; Ψ′ � J .

Proof. As before; the new forms do not pose any problems.

Lemma E.10 (Strengthening [Lemma C.11]). (as stated previously, but with reference
to � judgments)

Proof. As before; the new forms do not pose any problems.

Lemma E.11 (Scoping [Lemma C.12]). (as stated previously, but with reference to �
judgments)

Proof. We must consider now Ty_UVar and Co_UVar. These cases are similar;
let’s focus on Ty_UVar:

α :Rel ∀∆.κ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �ty αψ : κ[ψ/dom(∆)]
Ty_UVar
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We see that α ∈ {dom(Ψ)}, and the induction hypothesis tells us that the scoping
requirement holds for ψ. Lemma E.5 tells us that Σ; Ψ′,Rel(∆) �ty κ : Type for some
Ψ′ ⊆ Rel(Ψ). This derivation is smaller than the one ending in Ty_UVar, and so
we can use the induction hypothesis to see that fv(κ) ⊆ ({dom(Ψ)} ∪ {dom(∆)}).
The substitution in the conclusion removes all use of variables in dom(∆), and so
fv(κ) ⊆ {dom(Ψ)} as desired.

Lemma E.12 (Determinacy [Lemma C.20]). (as stated previously, but with reference
to � judgments)

Proof. As before.

Lemma E.13 (Type substitution [Lemma C.35]). If Σ; Ψ �ty σ : κ and Σ; Ψ, a:ρκ,Ψ
′ �

J , then Σ; Ψ,Ψ′[σ/a] � J [σ/a].

Proof. By induction on Σ; Ψ, a:ρκ,Ψ
′ � J . We consider only the new cases.

Case Ty_UVar:

α :Rel ∀∆.κ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �ty αψ : κ[ψ/dom(∆)]
Ty_UVar

We must prove Σ; Ψ,Ψ′[σ/a] �ty αψ[σ/a] : κ[ψ/dom(∆)][σ/a]. (Recall that nor-
mal substitutions θ do not map unification variables.) We know α :Rel ∀∆.κ ∈
Ψ, a:ρκ,Ψ

′, Σ �ctx Ψ, a:ρκ,Ψ
′ ok and Σ; Ψ, a:ρκ,Ψ

′ �vec ψ : ∆. By the induction
hypothesis, we can conclude Σ �ctx Ψ,Ψ′[σ/a] ok and Σ; Ψ,Ψ′[σ/a] �vec ψ[σ/a] :
∆[σ/a]. We now have two cases, depending on the location of α:

Case α :Rel ∀∆.κ ∈ Ψ: In this case, Lemma E.11 tells us that ∆ cannot mention
a, and thus ∆[σ/a] = ∆. We can thus use α :Rel ∀∆.κ ∈ Ψ to com-
plete the premises for Ty_UVar, showing that Σ; Ψ,Ψ′[σ/a] �ty αψ[σ/a] :

κ[ψ[σ/a]/dom(∆)]. The kind can be rewritten as κ[σ/a][ψ[σ/a]/dom(∆)]
as we know a 6∈ fv(κ). It can then further be rewritten to κ[ψ/dom(∆)][σ/a]
as desired.

Case α :Rel ∀∆.κ ∈ Ψ′: It must be the case that α :Rel ∀ (∆[σ/a]).(κ[σ/a]) ∈
Ψ′[σ/a]. Rule Ty_UVar then gives us Σ; Ψ,Ψ′[σ/a] �ty αψ[σ/a] :

κ[σ/a][ψ[σ/a]/dom(∆)] which can be (see above) rewritten as
Σ; Ψ,Ψ′[σ/a] �ty αψ[σ/a] : κ[ψ/dom(∆)][σ/a] as desired.

Case Co_UVar: Similar to previous case.

Lemma E.14 (Coercion substitution [Lemma C.36]). If Σ; Ψ �co γ : φ and
Σ; Ψ, c:φ,Ψ′ � J , then Σ; Ψ,Ψ′[γ/c] � J [γ/c].
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Proof. Similar to previous proof.

Lemma E.15 (Vector substitution [Lemma C.37]). If Σ; Ψ �vec ψ : ∆ and Σ; Ψ,∆,Ψ′ �
J , then Σ; Ψ,Ψ′[ψ/dom(∆)] � J [ψ/dom(∆)].

Proof. As before, referring to Lemma E.13 and Lemma E.14. Note that this version is
generalized to work over any judgment J while the previous proof lemma works only
over t̀y. This generalization poses no trouble.

E.3 Regularity
Lemma E.16 (Increasing relevance in vectors). If Σ; Ψ �vec ψ : ∆, then Σ; Rel(Ψ) �vec
ψ : Rel(∆).

Proof. Straightforward induction on the typing derivation, appealing to Lemma C.6.

Lemma E.17 (Kind regularity [Lemma C.43]). If Σ; Ψ �ty τ : κ, then Σ; Rel(Ψ) �ty κ :
Type.

Proof. By induction on the typing derivation. We consider only the new case:

Case Ty_UVar:

α :Rel ∀∆.κ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �ty αψ : κ[ψ/dom(∆)]
Ty_UVar

We must prove Σ; Rel(Ψ) �ty κ[ψ/dom(∆)] : Type. By Lemma E.8 and Lemma
E.5, there exists Ψ′ such that Ψ′ ⊆ Rel(Ψ) and Σ; Ψ′,Rel(∆) �ty κ : Type.
Lemma E.9 then gives us Σ; Rel(Ψ,∆) �ty κ : Type. Lemma E.16 tells us that
Σ; Rel(Ψ) �vec ψ : Rel(∆). We can thus use Lemma E.15 to get Σ; Rel(Ψ) �ty
κ[ψ/dom(∆)] : Type as desired.

Lemma E.18 (Proposition regularity [Lemma C.44]). If Σ; Ψ �co γ : φ, then
Σ; Rel(Ψ) �prop φ ok.

Proof. The proof for the Co_UVar case is similar to the proof above for Ty_UVar.
Other cases are as before.
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E.4 Zonking
Definition E.19 (Zonker). A zonker Θ is a substitution from unification variables α
and ι to types and coercions, respectively. Each mapping also includes a list of type
and coercion variables under which it is quantified.

Θ ::=∅ |Θ,∀ z .τ/α |Θ,∀ z .γ/ι

Lemma E.20 (Zonker domains). If Σ; Ψ �z Θ : Ω, then dom(Θ) = dom(Ω).

Proof. By straightforward induction.

Lemma E.21 (Zonking a relevant type variable). If α :Rel ∀∆.κ ∈ Ω, Σ; Ψ �z Θ : Ω,
no binding in Ω refers to a later one, and the range of Θ is disjoint from its domain,
then there exists τ such that ∀ dom(∆).τ/α ∈ Θ and Σ; Ψ,∆[Θ] �ty τ : κ[Θ].

Proof. By induction on Σ; Ψ �z Θ : Ω.

Case Zonk_Nil: Impossible, as Ω is empty.

Case Zonk_TyVarRel: We have two cases here:

Case Ω = α :Rel ∀∆.κ,Ω′: We see that Θ = ∀ dom(∆).τ/α,Θ′, satisfying the
first conclusion. The premise of Zonk_TyVarRel tells us Σ; Ψ,∆ �ty
τ : κ. By assumption, we know that ∆ and κ cannot refer to α nor any
variables in Ω′. Thus ∆ = ∆[Θ] and κ = κ[Θ], and thus we can conclude
Σ; Ψ,∆[Θ] �ty τ : κ[Θ] as desired.

Case Ω = α′ :ρ ∀∆′.κ′,Ω′, with α 6= α′: We see that Θ = ∀ dom(∆′).τ ′/α′,Θ′.
Let Θ0 = ∀ dom(∆′).τ ′/α′. We can further see that
α :Rel ∀ (∆[Θ0]).(κ[Θ0]) ∈ Ω′[Θ0] and Σ; Ψ �z Θ′ : Ω′[Θ0]. Because
the range of Θ is disjoint from its domain and the fact that Ω is
well-scoped, we know Ω′[Θ0] must be well-scoped. We can thus use
the induction hypothesis to get τ such that ∀ dom(∆).τ/α ∈ Θ′ and
Σ; Ψ,∆[Θ0][Θ

′] �ty τ : κ[Θ0][Θ
′]. Because Θ is idempotent, we can rewrite

this as Σ; Ψ,∆[Θ] �ty τ : κ[Θ] as desired.

Case Zonk_TyVarIrrel: Like second half of previous case.

Case Zonk_CoVar: Like previous case.

Lemma E.22 (Zonking a coercion variable). If ι : ∀∆.φ ∈ Ω, Σ; Ψ �z Θ : Ω, no
binding in Ω refers to a later one, and the range of Θ is disjoint from its domain, then
there exists γ such that ∀ dom(∆).γ/ι ∈ Θ and Σ; Ψ,∆[Θ] �co γ : φ[Θ].

Proof. Similar to previous proof.
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Lemma E.23 (Zonking). If Θ is idempotent, Σ; Ψ �z Θ : Ω and Σ; Ψ,Ω,∆2 � J , then
Σ; Ψ,∆2[Θ] � J [Θ].

Proof. By induction on the derivation Σ; Ψ,Ω,∆2 � J .

Case Ty_Var:
Σ c̀tx Γ ok a:Relκ ∈ Γ

Σ; Γ t̀y a : κ
Ty_Var

We know Σ �ctx Ψ,Ω,∆2 ok and a:Relκ ∈ Ψ,Ω,∆2. We must prove Σ; Ψ,∆2[Θ] �ty
a[Θ] : κ[Θ]. Zonking a non-unification variable (like a) has no effect, so we must
prove Σ; Ψ,∆2[Θ] �ty a : κ[Θ]. We will use Ty_Var, so we must prove the
following:

Σ �ctx Ψ,∆2[Θ] ok: By the induction hypothesis.
a:Relκ[Θ] ∈ Ψ,∆2[Θ]: From a:Relκ ∈ Ψ,Ω,∆2, we know that a must appear

either in Ψ or in ∆2. If a is in Ψ, we are done, using Lemma E.11 to show
that zonking κ has no effect. If a is in ∆2, then a:Relκ[Θ] must be in ∆2[Θ],
and so we are done with this case.

Case Co_Var: Similar to previous case.

Case Ty_UVar:

α :Rel ∀∆.κ ∈ Ψ Σ �ctx Ψ ok
Σ; Ψ �vec ψ : ∆

Σ; Ψ �ty αψ : κ[ψ/dom(∆)]
Ty_UVar

We know Σ; Ψ,Ω,∆2 �ty αψ : κ[ψ/dom(∆)] and must prove Σ; Ψ,∆2[Θ] �ty αψ[Θ] :

κ[ψ/dom(∆)][Θ]. We further know that Σ; Ψ,Ω,∆2 �vec ψ : ∆ By the induction
hypothesis, Σ; Ψ,∆2[Θ] �vec ψ[Θ] : ∆[Θ] and Σ �ctx Ψ,∆2[Θ] ok. There are then
several possibilities:

Case α :Rel ∀∆.κ ∈ Ψ: By Lemma E.20, we know that dom(Θ) = dom(Ω). From
Σ �ctx Ψ,Ω,∆2 ok and Lemma E.11 we know that nothing in Ψ can mention
any variable bound in Ω. We also know that αψ[Θ] = αψ[Θ] and κ[Θ] = κ.
The telescope ∆ is mentioned in Ψ and therefore is unaffected by the
zonking substitution Θ. We can thus conclude that α :Rel ∀∆.κ ∈ Ψ,∆2[Θ]
and Σ; Ψ,∆2[Θ] �vec ψ[Θ] : ∆. We can thus use Ty_UVar to conclude
Σ; Ψ,∆2[Θ] �ty αψ[Θ] : κ[ψ[Θ]/dom(∆)]. We can rewrite this kind to be
κ[ψ/dom(∆)][Θ] as desired because κ[Θ] = κ.

Case α :Rel ∀∆.κ ∈ Ω: We then use Lemma E.21 to get Σ; Ψ,∆[Θ] �ty τ :
κ[Θ] and ∀ dom(∆).τ/α ∈ Θ. Thus (by Definition E.19) αψ[Θ] =

τ [ψ[Θ]/dom(∆)]. Lemma E.9 gives us Σ; Ψ,∆2[Θ],∆[Θ] �ty τ : κ[Θ].
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The induction hypothesis tells us that Σ; Ψ,∆2[Θ] �vec ψ[Θ] : ∆[Θ].
Now, we apply Lemma E.15 to get Σ; Ψ,∆2[Θ] �ty τ [ψ[Θ]/dom(∆)] :
κ[Θ][ψ[Θ]/dom(∆)], which can easily be rewritten to Σ; Ψ,∆2[Θ] �ty
τ [ψ[Θ]/dom(∆)] : κ[ψ/dom(∆)][Θ] as desired.

Case Co_UVar: Similar to previous case, but using Lemma E.22.

Other cases: Similar to proof for Lemma C.35.

E.5 Solver
The solver (�̀solv) must have the following properties.

Property E.24 (Solver is sound). If Σ �ctx Ψ,Ω ok and Σ; Ψ �̀solv Ω ∆; Θ, then Θ
is idempotent, Σ �ctx Ψ,∆ ok, and Σ; Ψ,∆ �z Θ : Ω.

E.6 Supporting functions
Definition E.25 (make_exhaustive). Define make_exhaustive(alt ;κ) as follows:

make_exhaustive(alt ;κ) = alt ((_→ τ) ∈ alt)

make_exhaustive(alt ;κ) = alt ;_→ errorκ "failed match" (otherwise)

E.7 Supporting lemmas
Lemma E.26 (Vector extension). If Σ; Ψ,∆,Ψ′ �vec ψ : ∆′, then Σ; Ψ,∆,Ψ′ �vec
dom(∆), ψ : ∆,∆′.

Proof. We know Σ �ctx Ψ,∆,Ψ′ ok by Lemma E.8. Proceed by induction on the
structure of ∆.

Case ∆ = ∅: Trivial.

Case ∆ = a:ρκ,∆1: To use Vec_TyRel, we must show Σ; Ψ,∆,Ψ′ �ty a : κ (which
is by Ty_Var) and Σ; Ψ,∆,Ψ′ �vec dom(∆1), ψ : (∆1,∆

′)[a/a]. The substitution
clearly has no effect, so we are done by the induction hypothesis.

Other cases: Similar.

Lemma E.27 (Type variables instantiation). If Σ c̀tx a:Irrelκ ok, then Σ c̀tx

b:Irrelκ[b/a] ok.
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Proof. By induction on the length of κ.

Case κ = ∅: Trivial.

Case κ = κ′, κ0: Here, we know a = a ′, a0 and b = b
′
, b0. Our assumption is that

Σ c̀tx a ′:Irrelκ
′, a0:Irrelκ0 ok. Inversion (of Ctx_TyVar) gives us Σ; a ′:Relκ

′
t̀y

κ0 : Type and Σ c̀tx a ′:Irrelκ
′ ok. The induction hypothesis tells us Σ c̀tx

b
′
:Irrelκ

′[b
′
/a ′] ok. We must show Σ; b

′
:Relκ

′[b
′
/a ′] t̀y κ0[b

′
/a ′] : Type. Use Lemma

C.10 (Weakening) to get Σ; b
′
:Relκ

′[b
′
/a ′], a ′:Relκ

′
t̀y κ0 : Type. Lemma C.39

gives us Σ; b
′
:Relκ

′[b
′
/a ′] v̀ec b

′
: (b

′
:Relκ

′[b
′
/a ′]). We can thus use Lemma C.37 to

get Σ; b
′
:Relκ

′[b
′
/a ′] t̀y κ0[b

′
/a ′] : Type as desired. We then use Ctx_TyVar

and we are done.

Lemma E.28 (Decreasing relevance). If Σ �ctx Rel(Ψ) ok, then Σ �ctx Ψ ok.

Proof. Straightforward induction on Σ �ctx Rel(Ψ) ok.

Lemma E.29 (Closing substitution substitution).

1. If Σ; Γ, a:Relκ,Γ
′

s̀ubst θ : ∆ and Σ; Γ t̀y σ : κ, then Σ; Γ,Γ′[σ/a] s̀ubst σ/a ◦ θ :
∆[σ/a].

2. If Σ; Γ, a:Irrelκ,Γ
′

s̀ubst θ : ∆ and Σ; Rel(Γ) t̀y σ : κ, then Σ; Γ,Γ′[σ/a] s̀ubst

σ/a ◦ θ : ∆[σ/a].

3. If Σ; Γ, c:φ,Γ′ s̀ubst θ : ∆ and Σ; Γ c̀o γ : φ, then Σ; Γ,Γ′[γ/c] s̀ubst γ/c ◦ θ :
∆[γ/c]

Proof. By induction on the s̀ubst derivation. We will consider the type substitution
case; the others are similar.

Case Subst_Nil: Trivial.

Case Subst_TyRel: In this case, we know Σ; Γ, a:ρκ,Γ
′

s̀ubst θ : b:Relκ0,∆ and
must show Σ; Γ,Γ′[σ/a] s̀ubst σ/a ◦ θ : b:Relκ0[σ/a],∆[σ/a]. Inverting gives us
Σ; Γ, a:ρκ,Γ

′
t̀y b[θ] : κ0 and Σ; Γ, a:ρκ,Γ

′
s̀ubst θ : ∆[θ|b ]. To use Subst_TyRel,

we must show Σ; Γ,Γ′[σ/a] t̀y b[σ/a ◦ θ] : κ0[σ/a] and Σ; Γ,Γ′[σ/a] s̀ubst σ/a ◦ θ :
∆[σ/a][(σ/a ◦ θ)|b ]. The first of these is directly from the induction hypothesis.
The induction hypothesis also gives us Σ; Γ,Γ′[σ/a] s̀ubst σ/a ◦ θ : ∆[θ|b][σ/a].
We are left only to show that ∆[θ|b ][σ/a] = ∆[σ/a][(σ/a ◦ θ)|b ]. On the right,
we care only about θ’s action on b, so we can rewrite to ∆[σ/a][σ/a ◦ (θ|b)],
which can then be rewritten to ∆[θ|b ][σ/a] as desired.

Case Subst_TyIrrel: Similar to previous case.

Case Subst_Co: Similar to previous case.
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Lemma E.30 (Closing substitution). Assume Σ; Γ s̀ubst θ : ∆. Let θ′ = θ|dom(∆).

1. If Σ; Γ,∆,Γ′ t̀y τ : κ, then Σ; Γ,Γ′[θ′] t̀y τ [θ′] : κ[θ′].

2. If Σ; Γ,∆,Γ′ c̀o γ : φ, then Σ; Γ,Γ′[θ′] c̀o γ[θ′] : φ[θ′].

3. If Σ; Γ,∆,Γ′ p̀rop φ ok, then Σ; Γ,Γ′[θ′] p̀rop φ[θ′] ok.

4. If Σ; Γ,∆,Γ′;σ0 `τ0alt alt : κ, then Σ; Γ,Γ′[θ′];σ0[θ′] `τ0[θ′]
alt alt [θ′] : κ[θ′].

5. If Σ; Γ,∆,Γ′ v̀ec ψ : ∆, then Σ; Γ,Γ′[θ′] v̀ec ψ[θ′] : ∆[θ′].

6. If Σ c̀tx Γ,∆,Γ′ ok, then Σ c̀tx Γ,Γ′[θ′] ok.

7. If Σ; Γ,∆,Γ′ s̀ τ −→ τ ′, then Σ; Γ,Γ′[θ′] s̀ τ [θ′] −→ τ ′[θ′].

Proof. By induction on Σ; Γ s̀ubst θ : ∆. By analogy with the Σ; Ψ � J notation, I will
use Σ; Γ ` J to refer collectively to the judgments over which this lemma is defined.

Case Subst_Nil: In this case, ∆ = ∅ and we are done by assumption.

Case Subst_TyRel:

Σ; Γ t̀y a[θ] : κ
Σ; Γ s̀ubst θ : ∆[θ|a ]

Σ; Γ s̀ubst θ : a:Relκ,∆
Subst_TyRel

We know Σ; Γ s̀ubst θ : a:Relκ,∆ and Σ; Γ, a:Relκ,∆,Γ
′ ` J . We must prove

Σ; Γ ` J [θ|a,dom(∆)]. We know Σ; Γ t̀y a[θ] : κ and thus we can use Lemma C.35
to get Σ; Γ,∆[θ|a ],Γ′[θ|a ] ` J [θ|a ]. We then use the induction hypothesis to get
Σ; Γ ` J [θ|a ][θ|dom(∆)]. It remains only to show that θ|a ◦ θ|dom(∆) = θ|a,dom(∆).
This amounts to showing that dom(∆) # a[θ]. We have this by Lemma C.12,
and so we are done.

Case Subst_TyIrrel: Similar to previous case.

Case Subst_Co: Similar to previous case, referring to Lemma C.36.

E.8 Generalization
Definition E.31 (Generalizer). A generalizer ξ is a mapping from unification variables
to vectors:

ξ ::=∅ | ξ, α 7→ ψ | ξ, ι 7→ ψ
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A generalizer can be applied postfix as a function. It operates only on occurrences of
unification variables, acting homomorphically on all other forms:

α 7→ ψ1 ∈ ξ ⇒ αψ2
[ξ] = αψ1,ψ2

otherwise αψ[ξ] = αψ[ξ]

ι 7→ ψ1 ∈ ξ ⇒ ιψ2
[ξ] = ιψ1,ψ2

otherwise ιψ[ξ] = ιψ[ξ]

Lemma E.32 (Generalization by type variable). If Σ; Ψ,∆, α :ρ ∀∆′.κ,Ψ′ � J , then
Σ; Ψ, α :ρ ∀∆,∆′.κ,∆,Ψ′[α 7→ dom(∆)] � J [α 7→ dom(∆)].

Proof. Let ξ = α 7→ dom(∆). Proceed by induction on the typing derivation. The
only interesting case is for unification variables:

Case Ty_UVar: Here, we know Σ; Ψ,∆, α :ρ ∀∆′.κ,Ψ′ �ty βψ : κ0 and must show
Σ; Ψ, α :ρ ∀∆,∆′.κ,∆,Ψ′[ξ] �ty βψ[ξ] : κ0[ξ]. We have two cases:

Case α = β: In this case, we know ρ = Rel and κ0 = κ[ψ/dom(∆′)]. In order
to use Ty_UVar, we must show Σ �ctx Ψ, α :Rel ∀∆,∆′.κ,∆,Ψ′[ξ] ok (which
we get from the induction hypothesis) and Σ; Ψ, α :Rel ∀∆,∆′.κ,∆,Ψ′[ξ] �vec
dom(∆), ψ : ∆,∆′. We know Σ; Ψ,∆, α :ρ ∀∆′.κ,Ψ′ �vec ψ : ∆′. The induc-
tion hypothesis tells us that Σ; Ψ, α :ρ ∀∆,∆′.κ,∆,Ψ′[ξ] �vec ψ[ξ] : ∆′[ξ].
However, we can see (Lemma E.11) that ∆′[ξ] = ∆. Then, Lemma E.26
tells us Σ; Ψ, α :ρ ∀∆,∆′.κ,∆,Ψ′[ξ] �vec dom(∆), ψ[ξ] : ∆,∆′ as desired.
Rule Ty_UVar gives us

Σ; Ψ, α :ρ ∀∆,∆′.κ,∆,Ψ′[ξ] �ty αdom(∆),ψ[ξ] : κ[dom(∆), ψ/dom(∆,∆′)].

Indeed we can rewrite the kind as κ[ψ/dom(∆′)] and we are done.
Case α 6= β: As with other substitution properties, we must break into cases

depending on where β is, but all cases are straightforwardly shown by the
induction hypothesis.

Case Co_UVar: Similar to non-matching sub-case of previous case.

Lemma E.33 (Generalization by coercion variable). If Σ; Ψ,∆, ι : ∀∆′.φ,Ψ′ � J ,
then Σ; Ψ, ι : ∀∆,∆′.φ,∆,Ψ′[ι 7→ dom(∆)] � J [ι 7→ dom(∆)].

Proof. Similar to previous proof.

Lemma E.34 (Generalizer scope). If Ω ↪→ ∆ Ω′; ξ, then dom(ξ) = dom(Ω).

Proof. Straightforward induction on Ω ↪→ ∆ Ω′; ξ.
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Lemma E.35 (Generalization). If Ω ↪→ ∆  Ω′; ξ and Σ; Ψ,∆,Ω � J , then
Σ; Ψ,Ω′,∆ � J [ξ].

Proof. By induction on Ω ↪→ ∆ Ω′; ξ.

Case IGen_Nil: By assumption.

Case IGen_TyVar: Here, we know Ω = α :ρ ∀∆′.κ,Ω1 and Ω′ =
α :ρ ∀∆,∆′.κ,Ω′1. Let ξ0 = α 7→ dom(∆). The first step is to show
Σ; Ψ, α :ρ ∀∆,∆′.κ,∆,Ω1[ξ0] � J [ξ0]. This is true by Lemma E.32. We
know Ω1[ξ0] ↪→ ∆  Ω′1; ξ1. We then use the induction hypothesis to get
Σ; Ψ, α :ρ ∀∆,∆′.κ,Ω′1,∆ � J [ξ0][ξ1]. However, because the domains of ξ0 and ξ1

are distinct (by the well-formedness of Ω), we can rewrite as Σ; Ψ,Ω′,∆ � J [ξ]
as desired.

Case IGen_CoVar: Similar to previous case, appealing to Lemma E.33.

E.9 Soundness
Lemma E.36 (Instantiation). If Σ; Ψ �ty τ : κ and �̀νinst κ ψ;κ′ a Ω, then Σ; Ψ,Ω �ty
τ ψ : κ′ and κ′ is not a Π-type with a binder (with visibility ν2) such that ν2 ≤ ν.

Proof. Let’s call the condition on the visibility of the binder (if any) of the result kind
the visibility condition. Proceed by induction on the derivation of the �̀inst judgment.

Case IInst_Rel:

freshα ν2 ≤ ν1

�̀ν1
inst κ2[α/a] ψ;κ′2 a Ω

�̀ν1
inst Πν2a:Relκ1. κ2  α, ψ;κ′2 a α:Relκ1,Ω

IInst_Rel

We must show that Σ; Ψ, α:Relκ1,Ω �ty τ αψ : κ′2 and that κ′2 satisfies the visibility
condition. We can assume that Σ; Ψ �ty τ : Πν2a:Relκ1. κ2. By inversion by Ty_Pi,
Lemma E.8, and Lemma E.4, we can see that Σ; Rel(Ψ) �ty κ1 : Type. Thus
Σ �ctx Ψ, α:Relκ1 ok and Lemma E.9 gives us Σ; Ψ, α:Relκ1 �ty τ : Πν2a:Relκ1. κ2.
Thus, Ty_AppRel gives us Σ; Ψ, α:Relκ1 �ty τ α : κ2[α/a]. The induction
hypothesis then tells us that Σ; Ψ, α:Relκ1,Ω �ty τ αψ : κ′2 and gives us the
visibility condition, as desired.

Case IInst_Irrel: Like previous case.

Case IInst_Co: Like previous cases, but appealing to Lemma E.6 instead of
Lemma E.4.
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Case IInst_Done: The typing rule is by assumption. The visibility condition is
by the fact that no previous rule in the judgment applied.

Lemma E.37 (Function position). If Σ; Ψ �ty κ : Type and �̀fun κ; ρ1  
γ; Π; a; ρ2;κ1;κ2 a Ω, then Σ; Ψ,Ω �co γ : κ ∼ ΠReqa:ρ2κ1. κ2.

Proof. By case analysis on the derivation of �̀fun.

Case IFun_Id:

�̀fun ΠReqa:ρκ1. κ2; ρ0  〈ΠReqa:ρκ1. κ2〉; Π; a; ρ;κ1;κ2 a ∅
IFun_Id

Let κ = ΠReqa:ρκ1. κ2. We know Σ; Ψ �ty κ : Type and thus Σ; Ψ �co 〈κ〉 : κ ∼ κ
as desired.

Case IFun_Cast:

fresh ι fresh β1, β2

Ω = β1:IrrelType, β2:IrrelType, ι:κ0 ∼
˜
ΠReqa:ρβ1. β2

�̀fun κ0; ρ ι;
˜
Π; a; ρ; β1; β2 a Ω

IFun_Cast

Let Ψ0 = Ψ, β1:IrrelType, β2:IrrelType and Ψ1 = Ψ0, ι:κ0 ∼
˜
ΠReqa:ρβ1. β2. We

first must show Σ �ctx Ψ′ ok. We know Σ �ctx Ψ ok by Lemma E.8. Adding β1

and β2 to Ψ maintains well-formedness; thus Σ �ctx Ψ0 ok. In order to add the
binding for ι, we must show that Σ; Rel(Ψ0) �ty κ0 : Type and Σ; Rel(Ψ0) �ty

˜
ΠReqa:ρβ1. β2 : Type. The former is by assumption. The latter comes from
Σ �ctx Ψ0 ok, two uses of Ty_UVar, and a use of Ty_Pi. Thus Σ �ctx Ψ1 ok
and Σ; Ψ1 �co ι : κ0 ∼

˜
ΠReqa:ρβ1. β2 as desired.

Lemma E.38 (Scrutinee position). If Σ; Ψ �ty τ : κ and Σ; Ψ �̀scrut alt;κ  
γ; ∆;H ′; τ a Ω, then Σ; Ψ,Ω �ty τ B γ : ’Π∆.H ′ τ and Σ; Rel(Ψ,Ω) �ty H ′ τ : Type.

Proof. By case analysis on the derivation for the �̀scrut judgment.

Case IScrut_Id:

Σ; Rel(Ψ) �ty H τ : Type

Σ; Ψ �̀scrut alt; ’Π∆.H τ  〈’Π∆.H τ〉; ∆;H ; τ a ∅
IScrut_Id

Let κ = ’Π∆.H τ . Working backwards from a use of Ty_Cast, we need to
show that Σ; Rel(Ψ) �co 〈κ〉 : κ ∼ κ, and thus that Σ; Rel(Ψ) �ty κ : Type. This
comes directly from Lemma E.17. The second conclusion is assumed as a premise
of IScrut_Id.
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Case IScrut_Cast:

Σ t̀c H : a:Irrelκ; ∆2;H ′

freshα fresh ι
Ω = α:Irrelκ[α/a], ι:κ ∼ H ′ α

Σ; Ψ �̀scrut (H x → t; alt);κ ι;∅;H ′;α a Ω
IScrut_Cast

Let Ψ0 = Ψ, α:Irrelκ[α/a] and Ψ1 = Ψ0, ι:κ ∼ H ′ α. We must first show
that Σ �ctx Ψ0 ok. We know s̀ig Σ ok (by Lemma E.8). Lemma C.40 tells us
Σ c̀tx a:Irrelκ ok. Lemma E.27 and Lemma E.3 then tell us Σ �ctx α:Irrelκ[α/a] ok.
We have Σ �ctx Ψ ok by Lemma E.8 and thus can use Lemma E.9 Σ �ctx Ψ0 ok as
desired. To show Σ �ctx Ψ1 ok, we must now show that Σ; Ψ0 �ty κ : Type and
Σ; Ψ0 �ty H ′ α : Type. The former is by Lemma E.17 and Lemma E.9. For the
latter: use Lemma C.41 and Lemma E.9 to see that Σ; Ψ0 �ty ’Πa:Irrelκ,∆2.H

′ a :
Type. Repeated inversion on Ty_Pi tells us Σ; Ψ0, a:Irrelκ,∆2 �ty H ′ a : Type.
Lemma E.10 gives us Σ; Ψ0, a:Irrelκ �ty H ′ a : Type. Lemma C.39 tells us that
Σ; Ψ0 �vec α : (α:Irrelκ[α/a]). We thus use Lemma E.15 to see that Σ; Ψ0 �ty H ′ α :
Type as desired. We can thus conclude Σ �ctx Ψ1 ok by Ctx_UCoVar. We are
done with the first conclusion by Ty_Cast and Co_Var. We get the second
conclusion easily by noting that ∆ = ∅ and by Lemma E.17.

Lemma E.39 (make_exhaustive). Assume that, ∀i, Σ; Ψ; ’Π∆.H σ �τalt
alti : κ and alt

′
= make_exhaustive(alt ;κ). Furthermore, assume no

pattern appears twice in alt . Then ∀j, Σ; Ψ; ’Π∆.H σ �τalt alt ′j : κ and
alt
′
are exhaustive and distinct for H , (w.r.t. Σ).

Proof. If there is a default pattern in alt , then make_exhaustive does nothing. In this
case, the default pattern makes the alt exhaustive. We have already assumed they are
unique.

Otherwise, make_exhaustive adds a default. Assuming
error :Rel

˜
Π(a:IrrelType), (b:RelString). a, we have ∀j, Σ; Ψ; ’Π∆.H σ �τalt alt ′j : κ,

and indeed the alternatives are now exhaustive.

Lemma E.40 (Prenex). If Σ; Rel(Ψ) �ty κ : Type and �̀pre κ ∆;κ′; τ , then Σ; Ψ �ty
τ :

˜
Πx :Rel(

˜
Π∆. κ′). κ.

Proof. By induction on the �̀pre judgment.

Case IPrenex_Invis:

ν ≤ Spec
�̀pre κ2  ∆;κ′2; τ

�̀pre
˜
Πνδ. κ2  δ,∆;κ′2;λ(x :Rel

˜
Πδ,∆. κ′2), δ. τ (x dom(δ))

IPrenex_Invis
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We know Σ; Rel(Ψ) �ty
˜
Πνδ. κ2 : Type. Inversion gives us Σ; Rel(Ψ, δ) �ty

κ2 : Type. The induction hypothesis thus tells us that Σ; Ψ, δ �ty τ :

˜
Πx2:Rel(

˜
Π∆. κ′2). κ2. Let Ψ′ = Ψ, x :Rel(

˜
Πδ,∆. κ′2), δ. We need Σ �ctx Ψ′ ok,

for which we need Σ; Rel(Ψ) �ty
˜
Πδ,∆. κ′2 : Type, which can be proved

by inversions and Ty_Pi. We thus have Σ �ctx Ψ′ ok. We now show that
Σ; Ψ′ �ty τ (x dom(δ)) : κ2. First, we note that Σ; Ψ′ �ty x dom(δ) :

˜
Π∆. κ′2 by

the appropriate application rule. (It depends on the relevance of δ.) There
is no substitution in the kind, because we are applying to dom(δ). Thus
Σ; Ψ′ �ty τ (x dom(δ)) : κ2[x dom(δ)/x2] by Ty_AppRel. However, we know
x2 # κ2 by Lemma E.11 and so we are done by two uses of Ty_Lam.

Case IPrenex_Vis:

�̀pre κ2  ∆;κ′2; τ
τ0 = λ(x :Rel

˜
Π∆, δ. κ′2), δ. τ (λ∆. x dom(∆) dom(δ))

�̀pre
˜
ΠReqδ. κ2  ∆;

˜
ΠReqδ. κ′2; τ0

IPrenex_Vis

We know Σ; Rel(Ψ) �ty
˜
ΠReqδ. κ2 : Type. Inversion gives us Σ; Rel(Ψ, δ) �ty κ2 :

Type. The induction hypothesis then gives us Σ; Ψ, δ �ty τ :
˜
Πx2:Rel(

˜
Π∆. κ′2). κ2.

Let Ψ′ = Ψ, x :Rel(
˜
Π∆, δ. κ′2), δ. We need Σ �ctx Ψ′ ok, for which we need

Σ; Rel(Ψ) �ty
˜
Π∆, δ. κ′2 : Type. This can be proved by inversions and Ty_Pi. We

thus have Σ �ctx Ψ′ ok. We now show that Σ; Ψ′ �ty τ (λ∆. x dom(∆) dom(δ)) : κ2.
First, we show that Σ; Ψ′,∆ �ty x dom(∆) dom(δ) : κ′2. Once we show that
Σ �ctx Ψ′,∆ ok (as can be shown by inversions, Lemma E.8, and Lemma
E.9), then this comes directly from the type of x . Thus, we can conclude,
by repeated use ofTy_Lam, that Σ; Ψ′ �ty λ∆. x dom(∆) dom(δ) :

˜
Π∆. κ′2. Ac-

cordingly, Σ; Ψ′ �ty τ (λ∆. x dom(∆) dom(δ)) : κ2[(λ∆. x dom(∆) dom(δ))/x2],
but the substitution in the kind has no effect by Lemma E.11. We thus have
Σ; Ψ′ �ty τ (λ∆. x dom(∆) dom(δ)) : κ2. We are done by several uses of Ty_Lam.

Case IPrenex_NoPi:

�̀pre κ ∅;κ;λx :Relκ. x
IPrenex_NoPi

Assuming Σ; Rel(Ψ) �ty κ : Type, we must show Σ; Ψ �ty λx :Relκ. x :
˜
Πx :Relκ. κ.

This is true by straightforward application of typing rules.

Lemma E.41 (Subsumption). Assume Σ; Rel(Ψ) �ty κ1 : Type and Σ; Rel(Ψ) �ty κ2 :
Type. If either

1. κ1 ≤∗ κ2  τ a Ω, OR

2. κ1 ≤ κ2  τ a Ω
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Then Σ; Ψ,Ω �ty τ :
˜
Πx :Relκ1. κ2.

Proof. By mutual induction on the subsumption judgments.

Case ISub_FunRel:

κ3 ≤ κ1  τ1 a Ω1 κ2[τ1 b/a] ≤ κ4  τ2 a Ω2

Ω2 ↪→ b:Relκ3  Ω′2; ξ
τ0 = λx :Rel(Πa:Relκ1. κ2), b:Relκ3. τ2[ξ] (x (τ1 b))

ΠReqa:Relκ1. κ2 ≤∗
˜
ΠReqb:Relκ3. κ4  τ0 a Ω1,Ω′2

ISub_FunRel

Our assumption says that Σ; Rel(Ψ) �ty Πa:Relκ1. κ2 : Type and Σ; Rel(Ψ) �ty

˜
Πa:Relκ3. κ4 : Type. Inversion of Ty_Pi tells us the following:

• Σ; Rel(Ψ) �ty κ1 : Type

• Σ; Rel(Ψ), a:Relκ1 �ty κ2 : Type

• Σ; Rel(Ψ) �ty κ3 : Type

• Σ; Rel(Ψ), b:Relκ3 �ty κ4 : Type

The induction hypothesis then tells us Σ; Ψ,Ω1 �ty τ1 :
˜
Πx1:Relκ3. κ1. Lemma E.9

gives us Σ; Rel(Ψ,Ω1), b:Relκ3, a:Relκ1 �ty κ2 : Type. Rule Ty_AppRel tells us
Σ; Ψ,Ω1, b:Relκ3 �ty τ1 b : κ1[b/x ], but Lemma E.11 tells us that the substitution in
the kind has no effect. We can thus use Lemma E.13 to get Σ; Rel(Ψ,Ω1), b:Relκ3 �ty
κ2[τ1 b/a] : Type. Now, we can use the induction hypothesis again to get
Σ; Ψ,Ω1, b:Relκ3,Ω2 �ty τ2 :

˜
Πx2:Relκ2[τ1 b/a]. κ4. Lemma E.35 tells us now that

Σ; Ψ,Ω1,Ω
′
2, b:Relκ3 �ty τ2[ξ] : (

˜
Πx2:Relκ2[τ1 b/a]. κ4)[ξ], but Lemma E.34 tells us

the [ξ] in the kind has no effect. Let

Ψ′ = Ψ,Ω1,Ω
′
2, x :Rel(Πa:Relκ1. κ2), b:Relκ3.

To show Σ �ctx Ψ′ ok, we need only show that Σ; Rel(Ψ,Ω1),Ω′2 �ty Πa:Relκ1. κ2 :
Type (noting that Lemma E.35 and Lemma E.8 imply Σ �ctx Ψ,Ω1,Ω

′
2 ok),

but this is true by Lemma E.9. We must now show Σ; Ψ′ �ty τ2[ξ] (x (τ1 b)) : κ4.
We’ve already ascertained that Σ; Ψ′ �ty τ1 b : κ1. We see that Σ; Ψ′ �ty x (τ1 b) :
κ2[τ1 b/a]. Thus Σ; Ψ′ �ty τ2[ξ] (x (τ1 b)) : κ4[x (τ1 b)/x2], but Lemma E.11 tells
us that the substitution in the kind has no effect. We are thus done by two uses
of Ty_Lam.

Case ISub_FunIrrelRel: Similar to previous case. Note that b can be used
irrelevantly even though it is bound relevantly. The opposite way would not
work.

Case ISub_FunIrrel: Similar to previous case.
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Case ISub_Unify:

fresh ι

τ1 ≤∗ τ2  λx :Relτ1. (x B ι) a ι:τ1 ∼ τ2

ISub_Unify

We must show that Σ; Ψ, ι:τ1 ∼ τ2 �ty λx :Relτ1. (x B ι) :
˜
Πx :Relτ1. τ2. Our last step

will be Ty_Lam and thus we must show Σ; Ψ, ι:τ1 ∼ τ2, x :Relτ1 �ty x B ι : τ2,
for which we only need show that Σ �ctx Ψ, ι:τ1 ∼ τ2 ok, for which we only need
show that Σ; Rel(Ψ) �ty τ1 : Type and Σ; Rel(Ψ) �ty τ2 : Type, which we know
by assumption. We are done.

Case ISub_DeepSkol:

�̀pre κ2  ∆;κ′2; τ1

�̀Spec
inst κ1  ψ;κ′1 a Ω1

κ′1 ≤∗ κ′2  τ2 a Ω2

Ω1,Ω2 ↪→ ∆ Ω′; ξ

κ1 ≤ κ2  λx :Relκ1. τ1 (λ∆. τ2[ξ] (x ψ[ξ])) a Ω′
ISub_DeepSkol

We must show Σ; Ψ,Ω′ �ty λx :Relκ1. τ1 (λ∆. τ2[ξ] (x ψ[ξ])) :
˜
Πx :Relκ1. κ2. The last

step will be Ty_Lam, so we must show Σ; Ψ,Ω′, x :Relκ1 �ty τ1 (λ∆. τ2[ξ] (x ψ[ξ])) :
κ2. From Σ; Rel(Ψ) �ty κ1 : Type, we can use Ctx_TyVar to see Σ �ctx
Ψ, x :Relκ1 ok. Thus Σ; Ψ, x :Relκ1 �ty x : κ1. Lemma E.36 then tells us
that Σ; Ψ, x :Relκ1,Ω1 �ty x ψ : κ′1. We then know (by Lemma E.17) that
Σ; Rel(Ψ, x :Relκ1,Ω1) �ty κ′1 : Type. Lemma E.40 tells us that Σ; Ψ �ty τ1 :

˜
Πx1:Rel(

˜
Π∆. κ′2). κ2. Lemma E.17 and inversion gives Σ; Rel(Ψ,∆) �ty κ′2 : Type.

We can then use the induction hypothesis with context Ψ, x :Relκ1,∆,Ω1 (known
well-formed by Lemma E.9) to get Σ; Ψ, x :Relκ1,∆,Ω1,Ω2 �ty τ2 :

˜
Πx2:Relκ

′
1. κ
′
2.

Lemma E.35 shows that Σ; Ψ, x :Relκ1,Ω
′,∆ �ty τ2[ξ] : (

˜
Πx2:Relκ

′
1. κ
′
2)[ξ]. The

kind can be rewritten to
˜
Πx2:Rel(κ

′
1[ξ]). κ

′
2[ξ] but Lemma E.34 tells us that

κ′2[ξ] = κ′2. We established earlier that Σ; Ψ, x :Relκ1,Ω1 �ty x ψ : κ′1. We can
weaken this to Σ; Ψ, x :Relκ1,∆,Ω1,Ω2 �ty x ψ : κ′1 and then use Lemma E.35
to get Σ; Ψ, x :Relκ1,Ω

′,∆ �ty (x ψ)[ξ] : κ′1[ξ]. We know that x [ξ] = x be-
cause x is just a non-unification variable. Rule Ty_AppRel thus gives us
Σ; Ψ, x :Relκ1,Ω

′,∆ �ty τ2[ξ] (x ψ[ξ]) : κ′2[x ψ[ξ]/x2] but Lemma E.11 tells us that
the substitution in the kind has no effect. We now use Ty_Lam (repeatedly)
to see Σ; Ψ, x :Relκ1,Ω

′ �ty λ∆. τ2[ξ] (x ψ[ξ]) :
˜
Π∆. κ′2. Thus Ty_AppRel tells us

Σ; Ψ, x :Relκ1,Ω
′ �ty τ1 (λ∆. τ2[ξ] (x ψ[ξ])) : κ2[(λ∆. τ2[ξ] (x ψ[ξ]))/x1], but Lemma

E.11 tells us that the substitution in the kind has no effect. We only need to
reshuffle the context; in other words, we must now show Σ �ctx Ψ,Ω′, x :Relκ1 ok
to be done. For this to hold, we need to know that none of Ω′ depend on x . First,
note that x is local to rule ISub_DeepSkol. We see that ∆ is produced by �̀pre
with no mention of x , Ω1 is produced by �̀inst with no mention of x , and Ω2 is
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produced by ≤∗ with no mention of x . Therefore, x is not mentioned in any of
these, and we are done.

Lemma E.42 (Type elaboration is sound).

1. If any of the following:

(a) Σ �ctx Ψ ok and Σ; Ψ �̀ty t τ : κ a Ω, OR
(b) Σ �ctx Ψ ok and Σ; Ψ �̀∗

ty t τ : κ a Ω, OR
(c) Σ; Rel(Ψ) �ty κ : Type and Σ; Ψ �̀ty t : κ τ a Ω, OR
(d) Σ; Rel(Ψ) �ty κ : Type and Σ; Ψ �̀∗

ty t : κ τ a Ω

Then Σ; Ψ,Ω �ty τ : κ.

2. If Σ �ctx Ψ ok and Σ; Ψ �̀pt s σ a Ω, then Σ; Rel(Ψ,Ω) �ty σ : Type.

3. If Σ; Ψ �ty τ1 : Πνa:ρκ1. κ2 and Σ; Ψ; ρ �̀∗arg t2 : κ1  ψ2; τ2 a Ω, then Σ; Ψ,Ω �ty
τ1 ψ2 : κ2[τ2/a].

4. If Σ; Rel(Ψ) �ty κ : Type, Σ; Ψ �ty τ0 : ’Π∆.H τ , Σ; Rel(Ψ) �ty H τ : Type, and
Σ; Ψ; ’Π∆.H τ ; τ0 �̀alt alt : κ alt a Ω, then Σ; Ψ,Ω; ’Π∆.H τ �τ0alt alt : κ.

5. If Σ; Rel(Ψ) �ty κ : Type, Σ; Ψ �ty τ0 : ’Π∆.H τ , Σ; Rel(Ψ) �ty H τ : Type, and
Σ; Ψ;κ0; τ0 �̀altc alt : κ alt a Ω, then Σ; Ψ,Ω;κ0 �

τ0
alt alt : κ.

6. If Σ �ctx Ψ ok and Σ; Ψ �̀q qvar a : κ; ν a Ω, then Σ; Rel(Ψ,Ω) �ty κ : Type.

7. If Σ �ctx Ψ ok and Σ; Ψ �̀aq aqvar a : κ a Ω, then Σ; Rel(Ψ,Ω) �ty κ : Type.

8. If Σ; Ψ �ty τ0 : κ and Σ; Ψ �̀aq aqvar : κ a : κ′; x .τ a Ω, then Σ; Ψ,Ω �ty τ [τ0/x ] :
κ′.

Proof. Proceed by induction on the structure of the type inference derivation.

Case ITy_Inst:

Σ; Ψ �̀∗
ty t τ : κ a Ω1

�̀Spec
inst κ ψ;κ′ a Ω2

Σ; Ψ �̀ty t τ ψ : κ′ a Ω1,Ω2

ITy_Inst

The induction hypothesis gives us Σ; Ψ,Ω1 �ty τ : κ. Lemma E.36 then gives us
Σ; Ψ,Ω1,Ω2 �ty τ ψ : κ′ as desired.

Case ITy_Var: By Ty_Var and Lemma E.36.
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Case ITy_App:

Σ; Ψ �̀ty t1  τ1 : κ0 a Ω1

�̀fun κ0; Rel γ; Π; a; ρ;κ1;κ2 a Ω2

Σ; Ψ,Ω1,Ω2; ρ �̀∗arg t2 : κ1  ψ2; τ2 a Ω3

Σ; Ψ �̀∗
ty t1 t2  (τ1 B γ)ψ2 : κ2[τ2/a] a Ω1,Ω2,Ω3

ITy_App

The induction hypothesis tells us that Σ; Ψ,Ω1 �ty τ1 : κ0. Thus Σ; Rel(Ψ,Ω1) �ty
κ0 : Type by Lemma E.17. Lemma E.37 tells us that Σ; Rel(Ψ,Ω1,Ω2) �co γ :
κ0 ∼ ΠReqa:ρκ1. κ2. Rule Ty_Cast gives us Σ; Ψ,Ω1,Ω2 �ty τ1Bγ : ΠReqa:ρκ1. κ2.
Another use of the induction hypothesis (for the �̀∗arg premise) gives us our desired
outcome.

Case ITy_AppSpec: By induction.

Case ITy_Annot: By induction.

Case ITy_Case:

Σ; Ψ �̀ty t0  τ0 : κ0 a Ω0

Σ; Ψ,Ω0 �̀scrut alt;κ0  γ; ∆;H ′; τ a Ω′0
freshα Ω′ = Ω0,Ω

′
0, α:IrrelType

∀i , Σ; Ψ,Ω′; ’Π∆.H ′ τ ; τ0 B γ �̀alt alti : α alti a Ωi

alt
′

= make_exhaustive(alt ;κ)

Σ; Ψ �̀∗
ty case t0 of alt caseα (τ0 B γ) of alt

′
: α a Ω′,Ω

ITy_Case

The induction hypothesis tells us that Σ; Ψ,Ω0 �ty τ0 : κ0. Lemma E.38 tells
us that Σ; Ψ,Ω0,Ω

′
0 �ty τ0 B γ : ’Π∆.H ′ τ and Σ; Rel(Ψ,Ω0,Ω

′
0) �ty H

′ τ : Type.
Rule Ctx_UTyVar gives us Σ �ctx Ω′ ok. The induction hypothesis (for �̀alt)
tells us that, ∀i, Σ; Ψ,Ω′,Ωi ; ’Π∆.H ′ τ �τ0Bγalt alti : α. Lemma E.39 then tells us
that alt ′ are well-formed and exhaustive. Lemma E.9 (and Lemma E.8 on the �alt
judgments) allows us to combine all the Ωi into Ω. We are done by Ty_Case.

Case ITy_Lam:

Σ; Ψ �̀q qvar a : κ1; ν a Ω1

Σ; Ψ,Ω1, a:Relκ1 �̀∗ty t τ : κ2 a Ω2

Ω2 ↪→ a:Relκ1  Ω′2; ξ

Σ; Ψ �̀∗
ty λqvar. t λa:Relκ1. (τ [ξ]) :

˜
Πνa:Relκ1. (κ2[ξ]) a Ω1,Ω′2

ITy_Lam

The induction hypothesis (on �̀q) tells us that Σ; Rel(Ψ,Ω1) �ty κ1 : Type.
Thus Σ �ctx Ψ,Ω1, a:Relκ1 ok and we can use the induction hypothesis to get
Σ; Ψ,Ω1, a:Relκ1,Ω2 �ty τ : κ2. By Lemma E.35, we get Σ; Ψ,Ω1,Ω

′
2, a:Relκ1 �ty

τ [ξ] : κ2[ξ] and thus Σ; Ψ,Ω1,Ω
′
2 �ty λa:Relκ1. (τ [ξ]) :

˜
Πνa:Relκ1. (κ2[ξ]) as desired.

Case ITy_LamIrrel: Like previous case.
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Case ITy_Arrow: By induction and Lemma E.9

Case ITy_MArrow: By induction and Lemma E.9

Case ITy_Fix:

Σ; Ψ �̀ty t τ : κ a Ω1

�̀fun κ; Rel γ;
˜
Π; a; Rel;κ1;κ2 a Ω2

Σ; Rel(Ψ,Ω1,Ω2) �ty κ2 : Type
fresh ι Ω = Ω1,Ω2, ι:κ2 ∼ κ1

Σ; Ψ �̀∗
ty fix t fix (τ B (γ #

˜
Πa:Rel〈κ1〉. ι)) : κ1 a Ω

ITy_Fix

The induction hypothesis gives us Σ; Ψ,Ω1 �ty τ : κ and thus Σ; Rel(Ψ,Ω1) �ty
κ : Type by Lemma E.17. Lemma E.37 gives us Σ; Rel(Ψ,Ω1,Ω2) �co γ : κ ∼

˜
ΠReqa:Relκ1. κ2 and then Ty_Cast tells us Σ; Ψ,Ω1,Ω2 �ty τBγ :

˜
ΠReqa:Relκ1. κ2.

Thus, Lemma E.8 tells us Σ �ctx Ψ,Ω1,Ω2 ok. In order to prove Σ �ctx Ω ok, we
must show Σ; Rel(Ψ,Ω1,Ω2) �ty κ2 : Type and Σ; Rel(Ψ,Ω1,Ω2) �ty κ1 : Type.
The first of these is a premise to ITy_Fix. To get the second, we use Lemma
E.17 to get Σ; Rel(Ψ,Ω1,Ω2) �ty

˜
ΠReqa:Relκ1. κ2 : Type and then invert. We can

conclude Σ �ctx Ω ok by Ctx_UCoVar.

Inversion on Σ; Ψ,Ω1,Ω2 �ty τ B γ :
˜
ΠReqa:Relκ1. κ2 tells us that Σ; Rel(Ψ,Ω) �co

γ : κ ∼
˜
ΠReqa:Relκ1. κ2. We can further see (by Co_PiTy) that Σ; Rel(Ψ,Ω) �co

˜
Πa:Rel〈κ1〉. ι : (

˜
Πa:Relκ1. κ2) ∼ (

˜
Πa:Relκ1. (κ1[aBsym 〈κ1〉/a])) However, because

a # κ1 (by Lemma E.11), that last substitution has no effect, and so we
conclude Σ; Rel(Ψ,Ω) �co

˜
Πa:Rel〈κ1〉. ι : (

˜
Πa:Relκ1. κ2) ∼ (

˜
Πa:Relκ1. κ1) and thus

Σ; Ψ,Ω �ty τB(γ#
˜
Πa:Rel〈κ1〉. ι) :

˜
Πa:Relκ1. κ1. Finally, Ty_Fix gives us Σ; Ψ,Ω �ty

fix (τ B (γ #
˜
Πa:Rel〈κ1〉. ι)) : κ1 as desired.

Case ITy_Let:

Σ; Ψ �̀∗
ty t1  τ1 : κ1 a Ω

Σ; Ψ,Ω, x :Relκ1 �̀∗ty t2  τ2 : κ2 a Ω2

Ω2 ↪→ x :Relκ1  Ω′2; ξ

Σ; Ψ �̀∗
ty let x := t1 in t2  (λx :Relκ1. (τ2[ξ])) τ1 : κ2[ξ][τ1/x ] a Ω,Ω′2

ITy_Let

The induction hypothesis gives us Σ; Ψ,Ω �ty τ1 : κ1. Lemma E.17 tells us
Σ; Rel(Ψ,Ω) �ty κ1 : Type and thus that Σ �ctx Ψ,Ω, x :Relκ1 ok. Another use
of the induction hypothesis gives us Σ; Ψ,Ω, x :Relκ1,Ω2 �ty τ2 : κ2. Lemma
E.35 then gives us Σ; Ψ,Ω,Ω′2, x :Relκ1 �ty τ2[ξ] : κ2[ξ] and thus Σ; Ψ,Ω,Ω′2 �ty
λx :Relκ1. (τ2[ξ]) :

˜
Πx :Relκ1. (κ2[ξ]) Rule Ty_AppRel gives us Σ; Ψ,Ω,Ω′2 �ty

(λx :Relκ1. (τ2[ξ])) τ1 : κ2[ξ][τ1/x ] as desired.

Case ITyC_Case: Similar to the case for ITy_Case. The only differences are
the definition of Ω′ (which is simpler in this case) and the use of �̀altc in place of
�̀alt. Both �̀alt and �̀altc are proven sound via the induction hypothesis.
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Case ITyC_LamDep:

�̀fun κ; Rel γ;
˜
Π; a; Rel;κ1;κ2 a Ω0

¬(a # κ2)
Σ; Rel(Ψ) �̀pt s κ′1 a Ω1

Ω = Ω0,Ω1, ι:κ1 ∼ κ′1
Σ; Ψ,Ω, b:Relκ

′
1
�̀∗
ty t : κ2[b B sym ι/a] τ a Ω2

Ω2 ↪→ b:Relκ
′
1  Ω′2; ξ

η = κ2[(a B ι)B sym ι/a] ≈〈Type〉 κ2

τ0 = (λa:Relκ1. (τ [ξ][a B ι/b]B η))B sym γ

Σ; Ψ �̀ty λ(a :: s). t : κ τ0 a Ω,Ω′2
ITyC_LamDep

We have assumed Σ; Rel(Ψ) �ty κ : Type and thus can use Lemma E.37 to get
Σ; Rel(Ψ,Ω0) �co γ : κ ∼

˜
ΠReqa:Relκ1. κ2. (The ¬(a # κ2) premise is not used in

this rule; it is used to filter out which cases are handled in the next one.) By
Lemma E.8, we have Σ �ctx Rel(Ψ) ok and thus can use the induction hypothesis to
get Σ; Rel(Ψ,Ω1) �ty κ′1 : Type. We must now prove that Σ; Rel(Ψ,Ω), b:Relκ

′
1 �ty

κ2[b B sym ι/a] : Type. First, we prove that Σ �ctx Rel(Ψ,Ω), b:Relκ
′
1 ok. For

this, it is left to prove only that Σ; Rel(Ψ,Ω0,Ω1) �ty κ1 : Type. This we can
get from Lemma E.18, inversion of Ty_Pi, and Lemma E.4. The inversion
of Ty_Pi also tells us that Σ; Rel(Ψ,Ω0), a:Relκ1 �ty κ2 : Type. Lemma E.9
allows us to weaken this to Σ; Rel(Ψ,Ω), b:Relκ

′
1, a:Relκ1 �ty κ2 : Type. We can

see that Σ; Rel(Ψ,Ω), b:Relκ
′
1 �ty b B sym ι : κ1. We thus use Lemma E.13 to

get Σ; Rel(Ψ,Ω), b:Relκ
′
1 �ty κ2[b B sym ι/a] : Type as desired. We then use the

induction hypothesis to get Σ; Ψ,Ω, b:Relκ
′
1,Ω2 �ty τ : κ2[b B sym ι/a]. Lemma

E.35 allows us to rewrite this to Σ; Ψ,Ω,Ω′2, b:Relκ
′
1 �ty τ [ξ] : κ2[b B sym ι/a][ξ],

but Lemma E.34 tells us the [ξ] in the kind has no effect. Lemma E.9 allows
us to weaken this to Σ; Ψ,Ω,Ω′2, a:Relκ1, b:Relκ

′
1 �ty τ [ξ] : κ2[b B sym ι/a]. We

can see that Σ; Ψ,Ω,Ω′2, a:Relκ1 �ty a B ι : κ′1 and thus we can use Lemma E.13
to get Σ; Ψ,Ω,Ω′2, a:Relκ1 �ty τ [ξ][a B ι/b] : κ2[b B sym ι/a][a B ι/b]. Inlining
substitutions, we can rewrite the kind to κ2[(a B ι) B sym ι/a]. We can then
see that Σ; Ψ,Ω,Ω′2, a:Relκ1 �ty τ [ξ][a B ι/b] B η : κ2 and by Ty_Lam that
Σ; Ψ,Ω,Ω′2 �ty λa:Relκ1. (τ [ξ][a B ι/b] B η) :

˜
Πa:Relκ1. κ2. A use of Ty_Cast

gives us Σ; Ψ,Ω,Ω′2 �ty (λa:Relκ1. (τ [ξ][a B ι/b]B η))B sym γ : κ as desired.

Case ITyC_Lam:

�̀fun κ; Rel γ;
˜
Π; a; Rel;κ1;κ2 a Ω0

Σ; Ψ �̀aq aqvar : κ1  b : κ′1; x .τ1 a Ω1

Σ; Ψ,Ω0,Ω1, b:Relκ
′
1
�̀∗
ty t : κ2  τ a Ω2

Ω2 ↪→ b:Relκ
′
1  Ω′2; ξ

Ω′ = Ω0,Ω1,Ω
′
2

Σ; Ψ �̀ty λaqvar. t : κ (λa:Relκ1. τ [ξ][τ1[a/x ]/b])B sym γ a Ω′
ITyC_Lam
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Lemma E.37 tells us Σ; Rel(Ψ,Ω0) �co γ : κ ∼
˜
ΠReqa:Relκ1. κ2. Lemma E.18 and

inversions tell us Σ; Rel(Ψ,Ω0) �ty κ1 : Type and Σ; Rel(Ψ,Ω0), a:Relκ1 �ty κ2 :
Type. We can conclude Σ �ctx Rel(Ψ,Ω0), a:Relκ1 ok and thus (using Lemma
E.28) Σ; Ψ,Ω0, a:Relκ1 �ty a : κ1. The induction hypothesis on �̀aq then tells us
Σ; Ψ,Ω0, a:Relκ1,Ω1 �ty τ1[a/x ] : κ′1. We can see by the construction of Ω1 and κ′1
that a # Ω1 and a # κ′1. Because we are in rule ITyC_Lam, it means that
ITyC_LamDep does not apply. This can be for one of two reasons, and thus
we now have two cases:

Case aqvar = a (unannotated binder): In this case, we see (by IAQ-
VarC_Var) that κ′1 = κ1. We can choose a = b by the α-renaming.
Thus, Σ; Rel(Ψ,Ω0), b:Relκ

′
1 �ty κ2 : Type.

Case a # κ2: We now use Lemma E.10 to get Σ; Rel(Ψ,Ω0) �ty κ2 : Type.

Regardless of which case above we are in, we now must prove Σ �ctx
Ψ,Ω0,Ω1, b:Relκ

′
1 ok. To do this, we must show only that Σ; Rel(Ψ,Ω0,Ω1) �ty

κ′1 : Type, which comes from Lemma E.17 and Lemma E.10. We can then use
Lemma E.9 to get Σ; Rel(Ψ,Ω0,Ω1), b:Relκ

′
1 �ty κ2 : Type. The induction hypoth-

esis now applies to get Σ; Ψ,Ω0,Ω1, b:Relκ
′
1,Ω2 �ty τ : κ2. Lemma E.35 tells us

Σ; Ψ,Ω0,Ω1,Ω
′
2, b:Relκ

′
1 �ty τ [ξ] : κ2[ξ], but Lemma E.34 tells us the [ξ] in the kind

has no effect. Lemma E.9 gives us Σ; Ψ,Ω0, a:Relκ1,Ω1,Ω
′
2, b:Relκ

′
1 �ty τ [ξ] : κ2.

We can thus use Lemma E.13 to get Σ; Ψ,Ω0, a:Relκ1,Ω1,Ω
′
2 �ty τ [ξ][τ1[a/x ]/b] :

κ2[τ1[a/x ]/b], but Lemma E.11 tells us the substitution in the kind has no effect.
Noting that, by analysis stemming from our two cases previously, a # Ω′2,
we can reshuffle the context to be Ψ,Ω0,Ω1,Ω

′
2, a:Relκ1 and thus conclude

Σ; Ψ,Ω0,Ω1,Ω
′
2 �ty λa:Relκ1. τ [ξ][τ1[a/x ]/b] :

˜
Πa:Relκ1. κ2. Thus Ty_Cast gives

us Σ; Ψ,Ω0,Ω1,Ω
′
2 �ty (λa:Relκ1. τ [ξ][τ1[a/x ]/b])B sym γ : κ as desired.

Case ITyC_LamIrrelDep: Like case for ITyC_LamDep.

Case ITyC_LamIrrel: Like case for ITyC_Lam.

Case ITyC_Fix:

Σ; Ψ �̀ty t :
˜
ΠReqa:Relκ. κ τ a Ω

Σ; Ψ �̀ty fix t : κ fix τ a Ω
ITyC_Fix

We know Σ; Rel(Ψ) �ty κ : Type. We can thus conclude by Ty_Pi that
Σ; Rel(Ψ) �ty

˜
Πa:Relκ. κ : Type. We thus use the induction hypothesis to get

Σ; Ψ,Ω �ty τ :
˜
Πa:Relκ. κ. Thus we are done by Ty_Fix.

301



Case ITyC_Infer:

Σ; Ψ �̀∗
ty t τ : κ1 a Ω

�̀pre κ2  ∆;κ′2; τ2

Ω ↪→ ∆ Ω′; ξ1

κ1[ξ1] ≤∗ κ′2  τ ′2 a Ω2

Ω2 ↪→ ∆ Ω′2; ξ2

Σ; Ψ �̀ty t : κ2  τ2 (λ∆. τ ′2[ξ2] τ [ξ1]) a Ω′,Ω′2
ITyC_Infer

The induction hypothesis tells us that Σ; Ψ,Ω �ty τ : κ1. We have assumed
Σ; Rel(Ψ) �ty κ2 : Type. We can thus use Lemma E.40 to get Σ; Ψ �ty τ2 :

˜
Πx :Rel(

˜
Π∆. κ′2). κ2. Lemma E.17 and inversion gives us Σ; Rel(Ψ,∆) �ty κ′2 : Type

and thus Lemma E.8 and Lemma E.28 give us Σ �ctx Ψ,∆ ok. We can thus
use Lemma E.9 to get Σ; Ψ,∆,Ω �ty τ : κ1 and then Lemma E.35 to get
Σ; Ψ,Ω′,∆ �ty τ [ξ1] : κ1[ξ1]. Lemma E.17 tells us Σ; Rel(Ψ,Ω′,∆) �ty κ1[ξ1] :
Type and Lemma E.9 tells us Σ; Rel(Ψ,Ω′,∆) �ty κ′2 : Type. We can thus use
Lemma E.41 to get Σ; Ψ,Ω′,∆,Ω2 �ty τ ′2 :

˜
Πx :Rel(κ1[ξ1]). κ

′
2. Lemma E.35 then

tells us Σ; Ψ,Ω′,Ω′2,∆ �ty τ
′
2[ξ2] : (

˜
Πx :Rel(κ1[ξ1]). κ

′
2)[ξ2], but Lemma E.34 tells

us that the [ξ2] in the kind has no effect (because neither κ′2 nor κ1 nor ξ1

can mention anything bound in Ω2). We thus have Σ; Ψ,Ω′,Ω′2,∆ �ty τ
′
2[ξ2] :

˜
Πx :Rel(κ1[ξ1]). κ

′
2. Ty_AppRel (with Lemma E.9) tells us Σ; Ψ,Ω′,Ω′2,∆ �ty

τ ′2[ξ2] τ [ξ1] : κ′2[τ [ξ1]/x ] but Lemma E.11 tells us that the substitution in the kind
has no effect. Multiple uses of Ty_Lam gives us Σ; Ψ,Ω′,Ω′2 �ty λ∆. τ ′2[ξ2] τ [ξ1] :

˜
Π∆. κ′2. Yet another use of Lemma E.9 and Ty_AppRel gives us Σ; Ψ,Ω′,Ω′2 �ty
τ2 (λ∆. τ ′2[ξ2] τ [ξ1]) : κ2[λ∆. τ ′2[ξ2] τ [ξ1]/x ], where Lemma E.11 tells us that the
substitution in the kind has no effect. We are thus done.

Invisible λ/Λ cases: Like corresponding visible λ/Λ cases. Note that the difference
between the �̀ty and �̀∗

ty checking judgments is relevant for user-facing issues of
type inference (e.g., principal types), not the soundness we are proving here.

Case ITyC_Let: Similar to case for ITy_Let. The only difference is that the
expected type is propagated down.

Case ITyC_Skol:

ν ≤ Spec
Σ; Ψ, $a:ρκ1 �̀∗ty t : κ2  τ a Ω
Ω ↪→ $a:ρκ1  Ω′; ξ

Σ; Ψ �̀∗
ty t :

˜
Πν$a:ρκ1. κ2  λ$a:ρκ1. τ [ξ] a Ω′

ITyC_Skol

We have assumed Σ; Rel(Ψ) �ty
˜
Πν$a:ρκ1. κ2 : Type. Inversion gives us

Σ; Rel(Ψ), $a:Relκ1 �ty κ2 : Type, and we can thus use the induction hypothesis to
get Σ; Ψ, $a:ρκ1,Ω �ty τ : κ2. Lemma E.35 tells us Σ; Ψ,Ω′, $a:ρκ1 �ty τ [ξ] : κ2[ξ],
but Lemma E.34 tells us that the [ξ] in the kind has no effect. We can thus

302



conclude Σ; Ψ,Ω′ �ty λ$a:ρκ1. (τ [ξ]) :
˜
Πν$a:ρκ1. κ2 as desired.

Case ITyC_Otherwise: By induction.

Case IPtC_Pi:

�̀pi quant Π; ρ
Σ; Ψ �̀q qvar a : κ; ν a Ω
Σ; Ψ,Ω, a:ρκ �̀pt s σ a Ω2

Ω2 ↪→ a:ρκ Ω′2; ξ

Σ; Ψ �̀pt ∀ qvar. s Πνa:ρκ. (σ[ξ]) a Ω,Ω′2
IPtC_Pi

The induction hypothesis (on �̀q) tells us Σ; Rel(Ψ,Ω) �ty κ : Type. Thus Σ �ctx
Rel(Ψ,Ω, a:ρκ) ok and we can use the induction hypothesis (on �̀pt) to get
Σ; Rel(Ψ,Ω, a:ρκ,Ω2) �ty σ : Type. Lemma E.35 gives us Σ; Rel(Ψ,Ω,Ω′2, a:ρκ) �ty
σ[ξ] : Type and thus Σ; Rel(Ψ,Ω,Ω′2) �ty

˜
Πa:ρκ. (σ[ξ]) : Type as desired.

Case IPtC_Constrained:

Σ; Ψ �̀ty t : Type τ a Ω1

Σ; Ψ,Ω1, $a:Relτ �̀pt s σ a Ω2

Ω2 ↪→ $a:Relτ  Ω′2; ξ

Σ; Ψ �̀pt t⇒ s 
˜
ΠInf$a:Relτ. (σ[ξ]) a Ω1,Ω′2

IPtC_Constrained

Lemma C.38, Lemma E.9 and Lemma E.3 tell us Σ; Rel(Ψ) �ty Type : Type
and thus we can use the induction hypothesis on �̀ty to get Σ; Ψ,Ω1 �ty τ : Type.
We thus have Σ �ctx Ψ,Ω1, $a:Relτ ok and can use the induction hypothe-
sis on �̀pt to get Σ; Rel(Ψ,Ω1, $a:Relτ,Ω2) �ty σ : Type. Lemma E.35 gives
us Σ; Rel(Ψ,Ω1,Ω

′
2, $a:Relτ) �ty σ[ξ] : Type and thus Σ; Rel(Ψ,Ω1,Ω

′
2) �ty

˜
ΠInf$a:Relτ. (σ[ξ]) : Type as desired.

Case IPtC_Mono: By induction.

Case IArg_Rel: By induction and straightforward use of typing rules.

Case IArg_Irrel: By induction and straightforward use of typing rules.

Case IAlt_Con:

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[τ/dom(∆1)]
dom(∆3) = x dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ
Σ; Ψ,∆3 �̀ty t : κ τ a Ω
Ω ↪→ ∆3  Ω′; ξ
∆′3 = ∆3, c:τ0 ∼ H{τ} x

Σ; Ψ; ’Π∆′.H ′ τ ; τ0 �̀alt H x → t : κ H → λ∆′3. (τ [ξ]) a Ω′
IAlt_Con

We wish to prove Σ; Ψ,Ω′; ’Π∆′.H ′ τ �τ0alt H → λ∆3, (c:τ0 ∼ H{τ} x ). (τ [ξ]) : κ,
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given the premises above along with

• Σ; Rel(Ψ) �ty κ : Type

• Σ; Ψ �ty τ0 : ’Π∆′.H ′ τ

• Σ; Rel(Ψ) �ty H ′ τ : Type

We will use Alt_Match. This requires the following:

Σ t̀c H : ∆1; ∆2;H ′: This is a premise above.
∆3,∆4 = ∆2[τ/dom(∆1)]: This is a premise above.
dom(∆4) = dom(∆′): This is a premise above.
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ: This is a premise above.
Σ; Ψ,Ω′ �ty λ∆3, (c:τ0 ∼ H{τ} x ). (τ [ξ]) : ?Π∆3, c:τ0 ∼ H{τ} dom(∆3). κ: Let Ψ′ =

Ψ,Ω′,∆3, c:τ0 ∼ H{τ} x . We must show only that Σ; Ψ′ �ty τ [ξ] : κ. (Note
that dom(∆3) = x , which is the one discrepancy between the quantified
contexts above.) To use the induction hypothesis on �̀ty, we must show
Σ; Rel(Ψ,∆3) �ty κ : Type, which means we must show only that Σ �ctx
Ψ,∆3 ok and then use Lemma E.9. Lemma C.40 gives us Σ c̀tx ∆1,∆2 ok
and by Lemma E.3, Σ �ctx ∆1,∆2 ok. Lemma C.77 gives us Σ t̀c H ′ :
∅; Rel(∆1); Type. We know Σ; Rel(Ψ) �ty H ′ τ : Type. By Lemma C.42
(easily updated to use � judgments), we can see that Σ; Rel(Ψ) �vec τ :
Rel(∆1) and thus Lemma E.15 tells us Σ �ctx ∆2[τ/dom(∆1)] ok and by
Lemma E.8 and Lemma E.9, Σ �ctx Ψ,∆3 ok as desired. We have concluded
that Σ; Rel(Ψ,∆3) �ty κ : Type and so can use the induction hypothesis
to get Σ; Ψ,∆3,Ω �ty τ : κ. Lemma E.35 tells us Σ; Ψ,Ω′,∆3 �ty τ [ξ] : κ[ξ],
but Lemma E.34 tells us that the [ξ] in the conclusion has no effect. The
last step here is to use weakening to add the binding for c to the context.
This requires proving only that Σ; Rel(Ψ,Ω′,∆3) �ty H{τ} x : ’Π∆4.H

′ τ . We
can see that Σ; Rel(Ψ,Ω′,∆3) �ty H{τ} : ’Π∆3,∆4.H

′ τ by Ty_Con. We are
thus done by Lemma C.31 (easily updated for � judgments).

Case IAlt_Default: By induction and Alt_Default.

Case IAltC_Con: This case is identical to that for IAlt_Con. The difference is
the assumptions that can be made when solving for the unification variables in
Ω, which does not affect the course of this proof.

Case IAltC_Default: Similar to the case for IAlt_Default.

Case IQVar_Req: By induction.

Case IQVar_Spec: By induction.

Case IAQVar_Var:

fresh β

Σ; Ψ �̀aq a  a : β a β:IrrelType
IAQVar_Var
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We must show only that Σ; Rel(Ψ), β:RelType �ty β : Type. This is true by
Ty_UVar.

Case IAQVar_Annot: By induction.

Case IAQVarC_Var:

Σ; Ψ �̀aq a : κ a : κ; x .x a ∅
IAQVarC_Var

Given Σ; Ψ �ty τ0 : κ, we must show Σ; Ψ �ty x [τ0/x ] : κ. By assumption.

Case IAQVarC_Annot:

Σ; Rel(Ψ) �̀pt s σ a Ω1

κ ≤ σ  τ a Ω2

Σ; Ψ �̀aq (a :: s) : κ a : σ; x .τ x a Ω1,Ω2

IAQVarC_Annot

Given Σ; Ψ �ty τ0 : κ, we must show Σ; Ψ,Ω1,Ω2 �ty (τ x )[τ0/x ] : σ, which can be
rewritten to Σ; Ψ,Ω1,Ω2 �ty τ τ0 : σ. We know Σ �ctx Ψ ok by Lemma E.8. The
induction hypothesis then tells us Σ; Rel(Ψ,Ω1) �ty σ : Type. Lemma E.17 tells
us Σ; Rel(Ψ) �ty κ : Type. We can thus use Lemma E.41 to get Σ; Ψ,Ω1,Ω2 �ty τ :

˜
Πx :Relκ. σ. Rule Ty_AppRel gives us Σ; Ψ,Ω1,Ω2 �ty τ τ0 : σ[τ0/x ], but Lemma
E.11 tells us that the substitution in the kind has no effect. We are done.

Lemma E.43 (Declarations). If Σ c̀tx Γ ok and Σ; Γ �̀decl decl  x : κ := τ , then
dom(decl) = x and Σ; Γ t̀y τ : κ.

Proof. By case analysis on the type inference judgment.

Case IDecl_Synthesize:

Σ; Γ �̀ty t τ : κ a Ω
Σ; Γ �̀solv Ω ∆; Θ
τ ′ = λ∆. (τ [Θ]) κ′ =

˜
ΠInf∆. (κ[Θ])

Σ; Γ �̀decl x := t x : κ′ := τ ′
IDecl_Synthesize

By Lemma E.3, we have Σ �ctx Γ ok. We then use Lemma E.42 to get Σ; Γ,Ω �ty
τ : κ. Lemma E.8 gives us Σ �ctx Γ,Ω ok. Property E.24 tells us that Θ is
idempotent, that Σ �ctx Γ,∆ ok, and that Σ; Γ,∆ �z Θ : Ω. Lemma E.9 gives us
Σ; Γ,∆,Ω �ty τ : κ. We can then use Lemma E.23 to get Σ; Γ,∆ �ty τ [Θ] : κ[Θ].
Rule Ty_Lam (used repeatedly) gives us Σ; Γ �ty τ ′ : κ′. Lemma E.3 gives
Σ; Γ t̀y τ

′ : κ′ as desired.
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Case IDecl_Check:

Σ; Γ �̀pt s σ a Ω1

Σ; Rel(Γ) �̀solv Rel(Ω1) ∆1; Θ1

σ′ =
˜
ΠInf∆1. (σ[Θ1])

Σ; Γ �̀∗
ty t : σ′  τ a Ω2

Σ; Γ �̀solv Ω2  ∅; Θ2

τ ′ = τ [Θ2]

Σ; Γ �̀decl x :: s := t x : σ′ := τ ′
IDecl_Check

Lemma E.3 provides Σ �ctx Γ ok. We then use Lemma E.42 to get Σ; Rel(Γ,Ω1) �ty
σ : Type. Lemma E.8 gives us Σ �ctx Rel(Γ,Ω1) ok. Property E.24 tells us Θ1

is idempotent, Σ �ctx Rel(Γ),∆1 ok, and Σ; Rel(Γ),∆1 �z Θ1 : Rel(Ω1). Lemma
E.9 gives us Σ; Rel(Γ),∆1,Rel(Ω1) �ty σ : Type. Lemma E.23 then says that
Σ; Rel(Γ),∆1 �ty σ[Θ1] : Type. Lemma C.6 gives us Σ; Rel(Γ),Rel(∆1) �ty σ[Θ1] :
Type and thus we can use Ty_Pi repeatedly to get Σ; Rel(Γ) �ty σ′ : Type.
A second use of Lemma E.42 gives us Σ; Γ,Ω2 �ty τ : σ′. A second use of
Property E.24 tells us Θ2 is idempotent and Σ; Γ �z Θ2 : Ω2. We can thus use
Lemma E.23 once again to tell us Σ; Γ �ty τ [Θ2] : σ′[Θ2], except that Lemma E.11
tells us that zonking the kind has no effect. Thus Σ; Γ �ty τ ′ : σ′, and Lemma E.3
gives us Σ; Γ t̀y τ

′ : σ′ as desired.

Theorem E.44 (Full program elaboration is sound). If Σ c̀tx Γ ok and Σ; Γ �̀prog
prog Γ′; θ, then:

1. Σ c̀tx Γ,Γ′ ok

2. Σ; Γ s̀ubst θ : Γ′

3. dom(prog) ⊆ dom(Γ′)

Proof. By induction on the type inference judgment.

Case IProg_Nil: Trivial.

Case IProg_Decl:

Σ; Γ �̀decl decl x : κ := τ
Σ; Γ, x :Relκ, c:x ∼ τ �̀prog prog Γ′; θ

Σ; Γ �̀prog decl; prog x :Relκ, c:x ∼ τ,Γ′; (τ/x , 〈τ〉/c) ◦ θ
IProg_Decl

Lemma E.43 tells us that x = dom(decl) and Σ; Γ t̀y τ : κ. We must show
Σ c̀tx Γ, x :Relκ, c:x ∼ τ ok. To do this, we need only Σ; Rel(Γ) t̀y κ : Type,
which we get from Lemma C.43. We can then use the induction hypothesis
to get Σ c̀tx Γ, x :Relκ, c:x ∼ τ,Γ′ ok, Σ; Γ, x :Relκ, c:x ∼ τ s̀ubst θ : Γ′, and
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dom(prog) ⊆ dom(Γ′). We already have that the outgoing context is well-formed
and the domain condition. We need only show that Σ; Γ s̀ubst (τ/x , 〈τ〉/c) ◦
θ : x :Relκ, c:x ∼ τ,Γ′. Let θ′ = (τ/x , 〈τ〉/c) ◦ θ. We will work backwards.
The last step will be Subst_TyRel. We must show Σ; Γ t̀y x [θ′] : κ and
Σ; Γ s̀ubst θ

′ : (c:x ∼ τ,Γ′)[τ/x ]. We have already established the former (noting
that x [θ′] = τ). We rewrite the latter as Σ; Γ s̀ubst θ

′ : c:τ ∼ τ,Γ′[τ/x ]. This
will be shown by Subst_Co. We must then show Σ; Rel(Γ) c̀o c[θ′] : τ ∼ τ and
Σ; Γ s̀ubst θ

′ : Γ′[τ/x ][〈τ〉/c]. The former is straightforwardly by Co_Refl and
Lemma C.6. For the latter, recall that we know Σ; Γ, x :Relκ, c:x ∼ τ s̀ubst θ : Γ′.
Thus, two uses of Lemma E.29 gives us Σ; Γ s̀ubst θ

′ : Γ′[τ/x ][〈τ〉/c] as desired.
We are done.

E.10 Conservativity with respect to OutsideIn

.
This section assumes the introduction to Section 6.8.2, where much of the conser-

vativity argument is given.

Claim E.45 (Expressions). If Γ �̀oi t : κ  Qw under axiom set Q and signature
Σ, then Σ; Γ, encode(Q) �̀ty t  · : κ a α:IrrelType, encode(Qw) where α = fuv(κ) ∪
fuv(Qw).

Proof sketch. Case VarCon: OutsideIn fully instantiates all variables, producing
unification variables for any quantified type variables and emitting wanted
constraints for any constraint in the variable’s type. Bake does the same, via
its �̀inst judgment.

Case App: In this case, t = t1 t2. OutsideIn’s is a fairly typicaly application form
rule, but using constraints to assert that the type of t1 is indeed a function.
Bake works similarly, using its �̀fun judgment to assert that a type is a Π-type.
Of course, OutsideIn’s treatment of t2 uses synthesis while Bake’s uses its
checking judgment.

Case Abs: This rule coresponds quite closely to Bake’s ITy_Lam rule. Note that
OutsideIn does not permit annotations on λ-bound variables, simplifying
the treatment of abstractions. Furthermore, Bake must use its generalization
judgment (written with ↪→) to handle its unification variables, while OutsideIn
does not need to have this complication.
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Case Case: Contrast OutsideIn’s rule with Bake’s:

Γ �̀ e : τ  C β, γ fresh
Ki:∀abi.Qi ⇒ υi → T a bi fresh
Γ, (xi:[a 7→ γ]υi) �̀ ei : τi  Ci δi = fuv(τi, Ci)− fuv(Γ, γ)

C ′i =

{
Ci ∧ τi ∼ β if bi = ε and Qi = ε

∃δi.([a 7→ γ]Qi ⊃ Ci ∧ τi ∼ β) otherwise
Γ �̀ case e of {Ki xi → ei} : β  C ∧ (T γ ∼ τ) ∧ (

∧
C ′i)

Case

Σ; Ψ �̀ty t0  τ0 : κ0 a Ω0

Σ; Ψ,Ω0 �̀scrut alt;κ0  γ; ∆;H ′; τ a Ω′0
freshα Ω′ = Ω0,Ω

′
0, α:IrrelType

∀i , Σ; Ψ,Ω′; ’Π∆.H ′ τ ; τ0 B γ �̀alt alti : α alti a Ωi

alt
′

= make_exhaustive(alt ;κ)

Σ; Ψ �̀∗
ty case t0 of alt caseα (τ0 B γ) of alt

′
: α a Ω′,Ω

ITy_Case

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[τ/dom(∆1)]
dom(∆3) = x dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ
Σ; Ψ,∆3 �̀ty t : κ τ a Ω
Ω ↪→ ∆3  Ω′; ξ
∆′3 = ∆3, c:τ0 ∼ H{τ} x

Σ; Ψ; ’Π∆′.H ′ τ ; τ0 �̀alt H x → t : κ H → λ∆′3. (τ [ξ]) a Ω′
IAlt_Con

The first premises line up well, with both checking the scrutinee. Both rules
then must ensure that the scrutinee’s type is headed by a type constant (T
in OutsideIn, H in Bake). This is done via the emission of a constraint in
OutsideIn (the T γ ∼ τ constraint in the conclusion) and the use of �̀scrut in
Bake. One reason for a difference in treatment here is that Bake wishes to
use any information available because of the existence of its checking judgment,
whereas OutsideIn is free to invent new, uninformative unification variables
(γ). This difference makes Bake produce the unification variables only when
the scrutinee’s type (κ0) is not already manifestly the right shape.

Both rules then check the individual alternatives, which have to look up the
constructor (Ki and H , respectively) in the environment. Pico gathers the
three sorts of existentials together in ∆2; OutsideIn expands this out to the
bi, Qi, and υi. OutsideIn does not permit unsaturated matching, so we can
treat ∆4 as empty. OutsideIn does not consider scoped type variables; it thus
only brings in xi of types υi while checking each alternative; Bake brings all
of ∆3 into scope. OutsideIn checks the synthesized type of each alternative,
τi against the overall result type β; Bake ensures the types of the alternatives
line up by using a checking judgment against the result kind κ. (Note that, like
OutsideIn, this result kind is a unification variable. We can see that the κ in
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IAlt_Con is the α from ITy_Case.)

The constraint C ′i emitted by OutsideIn is delicately constructed. If there are
no existential type variables and no local constraints, OutsideIn emits a simple
constraint. Otherwise, it has to emit an implication constraint. OutsideIn’s
implication constraints allow unification variables to be local to a certain con-
straint; the treatment of implication constraints is somewhat different than
that of simple constraints. In particular, when solving an implication constraint,
any unification variables that arose outside of that implication are considered
untouchable—they cannot then be unified. (See Section 6.3.3.) In order to avoid
imposing the untouchability restriction, OutsideIn makes a simple constraint
when possible. Due to Bake’s more uniform treatment of implications, this
distinction is not necessary; untouchability is informed by the order of unification
variables in the context passed to the solver.

Bake makes its version of implication constraints via the generalization judgment
(written with ↪→). All of the constraints generated while checking the alternative
are quantified over variables in ∆3; this precisely corresponds to the apapearance
of the Qi to the left of the ⊃ in OutsideIn’s constraint C ′i. (Recall that Qi is a
component of Bake’s ∆3.) Bake also adds another equality assumption into
its ∆′3; this equality has to do with dependent pattern matching (Section 4.3.3)
and has no place in the non-dependent language of OutsideIn.

Case Let: Other than Bake’s generalization step, these rules line up perfectly.

Cases LetA and GLetA: These cases cover annotated lets, where the bound
variable is also given a type. I do not consider this form separately, instead
preferring to use the checking judgments to handle this case.

E.11 Conservativity with respect to System SB
This section compares Bake with System SB, as presented by Eisenberg et al. [33,
Figure 8]. Omitted elaborations are denoted with ·. Please refer to the introduction to
Section 6.8.3 for changes needed to both System SB and Bake in order to prove the
following claims.

Claim E.46 (System SB Subsumption). If κ1 ≤dsk κ2, then κ1 ≤ κ2  · a Ω.

Proof sketch. Note that this refers to the judgment in Eisenberg et al. [33, bottom
of Figure 9]. If we assume all relevances are Rel, the rules of the Bake subsumption
judgments are identical to those of the SB judgments. The one exception is the
comparison between DSK_Refl and ISub_Unify, where Bake emits an equality
constraint instead of simply asserting that the two types are equal. This variance is
addressed by the tweaks above, and thus we are done.
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Claim E.47 (Conservativity with respect to System SB). Assume Ψ ≈ Γ.

1. If Γ s̀b t⇒ κ, then Σ; Ψ �̀ty t · : κ a Ω.

2. If Γ ∗̀
sb t⇒ κ, then Σ; Ψ �̀∗

ty t · : κ a Ω.

3. If Γ s̀b t⇐ κ, then Σ; Ψ �̀ty t : κ · a Ω.

4. If Γ ∗̀
sb t⇐ κ, then Σ; Ψ �̀∗

ty t : κ · a Ω.

Proof sketch. By induction on the input derivation. This remains only a proof sketch
because I have not concretely defined the tweaks above, nor have I given a full
accounting of how types written in SB source are checked to become Pico types.

Case SB_Abs: We know here that t = λx . t0, κ =
˜
ΠReqx :Relα. κ2, and that

Γ, x :Relα
∗̀
sb t0 ⇒ κ2. We will use ITy_Lam. By IQVar_Req and IAQ-

Var_Var, we can see that Σ; Ψ �̀q x  x : α; Req a α:IrrelType. The induction
hypothesis tells us that Σ; Ψ, α:IrrelType, x :Relα �̀∗ty t0  · : κ2 a Ω. We can thus
use ITy_Lam to get Σ; Ψ �̀∗

ty λx . t0  · :
˜
ΠReqx :Relα. κ2 a α:IrrelType,Ω. We

then must use ITy_Inst to remove the star from the judgment; however, given
that the kind starts with a visible binder, instantiation has no effect, and we are
thus done.

Case SB_InstS: By ITy_Inst, noting that Bake’s instantiation operation �̀inst
behaves exactly like the manual instantation in SB_InstS’s conclusion.

Case SB_Var: By ITy_Var.

Case SB_App: By ITy_App, noting that all visible quantification in System SB
is relevant, and thus the �̀∗arg judgment reduces to �̀∗ty.

Case SB_TApp: By ITy_AppSpec.

Case SB_Annot: Here, we know t = (Λ@a. t0) :: s0 where Σ; Ψ �̀pt
s0  κ a Ω1 and κ =

˜
ΠSpeca:IrrelType, b:IrrelType. κ0. Furthermore,

we know Γ, a:IrrelType ∗̀
sb t0 ⇐ κ0. The induction hypothesis tells us

Σ; Ψ, a:IrrelType, $b:IrrelType �̀∗ty t0 : κ0  · a Ω2. We wish to use ITyC_Skol
(repeatedly) to get from that last judgment to Σ; Ψ, a:IrrelType �̀∗

ty t0 :

˜
ΠSpec$b:IrrelType. κ0  · a Ω3. Rename $b to b. We now wish to use
ITyC_LamInvisIrrel (repeatedly). Consider one use. We can see that
Σ; Ψ �̀aq a : Type  a : Type; x .x a ∅. We know Σ; Ψ, a:IrrelType �̀∗

ty

t0 :
˜
ΠSpecb:IrrelType. κ0  · a Ω3 and can thus conclude Σ; Ψ �̀∗

ty Λ@a. t0 :

˜
ΠSpeca:IrrelType, b:IrrelType. κ0  · a Ω4. Repeat this process to get Σ; Ψ �̀∗

ty

Λ@a. t0 :
˜
ΠSpeca:IrrelType, b:IrrelType. κ0  · a Ω5. This can be rewritten as

Σ; Ψ �̀∗
ty Λ@a. t0 : κ  · a Ω5. Thus ITy_Annot gives us Σ; Ψ �̀∗

ty (Λ@a. t0) ::
s0  · : κ a Ω6 as desired.

Case SB_Let: By ITy_Let.
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Case SB_DLet: By ITyC_Let. Note that System SB’s decision to put
SB_DLet in the unstarred judgment is immaterial, as pointed out by Eisenberg
et al. [33, footnote 13].

Case SB_DAbs: By ITyC_Lam.

Case SB_Infer: By ITyC_Infer and Claim E.46.

Case SB_DeepSkol: Recall that according to the tweaks I have made to this al-
gorithm, this rule now does shallow skolemization. We are done by ITyC_Skol.
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Appendix F

Proofs about Pico≡

F.1 The Pico≡ type system
The Pico≡ system is introduced in Section 7.2; its rules, in full, are as follows:
φ ≡ φ′

τ1 ≡ τ ′1 κ1 ≡ κ′1 κ2 ≡ κ′2 τ2 ≡ τ ′2
τ1

κ1∼κ2 τ2 ≡ τ ′1
κ′1∼κ′2 τ2

DE_Prop

alt ≡ alt ′

τ ≡ τ ′

π → τ ≡ π → τ ′
DE_Alt

ψ ≡ ψ
′

∅ ≡ ∅
DE_VecNil

τ ≡ τ ′ ψ ≡ ψ
′

τ, ψ ≡ τ ′, ψ
′ DE_VecTyRel

τ ≡ τ ′ ψ ≡ ψ
′

{τ}, ψ ≡ {τ ′}, ψ′
DE_VecTyIrrel

ψ ≡ ψ
′

γ, ψ ≡ γ′, ψ
′ DE_VecCo

Γ ≡ Γ′
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∅ ≡ ∅
DE_CtxNil

κ ≡ κ′ Γ ≡ Γ′

a:ρκ,Γ ≡ a:ρκ′,Γ′
DE_CtxTy

φ ≡ φ′ Γ ≡ Γ′

c:φ,Γ ≡ c:φ′,Γ′
DE_CtxCo

Σ; Γ 
ty τ : κ Type formation

Σ 
ctx Γ ok a:Relκ ∈ Γ

Σ; Γ 
ty a : κ
DTy_Var

Σ t̀c H : ∆1; ∆2;H ′ Σ 
ctx Γ ok
Σ; Rel(Γ) 
vec τ : Rel(∆1)

Σ; Γ 
ty H{τ} : ’Π(∆2[τ/dom(∆1)]).H ′ τ
DTy_Con

Σ; Γ 
ty τ1 : κ0 κ0
→≡ Πa:Relκ1. κ2

Σ; Γ 
ty τ2 : κ′1 κ1 ≡ κ′1
Σ; Γ 
ty τ1 τ2 : κ2[τ2/a]

DTy_AppRel

Σ; Γ 
ty τ1 : κ0 κ0
→≡ Πa:Irrelκ1. κ2

Σ; Rel(Γ) 
ty τ2 : κ′1 κ1 ≡ κ′1
Σ; Γ 
ty τ1 {τ2} : κ2[τ2/a]

DTy_AppIrrel

Σ; Γ 
ty τ : κ0 κ0
→≡ Πc:φ. κ

Σ; Rel(Γ) 
co γ : φ′ φ ≡ φ′

Σ; Γ 
ty τ γ : κ[γ/c]
DTy_CApp

Σ; Γ,Rel(δ) 
ty κ : τ τ ≡ Type

Σ; Γ 
ty Πδ. κ : Type
DTy_Pi

Σ; Rel(Γ) 
co γ : κ1 ∼ κ2

Σ; Γ 
ty τ : κ′1 Σ; Rel(Γ) 
ty κ2 : σ
κ1 ≡ κ′1 σ ≡ Type

Σ; Γ 
ty τ B γ : κ2

DTy_Cast
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Σ; Rel(Γ) 
ty κ : τ0 τ0 ≡ Type Σ; Γ 
ty τ : σ

σ
→≡ ’Π∆.H σ

Σ; Rel(Γ) 
ty H σ : τ1

τ1 ≡ Type
∀i , Σ; Γ; ’Π∆.H σ 
τalt alti : κ

alt are exhaustive and distinct for H , (w.r.t. Σ)
Σ; Γ 
ty caseκ τ of alt : κ

DTy_Case

Σ; Γ, δ 
ty τ : κ

Σ; Γ 
ty λδ. τ :
˜
Πδ. κ

DTy_Lam

Σ; Γ 
ty τ :
˜
Πa:Relκ1. κ2 κ1 ≡ κ2

Σ; Γ 
ty fix τ : κ
DTy_Fix

Σ; Rel(Γ) 
co γ : H1{τ1} ψ1 ∼ H2{τ2} ψ2 H1 6= H2

Σ; Rel(Γ) 
ty τ : κ κ ≡ Type

Σ; Γ 
ty absurd γ τ : τ
DTy_Absurd

Σ; Γ;σ 
τalt alt : κ Case alternatives

Σ t̀c H : ∆1; ∆2;H ′ ∆3,∆4 = ∆2[σ/dom(∆1)]
dom(∆4) = dom(∆′)
match{dom(∆3)}(types(∆4); types(∆′)) = Just θ
Σ; Γ 
ty τ : κ0 κ0 ≡ ?Π∆3, c:τ0 ∼ H{σ} dom(∆3). κ

Σ; Γ; ’Π∆′.H ′ σ 
τ0alt H → τ : κ
DAlt_Match

Σ; Γ 
ty τ : κ′ κ′ ≡ κ

Σ; Γ;σ 
τ0alt _→ τ : κ
DAlt_Default

Σ; Γ 
co γ : φ Coercion formation

Σ 
ctx Γ ok c:φ ∈ Γ

Σ; Γ 
co c : φ
DCo_Var

Σ; Γ 
ty τ : κ

Σ; Γ 
co 〈τ〉 : τ ∼ τ
DCo_Refl

Σ; Γ 
co γ : τ1 ∼ τ2

Σ; Γ 
co sym γ : τ2 ∼ τ1

DCo_Sym
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Σ; Γ 
co γ1 : τ1
κ1∼κ2 τ2 Σ; Γ 
co γ2 : τ ′2

κ′2∼κ3 τ3

τ2 ≡ τ ′2 κ2 ≡ κ′2
Σ; Γ 
co γ1 # γ2 : τ1 ∼ τ3

DCo_Trans

Σ; Γ 
co η : κ1 ∼ κ2 bτ1c = bτ2c
Σ; Γ 
ty τ1 : κ′1 Σ; Γ 
ty τ2 : κ′2
κ1 ≡ κ′1 κ2 ≡ κ′2

Σ; Γ 
co τ1 ≈η τ2 : τ1 ∼ τ2

DCo_Coherence

∀i , Σ; Γ 
co γi : σi ∼ σ′i
Σ; Γ 
ty H{σ} : κ1 Σ; Γ 
ty H{σ′} : κ2

Σ; Γ 
co H{γ} : H{σ} ∼ H{σ′}
DCo_Con

Σ; Γ 
co γ1 : τ1 ∼ τ2

Σ; Γ 
co γ2 : σ1 ∼ σ2

Σ; Γ 
ty τ1 σ1 : κ1 Σ; Γ 
ty τ2 σ2 : κ2

Σ; Γ 
co γ1 γ2 : τ1 σ1 ∼ τ2 σ2

DCo_AppRel

Σ; Γ 
co γ1 : τ1 ∼ τ2

Σ; Γ 
co γ2 : σ1 ∼ σ2

Σ; Γ 
ty τ1 {σ1} : κ1 Σ; Γ 
ty τ2 {σ2} : κ2

Σ; Γ 
co γ1 {γ2} : τ1 {σ1} ∼ τ2 {σ2}
DCo_AppIrrel

Σ; Γ 
co γ0 : τ1 ∼ τ2

Σ; Γ 
ty τ1 γ1 : κ1 Σ; Γ 
ty τ2 γ2 : κ2

Σ; Γ 
co γ0 (γ1, γ2) : τ1 γ1 ∼ τ2 γ2

DCo_CApp

Σ; Γ 
co η : κ1
Type∼Type κ2

Σ; Γ, a:Relκ1 
co γ : σ1
Type∼Type σ2

Σ; Γ 
co Πa:ρη. γ : (Πa:ρκ1. σ1) ∼ (Πa:ρκ2. (σ2[a B sym η/a]))
DCo_PiTy

Σ; Γ 
co η1 : τ1 ∼ τ2 Σ; Γ 
co η2 : σ1 ∼ σ2

Σ; Γ, c:τ1 ∼ σ1 
co γ : κ1
Type∼Type κ2 c #̃ γ

η3 = η1 # c # sym η2

Σ; Γ 
co Πc:(η1, η2). γ : (Πc:τ1 ∼ σ1. κ1) ∼ (Πc:τ2 ∼ σ2. (κ2[η3/c]))
DCo_PiCo
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Σ; Γ 
co η : κ1 ∼ κ2 Σ; Γ 
co γ0 : τ1 ∼ τ2

∀i , Σ; Γ 
co γi : σi ∼ σ′i
alt1 = πi → σi alt2 = πi → σ′i
Σ; Γ 
ty caseκ1 τ1 of alt1 : κ1 Σ; Γ 
ty caseκ2 τ2 of alt2 : κ2

Σ; Γ 
co caseη γ0 of πi → γi : caseκ1 τ1 of alt1 ∼ caseκ2 τ2 of alt2

DCo_Case

Σ; Γ 
co η : κ1 ∼ κ2

Σ; Γ, a:ρκ1 
co γ : τ1 ∼ τ2

Σ; Γ, a:ρκ1 
ty τ1 : σ1 Σ; Γ, a:ρκ1 
ty τ2 : σ2

Σ; Γ 
co λa:ρη. γ : λa:ρκ1. τ1 ∼ λa:ρκ2. (τ2[a B sym η/a])
DCo_Lam

Σ; Γ 
co η1 : τ1 ∼ τ2 Σ; Γ 
co η2 : σ1 ∼ σ2

Σ; Γ, c:τ1 ∼ σ1 
co γ : κ1 ∼ κ2 c #̃ γ
η3 = η1 # c # sym η2

Σ; Γ 
co λc:(η1, η2). γ : (λc:τ1 ∼ σ1. κ1) ∼ (λc:τ2 ∼ σ2. (κ2[η3/c]))
DCo_CLam

Σ; Γ 
co γ : τ1 ∼ τ2

Σ; Γ 
ty fix τ1 : κ1 Σ; Γ 
ty fix τ2 : κ2

Σ; Γ 
co fix γ : fix τ1 ∼ fix τ2

DCo_Fix

Σ; Γ 
co γ1 : H1{τ1} ψ1 ∼ H ′1{τ ′1} ψ
′
1 H1 6= H ′1

Σ; Γ 
co γ2 : H2{τ2} ψ2 ∼ H ′2{τ ′2} ψ
′
2 H2 6= H ′2

Σ; Γ 
co η : κ1
τ1∼τ2 κ2 τ1 ≡ Type τ2 ≡ Type

Σ; Γ 
co absurd (γ1, γ2) η : absurd γ1 κ1 ∼ absurd γ2 κ2

DCo_Absurd

Σ; Γ 
co γ : τ1 ∼ τ2

τ1
→≡ Πa:ρκ1. σ1 τ2

→≡ Πa:ρκ2. σ2

Σ; Γ 
co argk γ : κ1 ∼ κ2

DCo_ArgK

Σ; Γ 
co γ : κ1 ∼ κ2

κ1
→≡ Πc:(τ1 ∼ τ ′1). σ1 κ2

→≡ Πc:(τ2 ∼ τ ′2). σ2

Σ; Γ 
co argk1 γ : τ1 ∼ τ2

DCo_CArgK1

Σ; Γ 
co γ : κ1 ∼ κ2

κ1
→≡ Πc:(τ1 ∼ τ ′1). σ1 κ2

→≡ Πc:(τ2 ∼ τ ′2). σ2

Σ; Γ 
co argk2 γ : τ ′1 ∼ τ ′2
DCo_CArgK2
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Σ; Γ 
co γ : τ1 ∼ τ2

τ1
→≡ λa:ρκ1. σ1 τ2

→≡ λa:ρκ2. σ2

Σ; Γ 
co argk γ : κ1 ∼ κ2

DCo_ArgKLam

Σ; Γ 
co γ : κ1 ∼ κ2

κ1
→≡ λc:(τ1 ∼ τ ′1). σ1 κ2

→≡ λc:(τ2 ∼ τ ′2). σ2

Σ; Γ 
co argk1 γ : τ1 ∼ τ2

DCo_CArgKLam1

Σ; Γ 
co γ : κ1 ∼ κ2

κ1
→≡ λc:(τ1 ∼ τ ′1). σ1 κ2

→≡ λc:(τ2 ∼ τ ′2). σ2

Σ; Γ 
co argk2 γ : τ ′1 ∼ τ ′2
DCo_CArgKLam2

Σ; Γ 
co γ : φ |∆1| = |∆2| = n

φ
→≡ ?Π∆1. τ1 ∼ ?Π∆2. τ2

Σ; Γ 
ty τ1 : σ1 σ1 ≡ Type
Σ; Γ 
ty τ2 : σ2 σ2 ≡ Type

Σ; Γ 
co resn γ : τ1 ∼ τ2

DCo_Res

Σ; Γ 
co γ : φ |∆1| = |∆2| = n

φ
→≡ λ∆1. τ1 ∼ λ∆2. τ2

Σ; Γ 
ty τ1 : κ1 Σ; Γ 
ty τ2 : κ2

Σ; Γ 
co resn γ : τ1 ∼ τ2

DCo_ResLam

Σ; Γ 
co γ : φ1

φ1
→≡ Πa:Relκ1. σ1 ∼ Πa:Relκ2. σ2

Σ; Γ 
co η : τ1
κ′1∼κ′2 τ2

κ1 ≡ κ′1 κ2 ≡ κ′2
Σ; Γ 
co γ@η : σ1[τ1/a] ∼ σ2[τ2/a]

DCo_InstRel

Σ; Γ 
co γ : φ1

φ1
→≡ Πa:Irrelκ1. σ1 ∼ Πa:Irrelκ2. σ2

Σ; Γ 
co η : τ1
κ′1∼κ′2 τ2

κ1 ≡ κ′1 κ2 ≡ κ′2
Σ; Γ 
co γ@{η} : σ1[τ1/a] ∼ σ2[τ2/a]

DCo_InstIrrel
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Σ; Γ 
co η1 : φ3

φ3
→≡ Πc:φ1. σ1 ∼ Πc:φ2. σ2

Σ; Γ 
co γ1 : φ′1 φ1 ≡ φ′1 Σ; Γ 
co γ2 : φ′2 φ2 ≡ φ′2
Σ; Γ 
co η1@(γ1, γ2) : σ1[γ1/c] ∼ σ2[γ2/c]

DCo_CInst

Σ; Γ 
co γ : φ1

φ1
→≡ λa:Relκ1. τ1 ∼ λa:Relκ2. τ2

Σ; Γ 
co η : σ1
κ′1∼κ′2 σ2 κ1 ≡ κ′1 κ2 = κ′2

Σ; Γ 
co γ@η : τ1[σ1/a] ∼ τ2[σ2/a]
DCo_InstLamRel

Σ; Γ 
co γ : φ1

φ1
→≡ λa:Irrelκ1. τ1 ∼ λa:Irrelκ2. τ2

Σ; Γ 
co η : σ1
κ′1∼κ′2 σ2 κ1 ≡ κ′1 κ2 ≡ κ′2

Σ; Γ 
co γ@{η} : τ1[σ1/a] ∼ τ2[σ2/a]
DCo_InstLamIrrel

Σ; Γ 
co γ : φ3

φ3
→≡ λc:φ1. σ1 ∼ λc:φ2. σ2

Σ; Γ 
co η1 : φ′1 φ1 ≡ φ′1
Σ; Γ 
co η2 : φ′2 φ2 ≡ φ′2

Σ; Γ 
co γ@(η1, η2) : σ1[η1/c] ∼ σ2[η2/c]
DCo_CInstLam

Σ; Γ 
co γ : φ φ
→≡ H{κ} ψ ∼ H{κ′} ψ

′

ψi = τ ψ′i = σ
Σ; Γ 
ty τ : κ1 Σ; Γ 
ty σ : κ2

Σ; Γ 
co nthi γ : τ ∼ σ
DCo_NthRel

Σ; Γ 
co γ : φ φ
→≡ H{κ} ψ ∼ H{κ′} ψ

′

ψi = {τ} ψ′i = {σ}
Σ; Rel(Γ) 
ty τ : κ1 Σ; Rel(Γ) 
ty σ : κ2

Σ; Γ 
co nthi γ : τ ∼ σ
DCo_NthIrrel
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Σ; Γ 
co γ : φ

φ
→≡ τ1 ψ1 ∼ τ2 ψ2

Σ; Γ 
ty τ1 : κ0 κ0
→≡ ’Πδ1. κ1

Σ; Γ 
ty τ2 : κ′0 κ′0
→≡ ’Πδ2. κ2

Σ; Γ 
co η : φ′

φ′ ≡ ’Πδ1. κ1 ∼ ’Πδ2. κ2

Σ; Γ 
co leftη γ : τ1 ∼ τ2

DCo_Left

Σ; Γ 
co γ : φ

φ
→≡ τ1 σ1 ∼ τ2 σ2

Σ; Γ 
ty σ1 : κ1 Σ; Γ 
ty σ2 : κ2

Σ; Γ 
co η : φ′ φ′ ≡ κ1 ∼ κ2

Σ; Γ 
co rightη γ : σ1 ∼ σ2

DCo_RightRel

Σ; Γ 
co γ : φ

φ
→≡ τ1 {σ1} ∼ τ2 {σ2}

Σ; Γ 
ty σ1 : κ1 Σ; Γ 
ty σ2 : κ2

Σ; Γ 
co η : φ′ φ′ ≡ κ1 ∼ κ2

Σ; Γ 
co rightη γ : σ1 ∼ σ2

DCo_RightIrrel

Σ; Γ 
co γ : τ1
κ1∼κ2 τ2

Σ; Γ 
co kind γ : κ1 ∼ κ2

DCo_Kind

Σ; Γ 
ty τ : κ Σ; Γ 
ty τ ′ : κ′ κ ≡ κ′

Σ; Γ 
s τ −→ τ ′

Σ; Γ 
co step τ : τ ∼ τ ′
DCo_Step

Σ; Γ 
prop φ ok Proposition formation

Σ; Γ 
ty τ1 : κ1

Σ; Γ 
ty τ2 : κ2

Σ; Γ 
prop τ1
κ1∼κ2 τ2 ok

DProp_Equality

Σ; Γ 
vec ψ : ∆ Type vector formation

Σ 
ctx Γ ok

Σ; Γ 
vec ∅ : ∅
DVec_Nil
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Σ; Γ 
ty τ : κ′ κ ≡ κ′

Σ; Γ 
vec ψ : ∆[τ/a]

Σ; Γ 
vec τ, ψ : a:Relκ,∆
DVec_TyRel

Σ; Rel(Γ) 
ty τ : κ′ κ ≡ κ′

Σ; Γ 
vec ψ : ∆[τ/a]

Σ; Γ 
vec {τ}, ψ : a:Irrelκ,∆
DVec_TyIrrel

Σ; Rel(Γ) 
co γ : φ′ φ ≡ φ′

Σ; Γ 
vec ψ : ∆[γ/c]

Σ; Γ 
vec γ, ψ : c:φ,∆
DVec_Co

Σ 
ctx Γ ok Context formation

s̀ig Σ ok

Σ 
ctx ∅ ok
DCtx_Nil

Σ; Rel(Γ) 
ty κ : τ τ ≡ Type
a # Γ Σ 
ctx Γ ok

Σ 
ctx Γ, a:ρκ ok
DCtx_TyVar

Σ; Rel(Γ) 
prop φ ok c # Γ Σ 
ctx Γ ok

Σ 
ctx Γ, c:φ ok
DCtx_CoVar

Σ; Γ 
s σ −→ σ′ Small-step operational semantics

Σ; Γ 
s (λa:Relκ. σ1)σ2 −→ σ1[σ2/a]
DS_BetaRel

Σ; Γ 
s (λa:Irrelκ. v1) {σ2} −→ v1[σ2/a]
DS_BetaIrrel

Σ; Γ 
s (λc:φ. σ) γ −→ σ[γ/c]
DS_CBeta

alti = H → τ0

Σ; Γ 
s caseκH{τ} ψ of alt −→ τ0 ψ 〈H{τ} ψ〉
DS_Match

alti = _→ σ no alternative in alt matches H
Σ; Γ 
s caseκH{τ} ψ of alt −→ σ

DS_Default
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alti = _→ σ no alternative in alt matches H
Σ; Γ 
s caseκH{τ} ψ B γ of alt −→ σ

DS_DefaultCo

τ = λa:Relκ. σ

Σ; Γ 
s fix τ −→ σ[fix τ/a]
DS_Unroll

Σ; Γ 
s (v B γ1)B γ2 −→ v B (γ1 # γ2)
DS_Trans

Σ; Γ, a:Irrelκ 
s σ −→ σ′

Σ; Γ 
s λa:Irrelκ. σ −→ λa:Irrelκ. σ′
DS_IrrelAbs_Cong

Σ; Γ 
s σ −→ σ′

Σ; Γ 
s σ ψ −→ σ′ ψ
DS_App_Cong

Σ; Γ 
s σ −→ σ′

Σ; Γ 
s σ B γ −→ σ′ B γ
DS_Cast_Cong

Σ; Γ 
s σ −→ σ′

Σ; Γ 
s caseτ σ of alt −→ caseτ σ′ of alt
DS_Case_Cong

Σ; Γ 
s τ −→ τ ′

Σ; Γ 
s fix τ −→ fix τ ′
DS_Fix_Cong

Σ; Rel(Γ) 
co γ0 : φ

φ
→≡ Πa:Relκ. σ ∼ Πa:Relκ

′. σ′

γ1 = sym (argk γ0) γ2 = γ0@(τ B γ1 ≈sym γ1 τ)

Σ; Γ 
s (v B γ0) τ −→ v (τ B γ1)B γ2

DS_PushRel

Σ; Rel(Γ) 
co γ0 : φ

φ
→≡ Πa:Irrelκ. σ ∼ Πa:Irrelκ

′. σ′

γ1 = sym (argk γ0) γ2 = γ0@(τ B γ1 ≈sym γ1 τ)

Σ; Γ 
s (v B γ0) {τ} −→ v {τ B γ1}B γ2

DS_PushIrrel
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Σ; Rel(Γ) 
co γ0 : φ0

φ0
→≡ Πc:φ. σ ∼ Πc:φ′. σ′

γ1 = argk1 γ0 γ2 = argk2 γ0

η′ = γ1 # η # sym γ2 γ3 = γ0@(η′, η)

Σ; Γ 
s (v B γ0) η −→ v η′ B γ3

DS_CPush

γ1 =
˜
Πa:Irrel〈κ〉. γ γ2 = τ1 ≈〈Type〉 τ2

τ1 =
˜
Πa:Irrelκ. (κ1[a B sym 〈κ〉/a]) τ2 =

˜
Πa:Irrelκ. κ1

Σ; Γ 
s λa:Irrelκ. (v B γ) −→ (λa:Irrelκ. v)B (γ1 # γ2)
DS_APush

γ1 = γ0@(a ≈γ2 a B γ2) # sym γ2

γ2 = argk γ0

Σ; Γ 
s fix ((λa:Relκ. σ)B γ0) −→ (fix (λa:Relκ. (σ B γ1)))B γ2

DS_FPush

Σ t̀c H : a:Irrelκ; ∆;H ′ ∆ = ∆1,∆2 n = |∆2|
κ = ’Πa:Irrelκ,∆.H

′ a

σ = ’Π(∆2[τ/a][ψ/dom(∆1)]).H ′ τ

σ′ = ’Π(∆2[τ ′/a][ψ
′
/dom(∆1)]).H ′ τ ′

Σ; Rel(Γ) 
co η : φ φ ≡ σ ∼ σ′

Σ; Rel(Γ) 
vec τ ′ : a:Relκ

∀i , γi = build_kpush_co(〈κ〉@(nths (resn η));ψ1...i−1)
∀i , ψ′i = cast_kpush_arg(ψi ; γi)

H → κ′ ∈ alt

Σ; Γ 
s caseκ0 (H{τ} ψ)B η of alt −→ caseκ0 H{τ ′} ψ
′
of alt

DS_KPush

F.2 Properties of ≡
Section 7.2 stated some properties of ≡ somewhat informally. Here are the more formal
descriptions:

Property F.1 (Formal statement of Property 7.3). If Σ; Γ t̀y τ : κ, Σ; Γ t̀y τ
′ : κ,

and τ ≡ τ ′, then there exists γ such that Σ; Rel(Γ) c̀o γ : τ ∼ τ ′.

Property F.2 (Formal statement of Property 7.4). If ψ ≡ ψ
′
, then τ [ψ/z ] ≡ τ [ψ

′
/z ].

Lemma F.3 (Transporting coercions). If Σ; Rel(Γ) c̀o γ : φ, Σ; Rel(Γ) p̀rop φ
′ ok, and

φ ≡ φ′, then there exists γ′ such that Σ; Rel(Γ) c̀o γ
′ : φ′.
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Proof. Lemma C.44 tells us that Σ; Rel(Γ) p̀rop φ ok. Let φ = τ1
κ1∼κ2 τ2 and

φ′ = τ ′1
κ′1∼κ′2 τ ′2. We can conclude all of the following by inversion:

• Σ; Rel(Γ) t̀y τ1 : κ1

• Σ; Rel(Γ) t̀y τ2 : κ2

• Σ; Rel(Γ) t̀y τ
′
1 : κ′1

• Σ; Rel(Γ) t̀y τ
′
2 : κ′2

• τ1 ≡ τ ′1

• τ2 ≡ τ ′2

By Property F.1, we can get γ1 and γ2 such that Σ; Rel(Γ) c̀o γ1 : τ1 ∼ τ ′1 and
Σ; Rel(Γ) c̀o γ2 : τ2 ∼ τ ′2. Thus, Σ; Rel(Γ) c̀o sym γ1 # γ # γ2 : φ′ as desired.

We also regularly need to extract certain bits of a type or proposition, via an
extraction operator

→≡. Extraction has these properties:

Property F.4 (Extraction respects ≡).

1. If τ
→≡ τ ′ then τ ≡ τ ′.

2. If φ
→≡ φ′ then φ ≡ φ′.

Property F.5 (Extraction can be chained with ≡).

1. If τ ≡ τ ′ and τ ′
→≡ τ ′′, then τ

→≡ τ ′′.

2. If φ ≡ φ′ and φ′
→≡ φ′′, then φ

→≡ φ′′.

Property F.6 (Extraction is deterministic).

1. If τ
→≡ τ1 and τ

→≡ τ2, then τ1 = τ2.

2. If φ
→≡ φ1 and φ

→≡ φ2, then φ1 = φ2.

Property F.7 (Extraction is well-typed).

1. If Σ; Γ t̀y τ : κ and τ
→≡ τ ′, then Σ; Γ t̀y τ

′ : κ′

2. If Σ; Γ p̀rop φ ok and φ
→≡ φ′, then Σ; Γ p̀rop φ

′ ok.
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F.3 Lemmas adapted from Appendix C
Lemma F.8 (Scoping). (as Lemma C.12, but with reference to 
 judgments)

Proof. Similar to the proof for Lemma C.12.

Lemma F.9 (Context regularity). If:

1. Σ; Γ 
ty τ : κ, OR

2. Σ; Γ 
co γ : φ, OR

3. Σ; Γ 
prop φ ok, OR

4. Σ; Γ;σ0 

τ0
alt alt : κ, OR

5. Σ; Γ 
vec ψ : ∆, OR

6. Σ 
ctx Γ ok

Then Σ 
ctx prefix(Γ) ok and s̀ig Σ ok, where prefix(Γ) is an arbitrary prefix of Γ.
Furthermore, both resulting derivations are no larger than the input derivations.

Proof. Straightforward mutual induction.

F.4 Soundness of Pico≡

The following lemma also defines the d·e operation. This deterministic operation is
defined to be the existentially-quantified output of the clauses of the following lemma,
as labeled. Note that making sense of d·e requires that the argument be well-formed
(that is, the premises of the clause defining the operation must be satisfied). For
example, dτe is not just an operation over a type τ , but it also requires Σ; Γ 
ty τ : κ
as an input.

Lemma F.10 (Pico≡ is sound). The uses of dΓe below depend on Lemma F.9
above.

1. If Σ 
ctx Γ ok, then Σ c̀tx Γ′ ok where Γ′ ≡ Γ. Let dΓe , Γ′. Furthermore,
Rel(dΓe) = dRel(Γ)e and if Γ = Γ0, δ, then dΓe = dΓ0e, δ′.

2. If Σ; Γ 
ty τ : κ, then Σ; dΓe t̀y τ
′ : κ′ where τ ′ ≡ τ and κ′ ≡ κ. Let dτe , τ ′.

3. If Σ; Γ 
co γ : φ, then Σ; dΓe c̀o γ
′ : φ′ where φ ≡ φ′.

4. If Σ; Γ; σ 
τalt alt : κ and we have τ ′ and κ′ such that τ ′ ≡ τ and κ′ ≡ κ, then
Σ; dΓe;σ `τ ′alt alt ′ : κ′ where alt ′ ≡ alt . Let dalte , alt ′.

5. If Σ; Γ 
prop φ ok, then Σ; dΓe p̀rop φ
′ ok where φ′ ≡ φ. Let dφe , φ′.

6. If Σ; Γ 
vec ψ : ∆, then Σ; dΓe v̀ec ψ
′
: ∆ where ψ

′ ≡ ψ. Let dψe , ψ
′
.

7. If Σ; Γ 
s σ −→ τ , Σ; Γ 
ty σ : κ, and Σ; Γ 
ty τ : κ, then Σ; dΓe s̀ dσe −→ dτe.
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Proof. By induction on the typing derivations.

Case DCtx_Nil: Immediate.

Case DCtx_TyVar:

Σ; Rel(Γ) 
ty κ : τ τ ≡ Type
a # Γ Σ 
ctx Γ ok

Σ 
ctx Γ, a:ρκ ok
DCtx_TyVar

We must show Σ c̀tx dΓe, a:ρκ
′ ok for some κ′ ≡ κ. Note that dΓe is well-formed

by the induction hypothesis. The induction hypothesis gives us dκe such that
Σ; Rel(dΓe) t̀y dκe : τ ′ such that τ ′ ≡ τ . By transitivity of ≡ (Property 7.1), τ ′ ≡
Type. We have Σ; Rel(dΓe) t̀y τ

′ : Type (by Lemma C.43) and Σ; Rel(dΓe) t̀y

Type : Type (by Lemma C.38 and Lemma C.10). We then use Property F.1 to
get γ such that Σ; Rel(dΓe) c̀o γ : τ ′ ∼ Type. Choose κ′ = dκeBγ. We see that
Σ; Rel(dΓe) t̀y dκeB γ : Type as desired. Property 7.5 tells us that κ ≡ dκeB γ,
and so we are done.

Case DCtx_CoVar: By induction.

Case DTy_Var: By induction.

Case DTy_Con: By induction. Note that relating the result type (well-typed
in Pico) to the input type (well-typed in Pico≡) by ≡ requires congruence,
Property F.2. Congruence is similarly used in many other cases.

Case DTy_AppRel:

Σ; Γ 
ty τ1 : κ0 κ0
→≡ Πa:Relκ1. κ2

Σ; Γ 
ty τ2 : κ′1 κ1 ≡ κ′1
Σ; Γ 
ty τ1 τ2 : κ2[τ2/a]

DTy_AppRel

The induction hypothesis tells us Σ; dΓe t̀y dτ1e : κ′0 where κ′0 ≡ κ0, and
Σ; dΓe t̀y dτ2e : κ′′1 where κ′′1 ≡ κ′1. By Property F.5, we get κ′0

→≡ Πa:Relκ1. κ2.
By Lemma C.43, we have Σ; Rel(dΓe) t̀y κ

′
0 : Type. Thus by Property F.7, we

get Σ; Rel(dΓe) t̀y Πa:Relκ1. κ2 : σ. Inversion tells us that σ = Type. We can
thus use Property 7.1 and Property F.1 to get γ1 such that Σ; Rel(dΓe) c̀o γ1 :
κ′0 ∼ Πa:Relκ1. κ2.

Now, inversion and Lemma C.7 tells us Σ; Rel(dΓe) t̀y κ1 : Type and Lemma
C.43 tells us Σ; Rel(dΓe) t̀y κ

′′
1 : Type. Thus Property 7.1 and Property F.1

give us γ2 such that Σ; Rel(dΓe) c̀o γ2 : κ′′1 ∼ κ1. We now choose dτ1 τ2e ,
(dτ1eB γ1) (dτ2eB γ2) and we can see that Σ; dΓe t̀y dτ1 τ2e : κ2[dτ2eB γ2/a] as
desired. Relating this output kind to the input kind is achieved by Property F.2
and Property 7.5.

Case DTy_AppIrrel: Similar to previous case.
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Case DTy_CApp: Similar to previous cases, but appealing to Lemma F.3.

Case DTy_Pi:

Σ; Γ,Rel(δ) 
ty κ : τ τ ≡ Type

Σ; Γ 
ty Πδ. κ : Type
DTy_Pi

The induction hypothesis gives us Σ; dΓ,Rel(δ)e t̀y dκe : τ ′ where τ ′ ≡ τ . Lemma
C.43 tells us Σ; dRel(Γ, δ)e t̀y τ

′ : Type. We know Σ; dRel(Γ, δ)e t̀y Type : Type
by Lemma C.38 and Lemma C.10. We can thus use Property F.1 to get γ such
that Σ; dRel(Γ, δ)e c̀o γ : τ ′ ∼ Type. We can conclude Σ; dΓ,Rel(δ)e t̀y dκeB γ :
Type. By the extra condition in the induction hypothesis for contexts, we
can rewrite this to Σ; dΓe,Rel(δ′) t̀y dκe B γ : Type, where δ′ ≡ δ. We can
now use Ty_Pi to conclude Σ; dΓe t̀y Πδ′. (dκeB γ) : Type as desired. Here,
dΠδ. κe , Πδ′. (dκeB γ).

Case DTy_Cast:

Σ; Rel(Γ) 
co γ : κ1 ∼ κ2

Σ; Γ 
ty τ : κ′1 Σ; Rel(Γ) 
ty κ2 : σ
κ1 ≡ κ′1 σ ≡ Type

Σ; Γ 
ty τ B γ : κ2

DTy_Cast

The induction hypothesis gives us:

• Σ; Rel(dΓe) c̀o γ
′ : κ′′1 ∼ κ′′2 with κ′′1 ≡ κ1 and κ′′2 ≡ κ2

• Σ; dΓe t̀y dτe : κ′′′1 where κ′′′1 ≡ κ′1
• Σ; Rel(dΓe) t̀y dκ2e : σ′ where σ′ ≡ σ

Lemma C.44, Lemma C.43, Property 7.1, and Property F.1 give us γ0 such
that Σ; Rel(dΓe) c̀o γ0 : κ′′′1 ∼ κ′′1. We can thus use Ty_Cast to get Σ; dΓe t̀y

dτeB γ0 : κ′′2 as desired.

Case DTy_Case: Along the lines of similar cases. We need Lemma F.8 to establish
that the result type of the scrutinee does not mention the bound telescope ∆.

Other cases: Proceed as above. At this point, we have seen a variety of constructs
and how to handle them. The remaining cases are similar, using the properties
of ≡ and

→≡ to get from a typing derivation in Pico≡ to one in Pico.
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