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Abstract. The Hindley-Milner (HM) type system automatically infers
the types at which polymorphic functions are used. In HM, the inferred
types are unambiguous, and every expression has a principal type. How-
ever, type inference is sometimes unwieldy or impossible, especially in
the presence of type system extensions such as type classes and type-
level functions. Even here, programmers cannot provide type arguments
explicitly, as HM requires types to be invisible.
We describe an extension to HM that allows for visible type applica-
tion. Our extension requires a novel type inference algorithm, yet its
declarative presentation is a simple extension to HM. We prove that our
extended system is a conservative extension of HM and admits princi-
pal types. We then extend our approach to a higher-rank type system
with bidirectional type-checking. We have implemented this system in
the Glasgow Haskell Compiler and show how our approach scales in the
presence of complex type system features.

1 Introduction

The Hindley-Milner (HM) type system [7, 12, 18] achieves remarkable concision.
While allowing a strong typing discipline, a program written in HM need not
mention a single type. The brevity of HM comes at a cost, however: HM pro-
grams must not mention a single type. While this rule has long been relaxed
by allowing visible type annotations (and even requiring them for various type
system extensions), it remains impossible for systems based on HM, such as
OCaml and Haskell, to use visible type application when calling a polymorphic
function.1

This restriction makes sense in the HM type system, where visible type appli-
cation is unnecessary, as all type instantiations can be determined via unification.
Suppose the function id has type ∀ a. a → a. If we wished to visibly instanti-
ate the type variable a (in a version of HM extended with type annotations),
1 Syntax elements appearing in a programmer’s source code are often called explicit,
in contrast to implicit terms, which are inferred by the compiler. However, the im-
plicit/explicit distinction is sometimes used to indicate whether terms are compu-
tationally significant [19]. Our work to applies only to the inferred vs. programmer-
specified distinction, so we use visible to refer to syntax elements appearing in source
code.
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Declarative Syntax-directed
HM (§4.1) C (§5.1) from Damas and Milner [8] and Clément et al. [5]
HMV (§4.2) V (§5.2) HM types with visible type application
B (§6.2) SB (§6.1) Higher-rank types with visible type application

Fig. 1. The type systems studied in this paper

we could write the expression (id :: Int → Int). This annotation forces the type
checker to unify the provided type Int → Int with the type a → a, concluding
that type a should be instantiated with Int.

However, this annotation is a roundabout way of providing information to
the type checker. It would be much more direct if programmers could provide
type arguments directly, writing the expression id @Int instead.

Why do we want visible type application? In a language like Haskell – as
implemented by the Glasgow Haskell Compiler (GHC) – which is based on HM
but extends it significantly, we find two main benefits.

Type instantiation cannot always be determined by unification. Some Haskell
features, such as type classes [28] and GHC’s type families [3, 4, 11], do not
allow the type checker to unambiguously determine type arguments from an an-
notation. The current workaround for this issue is the Proxy type which clutters
implementations and requires careful foresight by library designers. Visible type
application improves such code. (See Sect. 2.)

It is sometimes painful to determine instantiations via type annotations. Even
when type arguments can be determined from an annotation, this mechanism
is still not always friendly to developers. For example, the variable to instan-
tiate could appear multiple times in the type, leading to a long annotation.
Partial type signatures help [29], but they don’t completely solve the problem.
Appendix A contains an example of this issue.

Although the idea seems straightforward, adding visible type applications to
the HM type system requires care, as we describe in Sect. 3. In particular, we
observe that we can allow visible type application only at certain types: those
with specified type quantification. These types are known to the programmer via
type annotation. Such types may be instantiated visibly. Their instantiations
may also be inferred as usual, should the programmer omit type applications.

This paper presents a systematic study of the integration of visible type
application within the HM typing discipline. In particular, the contributions of
this paper are the four novel type systems (HMV, V, SB, B), summarized in
Fig. 1.

– System HMV extends the declarative HM type system with a single, straight-
forward new rule for visible type application. In support of this feature, it
also includes two other extensions: scoped type variables and a distinction
between specified and generalized type quantification. The importance of this
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system is that it demonstrates that visible type application can be added or-
thogonally to the HM type system, an observation that we found obvious
only in hindsight.

– System V is a syntax-directed version of HMV. This type system directly
corresponds to a type inference algorithm, called V. We show that although
Algorithm V works differently than AlgorithmW [8], it retains the ability to
calculate principal types. The key insight is that we can delay the instantia-
tion of type variables until necessary. We prove that System V is sound and
complete with respect to HMV, and that Algorithm V is sound and complete
with respect for System V. These results show the principal types property
for HMV.

– System SB is a syntax-directed bidirectional type system with higher-rank
types. In extending GHC with visible type application, we were required
to consider the interactions of System V with all of the many type system
extensions featured in GHC. Most interactions are orthogonal, as expected
from the design of V. However, GHC’s extension to support higher-rank
types [23] changes its type inference algorithm to be bidirectional. System
SB shows that our approach in designing System V extends to a bidirectional
system in a very straightforward way. System SB’s role in this paper is
twofold: to show how our approach to visible type application meshes well
with type system extensions, and to be the basis for our implementation in
GHC.

– System B is a novel, simple declarative specification of System B. We prove
that System SB is sound and complete with respect to System B. A similar
declarative specification was not present in prior work [23]; this paper shows
that an HM-style presentation is possible even in the case of higher-rank
systems.

Our visible type application extension is available.2 We expect it to be in-
cluded in the next major release of GHC. Appendix B describes this implemen-
tation and elaborates on interactions between our algorithm and other features
of GHC.

The Appendices of this paper contain extended examples and detailed proofs
of the properties studied about each of the systems.

However, before we discuss how to extend HM type systems with visible
type application, we first elaborate on why we would like this feature in the first
place. The next section briefly describes situations in Haskell where visible type
applications would benefit programmers.

2 Example of visible type application

When a Haskell library author wishes to give a client the ability to control type
variable instantiation, the current workaround is the standard library’s Proxy
type.
2 See https://github.com/goldfirere/ghc, at the esop-2016 tag

https://github.com/goldfirere/ghc
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data Proxy a = Proxy

However, as we shall see, programming with Proxy is noisy and painfully indirect.
With built-in visible type application, these examples are streamlined and easier
to work with.3 In the following example and throughout this paper, unadorned
code blocks are accepted by GHC 7.10, blocks with a solid gray bar at the
left are ill-typed, and blocks with a gray background are accepted only by our
implementation of visible type application.

Resolving type class ambiguity Suppose a programmer wished to nor-
malize the representation of expression text by running it through a parser
and then pretty printer. The normalize function below maps the string
"7 - 1 * 0 + 3 / 3" to "((7 - (1 * 0)) + (3 / 3))", resolving prece-
dence and making the meaning clear.4

normalize :: String → String
normalize x = show ((read :: String → Expr) x)

However, the designer of this function can’t make it polymorphic in a straight-
forward way. Adding a polymorphic type signature results in an ambiguous type,
which GHC rightly rejects.

normalizePoly :: ∀ a. (Show a,Read a)⇒ String → String
normalizePoly x = show ((read :: String → a) x)

Instead, the programmer must add a Proxy argument, which is never eval-
uated, to allow clients of this polymorphic function to specify the parser and
pretty-printer to use

normalizeProxy :: ∀ a. (Show a,Read a)
⇒ Proxy a→ String → String

normalizeProxy x = show ((read :: String → a) x)

normalizeExpr :: String → String
normalizeExpr = normalizeProxy (Proxy :: Proxy Expr)

With visible type application, we can write these two functions more di-
rectly:5

3 Visible type application has been a GHC feature request since 2011. See https:
//ghc.haskell.org/trac/ghc/ticket/5296.

4 This example uses the following functions from the standard library,

show :: Show a⇒ a→ String
read :: Read a ⇒ String → a

as well as user-defined instances of the Show and Read classes for the type Expr .
5 Our new extension TypeApplications implies the extension AllowAmbiguousTypes,
which allows our updated normalize definition to be accepted.

https://ghc.haskell.org/trac/ghc/ticket/5296
https://ghc.haskell.org/trac/ghc/ticket/5296
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normalize :: ∀ a. (Show a,Read a)⇒ String → String
normalize x = show (read @a x)

normalizeExpr :: String → String
normalizeExpr = normalize @Expr

Although the show/read ambiguity is somewhat contrived in this case, proxies
are indeed useful in more sophisticated APIs. For example, suppose a library
design would like to allow users of the library to choose the representation of an
internal data structure to best meet the needs of their application. If the type
of that data structure is not included in the input and output types of the API,
then a Proxy argument is a way to give this flexibility to clients.6

Other examples More practical examples of the need for visible type appli-
cation require a fair amount of build-up to motivate the need for the intricate
types involved. We have included two larger examples in App. A. One builds
from recent work on deferring constraints until runtime [2] and the other on
translating a dependently typed program in Agda [16] into Haskell.

3 Our approach to visible type application

Visible type application seems like a straightforward extension, but adding this
feature – both to GHC and to the HM type system that it is based on – turned
out to be more difficult and interesting than we first anticipated. In particular,
we encountered two significant problems when trying to extend the HM type
system with visible type application.

3.1 Just what are the type parameters?

The first problem is that it is not always clear what the type parameters to a
polymorphic function are!

One aspect of the HM type system is that it permits expressions to be as-
signed any number of isomorphic types. For example, the identity function for
pairs,

pid (x , y) = (x , y)

can be assigned any of the following types:

(1) ∀ a b. (a, b)→ (a, b)
(2) ∀ a b. (b, a)→ (b, a)
(3) ∀ c a b. (a, b)→ (a, b)

6 See http://stackoverflow.com/questions/27044209/haskell-why-use-proxy

http://stackoverflow.com/questions/27044209/haskell-why-use-proxy


6 Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed

Class constraints don’t have a fixed ordering in types, and it is possible that a type
variable is mentioned only in a constraint. Which of the following is preferred?

∀ r m w a. (MonadReader r m,MonadWriter w m)⇒ a→ m a
∀ w m r a. (MonadWriter w m,MonadReader r m)⇒ a→ m a

Equality constraints and GADTs can add new quantified variables. Should we prefer
the type ∀ a. a→ a or the equivalent type ∀ a b. (a ∼ b)⇒ a→ b?

Type abbreviations mean that quantifying variables as they appear can be ambigu-
ous without also specifying how type abbreviations are used and when they are
expanded. Suppose

type Phantom a = Int
type Swap a b = (b, a)

Should we prefer ∀ a b. Swap a b → Int or ∀ b a. Swap a b → Int? Similarly, should
we prefer ∀ a. Phantom a→ Int or Int → Int?

Fig. 2. Why specified polytypes?

All of these types are principal; no type above is more general than any other.
However, the type of the expression,

pid @Int @Bool

is very different depending on which “equivalent” type is chosen for pid :

(Int,Bool)→ (Int,Bool) -- pid has type (1)
(Bool , Int)→ (Bool , Int) -- pid has type (2)

∀ b. (Bool , b) → (Bool , b) -- pid has type (3)

Of course, there are ad hoc mechanisms for resolving this ambiguity. We
could try to designate one of the above types (1–3) as the real principal type
for pid , perhaps by disallowing the quantification of unused variables (ruling
out type 3 above) or by enforcing an ordering on how variables are quantified
(preferring type 1 over type 2 above). Our goal would be to make sure that
each expression has a unique principal type, with respect to its quantified type
variables. However, in the context of the full Haskell language, this strategy
fails. There are just too many ways that types that are not α-equivalent can be
considered equivalent by HM. See Fig. 2 for a list of language features that cause
difficulties.

In the end, although it may be possible to resolve all of these ambiguities, we
prefer not to. That approach leads to a system that is fragile (a new extension
could break the requirement that principal types are unique up to α-equivalence),
difficult to explain to programmers (who must be able to determine which type
is principal) and difficult to reason about.

Our solution: specified polytypes Therefore, our system is designed around
the following principle:
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Only “specified” type parameters can be instantiated via explicit type ap-
plications.

In other words, we allow visible type application to instantiate a polytype only
when both of the following are true:

1. The polytype is already fixed: constraint solving will give us no more infor-
mation about the type.

2. The programmer may reasonably know what the type is.

In practice, these guidelines mean that visible type application is available
only on types that are given by an annotation. These restrictions follow in a long
line of work requiring more user annotations to support more advanced type sys-
tem features [14, 22, 23]. We refer to variables quantified in type annotations as
specified variables, distinct from compiler-generated quantified variables, which
we call generalized variables.

Imported functions A natural question that arises here is how imported func-
tions are handled. All imported functions meet the two criteria above. Their
types are fixed, and the programmer can learn their types (via documentation
or queries in an interactive interpreter). Yet, there is something unsatisfactory
about allowing all imported functions to have specified type parameters: the or-
der of the type parameters may still be determined by the compiler, if an inferred
type is similar to any of the examples in Fig. 2.

In these cases, the choice of type variable ordering seems very fragile and hard
for a compiler to make guarantees about. We do not want the order changing
between runs of the compiler, or even between minor revisions of the compiler.

We thus have decided:

Type parameters from user-supplied types of imported functions are spec-
ified; type parameters of other imported functions are generalized.

A stricter possibility is to allow specified type variables to arise only when
the exporting module explicitly puts ∀ a b. ... in a type signature. However, our
design decision strikes a middle ground between availability of the visible type
inference feature and predictability.

3.2 What is the specification of the type system?

We don’t want to extend just the type inference algorithm that GHC uses. We
would also like to extend its specification, which is rooted in HM. This way, we
will have a concise description (and better understanding) of what programs
type check, and a simple way to reason about the properties of the type system.

Our first attempt to add type application to GHC was based on our under-
standing of Algorithm W, the standard algorithm for HM type inference. This
algorithm instantiates polymorphic functions only at occurrences of variables.
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So, it seems that the only new form we need to allow is a visible type right after
variable occurrences:

x @τ1 ...@τn

However, this extension is not very robust to code refactoring. For example,
it is not closed under substitution. If type application is only allowed at vari-
ables, then we can’t substitute for this variable and expect the code to still type
check. Therefore our algorithm should allow visible type applications at other
expression forms. But where else makes sense?

One place that seems sensible to allow a type instantiation is after a poly-
morphic type annotation (such an annotation certainly specifies the type of the
expression):

(λx → x :: ∀ a b. (a, b)→ (a, b)) @Int

Likewise, if we refactor this term as below, we should also allow a visible instan-
tiation after a let:7

(let y = ((λx → x) :: ∀ a b. (a, b)→ (a, b)) in y) @Int

However, how do we know that we have identified all sites where visible type
applications should be allowed? Furthermore, we may have identified them all
for core HM, but what happens when we go to the full language of GHC, which
includes features that may expose new potential sites?

One way to think about this issue in a principled way is to develop a compo-
sitional specification of the type system, which allows type application for any
expression that can be assigned a polytype. Then, if we develop an algorithm
that is complete with respect to this specification, we will know that we have
allowed type applications in all of the appropriate places.

Our solution: lazy instantiation for specified polytypes This reasoning,
inspired by thinking about how to extend the declarative specification of the HM
type system, has lead us to develop a new approach to HM type inference. This
algorithm, which we call Algorithm V, is based on the following design principle:

Delay instantiation of “specified” type parameters until absolutely neces-
sary.

Although Algorithm W instantiates all polytypes immediately, it need not
do so. In fact, it is possible to develop a sound and complete alternative imple-
mentation of the HM type system that does not do this immediate instantiation.
Instead, instantiation is done only on demand, such as when a polymorphic func-
tion is applied to arguments. Lazy instantiation has been used in type inference
7 In fact, the Haskell 2010 Report [15] defines type annotations by expanding to a

let-declaration with a signature.
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HM

Metavariables: x , y term variables
a, b, c type variables
n numeric literals

e ::= x | λx . e | e1 e2 expressions
| n | let x = e1 in e2

τ ::= a | τ1 → τ2 | Int monotypes
σ ::= ∀{a}. τ type schemes
Γ ::= · | Γ, x :σ contexts

HMV

This grammar extends HM:

e ::= ... | e @τ | (Λa.e : υ) expressions
τ ::= ... monotypes
υ ::= ∀a. τ spec. polytypes
σ ::= ∀{a}. υ type schemes
Γ ::= · | Γ, x :σ | Γ, a contexts

We write (e : υ) to mean (Λ·.e : υ) and ftv(σ)
to be the set of type variables free in σ.

Fig. 3. Grammars for Systems HM and HMV

before [10] and may be folklore; however this work contains the first proof that
it can be used to implement the HM type system.

In the next section, we give this algorithm a simple specification, presented
as a small extension of HM’s existing declarative specification. We then make
the details of our algorithm precise by giving a syntax-directed account of the
type system, characterizing where lazy instantiations actually must occur during
type checking.

4 HM with visible type application

To make our ideas precise, we next review the declarative specification of the HM
type system [7, 18] (which we call System HM), and then show how to extend
this specification with visible type arguments.

4.1 System HM

The grammar of System HM is shown in Fig. 3. The expression language com-
prises the Curry-style typed λ-calculus with the addition of numeric literals (of
type Int) and let-expressions. Monotypes are standard, but we quantify over a
possibly-empty set of type variables in type schemes. Here, we diverge from stan-
dard notation and write these type variables in braces to emphasize that they
should be considered order-independent. We sometimes write τ for the type
scheme ∀{ }. τ with an empty set of quantified variables, and write ∀{a}.∀{b}. τ
to mean ∀{a, b}. τ . Here – and throughout this paper – we liberally use the
Barendregt convention that bound variables are always distinct from free vari-
ables.

The declarative typing rules for System HM appear in Fig. 4. (The figures
on HM also include the definition for our extended system, called System HMV,
described in Sect. 4.2.) System HM is not syntax-directed; rules HM_Gen and
HM_Sub can apply anywhere.

So that we can better compare this system with others in the paper, we
make two small changes to the standard HM rules. Neither of these changes are
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Γ h̀m e : σ Typing rules for System HM

x :σ ∈ Γ
Γ h̀m x : σ

HM_Var
Γ, x :τ1 h̀m e : τ2

Γ h̀m λx . e : τ1 → τ2
HM_Abs

Γ h̀m e1 : τ1 → τ2 Γ h̀m e2 : τ1

Γ h̀m e1 e2 : τ2
HM_App

Γ h̀m n : Int
HM_Int

Γ h̀m e1 : σ1 Γ, x :σ1 h̀m e2 : σ2

Γ h̀m let x = e1 in e2 : σ2
HM_Let

Γ h̀m e : σ a 6∈ ftv(Γ )

Γ h̀m e : ∀{a}. σ HM_Gen
Γ h̀m e : σ1 σ1 ≤hm σ2

Γ h̀m e : σ2
HM_Sub

σ1 ≤hm σ2 HM subsumption

τ1[τ/a1] = τ2 a2 6∈ ftv(∀{a1}. τ1)

∀{a1}. τ1 ≤hm ∀{a2}. τ2
HM_InstG

Γ h̀mv e : σ Extra typing rules for System HMV

Γ ` τ
Γ h̀mv e : ∀a. υ

Γ h̀mv e @τ : υ[τ/a]
HMV_TApp

Γ ` υ υ = ∀a, b. τ
Γ, a h̀mv e : τ

Γ h̀mv (Λa.e : υ) : υ
HMV_Annot

σ1 ≤hmv σ2 HMV subsumption

τ1[τ/b] = τ2

∀a, b. τ1 ≤hmv ∀a. τ2
HMV_InstS

υ1[τ/a1] ≤hmv υ2
a2 6∈ ftv(∀{a1}. υ1)

∀{a1}. υ1 ≤hmv ∀{a2}. υ2
HMV_InstG

Γ ` υ Type well-formedness

ftv(υ) ⊆ Γ
Γ ` υ Ty_Scoped

Fig. 4. Typing rules for Systems HM and HMV

substantial; our version types the same programs as the original. First, we allow
the type of a let expression to be a polytype σ, instead of restricting it to be a
monotype τ . (We discuss this change further in Sect. 5.2.) Second, we replace
the usual instantiation rule with HM_Sub. This rule allows the type of any
expression to be to converted to any less general type in one step (as determined
by the subsumption relation σ1 ≤hm σ2). Note that in rule HM_InstG the lists
of variables a1 and a2 need not be the same length.
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∀{a, b}. a → b ≤hmv ∀{a}. a → a Works the same as ≤hm for type schemes
∀a, b. a → b ≤hmv Int → Int Can instantiate specified vars
∀a, b. a → b ≤hmv ∀a. a → Int Can instantiate only a tail of the specified vars
∀a, b. a → b ≤hmv ∀{a, b}. a → b Variables can be regeneralized
∀a, b. a → b ≤hmv ∀{b}. Int → b Right-to-left nature of HMV_InstS

forces regeneralization

∀a, b. a → b 6≤hmv ∀b. Int → b Known vars are instantiated from the right,
never the left

∀{a}. a → a 6≤hmv ∀a. a → a Specified quantification is more general
than generalized quantification

Fig. 5. Examples of HMV subsumption relation

4.2 System HMV: HM with visible types

System HMV is an extension of System HM, adding visible type application. A
key detail in its design is its separation of specified type variables from those
arising from generalization, as initially explored in Sect. 3.1. Types may be
generalized at any time in HMV, quantifying over a variable free in a type but
not free in the typing context. The type variable generalized in this manner is
not specified, as the generalization takes place absent any direction from the
programmer. By contrast, a type variable mentioned in a type annotation is
specified, precisely because it is written in the program text.

Grammar The grammar of System HMV appears in Fig. 3. The type language
is enhanced with a new intermediate form υ that quantifies over an ordered list of
type variables. This form sits between type schemes and monotypes; σs contain
υs, which then contain τs.8 Thus the full form of a type scheme σ is ∀{a}, b. τ ,
including both a set of generalized variables {a} and a list of specified variables
b. Note that order never matters for generalized variables (they are in a set)
while order does certainly matter for specified variables (the list specifies their
order). We say that υ is the metavariable for specified polytypes, distinct from
type schemes σ.

Expressions in HMV include two new forms: e @τ instantiates a specified
type variable with a monotype τ , while (Λa.e : υ) allows us to bind scoped type
variables and put a type annotation on an expression. The type annotation is a
specified polytype υ. We do not allow annotation by type schemes σ, with quan-
tified generalized variables: if the user writes the type, all quantified variables
are considered specified.

8 The grammar for System HMV redefines several metavariables. These metavariables
then have (slightly) different meanings in different sections of this paper, but disam-
biguation should be clear from context. In analysis relating systems with different
grammars (for example, in Lemma 1), the more restrictive grammar takes prece-
dence.
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Typing contexts Γ in HMV are enhanced with the ability to store type vari-
ables. This feature is used to implement scoped type variables, where any vari-
ables bound by a Λ in a type annotation are available to use within the annotated
expression.

Typing rules The type system of HMV includes all of the rules of HM plus
the new rules and relation shown at the bottom of Fig. 4. The HMV rules
inherited from System HM are modified to recur back to System HMV relations:
in effect, replace all hm subscripts with hmv subscripts. Note, in particular, rule
HM_Sub; in System HMV, this rule refers to the σ1 ≤hmv σ2 relation, described
below.

The most important addition to this type system is HMV_TApp, which
enables visible type application when the type of the expression is quantified
over a specified type variable.

A type annotation (Λa.e : υ), typed with HMV_Annot, allows an expres-
sion to be assigned a specified polytype. We require the specified polytype to
have the form ∀a, b. τ ; that is, a prefix of the specified polytype’s quantified
variables must be the type variables scoped in the expression. This restriction
fixes the relationship between the scoped type variables and the assigned spec-
ified polytype. The inner expression e is then checked at type τ , with the type
variables a (but not the b) in scope. Of course, in the Γ, a h̀mv e : τ premise,
the variables a and b still (perhaps) appear in τ , but they are no longer quan-
tified. We call such variables skolems and say that skolemizing υ yields τ . In
effect, these variables form new type constants when type-checking e. When the
expression e has type τ , we know that e cannot make any assumptions about
the skolems a, b and that we can assign e the type ∀a, b. τ . This is, in effect,
specified generalization.

The relation σ1 ≤hmv σ2 (Fig. 4) implements subsumption for System HMV.
The intuition is that, if σ1 ≤hmv σ2, then an expression of type σ1 can be used
wherever one of type σ2 is expected. For type schemes, the standard notion of σ1
being a more general type than σ2 is sufficient. However for specified polytypes,
we must be more cautious.

Suppose an expression x @τ1 @τ2 type checks, where x has type ∀a, b. υ1. The
subsumption rule means that we can arbitrarily change the type of x to some
υ, as long as υ ≤hmv ∀a, b. υ1. Therefore, υ must be of the form ∀a, b. υ2 so that
x @τ1 @τ2 will continue to instantiate a with τ1 and b with τ2. Accordingly, we
cannot, say, allow subsumption to reorder the specified variables.

However, it is safe to allow some instantiation of specified variables as part of
subsumption, as in rule HMV_InstS. Examine this rule closely: it instantiates
variables from the right. This odd-looking design choice is critical. Continuing
the example above, υ could also be of the form ∀a, b, c. υ3. In this case, the
additional specified variable c causes no trouble – it need not be instantiated
by a visible application. But we cannot allow instantiation left-to-right as that
would allow the visible type arguments to skip instantiating a or b.

Further examples illustrating ≤hmv appear in Fig. 5.
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4.3 Properties of System HMV

We wish System HMV to be a conservative extension of System HM. That is,
any expression that is well-typed in HM should remain well-typed in HMV, and
any expression not well-typed in HM (but written in the HM subset of HMV)
should also not be well-typed in HMV.

Lemma 1 (Conservative Extension for HMV). Suppose Γ and e are both
expressible in HM; that is, they do not include any type instantiations, type
annotations, scoped type variables, or specified polytypes. Then, Γ h̀m e : σ if
and only if Γ h̀mv e : σ.

This property follows directly from the definition of HMV as an extension of
HM. Note, in particular, that no HM typing rule is changed in HMV and that the
≤hmv relation contains ≤hm ; furthermore, the new rules all require constructs
not found in HM.

We also wish to know that making generalized variables into specified vari-
ables does not disrupt types:

Lemma 2 (Extra knowledge is harmless). If Γ, x :∀{a}. τ h̀mv e : σ, then
Γ, x :∀a. τ h̀mv e : σ.

This property follows directly from a context generalization lemma, stated and
proven in App. C, which states that we can generalize types in the context
without affecting typability. Note that ∀a. τ ≤hmv ∀{a}. τ .

In practical terms, Lemma 2 means that if an expression contains let x =
e1 in e2, and the programmer figures out the type assigned to x (say, ∀{a}. τ)
and then includes that type in an annotation (as let x = (e1 : ∀a. τ) in e2), the
outer expression’s type does not then change.

However, note that, by design, context generalization is not as flexible for
specified polytypes as it is for type schemes. In other words, suppose the following
expression type-checks.

let x = ((λy → y) :: ∀ a b. (a, b)→ (a, b)) in ...

The programmer cannot then replace the type annotation with the type ∀ a. a→
a, because x may be used with visible type applications. This behavior may
be surprising, but it follows directly from the fact that ∀ a. a → a 6≤hmv

∀ a b. (a, b)→ (a, b).
Finally, we would also like to show that a system with visible types retains

the principal types property, defined with respect to the enhanced subsumption
relation σ1 ≤hmv σ2.

Theorem 3 (Principal types for HMV). For all terms e well-typed in a
context Γ , there exists a type scheme σp such that Γ h̀mv e : σp and, for all σ
such that Γ h̀mv e : σ, σp ≤hmv σ.

Before we can prove this, we first must show how to extend HM’s type infer-
ence algorithm (Algorithm W [8]) to include visible type application. Once we
do so, we can prove that this new algorithm always computes principal types.
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Γ c̀ e : τ Typing rules for System C

x :∀{a}. τ ∈ Γ
Γ c̀ x : τ [τ/a]

C_Var
Γ, x :τ1 c̀ e : τ2

Γ c̀ λx . e : τ1 → τ2
C_Abs

Γ c̀ e1 : τ1 → τ2 Γ c̀ e2 : τ1

Γ c̀ e1 e2 : τ2
C_App

Γ c̀ n : Int
C_Int

Γ `genc e : σ Γ, x :σ c̀ e2 : τ2

Γ c̀ let x = e1 in e2 : τ2
C_Let

Γ `genc e : σ Generalization for System C

a = ftv(τ) \ ftv(Γ ) Γ c̀ e : τ

Γ `genc e : ∀{a}. τ C_Gen

We lift ftv to work on contexts: ftv(x :σ) =
⋃

i ftv(σi).

Fig. 6. Syntax-directed version of the HM type system

5 Syntax-directed versions of HM and HMV

The type systems in the previous section declare when programs are well-formed,
but they are fairly far removed from an algorithm. In particular, the rules
HM_Gen and HM_Sub can appear at any point in a typing derivation.

5.1 System C

We can explain the HM type system in a more algorithmic manner by using a
syntax-directed specification, called System C, in Fig. 6. This version of the type
system, derived from Clément et al. [5], clarifies exactly where generalization and
instantiation occur during type checking. Notably, instantiation occurs only at
the usage of a variable, and generalization occurs only at a let-binding. These
rules are syntax-directed because the conclusion of each rule in the main judg-
ment Γ c̀ e : τ is syntactically distinct. Thus, from the shape of an expression,
we can determine the shape of its typing derivation.

However, the judgment Γ c̀ e : τ is still not quite an algorithm: it makes non-
deterministic guesses. For example, in the rule C_Abs, the type τ1 is guessed;
there is no indication in the expression what the choice for τ1 should be. The
advantage of studying a syntax-directed system such as System C is that doing
so separates concerns: System C fixes the structure of the typing derivation (and
of any implementation) while leaving monotype-guessing as a separate problem.
Algorithm W deduces the monotypes via unification, but a constraint-based
approach [25, 27] would also work.
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Γ v̀ e : τ Monotype checking for System V

Γ, x :τ1 v̀ e : τ2

Γ v̀ λx . e : τ1 → τ2
V_Abs

Γ v̀ e1 : τ1 → τ2 Γ v̀ e2 : τ1

Γ v̀ e1 e2 : τ2
V_App

Γ v̀ n : Int
V_Int

Γ `∗v e : ∀a. τ
no other rule matches

Γ v̀ e : τ [τ/a]
V_InstS

Γ `∗v e : υ Specified polytype checking for System V

x :∀{a}. υ ∈ Γ
Γ ∗̀

v x : υ[τ/a]
V_Var

Γ `genv e1 : σ1 Γ, x :σ1 `∗v e2 : υ2

Γ ∗̀
v let x = e1 in e2 : υ2

V_Let

Γ ` τ
Γ `∗v e : ∀a. υ

Γ ∗̀
v e @τ : υ[τ/a]

V_TApp

Γ ` υ υ = ∀a, b. τ
Γ, a v̀ e : τ

Γ ∗̀
v (Λa.e : υ) : υ

V_Annot

Γ v̀ e : τ
no other rule matches

Γ ∗̀
v e : τ

V_Mono

Γ `genv e : σ Generalization for System V

a = ftv(υ) \ ftv(Γ ) Γ `∗v e : υ

Γ `genv e : ∀{a}. υ V_Gen

Contexts Γ now contain type variables. We thus redefine ftv(x :σ, a) = a ∪
⋃

i ftv(σi).

Fig. 7. Typing rules for System V

5.2 System V: Syntax-directed visible types

Just as System C is a syntax-directed version of HM, we can also define System
V, a syntax-directed version of HMV (Fig. 7). However, although we could de-
fine HMV by a small addition to HM (two new rules, plus subsumption), the
difference between System C and System V is more significant.

Like System C, System V uses multiple judgments to restrict where general-
ization and instantiation can occur. In particular, the system allows an expres-
sion to have a type scheme only as a result of generalization (using the judgment
Γ `genv e : σ). Generalization is, once again, available only in let-expressions.

However, the main difference that enables visible type annotation is the sep-
aration of the main typing judgment into two: Γ v̀ e : τ and Γ ∗̀

v e : υ. The key
idea is that, sometimes, we need to be lazy about instantiating specified type
variables so that the programmer has a chance to add a visible instantiation.
Therefore, the system splits the rules into a judgment v̀ that requires e to have
a monotype, and those in ∗̀v that can retain quantification in a specified polytype.
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The first set of rules in Fig. 7, as before, infers a monotype for the expression.
The premises of the rule V_Abs uses this judgment, for example, to require that
the body of an abstraction have a monotype. All expressions can be assigned
a monotype; if the first three rules do not apply, the last rule V_InstS infers
a polytype instead, then instantiates it to yield a monotype. Because implicit
instantiation happens all at once in this rule, we do not need to worry about
instantiating specified variables out of order, as we did in System HMV.

The second set of rules (the ∗̀v judgment) allows e to be assigned a specified
polytype. Note that the premise of rule V_TApp uses this judgment.

Rule V_Var is like rule C_Var: both look up a variable in the environ-
ment and instantiate its generalized quantified variables. The difference is that
C_Var’s types can contain only generalized variables; System V’s types can
have specified variables after the generalized ones. Yet we instantiate only the
generalized ones in the V_Var rule, lazily preserving the specified ones.

Rule V_Let is likewise similar to C_Let. The only difference is that the
result type is not restricted to be a monotype. By putting V_Let in the ∗̀v
judgment and returning a specified polytype, we allow the following judgment
to hold:

· v̀ (let x = (λy . y : ∀a. a → a) in x )@Int : Int → Int

The expression above would be ill-typed in a system that restricted the result of
a let-expression to be a monotype. It is for this reason that we altered System
HM to include a polytype in its HM_Let rule, for consistency with HMV.

Rule V_Annot is identical to rule HMV_Annot. It uses the v̀ judgment
in its premise to force instantiation of all quantified type variables before regener-
alizing to the specified polytype υ. In this way, the V_Annot rule is effectively
able to reorder specified variables. Here, reordering is acceptable, precisely be-
cause it is user-directed.

Finally, if an expression form cannot yield a specified polytype, rule
V_Mono delegates to v̀ to find a monotype for the expression.

5.3 Relating System V to System HMV

Systems HMV and V are equivalent; they type check the same set of expressions.
We prove this correspondence using the following two theorems.

Theorem 4 (Soundness of V against HMV).

1. If Γ v̀ e : τ , then Γ h̀mv e : τ .
2. If Γ ∗̀

v e : υ, then Γ h̀mv e : υ.
3. If Γ `genv e : σ, then Γ h̀mv e : σ.

Theorem 5 (Completeness of V against HMV). If Γ h̀mv e : σ, then there
exists σ′ such that Γ `genv e : σ′ where σ′ ≤hmv σ.

The proofs of these theorems appear in App. D.
Having established the equivalence of System V with System HMV, we can

note that Lemma 2 (“Extra knowledge is harmless”) carries over from HMV to V.
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This property is quite interesting in the context of System V. It says that a typing
context where all type variables are specified admits all the same expressions as
one where some type variables are generalized. In System V, however, specified
and generalized variables are instantiated via different mechanisms, so this is a
powerful theorem indeed.

It is mechanical to go from the statement of System V in Fig. 7 to an algo-
rithm. In App. E, we define Algorithm V which implements System V, analogous
to Algorithm W which implements System C. We then prove that Algorithm V
is sound and complete with respect to System V and that Algorithm V finds
principal types. Linking the pieces together gives us the proof of the princi-
pal types property for System HMV (Theorem 3). Furthermore, Algorithm V is
guaranteed to terminate, yielding this theorem:

Theorem 6. Type-checking System V is decidable.

6 Higher-rank type systems

We now extend the design of System HMV to include higher-rank polymor-
phism [17]. This allows function parameters to be used at multiple types. In-
corporating this extension is actually quite straightforward. We include this ex-
tension to show that our framework for visible type application is indeed easy
to extend – the syntax-directed system we study in this section is essentially a
merge of System V and the bidirectional system from our previous work [23].
This system is also the basis for our implementation in GHC.

As an example, the following function does not type check in the vanilla
Hindley-Milner type system, assuming id has type ∀ a. a→ a.

let foo = λf → (f 3, f True) in foo id

Yet, with the RankNTypes language extension and the following type anno-
tation, GHC is happy to accept

let foo :: (∀ a. a→ a)→ (Int,Bool)
foo = λf → (f 3, f True)

in foo id

Visible type application means that higher-rank arguments can also be ex-
plicitly instantiated. For example, we can instantiate lambda-bound identifiers:

let foo :: (∀ a. a→ a)→ (Int → Int,Bool)
foo = λf → (f @Int, f True)

in foo id

Higher-rank types also mean that visible instantiations can occur after other
arguments are passed to a function. For example, consider this alternative type
for the pair function:
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pair :: ∀ a. a→ ∀ b. b → (a, b)
pair = λx y → (x , y)

If pair has this type, we can instantiate b after providing the first component for
the pair, thus:

bar = pair ’x’ @Bool
-- bar inferred to have type Bool → (Char ,Bool)

In the rest of this section, we provide the technical details of these language
features and discuss their interactions. In contrast to the presentation above,
we present the syntax-directed higher-rank system first, for two reasons: under-
standing a bidirectional system requires thinking about syntax, and thus the
syntax-directed system seems easier to understand; and we view the declarative
system as an expression of properties – or a set a metatheorems – about the
higher-rank type system.

6.1 System SB: Syntax-directed Bidirectional Type Checking

Figures 8 and 9 show System SB, the higher-rank, bidirectional analogue of
System V, supporting predicative higher-rank polymorphism and visible type
application.

This system shares the same expression language of Systems HMV and V,
retaining visible type application and type annotations. However, types in Sys-
tem SB may have non-prenex quantification. The body of a specified polytype
υ is now a phi-type φ: a type that has no top-level quantification but may have
quantification to the left or to the right of arrows. Note also that these inner
quantified types are υs, not σs. In other words, non-prenex quantification is over
only specified variables, never generalized ones. As we will see, inner quantified
types are introduced only by user annotation, and thus there is no way the sys-
tem could produce an inner type scheme, even if the syntactic restriction were
not in place.

The grammar also defines rho-types ρ, which also have no top-level quantifi-
cation, but inner quantification can happen only to the left of arrows. We get
from specified polytypes (which may quantify to the right of arrows) to rho-types
by means of the prenex operation, which appears in Fig. 9.

System SB is defined by five mutually recursive judgments: Γ s̀b e ⇒ φ,
Γ ∗̀

sb e ⇒ υ, and Γ `gensb e ⇒ σ are synthesis judgments, producing the type as
an output; Γ s̀b e ⇐ ρ and Γ ∗̀

sb e ⇐ υ are checking judgments, requiring the
type as an input.

Type synthesis The synthesis judgments are very similar to the judgments
from System V, ignoring direction arrows. The differences stem from the non-
prenex quantification allowed in SB. The level of similarity is unsurprising, as
the previous systems essentially all work only in synthesis mode; they derive
a type given an expression. The novelty of a bidirectional system is its abil-
ity to propagate information about specified polytypes toward the leaves of an
expression.
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The grammar for SB extends that for System HMV (Fig. 3):

e ::= . . . expressions ρ ::= τ | υ1 → ρ2 rho-types
τ ::= . . . monotypes φ ::= τ | υ1 → υ2 phi-types
Γ ::= · | Γ, x :σ | Γ, a contexts υ ::= ∀a. φ specified polytypes

σ ::= ∀{a}. υ type schemes

Γ s̀b e ⇒ φ Synthesis of types without top-level quantifiers

Γ, x :τ `∗sb e ⇒ υ

Γ s̀b λx . e ⇒ τ → υ
SB_Abs

Γ s̀b n ⇒ Int
SB_Int

Γ `∗sb e ⇒ ∀a. φ
no other rule matches
Γ s̀b e ⇒ φ[τ/a]

SB_InstS

Γ `∗sb e ⇒ υ Synthesis of specified polytypes

x :∀{a}. υ ∈ Γ
Γ ∗̀

sb x ⇒ υ[τ/a]
SB_Var

Γ s̀b e1 ⇒ υ1 → υ2 Γ `∗sb e2 ⇐ υ1

Γ ∗̀
sb e1 e2 ⇒ υ2

SB_App

Γ ` τ
Γ `∗sb e ⇒ ∀a. υ

Γ ∗̀
sb e @τ ⇒ υ[τ/a]

SB_TApp

Γ ` υ υ = ∀a, b. φ
Γ, a `∗sb e ⇐ φ

Γ ∗̀
sb (Λa.e : υ)⇒ υ

SB_Annot

Γ `gensb e1 ⇒ σ1 Γ, x :σ1 `∗sb e2 ⇒ υ2

Γ ∗̀
sb let x = e1 in e2 ⇒ υ2

SB_Let

Γ s̀b e ⇒ φ
no other rule matches

Γ ∗̀
sb e ⇒ φ

SB_Phi

Γ `gensb e ⇒ σ Synthesis with generalization

Γ `∗sb e ⇒ υ a = ftv(υ) \ ftv(Γ )

Γ `gensb e ⇒ ∀{a}. υ SB_Gen

Γ s̀b e ⇐ ρ Checking against types without top-level quantifiers

Γ `gensb e1 ⇒ σ1 Γ, x :σ1 s̀b e2 ⇐ ρ2

Γ s̀b let x = e1 in e2 ⇐ ρ2
SB_DLet

Γ, x :υ1 `∗sb e ⇐ ρ2

Γ s̀b λx . e ⇐ υ1 → ρ2
SB_DAbs

Γ `∗sb e ⇒ υ1 υ1 ≤dsk ρ2
no other rule matches

Γ s̀b e ⇐ ρ2
SB_Infer

Γ `∗sb e ⇐ υ Checking against specified polytypes

prenex (υ) = ∀a. ρ
a 6∈ ftv(Γ ) Γ s̀b e ⇐ ρ

Γ ∗̀
sb e ⇐ υ

SB_DeepSkol

Fig. 8. Syntax-directed bidirectional type system
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σ1 ≤b σ2 Higher-rank instantiation

τ ≤b τ
B_Refl

υ3 ≤b υ1 υ2 ≤b υ4

υ1 → υ2 ≤b υ3 → υ4
B_Fun

φ1[τ/b] ≤b φ2

∀a, b. φ1 ≤b ∀a. φ2

B_InstS
υ1[τ/a] ≤b υ2 b 6∈ ftv(∀{a}. υ1)

∀{a}. υ1 ≤b ∀{b}. υ2
B_InstG

φ1 ≤∗dsk ρ2 Subsumption, after deep skolemization

τ ≤∗dsk τ
DSK_Refl

υ3 ≤dsk υ1 υ2 ≤dsk ρ4

υ1 → υ2 ≤∗dsk υ3 → ρ4
DSK_Fun

σ1 ≤dsk υ2 Deep skolemization

prenex (υ2) = ∀c. ρ2
φ1[τ/a][τ ′/b] ≤∗dsk ρ2
∀{a}, b. φ1 ≤dsk υ2

DSK_Inst

Define prenex (υ) = ∀a. ρ as follows:

prenex (∀a. τ) =∀a. τ
prenex (∀a. υ1 → υ2) = ∀a, b. υ1 → ρ2

where ∀b. ρ2 = prenex (υ2)

Examples:

∀a. a → ∀b. b → b ≤b Int → Bool → Bool Can instantiate non-top-level vars
∀a. a → ∀b. b → b ≤b Int → ∀b. b → b Not all vars must be instantiated
∀a. a → ∀b. b → b ≤b ∀a. a → Bool → Bool Can skip a top-level quantifier

(Int → Int)→ Bool ≤b (∀a. a → a)→ Bool Contravariant instantiation

Int → ∀a, b. a → b 6≤b Int → ∀b.Bool → b Spec. vars are inst’d from the right
Int → ∀a. a → a 6≤b ∀a. Int → a → a Cannot move ∀ for spec. vars

Int → ∀a, b. a → b ≤dsk Int → ∀b.Bool → b ≤dsk can inst. spec. vars in any order
Int → ∀a. a → a ≤dsk ∀a. Int → a → a Spec. ∀ can move with ≤dsk

(Int → ∀b. b → b)→ Int ≤dsk

(∀a, b. a → b → b)→ Int Contravariant out-of-order inst.
∀{a}. a → a ≤dsk ∀a. a → a Same handling of spec. and gen. vars

Fig. 9. Higher-rank subsumption relations

Type checking Rule SB_DAbs is what makes the system higher-rank. The
checking judgment Γ s̀b e ⇐ ρ pushes in a rho-type, with no top-level quan-
tification. Thus, SB_DAbs can recognize an arrow type υ1 → ρ2. Propagating
this type into an expression λx . e, SB_DAbs uses the type υ1 as x ’s type when
checking e. This is the only place in system SB where a lambda-term can ab-
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stract over a variable with a polymorphic type. Note that the synthesis rule
SB_Abs uses a monotype for the type of x.9

Rule SB_Infer mediates between the checking and synthesis judgments.
When no checking rule applies, we synthesize a type and then check it according
to the ≤dsk deep skolemization relation, taken directly from previous work and
shown in Fig. 9. For brevity, we don’t explain the details of this relation here,
instead referring readers to Peyton Jones et al. [23, Sect. 4.6] for much deeper
discussion. However, we note that there is a design choice to be made here;
we could have also used Odersky–Läufer’s slightly less expressive higher-rank
subsumption relation [21] instead. We present the system with deep skolemiza-
tion for backwards compatibility with GHC. See App. H for a discussion of this
alternative.

The entry point into the type checking judgments is through the Γ ∗̀
sb e ⇐ υ

judgment. This judgment has just one rule, SB_DeepSkol. The rule skolem-
izes all type variables appearing at the top-level and to the right of arrows.
Skolemizing here is necessary to expose a rho-type to the Γ s̀b e ⇐ ρ judgment,
so that rule SB_DAbs can fire.10 For example, if the algorithm is checking
against type ∀a. a → ∀b. b → a, it will skolemize both a and b, pushing in the
type a → b → a. As before, by stripping off the ∀ a and ∀ b, those variables
behave as type constants.

The interaction between rule SB_DeepSkol and SB_Infer is subtle. Deep
skolemization is necessary in SB_DeepSkol because SB_Infer uses the Γ ∗̀

sb

e ⇒ υ synthesis judgment in its premise, instead of the Γ `gensb e ⇒ σ judgment.
This decision to avoid generalization was forced by GHC, where generalization is
intricately tied into its treatment of let-bindings and not supported for arbitrary
expressions. Compare SB_Infer with B_Infer, whose premise synthesizes a
σ-type. This difference means that, in the syntax-directed system, we require
more instantiations in the typing derivation above the SB_Infer rule. If the
checked type were not deeply skolemized, certain inner-quantified variables would
be unavailable for instantiation. For an illuminating example, see Fig. 10.

6.2 System B: Declarative specification

Figure 11 shows the typing rules of System B, a declarative system that accepts
the same programs as System SB. This declarative type system itself is a novel
contribution of this work. (The systems presented in related work [10, 21, 23]
are more similar to SB than to B.)

Although System B is bidirectional, we claim that it is also declarative. In
particular, the use of generalization (B_Gen), subsumption (B_Sub), skolem-
9 Higher-rank systems can also include an “annotated abstraction” form, λx :υ. e. This
form allows higher-rank types to be synthesized for lambda expressions as well as
checked. However, this form is straightforward to add but is not part of GHC, which
uses patterns (beyond the scope of this paper) to bind variables in abstractions.
Therefore we omit the annotated abstraction form from our formalism.

10 Our choice to skolemize before SB_DLet is arbitrary, as SB_DLet does not in-
teract with the propagated type.
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Assume Γ = x :∀{a}. Int → a → a. We wish to type-check the expression (x :Int →
∀a. a → a). Here is a valid derivation in System B:

x :∀{a}. Int → a → a ∈ Γ
B_Var

Γ b̀ x ⇒ ∀{a}. Int → a → a

... B_InstG
∀{a}. Int → a → a ≤dsk

Int → ∀a. a → a
B_Infer

Γ b̀ x ⇐ Int → ∀a. a → a
B_Annot

Γ b̀ (x : Int → ∀a. a → a)⇒ Int → ∀a. a → a

Here is a valid derivation in System SB:

x :∀{a}. Int → a → a ∈ Γ
SB_Var

Γ `∗sb x ⇒ Int → a → a

DSK_Refl
Int → a → a ≤∗dsk

Int → a → a
DSK_Inst

Int → a → a ≤dsk

Int → a → a
SB_Infer

Γ s̀b x ⇐ Int → a → a
SB_DeepSkol

Γ `∗sb x ⇐ Int → ∀a. a → a
SB_Annot

Γ `∗sb (x : Int → ∀a. a → a)⇒ Int → ∀a. a → a
SB_Gen

Γ `gensb (x : Int → ∀a. a → a)⇒ Int → ∀a. a → a

Note the deep skolemization in this derivation. If we did only a shallow skolemization
at the point we use SB_DeepSkol, then a would not be skolemized. Accordingly, it
would be impossible to instantiate the type of x with a in the use of the SB_Var rule.

Fig. 10. An example of why deep skolemization in SB_DeepSkol is necessary

ization (B_Skol), and mode switching (B_Infer), can happen arbitrarily in
a typing derivation. Understanding what expressions are well-typed does not
require knowing precisely when these operations take place.

The subsumption rule (B_Sub) in the synthesis judgment corresponds to
HMV_Sub from HMV. However, the novel subsumption relation ≤b used by
this rule, shown at the top of Fig. 9, is different from the ≤dsk deep skolemization
relation used in System SB. This σ1 ≤b σ2 judgment extends the action of
≤hmv to higher-rank types: in particular, it allows subsumption for generalized
type variables (which can be quantified only at the top level) and instantiation
(only) for specified type variables. We could say that this judgment enables inner
instantiation because instantiations are not restricted to top level. See also the
examples at the bottom of Fig. 9.

In contrast, rule B_Infer (in the checking judgment) uses the stronger of
the two subsumption relations ≤dsk. This rule appears at precisely the spot in
the derivation where a specified type from synthesis mode meets the specified
type from checking mode. The relation ≤dsk subsumes ≤b ; that is, σ1 ≤b υ2
implies σ1 ≤dsk υ2.



Visible Type Application (Extended version) 23

Γ b̀ e ⇒ σ Synthesis rules for System B

x :σ ∈ Γ
Γ b̀ x ⇒ σ

B_Var
Γ, x :τ b̀ e ⇒ υ

Γ b̀ λx . e ⇒ τ → υ
B_Abs

Γ b̀ e1 ⇒ υ1 → υ2 Γ b̀ e2 ⇐ υ1

Γ b̀ e1 e2 ⇒ υ2
B_App

Γ b̀ n ⇒ Int
B_Int

Γ b̀ e1 ⇒ σ1 Γ, x :σ1 b̀ e2 ⇒ σ

Γ b̀ let x = e1 in e2 ⇒ σ
B_Let

Γ b̀ e ⇒ σ a 6∈ ftv(Γ )

Γ b̀ e ⇒ ∀{a}. σ B_Gen
Γ b̀ e ⇒ σ1 σ1 ≤b σ2

Γ b̀ e ⇒ σ2
B_Sub

Γ ` τ
Γ b̀ e ⇒ ∀a. υ

Γ b̀ e @τ ⇒ υ[τ/a]
B_TApp

Γ ` υ υ = ∀a, b. φ
Γ, a b̀ e ⇐ φ

Γ b̀ (Λa.e : υ)⇒ υ
B_Annot

Γ b̀ e ⇐ υ Checking rules for System B

Γ, x :υ1 b̀ e ⇐ υ2

Γ b̀ λx . e ⇐ υ1 → υ2
B_DAbs

Γ b̀ e1 ⇒ σ1

Γ, x :σ1 b̀ e2 ⇐ υ

Γ b̀ let x = e1 in e2 ⇐ υ
B_DLet

Γ b̀ e ⇐ υ a 6∈ ftv(Γ )

Γ b̀ e ⇐ ∀a. υ B_Skol
Γ b̀ e ⇒ σ1 σ1 ≤dsk υ2

Γ b̀ e ⇐ υ2
B_Infer

Fig. 11. System B

Properties of System B and SB We can show that Systems SB and B admit
the same expressions.

Lemma 7 (Soundness of System SB).

1. If Γ s̀b e ⇒ φ then Γ b̀ e ⇒ φ.
2. If Γ ∗̀

sb e ⇒ υ then Γ b̀ e ⇒ υ.
3. If Γ `gensb e ⇒ σ then Γ b̀ e ⇒ σ.
4. If Γ ∗̀

sb e ⇐ υ then Γ b̀ e ⇐ υ.
5. If Γ s̀b e ⇐ ρ then Γ b̀ e ⇐ ρ.

Lemma 8 (Completeness of System SB).

1. If Γ b̀ e ⇒ σ then Γ `gensb e ⇒ σ′ where σ′ ≤b σ.
2. If Γ b̀ e ⇐ υ then Γ ∗̀

sb e ⇐ υ.

What is the role of System B? In our experience, programmers tend to prefer
the syntax-directed presentation of the system because that version is more
algorithmic. As a result, it can be easier to understand why a program type
checks (or doesn’t) by reasoning about System SB.
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However, the fact that System B is sound and complete with respect to
System SB provides properties that we can use to reason about SB. The main
difference between the two is that System B divides subsumption into two dif-
ferent relations. The weaker ≤b can used at any time during synthesis, but it
can only instantiate specified variables. The stronger ≤dsk is used at only the
check/synthesis boundary but can generalize and reorder specified variables.

The connection between the two systems tells us that B_Sub is admissible
for SB. As a result, when refactoring code, we need not worry about precisely
where a type is instantiated, as we see here that instantiation need not be fixed
syntactically.

Likewise, the proof also shows that System B (and System SB) is flexible with
respect to the instantiation relation ≤b in the context. As in System HMV, this
result implies that making generalized variables into specified variables does not
disrupt types.

Lemma 9 (Context Generalization). Suppose Γ ′ ≤b Γ .

1. If Γ b̀ e ⇒ σ then there exists σ′ ≤b σ such that Γ ′ b̀ e ⇒ σ′.
2. If Γ b̀ e ⇐ υ and υ ≤b υ

′ then Γ ′ b̀ e ⇐ υ′.

Proofs of these properties appear in App. G.

6.3 Integrating visible type application with GHC

System SB is the direct inspiration for the type-checking algorithm used in our
version of GHC enhanced with visible type application. It is remarkably straight-
forward to implement the system described here within GHC; accounting for
the behavior around imported functions (Sect. 3.1) was the hardest part. The
other interactions (the difference between this paper’s scoped type variables and
GHC’s, how specified type variables work with type classes, etc.) are generally
uninteresting; see App. B for further comments.

One pleasing synergy between visible type application and GHC concerns
GHC’s recent partial type signature feature [29]. This feature allows wildcards,
written with an underscore, to appear in types; GHC infers the correct replace-
ment for the wildcard. These work well in visible type applications, allowing
the user to write @ as a visible type argument where GHC can infer the ar-
gument. For example, if f has type ∀ a b. a → b → (a, b), then we can write
f @ @[Int ] True [ ] to let GHC infer that a should be Bool but to visibly instan-
tiate b to be [Int ]. Getting partial type signatures to work in the new context
of visible type applications required nothing more than hooking up the pieces.

7 Related work and Conclusions

Implicit arguments in dependently-typed languages Languages such as
Coq [6], Agda [20], Idris [1] and Twelf [24] are not based on the HM type system,
so their designs differ from Systems HMV and B. However, they do support
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invisible arguments. In these languages, an invisible argument is not necessarily
a type; it could be any argument that can be inferred by the type checker.

Coq, Agda, and Idris require all quantification, including that for invisible
arguments, to be specified by the user. These languages do not support general-
ization, i.e., automatically determining that an expression should quantify over
an invisible argument (in addition to any visible ones). They differ in how they
specify the visibility of arguments, yet all of them provide the ability to override
an invisibility specification and provide such arguments visibly.

Twelf, on the other hand, supports invisible arguments via generalization and
visible arguments via specification. Although it is easy to convert between the
two versions, there is no way to visibly provide an invisible argument as we have
done. Instead, the user must rely on type annotations to control instantiations.

Specified vs. generalized variables Dreyer and Blume’s work on specifying
ML’s type system and inference algorithm in the presence of modules [9] intro-
duces a separation of (what we call) specified and generalized variables. Their
work focuse on the type parameters to ML functors, finding inconsistencies be-
tween the ML language specification and implementations. They conclude that
the ML specification as written is hard to implement and propose a new one.
Their work includes a type system that allows functors to have invisible argu-
ments alongside their visible ones. This specification is easier to implement, as
they demonstrate.

Their work has similarities to ours in the separation of classes of variables
and the need to alter the specification to make type inference reasonable. In-
terestingly, they come from the opposite direction from ours, adding invisible
arguments in a place where arguments previously were all visible. However, de-
spite these surface similarities, we have not found a deeper connection between
our work and theirs.

Predicative, higher-rank type systems As we have already indicated, Sys-
tems B and SB are directly inspired by GHC’s design for higher-rank types [23].
However, in this work we have redesigned the algorithm to use lazy instantiation
and have made a distinction between specified polytypes and generalized poly-
types. Furthermore, we have pushed the design further, providing a declarative
specification for the type system.

Our work is also closely related to recent work on using a bidirectional type
system for higher-rank polymorphism by Dunfield and Krishnaswami [10], called
DK below. The closest relationship is between their declarative system (Fig. 4
in their paper) and our System SB (Fig. 8). The most significant difference is
that the DK system never generalizes. All polymorphic types in their system
are specified; functions must have a type annotation to be polymorphic. Conse-
quently, DK uses a different algorithm for type checking than the one proposed
in this work. Nevertheless, it defers instantiations of specified polymorphism,
like our algorithm.
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Our relation ≤dsk, which requires two specified polytypes, is similar to the
DK subsumption relation. The DK version is slightly weaker as it does not
use deep skolemization; but that difference is not important in this context.
Another minor difference is that System SB uses the Γ s̀b e ⇒ φ judgment
to syntactically guide instantiation whereas the the DK system uses a separate
application judgment form. System B – and the metatheory of System SB – also
includes implicit subsumption ≤b , which does not have an analogue in the DK
system. A more extended comparison with the DK system appears in App. H.

Conclusion This work extends the HM type system with visible type applica-
tion, while maintaining important properties of that system that make it useful
for functional programmers. Our extension is fully backwards compatible with
previous versions of GHC. It retains the principal types property, leading to
robustness during refactoring. At the same time, our new systems come with
simple, compositional specifications.

While we have incorporated visible type application with all existing fea-
tures of GHC, we do not plan to stop there. We hope that our mix of specified
polytypes and type schemes will become a basis for additional type system ex-
tensions, such as impredicative types, type-level lambdas, and dependent types.
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A Extended examples using visible types

In this section we present two longer examples that benefit from the addition of
visible type application. The second expands and explains the code presented in
Sect. 2.

A.1 Deferring constraints to runtime

Recent work [2] uses the following definition to enable mixing static and dynamic
typing in order to implement information-flow control in Haskell:11

class Deferrable (c :: Constraint) where
assume :: ∀ a. Proxy c → (c ⇒ a)→ a

The parameter to the class Deferrable is a constraint kind – that is, the kind
classifying constraints that appear to the left of ⇒. For example, Show a is a
Constraint. The idea behind Deferrable is that, if a constraint is deferred, the
program calculates at runtime whether or not the constraint holds.

Let’s consider deferring an equality constraint, written τ1 ∼ τ2 in Haskell.
Equality constraints are ordinary constraints; in particular, they have kind
Constraint and can thus be deferred. However, if we have some type variable
a and wish to check if a is, say, Bool at runtime, we need runtime type informa-
tion. Haskell’s Typeable feature [13] implements runtime type information. If we
have a function,

woozle :: Typeable a⇒ a→ a

then runtime information identifying the type a is available at runtime, in the
body of woozle.

Putting this all together, it seems reasonable to defer an equality constraint
between two types if we have runtime type information for both of them:

instance (Typeable a,Typeable b)
⇒ Deferrable (a ∼ b) where ...

However, to implement assume, we need one more definition.

Propositional equality: :∼: Recent standard libraries shipped with GHC
contain the following datatype:

data a :∼: b where
Refl :: a :∼: a

11 Much of this example – including its use of deferring equality constraints – appears
in Buiras et al. [2]. However, our use of visible type application in this example is
our own contribution, novel in this paper.
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This datatype implements propositional equality. If you have a value pf :: τ1 :∼:
τ2, that is a proof that types τ1 and τ2 are equal. Pattern matching on pf reveals
this equality to GHC’s type-checker, which can then use it in a pattern match:

boolCast :: (a :∼: Bool)→ a→ Bool
boolCast pf b = case pf of Refl → b

Runtime cast The Typeable feature uses :∼: in an important function:

eqT :: (Typeable a,Typeable b)⇒ Maybe (a :∼: b)

Given runtime type information for a and b, this function conditionally provides
a proof that a and b are equal. The eqT function, in turn, can be used to
implement a runtime cast.

We are now ready to assemble the pieces:

instance (Typeable a,Typeable b)
⇒ Deferrable (a ∼ b) where
assume x = case eqT :: Maybe (a :∼: b) of

Just Refl → x
Nothing → error "type error!"

Making assumptions Suppose we are working a list type that tracks whether
it has surely one element, or whether there is an unknown length.12 Here are the
relevant definitions:

data Flag = Branched -- 0 or more elements
| Unbranched -- exactly 1 element

data List a (b :: Flag) = ...

the :: List a Unbranched → a
the = ...

In some places, it is hard to arrange for the type system to ascertain that a list
is Unbranched , and calling the is impossible. However, with Deferrable, we can
get around that pesky static type system:

unsafeThe :: ∀ a b. Typeable b ⇒ List a b → a
unsafeThe `

= assume (Proxy :: Proxy (b ∼ Unbranched))
(the `)

The call to assume means that the ` is type-checked in an environment where the
constraint b ∼ Unbranched is assumed. The call the ` then type-checks without
a problem.
12 This example is from real code – just such a list is used within GHC when keeping

track of type family axioms from either open [3, 4] or closed [11] type families.
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Deferring errors with visible type application This last snippet of code
assumes a constraint, and the only way of specifying the constraint is via a Proxy .
This is what visible type application can ameliorate. Let’s rewrite this example
with visible type application.

class Deferrable (c :: Constraint) where
assume :: ∀ a. (c ⇒ a)→ a

instance (Typeable a,Typeable b)
⇒ Deferrable (a ∼ b) where
assume x = case eqT @a @b of

Just Refl → x
Nothing → error "type error!"

unsafeThe :: ∀ a b. Typeable b ⇒ List a b → a
unsafeThe ` = assume @(b ∼ Unbranched) (the `)

We have used visible type applications in two places here. One is to fix the
type of the call to eqT . Because we immediately pattern-match on this result,
GHC has no way of inferring the types at which to use eqT . In the previous
version of this example, it was necessary to write eqT :: Maybe (a :∼: b) here.
This annotation is noisy, because we care only about the a and the b – the
Maybe and :∼: bits are fixed and add no information. It is easy to imagine more
complex cases where the noise far outstrips the signal.

The second use of visible type application is in the definition and call of
assume, where no Proxy argument is now necessary. Once again, this has cleaned
up our code and drastically reduced noise.

Dependently-typed programming with Proxy Dependently-typed pro-
gramming in GHC can require more extensive use of proxies. For example, based
on Conor McBride’s ICFP 2012 keynote [16], consider a stack-based compiler for
a language of boolean expressions. (The entire code for this example is available
in the supplementary material.)

data Expr :: ?where
Val :: Bool → Expr
Cond :: Expr → Expr → Expr → Expr

eval :: Expr → Bool
eval (Val n) = n
eval (Cond e0 e1 e2) =
if eval e0 then eval e1 else eval e2

Using standard techniques, we can create a singleton type for expressions
SExpr and a type-level function Eval that allow the type system to talk about
these definitions.

eval :: Expr → Bool
eval (Val n) = n
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eval (Cond e0 e1 e2) = if eval e0 then eval e1 else eval e2
type family Eval (x :: Expr) :: Bool where
Eval (’Val n) = n Eval (’

Cond e0 e1 e2) = If (Eval e0) (Eval e1) (Eval e2)

For example, the evaluator for singleton booleans states that it actually cal-
culates the boolean denoted by the expression:

sEval :: SExpr e → SBool (Eval e)
sEval (SVal n) = n
sEval (SCond e0 e1 e2) = sIf (sEval e0) (sEval e1) (sEval e2)

However, instead of evaluating booleans directly, we would like to compile
them to a list of instructions for a stack machine. At the same time, we would
like to know that the resulting list of instruction will produce the correct answer
when run.

In other words, given a GADT representing instruction lists, that when run
will take a stack from its initial configuration to the final configuration:

data Inst (initial :: [Bool ]) (final :: [Bool ]) where
-- Add a value to the top of the stack

PUSH :: Sing v → Inst s (v ’: s)
-- Compare the top value on the stack and branch

IFPOP :: ListInst s st → ListInst s sf
→ Inst (b ’: s) (If b st sf )

-- a list of instructions, also tracking the machine configurations
data ListInst (initial :: [Bool ]) (final :: [Bool ]) where
Nil :: ListInst i i
(:::) :: Inst i j → ListInst j k → ListInst i k

infixr 5 :::

-- concatenate two lists, composing their stacks
(++) :: ListInst i j → ListInst j k → ListInst i k
Nil ++ ys = ys
(x ::: xs) ++ ys = x ::: (xs ++ ys)
infixr 5 ++

We would like to define a compilation function that will create a list of
instructions that, when run, will put the evaluation of an expression at the top
of the stack.

compile :: ∀ (e :: Expr) (s :: [Bool ]).
SExpr e → ListInst s ((Eval e) ’: s)

The implementation of the compilation function is straightforward in the case
of a singleton boolean value. It just pushes that value on the top of an empty
stack.
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compile (SVal y) = PUSH y ::: Nil

However, the compilation of conditionals runs into difficulties, we would like
to use this code, which first compiles the scrutinee, and then appends the branch
instruction.

compile (SCond se0 se1 se2) =
compile se0 ++
IFPOP (compile se1) (compile se2) ::: Nil

However, for this code to type check, the compiler needs to know the following
conversion fact about if expressions:

(If (Eval e0) (Eval e1) (Eval e2)) ’: vs) :∼:
(If (Eval e0) ((Eval e1) ’: vs) ((Eval e2) ’: vs))

We can “prove” this fact to the compiler, with a helper lemma, called fact
below. Note, however that in the result of the lemma, the type variables t and
f only appear as arguments to the type-level function If . Therefore, unification
cannot be used to instantiate these arguments, so the Proxy type is necessary.

fact :: ∀ t f s b. Sing b → Proxy t → Proxy f → Proxy s
→ ((If b t f ) ’: s) :∼: (If b (t ’: s) (f ’: s))

fact STrue = Refl
fact SFalse = Refl

We can call fact in the case for compile, by providing the appropriate Proxy
arguments.

compile (SCond se0 (se1 :: Sing e1) (se2 :: Sing e2)) =
case fact (sEval se0) (Proxy :: Proxy (Eval e1))

(Proxy :: Proxy (Eval e2)) (Proxy :: Proxy s) of
Refl → compile se0 ++
IFPOP (compile se1) (compile se2) ::: Nil

Note, that in our definition of fact above, we have made the argument s be
specified via Proxy , even though it doesn’t technically need to to be because it
appears outside of the If in the type. GHC will also accept this alternative fact ’
that does not include a Proxy s argument.

fact ’ :: ∀ t f s b. Sing b → Proxy t → Proxy f
→ ((If b t f ) ’: s) :∼: (If b (t ’: s) (f ’: s))

fact ’STrue = Refl
fact ’SFalse = Refl

However, that version of fact is even more difficult to use. Because the result
of fact ’ is used as the argument of GADT pattern matching, GHC cannot use
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unification to resolve type variables in this type. Instead, to make this code type
check, we require an even more extensive type annotation:

compile (SCond (se0 :: Sing e0)
(se1 :: Sing e1) (se2 :: Sing e2)) =
case (fact ’(sEval se0)

(Proxy :: Proxy (Eval e1))
(Proxy :: Proxy (Eval e2)) ::

((If (Eval e0) (Eval e1) (Eval e2)) ’: s) :∼:
(If (Eval e0) ((Eval e1) ’: s) ((Eval e2) ’: s))) of

Refl → compile se0 ++
IFPOP (compile se1) (compile se2) ::: Nil

In the presence of visible type application, we would like to avoid the proxies
all together:

fact :: ∀ t f s b. Sing b →
((If b t f ) ’: s) :∼: (If b (t ’: s) (f ’: s))

fact STrue = Refl
fact SFalse = Refl

and supply the type arguments visibly:

compile (SCond se0 (se1 :: Sing e1) (se2 :: Sing e2)) =
case fact @(Eval e1) @(Eval e2) @s (sEval se0) of
Refl → compile se0 ++
IFPOP (compile se1) (compile se2) ::: Nil

B Integrating visible type application with GHC

Below, we describe describe interactions between visible type application and
other features of GHC and some possible extensions enabled by our implemen-
tation.

B.1 Case expressions

Typing rules for case analysis and if-expressions require that all branches have
the same type. But what sort of type should that be? For example, consider the
expression

if condition then id else (λx → x)

Here, id has a specified polytype of ∀ a. a→ a, but the expression λx → x does
not. To make this code type check, GHC must find a common type for both
branches.
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One option would be to generalize the type of λx → x and then choose
∀ a. a → a as the common supertype of itself and ∀{a}. a → a. However, that
may not be possible in general, as there may not always be a common instance
of both types.

Instead, following prior work [23], we require that if and case expressions
synthesize monotypes. Accordingly, the type checker instantiates the type id
above before unification.

Note that specified polytypes are still available for type checking because
we know the type that each branch should have. For example, the following
declaration is accepted:

checkIf :: Bool → (∀ a. a→ a)→ (Bool , Int)
checkIf b = if True
then λf → (f True, f 5)
else λf → (f False, f 3)

B.2 Type classes

Consider the Monad type class:

class Applicative m⇒ Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b
...

The return and (>>=) functions have user-supplied type signatures and thus have
specified type parameters. But in what order? Our implementation uses the
following simple rule: class variables come before method variables. The full types
of these methods are thus

return :: ∀ m. Monad m⇒ ∀ a. a→ m a
(>>=) :: ∀ m. Monad m⇒ ∀ a b. m a→ (a→ m b)→ m b

Note that, in the type of return, m is quantified before a, even though a appears
first in the user-supplied type.

B.3 Instantiate types when inferring

When a variable is defined without an explicit type annotation, are its param-
eters specified or generalized? According to the systems laid out in this paper,
the answer depends on the variable’s definition. For example:

id :: a→ a
id x = x
myId = id
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According to our technique of lazy instantiation, the use of id in the body of
myId is not instantiated. The variable myId thus gets the same type – with its
specified type parameter – of id .

However, in GHC, we add an extra step: when inferring the type of a variable,
deeply instantiate the right-hand side before generalizing. In this example, id
would get deeply instantiated (that is, all top-level type parameters variables
and all type parameters to the right of arrows) before generalizing, giving myId
a type ∀ {a}. a→ a, where the type parameter has been generalized.

This design choice solves all three of the following problems:

– Haskell includes the monomorphism restriction. This restriction states that
no variable (as distinct from function, which is defined by pattern-matching
on arguments) may have a type that includes a class constraint.
Consider the definitionmyAbs = abs. The type of abs is ∀ a. Num a⇒ a→ a.
According to the monomorphism restriction, myAbs is not allowed to have
this type – it should get the type Integer → Integer according to Haskell’s
defaulting rules. Yet, because of lazy instantiation, the type checker never
really reasons about the Num constraint and would allow myAbs to have such
the wrong, polymorphic type. By instantiating deeply and then generalizing,
the type checker is given a chance to notice the Num constraint and react
accordingly.

– Haskellers are used to prenex quantification, where all the ∀s are at the top.
But if we say x = λ → id , the naive interpretation of System SB would
give x :: ∀ {a}. a → ∀ b. b → b. This type is unexpected. Documentation
for x would include such a strange type, and clients would have to know to
supply the first term-level argument before visibly instantiating the second.
By deeply instantiating before generalizing, we give x the type ∀ {a b}. a→
b → b, which is more in line with expectations.

– According to our design decision about imported functions in Sect. 3.1, im-
ported functions have specified type parameters if and only if the function
is defined with a user-supplied type signature. However, the algorithm in
System SB gives myId , above, the type ∀ a. a → a, with a specified type
parameter. This would mean that myId would be available for visible type
application in its defining module, but any importing modules would see a
generalized type parameter for myId . This discrepancy does not cause any
great problems, but it would be unexpected for users. Once again, instanti-
ating and regeneralizing solves the problem.

B.4 Overloaded numbers

Numeric literals in Haskell are overloaded. That is, when we write the number
3 in code, it can have any type that is a member of the Num class; the type of 3
is thus Num a ⇒ a. It is thus expected that users could write 3 @Int to get the
Int 3, instead of an overloaded 3.

However, this does not work. Here is the partial definition of the Num class:
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class Num a where
...
fromInteger :: Integer → a

When a 3 is written in code, it gets translated to fromInteger 3, where 3 is our
rendering of the Integer 3. According to our treatment of class methods, the full
type of fromInteger is ∀ a. Num a ⇒ Integer → a. This type means that any
visible type application for an overloaded number literal would have to come
between the fromInteger and the number; no straightforward translation from
Haskell source could accommodate this. If fromInteger were not a class method,
we could just define it to have the type Integer → ∀ a. Num a⇒ a, which would
work nicely. This option, however, is not available.

Happily, it is almost as easy to write (3 :: Int) as 3 @Int, and so we will go to
no great pains to correct this infelicity.

B.5 Ramifications in GHCi

The interactive interpreter GHCi allows users to query the type of expressions.
Consider what the answer to the following query should be:

λ> let myPair :: ∀ a. a→ ∀ b. b → (a, b)
myPair = (, )

λ> :t myPair 3

It would be reasonable to respond ∀ b. b → (a, b), recalling that numbers are
overloaded and we have not yet fixed the type of 3. However, this output loses the
critical information that the constraint Num a must be satisfied. Alternatively,
we could generalize before printing, producing ∀ a b. Num a ⇒ b → (a, b), but
that could mislead users into thinking that a is still available for visible type
application.

We thus have implemented a middle road, producing ∀ b. Num a ⇒ b →
(a, b) in this situation. Note that there is no ∀ a, as a is not available for visible
type application. The Num a constraint is listed after the ∀ b quantification only
because Haskellers often include type variable quantification before constraints.
The precise location of Num a is in fact irrelevant, as there is no facility for
visible dictionary application.

B.6 Further extensions to visible type application

Our implementation also gives us the chance to explore two related extensions
in future work.

Visible type binding in patterns Consider the GADT

data G a where
MkG :: ∀ b. G (Maybe b)
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When pattern-matching on a value of type G a to get the constructor MkG , we
would want a mechanism to bind a type variable to b, the argument to Maybe.
A visible type pattern makes this easy:

case g of
MkG @b → ...

The type variable b may now be used as a scoped type variable in the body of
the match.

Visible kind application The following function is kind-polymorphic [30]:

pr :: ∀ (a :: k1 → k2) (b :: k1). Proxy (a b)→ Proxy a
pr = Proxy

Yet, even with our extension, we cannot instantiate the kind parameters k1 and
k2 visibly; all kind variables are treated as generalized variables. We expect to
address this deficiency in future work.

C Properties of System HMV

Lemma 10 (Inversion for ≤hmv ). σ1 ≤hmv σ2 if and only if σ1 =
∀{a1}, b2, b1. τ1 and σ3 = ∀{a2}, b2. τ2 where τ1[τ1/a1][τ ′1/b1] = τ2.

Proof. By unfolding definitions.

Lemma 11 (Reflexivity for ≤hmv ). Forall σ, σ ≤hmv σ

Proof. By definition.

Lemma 12 (Transitivity for ≤hmv ). If σ1 ≤hmv σ2 and σ2 ≤hmv σ3, then
σ1 ≤hmv σ3.

Proof. Let σ3 = ∀{a3}, b3. τ3. Then, by inversion, we know σ2 =
∀{a2}, b3, b2. τ2 and τ2[τ2/a2][τ ′2/b2] = τ3. We further know σ1 =
∀{a1}, b3, b2, b1. τ1 and τ1[τ1/a1][τ ′1/b1] = τ2. Thus, τ1[τ1/a1][τ ′1/b1][τ2/a2][τ ′2/b2] =
τ3. By the Barendregt convention, we know that a2 do not appear in τ1. Thus
we can rewrite as τ1[τ1[τ2/a]/a1][τ ′1[τ2/a2]/b1][τ ′2/b2] = τ3. This is enough to
finish the derivation via HMV_InstS and HMV_InstG.

Lemma 13 (Substitution in ≤hmv ).

1. If υ1 ≤hmv υ2, then υ1[τ/a] ≤hmv υ2[τ/a].
2. If σ1 ≤hmv σ2, then σ1[τ/a] ≤hmv σ2[τ/a].
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Proof. Immediate.

Lemma 14 (Context Generalization for HMV). If Γ h̀mv e : σ and
Γ ′ ≤hmv Γ , then Γ ′ h̀mv e : σ.

Proof. This is by straightforward induction, with an appeal to HMV_Sub in
the variable case (HMV_Var).

Proof (Proof of Lemma 2 (Extra knowledge)). This is a corollary of contexts
generalization as ∀{a}. τ ≤hmv ∀a. τ .

D Proofs about System V

Proof (Proof of Soundness of V against HMV (Theorem 4)). By induction on
the appropriate derivation. Most cases follow directly via induction.

Case V_InstS This case follows via induction and HMV_Sub using the fact
that ∀a. τ ≤hmv τ [τ/a] by HMV_InstS.

Case V_Var This case follows via HMV_Var and HMV_Sub using the
fact that ∀{a}. τ ≤hmv τ [τ/a] by HMV_InstG.

Lemma 15 (Context generalization for V).

1. If Γ ∗̀
v e : υ and Γ ′ ≤hmv Γ , then there exists υ′ such that Γ ′ ∗̀v e : υ′ and

υ′ ≤hmv υ.
2. If Γ v̀ e : τ and Γ ′ ≤hmv Γ , then Γ ′ v̀ e : τ
3. If Γ `genv e : σ and Γ ′ ≤hmv Γ , then there exists σ′ such that Γ ′ `genv e : σ′

and σ′ ≤hmv σ.

In all cases, the size of resulting derivation is no larger than the size of the input
derivation.

Proof. By induction on derivations. Most cases are straightforward; we present
the most illuminating cases below:

Case V_Var:
x :∀{a}. υ ∈ Γ
Γ ∗̀

v x : υ[τ/a]
V_Var

Given x :∀{a ′}. υ′ ∈ Γ ′ where ∀{a ′}. υ′ ≤hmv ∀{a}. υ, we must choose τ ′ such
that υ′[τ ′/a ′] ≤hmv υ[τ/a]. Inverting ≤hmv gives us that υ′[τ ′/a ′] ≤hmv υ.
We are thus done by Lemma 13. Note that the size of both derivations is 1.

Case V_TApp:
Γ ` τ
Γ ∗̀

v e : ∀a. υ
Γ ∗̀

v e @τ : υ[τ/a]
V_TApp
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The induction hypothesis gives us Γ ′ ∗̀v e : υ′ where υ′ ≤hmv ∀a. υ. By the
definition of ≤hmv , υ′ must also be quantified over a. We can thus reduce
to ∀a. υ′′ ≤hmv ∀a. υ, which reduces to υ′′ ≤hmv υ. We must prove that
υ′′[τ/a] ≤hmv υ[τ/a], which follows directly from υ′′ ≤hmv υ via Lemma 13,
and so we are done.

Case V_Gen:

a = ftv(υ) \ ftv(Γ ) Γ ∗̀
v e : υ

Γ `genv e : ∀{a}. υ
V_Gen

The induction hypothesis gives us Γ ′ ∗̀v e : υ′ where υ′ ≤hmv υ. By inversion,
we know that υ′ = ∀a ′, b′. τ1 and υ = ∀a ′. τ2 where τ1[τ ′/b

′
] = τ2.

Let a = ftv(υ) \ ftv(Γ ) and b = ftv(υ′) \ ftv(Γ ′). We want to
show that ∀{b}. υ′ ≤hmv ∀{a}. υ. Expanding out, we want to show that
∀{b}, a ′, b′. τ1 ≤hmv ∀{a}, a ′. τ2, where τ1[τ/b] = τ2. Unfolding ≤hmv shows
that we want τ1[τ/b][τ ′/b

′
] = τ2. Choose τ = b and we are done.

Lemma 16 (Type substitution). If Γ ` τ then Γ [τ ′/a] ` τ .

Proof. By the definition of rule Ty_Scoped. Note that substituting in the
context has no effect.

Lemma 17 (Substitution for V). Assume a /∈ Γ . That is, a is not a scoped
type variable. Further, assume Γ ` τ .

1. If Γ v̀ e : τ ′, then Γ [τ/a] v̀ e : τ ′[τ/a].
2. If Γ ∗̀

v e : υ, then Γ [τ/a] ∗̀v e : υ[τ/a].
3. If Γ `genv e : σ, then Γ [τ/a] `genv e : σ[τ/a].

Proof. By induction, frequently using the Barendregt convention to rename
bound variables to avoid coinciding with free variables.

Note that a cannot appear anywhere in an expression, as a is not a scoped
type variable. Thus, any types appearing in expressions are unaffected by the
substitution [τ/a]. This realization covers the V_TApp case.

The interesting case is generalization: The premise of this case is Γ ∗̀
v e : υ

where σ = ∀{b}. υ for b = ftv(υ) \ ftv(Γ ). By the Barendregt convention, note
that b do not contain a.

The induction hypothesis gives us Γ [τ/a] ∗̀v e : υ[τ/a]. Let c = ftv(υ[τ/a]) \
ftv(Γ [τ/a]). To use V_Gen to conclude Γ `genv e : (∀{c}. υ)[τ/a], we must show
that b = c and that c are not free in τ .

We now have several cases:

a is free in both υ and in Γ : In this case ftv(υ[τ/a]) includes the free type
variables of υ, minus a, plus the free variables of τ . Likewise, ftv(Γ [τ/a])
includes ftv(Γ ), minus a, plus the free variables of τ . In each case, the sets
that produce c are changed by the same variables. Therefore, b and c must
be equal.
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a is free in υ but not free in Γ : To be in this case a must be in b, which
cannot happen.

a is not free in υ but is free in Γ : In this case b = c and we are easily
done.

a is free in neither υ nor Γ : In this case the substitution has no effect and
we are done.

Proof (Proof of Completeness (Theorem 5)). We proceed by induction on Γ h̀mv

e : σ.

Case HMV_Var: Straightforward, using the types a to instantiate the vari-
ables a in V_Var. We know these a are not free in Γ by the Barendregt
convention. It may be the case that generalization quantifies over more vari-
ables, i.e. a ⊆ a ′ = ftv(υ) \ ftv(Γ ), leading to a more general result type.
However, that is permitted by the statement of the theorem.

Case HMV_Abs:

Γ, x :τ1 h̀mv e : τ2

Γ h̀mv λx . e : τ1 → τ2
HMV_Abs

The induction hypothesis gives us Γ, x :τ1 `genv e : ∀{a}, b. τ ′2 where τ2 =
τ ′2[τ ′/b][τ/a]. Inverting `genv gives us Γ, x :τ1

∗̀
v e : ∀b. τ ′2. We can then use

V_InstS and V_Abs to get Γ v̀ λx . e : τ1 → τ ′2[τ ′/b]. Generalizing, we get
Γ `genv λx . e : ∀{a, a ′}. τ1 → τ ′2[τ ′/b] where the new variables a ′ come from
generalizing τ1 and the τ ′. We can see that (τ1 → τ ′2[τ ′/b])[τ/a] = τ1 → τ2
and so ∀{a, a ′}. τ1 → τ ′2[τ ′/b] ≤hmv τ1 → τ2 and we are done.

Case HMV_App:

Γ h̀mv e1 : τ1 → τ2 Γ h̀mv e2 : τ1

Γ h̀mv e1 e2 : τ2
HMV_App

The induction hypothesis gives us Γ `genv e1 : ∀{a1}, b1. τ11 → τ12 with
τ1 = τ11[τ1/a1][τ ′1/b1] and τ2 = τ12[τ1/a1][τ ′1/b1], along with Γ `genv e2 :
∀{a2}, b2. τ21 with τ1 = τ21[τ2/a2][τ ′2/b2]. Inverting `genv gives us Γ ∗̀

v e1 :
∀b1. τ11 → τ12 and Γ ∗̀

v e2 : ∀b2. τ21.
We now use the Substitution Lemma (Lemma 17) with the substitution
[τ1/a1] on the first of these to yield Γ ∗̀

v e1 : ∀b1. τ11[τ1/a1] → τ12[τ1/a1].
Note that the a1 must not be free in Γ , by inversion of `genv . Similarly,
Lemma 17 gives us Γ ∗̀

v e2 : ∀b2. τ21[τ2/a2].
We can then use V_InstS on both of these judgments, to show Γ v̀ e1 :
τ11[τ1/a1][τ ′1/b1]→ τ12[τ1/a1][τ ′1/b1] and Γ v̀ e2 : τ21[τ2/a2][τ ′2/b2].
We can now now use V_App, as the argument type is equal to τ1, established
earlier. Rule V_App then gives us Γ v̀ e1 e2 : τ12[τ1/a1][τ ′1/b1]. This type,
as noted earlier, equals τ2, and so we are done.

Case HMV_Int

Γ h̀mv n : Int
HMV_Int

Trivial.
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Case HMV_TApp:

Γ ` τ
Γ h̀mv e : ∀a. υ

Γ h̀mv e @τ : υ[τ/a]
HMV_TApp

The induction hypothesis (after inverting `genv ) gives us Γ ∗̀
v e : ∀a. υ′, where

b = ftv(∀a. υ′) \ ftv(Γ ) and υ′[τ/b] ≤hmv υ. Applying V_TApp gives us
Γ ∗̀

v e @τ : υ′[τ/a], and V_Gen gives us Γ `genv e @τ : ∀{c}. υ′[τ/a] where
c = ftv(υ′[τ/a]) \ ftv(Γ ). We want to show that ∀{c}. υ′[τ/a] ≤hmv υ[τ/a],
which follows when there is some τ ′, such that υ′[τ/a][τ ′/c] ≤hmv υ[τ/a].
This is equivalent to exchanging the substitution, i.e. finding a τ ′ such that
υ′[τ ′/c][τ/a] ≤hmv υ[τ/a].
By Substitution (Lemma 13), we have υ′[τ/b][τ/a] ≤hmv υ[τ/a]. We also
know that the b are a subset of the c. So we can choose τ ′ to be τ for the b,
and the remaining c elsewhere, and we are done.

Case HMV_Let:

Γ h̀mv e1 : σ1 Γ, x :σ1 h̀mv e2 : σ2

Γ h̀mv let x = e1 in e2 : σ2
HMV_Let

The induction hypothesis gives us Γ `genv e1 : σ′1 with σ′1 ≤hmv σ1. The
induction hypothesis also gives us Γ, x :σ1 `genv e2 : σ2 with σ′2 ≤hmv σ2. Use
Lemma 15 to get Γ, x :σ′1 `

gen
v e2 : σ′′2 where σ′′2 ≤hmv σ

′
2.

Let σ′′2 = ∀{b}. υ where b = ftv(υ)\ ftv(Γ ). Inverting `genv gives us Γ, x :σ′1
∗̀
v

e2 : υ. We then use V_Let to get Γ ∗̀
v let x = e1 in e2 : υ. Generalizing gives

us Γ `genv let x = e1 in e2 : ∀{b}. υ.
Transitivity of ≤hmv (Lemma 12) gives us ∀{b}. υ ≤hmv σ2.

Case HMV_Annot:

Γ ` υ υ = ∀a, b. τ
Γ, a h̀mv e : τ

Γ h̀mv (Λa.e : υ) : υ
HMV_Annot

The induction hypothesis gives us Γ `genv e : ∀{b}, b′. τ ′ with τ ′[τ/b][τ ′/b
′
] =

τ . Inverting `genv gives us Γ ∗̀
v e : ∀b′. τ ′. Applying V_InstS gives us Γ v̀

e : τ and we can use V_Annot to be done.
Case HMV_Int: Trivial.
Case HMV_Gen:

Γ h̀mv e : σ a 6∈ ftv(Γ )

Γ h̀mv e : ∀{a}. σ
HMV_Gen

The induction hypothesis gives us Γ `genv e : σ′ where σ′ ≤hmv σ. We know
σ′ ≤hmv ∀{a}. σ. In other words, if σ′ = ∀{b}. υ1 and σ = ∀{c}. υ2, we have
some τ such that υ1[τ/b] = υ2. By the definition of ≤hmv we can use these
same τ to show that σ′ ≤hmv ∀{a, c}. υ2.
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Case HMV_Sub:

Γ h̀mv e : σ1 σ1 ≤hmv σ2

Γ h̀mv e : σ2
HMV_Sub

The induction hypothesis gives us Γ `genv e : σ′ where σ′ ≤hmv σ1. By transi-
tivity of ≤hmv , we are done.

E Algorithm V

In this appendix, we use metavariables Q , R, and S to refer to substitutions
from type variables a to monotypes τ . We apply and compose these as functions,
homomorphically lifted from type variables to types.

We suppose the existence of a unification algorithm U , that produces a sub-
stitution S, with the following properties

– If S = Ua(τ1, τ2) then either S (τ1) = S (τ2) and a ∩ dom(S ) = ∅, or no such
S exists.

– If R(τ1) = R(τ2) (and a ∩ dom(R) = ∅) then there exists some S such that
R = S ◦ Ua(τ1, τ2). In other words, unification produces the most general
unifier.

We also must define a new operation vars(Γ ) which extracts the scoped type
variables listed in Γ .

With this function, we can define three mutually recursive, partial functions
that infer the type of an expression in a given context. These equations are to
be read top-to-bottom.
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Definition 18 (Algorithm V).

(1) V(Γ, λx . e) = (S1,S1(b)→ τ) when
V((Γ, x :b), e) = (S1, τ)
b fresh

(2) V(Γ, e1 e2) = (S3 ◦ S2 ◦ S1,S3(b)) when
(S1, τ1) = V(Γ, e1)
(S2, τ2) = V(S1(Γ ), e2)
S3 = Uvars(Γ )(S2(τ1), τ2 → b)
b fresh

(3) V(Γ,n) = (ε, Int)

(4) V(Γ, e) = (S1, τ) when
(S1,∀a. τ) = V∗(Γ, e)
a fresh

(5) V∗(Γ, x ) = (ε, υ) when
x :∀{a}. υ ∈ Γ
a fresh

(6) V∗(Γ, let x = e1 in e2) = (S2 ◦ S1, υ2) when
(S1, σ1) = Vgen(Γ, e1)
(S2, υ2) = V∗((S1(Γ ), x :σ1), e2)

(7) V∗(Γ, e @τ) = (S1, υ1[τ/a]) when
(S1,∀a. υ1) = V∗(Γ, e)
Γ ` τ

(8) V∗(Γ, (Λa.e : υ)) = (S2 ◦ S1, υ) when
Γ ` υ
∀a, b. τ = υ
(S1, τ

′) = V((Γ, a), e)
S2 = Uvars(Γ ),a,b(τ, τ ′)

(9) V∗(Γ, e) = V(Γ, e)

(10) Vgen(Γ, e) = (S ,∀{a}. υ) when
(S , υ) = V∗(Γ, e)
a = ftv(υ) \ ftv(S (Γ ))

Lemma 19 (Soundness of Algorithm V).
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1. If V(Γ, e) = (S , τ) then S (Γ ) v̀ e : τ
2. If V∗(Γ, e) = (S , υ) then S (Γ ) ∗̀v e : υ
3. If Vgen(Γ, e) = (S , σ) then S (Γ ) `genv e : σ

In all cases, dom(S ) ∩ vars(Γ ) = ∅.

Proof. By mutual induction on the structure of e. In the text of the proof, we will
proceed in order of the clauses in the statement of the lemma, though technically,
we should be considering the shape of e as the outer-level structure.

1. Case e = λx . e: By (1), we have V(Γ, λx . e) = (S1,S1(b) → τ), where
(S1, τ) = V((Γ, x :b), e) and b is fresh. We must show S1(Γ ) v̀ λx . e :
S1(b)→ τ . The induction hypothesis tells us S1(Γ, x :b) v̀ e : τ . Rewrite
this as S1(Γ ), x :S1(b) v̀ e : τ . V_Abs then gives us the desired result.

Case e = e1 e2: By (2), we have V(Γ, e1 e2) = (S3 ◦ S2 ◦ S1,S3(b)), with
several side conditions from the statement of V. Let R = S3 ◦ S2 ◦ S1.
We must show R(Γ ) v̀ e1 e2 : S3(b). The induction hypothesis gives us
S1(Γ ) v̀ e1 : τ1 and S2(S1(Γ )) v̀ e2 : τ2. Furthermore, we know that
S3(S2(τ1)) = S3(τ2 → b).
By the substitution lemma (Lemma 17), we know that R(Γ ) v̀ e1 :
S3(S2(τ1)) and R(Γ ) v̀ e2 : S3(τ2). The first of these can be rewritten
to R(Γ ) v̀ e1 : S3(τ2 → b), or R(Γ ) v̀ e1 : S3(τ2) → S3(b). We now
use V_App to get R(Γ ) v̀ e1 e2 : S3(b) as desired. Note that dom(R) ∩
vars(Γ ) = ∅ by virtue of the fact that S1 and S2 meet this condition (by
the induction hypothesis) and S3 does by the properties of U .

Case e = n: By (3), we have V(Γ,n) = (ε, Int). We must prove Γ v̀ n : Int,
which we get from V_Int.

Other cases: By (4), we have V(Γ, e) = (S1, τ), where (S1,∀a. τ) =
V∗(Γ, e). By the induction hypothesis, we have S1(Γ ) ∗̀v e : ∀a. τ . By
V_InstS, we have S1(Γ ) v̀ e : τ [τ/a] for our choice of τ . Choose τ = a
and we are done.

2. Case e = x : By (5), we know V∗(Γ, x ) = (ε, υ) where x :∀{a}. υ ∈ Γ . We
must show Γ ∗̀

v x : υ. This is direct from V_Var, choosing τ = a.
Case e = let x = e1 in e2: By (6), we know V∗(Γ, let x = e1 in e2) = (S2 ◦

S1, υ2) where (S1, σ1) = Vgen(Γ, e1) and (S2, υ2) = V∗((S1(Γ ), x :σ1), e2).
We must show S2(S1(Γ )) ∗̀v let x = e1 in e2 : υ2. The induction hypothe-
sis gives us S1(Γ ) `genv e1 : σ1 and S2(S1(Γ ), x :σ1) ∗̀v e2 : υ2. Substitution
on the former gives us S2(S1(Γ )) `genv e1 : S2(σ1) and we can rewrite
the latter as S2(S1(Γ )), x :S2(σ1) ∗̀v e2 : υ2. V_Let gives us our desired
result.

Case e = e0@τ : By (7), we know V∗(Γ, e0 @τ) = (S1, υ1[τ/b]) where
(S1,∀a. υ1) = V∗(Γ, e). We must show S1(Γ ) ∗̀v e0 @τ : υ1[τ/b]. The
induction hypothesis gives us S1(Γ ) ∗̀v e0 : ∀a. υ1, and we are done by
V_TApp, noting that Γ ` τ implies S1(Γ ) ` τ .

Case e = (Λa.e0 : υ): By (8), we know V∗(Γ, (Λa.e0 : υ)) = (S2 ◦ S1, υ)
with side conditions from the statement of V, including ∀a, b. τ = υ.
We must show S2(S1(Γ )) ∗̀v (Λa.e0 : υ) : υ. The induction hypothesis
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gives us S1(Γ, a) v̀ e : τ ′ and we also know S2(τ) = S2(τ ′). Substitution
(Lemma 17) gives us S2(S1(Γ, a)) v̀ e : S2(τ ′), which can be rewritten as
S2(S1(Γ, a)) v̀ e : S2(τ). We know by Γ ` υ that ftv(τ) ⊆ vars(Γ ), a, b.
However, vars(Γ ), a, b ∩ dom(S2) = ∅, so S2(τ) = τ . We thus can use
V_Annot and we are done.

Other cases: By (9), we have V∗(Γ, e) = (S , τ) where (S , τ) = V(Γ, e).
We must show S (Γ ) ∗̀v e : τ . The induction hypothesis gives us S (Γ ) v̀

e : τ . We are done by V_Mono.
3. All cases: By (10), we know Vgen(Γ, e) = (S ,∀{a}. υ) where (S , υ) =

V∗(Γ, e) and a = ftv(υ)\ftv(S (Γ )). We must show S (Γ ) `genv e : ∀{a}. υ.
The induction hypothesis gives us S (Γ ) ∗̀v e : υ, and we are done by
V_Gen.

Lemma 20 (Substitution/generalization). If a = ftv(υ) \ ftv(Γ ) and b =
ftv(S (υ)) \ ftv(S (Γ )), then S (∀{a}. υ) ≤hmv ∀{b}.S (υ)

Proof. We must show S (∀{a}. υ) ≤hmv ∀{b}.S (υ). Simplify this to
∀{c}.S (υ[c/a]) ≤hmv ∀{b}.S (υ) where the c are fresh. (They are used to im-
plement capture-avoidance.) By the definition of ≤hmv (HMV_InstG), this
simplifies to S (υ[c/a])[τ/c] ≤hmv S (υ), for our choice of τ . Choose τ = S (a),
yielding our wanted to be S (υ[c/a])[S (a)/c] ≤hmv S (υ). Simplifying again yields
S (υ[c/a][a/c]) ≤hmv S (υ), which is the same as S (υ) ≤hmv S (υ). We are done
by reflexivity of ≤hmv .

.

Lemma 21 (Completeness of Algorithm V). For all contexts Γ and sub-
stitutions Q such that dom(Q) ∩ vars(Γ ) = ∅:

1. If Q(Γ ) v̀ e : τ , then V(Γ, e) = (S , τ ′) and there exists R such that Q =
R ◦ S and τ = R(τ ′).

2. If Q(Γ ) ∗̀
v e : υ, then V∗(Γ, e) = (S , υ′) and there exists R such that

Q = R ◦ S and υ = R(υ′).
3. If Q(Γ ) `genv e : σ, then Vgen(Γ, e) = (S , σ′) and there exists R such that

Q = R ◦ S and R(σ′) ≤hmv σ.

In the Q = R ◦S conclusions above, we ignore any differences on type variables
that are conjured up as fresh during recursive calls. However, we require that
dom(R) ∩ vars(Γ ) = ∅.

Proof. We proceed by mutual induction on typing derivations. In each case, we
must provide the following pieces:
(i) The result of the call to V (such as (S , τ ′))
(ii) The substitution R
(iii) The fact that dom(R) ∩ vars(Γ ) = ∅
(iv) The fact that Q = R ◦ S
(v) The fact that, say, τ = R(τ ′)
These pieces will be labeled in each case.
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Case V_Abs:
Γ, x :τ1 v̀ e : τ2

Γ v̀ λx . e : τ1 → τ2
V_Abs

We know that Q(Γ ), x :τ1 v̀ e : τ2. Let Γ ′ = Γ, x :b (where b is fresh) and
Q ′ = [τ1/b] ◦ Q . Then, we can see that Q ′(Γ ′) v̀ e : τ2. We thus use the
induction hypothesis to get V((Γ, x :b), e) = (S , τ ′2) along with R′ such that
Q ′ = R′ ◦ S and τ2 = R′(τ ′2). We can thus see that
(i) V(Γ, λx . e) = (S ,S (b)→ τ ′2).
We have left only to provide R such that Q = R ◦ S and τ1 → τ2 =
R(S (b)→ τ ′2) = R(S (b))→ R(τ ′2).
(ii) Choose R = R′.
(iii) The domain restriction follows by the induction hypothesis.
By functional extensionality, Q = R′ ◦ S iff Q applied to any argument is
the same as R′ ◦ S applied to any argument. But in our supposition that
b is fresh, b is outside the domain of possible arguments to Q ; thus we can
conclude
(iv) Q = Q ′ = R′ ◦ S , ignoring the fresh b.
(v)We can also see that τ1 = Q ′(b) by definition of Q ′ and that τ2 = R(τ ′2)
by the use of the induction hypothesis.

Case V_App:

Γ v̀ e1 : τ1 → τ2 Γ v̀ e2 : τ1

Γ v̀ e1 e2 : τ2
V_App

The induction hypothesis tells us that V(Γ, e1) = (S1, τ
′
1) with R1 such that

Q = R1 ◦ S1 and τ1 → τ2 = R1(τ ′1). Recall that we are assuming Q(Γ ) v̀

e1 e2 : τ2, which can now be written as R1(S1(Γ )) v̀ e1 e2 : τ2. We thus know
(by inversion) R1(S1(Γ )) v̀ e2 : τ1. We then use the induction hypothesis
on this fact, but choosing Q be R1, not the Q originally used. This use of
the induction hypothesis gives us V(S1(Q), e2) = (S2, τ

′
2) with R2 such that

R1 = R2 ◦ S2 and τ1 = R2(τ ′2). We now must find a substitution S ′3 that is
a unifier of S2(τ ′1) and τ ′2 → b for some fresh b. We know R1(τ ′1) = τ1 → τ2
and R2(τ ′2) = τ1. We can rewrite the former as R2(S2(τ ′1)) = τ1 → τ2.
Choose S ′3 = [τ2/b] ◦R2. We see that S ′3(S2(τ ′1)) = S ′3(τ ′2 → b) as required.
We also must show that dom(S ′3) ∩ vars(Γ ) = ∅. This comes from the fact
that b is fresh and that R2 satisfies the domain restriction by the induction
hypothesis. We now know that Uvars(Γ )(S2(τ ′1), τ ′2 → b) will succeed with the
most general unifier S3. We thus know that
(i) V(Γ, e1 e2) = (S3 ◦ S2 ◦ S1,S3(b)).
We must now find R. By the fact that S3 is a most general unifier, we know
that S ′3 = R ◦ S3.
(ii) Choose R to be this substitution, found by the most-general-unifier
property.
(iii) R must satisfy the domain restriction from the fact that both S3 and
S ′3 do.
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(iv) Putting all the facts about substitutions together, we see that R ◦ S3 ◦
S2 ◦ S1 = Q as needed (ignoring the action on the fresh b).
We must finally show τ2 = R(S3(b)) = S ′3(b).
(v) This comes from the definition of S3.
We are done.

Case V_Int:

Γ v̀ n : Int
V_Int

(i) V(Γ,n) = (ε, Int).
(ii) Choose R = Q .
(iii) By the assumed domain restriction on Q .
(iv) Q = R ◦ ε, quite easily.
(v) Q(Int) sure does equal Int.

Case V_InstS:
Γ ∗̀

v e : ∀a. τ
no other rule matches

Γ v̀ e : τ [τ/a]
V_InstS

The induction hypothesis gives us V∗(Γ, e) = (S ,∀a. τ ′) with R′ such that
Q = R′ ◦ S and R′(∀a. τ ′) = ∀a. τ . Note that we have liberally renamed
bound variables here to ensure that the quantified variables a are the same
in both cases. This is surely possible because the substitution R′ cannot
change the number of quantified variables (noting that τ ′ must not have
any quantified variables itself). We thus know R′(τ ′) = τ and that a ∩
dom(R′) = ∅.
(i) We can see that V(Γ, e) = (S , τ ′).
(ii) Choose R to be the [τ/a] ◦ R′.
(iii) The domain restriction is satisfied by the induction hypothesis and by
the Barendregt convention applied to bound variables a.
(iv) We can see that Q = R ◦ S as required (ignoring the action on the
fresh a).
We have already established that R′(τ ′) = τ . We must show that R(τ ′) =
τ [τ/a].
(v) This follows from our definition of R.
We are done.

Case V_Var:
x :∀{a}. υ ∈ Γ
Γ ∗̀

v x : υ[τ/a]
V_Var

We know x :∀{a}. υ ∈ Q(Γ ). Thus, there exists υ′ such that x :∀{a}. υ′ ∈ Γ
where Q(υ′) = υ.
(i) Thus, V∗(Γ, x ) = (ε, υ′).
(ii) Choose R = [τ/a] ◦Q .
(iii) The domain restriction is satisfied by the assumption of domain restric-
tion on Q and the Barendregt convention applied to the bound a.
(iv) Clearly, Q = R ◦ ε, ignoring the action on the fresh a.
We must now show that R(υ′) = υ[τ/a].
(v) This is true by construction of R.
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Case V_Let:

Γ `genv e1 : σ1 Γ, x :σ1
∗̀
v e2 : υ2

Γ ∗̀
v let x = e1 in e2 : υ2

V_Let

The induction hypothesis gives us Vgen(Γ, e1) = (S1, σ
′
1) with R1 such

that Q = R1 ◦ S1 and R1(σ′1) ≤hmv σ1. We know (from inversion)
that R1(S1(Γ )), x :σ1

∗̀
v e2 : υ2. We also see that R1(S1(Γ ), x :σ′1) ≤hmv

R1(S1(Γ )), x :σ1 and thus that R1(S1(Γ ), x :σ′1) ∗̀v e2 : υ2, by context gen-
eralization (Lemma 15), which preserves heights of derivations. We thus use
the induction hypothesis again to get V∗((S1(Γ ), x :σ′1), e2) = (S2, υ

′
2) with

R2 such that R1 = R2 ◦ S2 and υ2 = R2(υ′2).
(i) We thus have V∗(Γ, let x = e1 in e2) = (S2 ◦ S1, υ′2).
(ii) Choose R = R2.
(iii) The domain restriction is satisfied via the induction hypothesis.
(iv) We can see that Q = R2 ◦ S2 ◦ S1 as desired.
(v) We can further see that R2(υ′2) = υ2 as desired.

Case V_TApp:
Γ ` τ
Γ ∗̀

v e : ∀a. υ
Γ ∗̀

v e @τ : υ[τ/a]
V_TApp

The induction hypothesis gives us V∗(Γ, e) = (S , υ′) with R′ such that
Q = R′ ◦ S and ∀a. υ = R′(υ′). Because the substitution R′ maps type
variables only to monotypes, we know υ′ must be ∀a. υ′′, with R′(υ′′) = υ
and a 6∈ dom(R′).
(i) We thus know V∗(Γ, e @τ) = (S , υ′′[τ/a]).
(ii) Choose R = R′.
(iii) The domain restriction is satisfied via the induction hypothesis.
(iv) We already know Q = R′ ◦ S .
We must show R′(υ′′[τ/a]) = υ[τ/a]. This can be reduced to
R′(υ′′)[R′(τ)/a] = υ[τ/a] by the fact that a 6∈ dom(R). Furthermore, we
know τ is closed, so we can further reduce to R′(υ′′)[τ/a] = υ[τ/a].
(v) But we know R′(υ′′) = υ, so we are done.

Case V_Annot:

Γ ` υ υ = ∀a, b. τ
Γ, a v̀ e : τ

Γ ∗̀
v (Λa.e : υ) : υ

V_Annot

The induction hypothesis gives us V((Γ, a), e) = (S1, τ
′) with R1 such that

Q = R1 ◦ S1, R1(τ ′) = τ , and dom(R1) ∩ vars(Γ, a) = ∅. We must show
that τ and τ ′ have a unifier. We can assume further (by the Barendregt
convention) that b∩dom(R1) = ∅. We also know that ftv(τ) ⊆ vars(Γ ), a, b.
Thus, R1(τ) = τ and R1 is a unifier of τ and τ ′. Let S2 = Uvars(Γ ),a,b(τ, τ ′)

(which is now sure to exist).
(i) We thus have V∗(Γ, (Λa.e : υ)) = (S2 ◦ S1, υ).
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(ii) Choose R as determined by the fact that R1 = R ◦ S2 (gained from the
most-general-unifier property).
(iii) The domain restriction comes from the fact that S2 and R1 both satisfy
even a stricter domain restriction than we need here.
(iv) We thus see that Q = R ◦ S2 ◦ S1 as desired.
(v) Furthermore, by the fact that υ is closed, we get R(υ) = υ, as desired.

Case V_Mono:
Γ v̀ e : τ
no other rule matches

Γ ∗̀
v e : τ

V_Mono

The induction hypothesis gives us V(Γ, e) = (S , τ ′) with R such that Q =
R ◦ S and R(τ ′) = τ .
(i) We see that V∗(Γ, e) = (S , τ ′).
(ii) Choose R to be the one we got from the induction hypothesis.
(iii) The domain restriction is via the induction hypothesis.
(iv) We see that Q = R ◦ S .
(v) We see that R(τ ′) = τ .

Case V_Gen:

a = ftv(υ) \ ftv(Γ ) Γ ∗̀
v e : υ

Γ `genv e : ∀{a}. υ
V_Gen

The induction hypothesis gives us V∗(Γ, e) = (S , υ′) with R such that Q =
R ◦ S and R(υ′) = υ. We know a = ftv(R(υ′)) \ ftv(R(S (Γ ))), and let
a ′ = ftv(υ′) \ ftv(S (Γ )).
(i) We see that Vgen(Γ, e) = (S ,∀{a ′}. υ′).
(ii) Choose R as from the induction hypothesis.
(iii) The domain restriction is via the induction hypothesis.
(iv) We know Q = R ◦ S .
We must show R(∀{a ′}. υ′) ≤hmv ∀{a}. υ
(v) This is direct from Lemma 20.

Proof (Proof of principal types for HMV (Theorem 3)). By completeness of V
(Theorem 5), we have σ′0 such that Γ `genv e : σ′0 and σ′0 ≤hmv σ. By completeness
of Algorithm V (Lemma 21), we have Vgen(Γ, e) = (S , σ′p) with R such that
ε = R ◦ S and R(σ′p) ≤hmv σ

′
0. Let σp = R(σ′p). By the soundness of Algorithm

V (Lemma 19), we know that S (Γ ) `genv e : σ′p, or equivalently: S (Γ ) `genv e :
S (σp). By substitution, we can substitute through by R to get Γ `genv e : σp. By
soundness of V (Theorem 4), we have Γ h̀mv e : σp. Recall that σp ≤hmv σ0. But
we assumed nothing about σ0. Thus, σp is a principal type for e.

Proof (Proof of decidability of System V (Theorem 6)). All that remains is to
show that Algorithm V terminates. All cases in Algorithm V except for cases (4),
(9), and (10) recur on a structural component of the input. We can observe that
(4) and (9) cannot infinitely recur, because one of the other cases is guaranteed
to intervene. Because (10) recurs from Vgen(Γ, e) to V∗(Γ, e), it, too cannot loop.
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F Higher-rank systems: properties of ≤b

This section concerns the properties of the first order subsumption, higher-order
instantiation relation, σ1 ≤b σ2. For reference this relation is repeated in Fig. 12.

σ1 ≤b σ2 Higher-rank instantiation

τ ≤b τ
B_Refl

υ3 ≤b υ1 υ2 ≤b υ4

υ1 → υ2 ≤b υ3 → υ4
B_Fun

φ1[τ/b] ≤b φ2

∀a, b. φ1 ≤b ∀a. φ2

B_InstS

υ1[τ/a] ≤b υ2 b 6∈ ftv(∀{a}. υ1)

∀{a}. υ1 ≤b ∀{b}. υ2
B_InstG

Fig. 12. Inner instantiation

Lemma 22 (Monotypes are already instantiated). If τ1 ≤b τ2 then τ1 =
τ2.

Proof. By inversion.

Lemma 23 (Substitution for instantiation). If σ1 ≤b σ2 then S (σ1) ≤b

S (σ2).

Lemma 24 (Reflexivity for ≤b ). For all σ, σ ≤b σ.

Lemma 25 (Transitivity for ≤b ). If σ1 ≤b σ2 and σ2 ≤b σ3, then σ1 ≤b σ3.

Proof. Proof is by induction onH(σ2), where theH function is defined as follows:

H(τ) = 1
H(υ1− > υ2) = 1 +max(Hυ1, Hυ2)

when at least one of υ1 and υ2
is not a monotype

H(∀a. φ) = 1 +H(φ)
H(∀{a}. υ) = 1 +H(υ)

Note that the H function is stable under substitution (replacing variables by
monotypes).
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Case σ2 is τ , a monotype In this case, by Lemma 32, we know that σ3 must
also be τ . So the result holds by assumption.

Case σ2 is υ21 → υ22 By inversion, we know that σ1 is ∀{a}, b, c. υ11 → υ12
such that υ21 ≤b υ11[τ/a, c] and υ12[τ/a, c] ≤b υ12.
We also know that σ3 is ∀{d}. υ31 → υ32, such that υ31 ≤b υ21 and υ22 ≤b

υ32.
By induction, we can show υ31 ≤b υ11[τ/a, c] and υ12[τ/a, c] ≤b υ32.
This lets us conclude that σ1 ≤b σ2.

Case σ2 is ∀a. φ2 By inversion, we know that σ1 is ∀{b}, a, c. φ1 such that
φ1[τ/b, c] ≤b φ2.
We also know that σ3 is ∀{d}, a1. φ3 where a = a1, a2 and φ2[τ ′/a2] ≤b φ3.
By substitution, we can show that φ1[τ/b, c][τ ′/a2] ≤b φ2[τ ′/a2].
By induction, we then have φ1[τ/b, c][τ ′/a2] ≤b φ3. We can then derive
σ1 ≤b σ3 to conclude.

Case σ2 is ∀{a}. υ2 By inversion, we know that σ1 is ∀{b}. υ1 where
υ1[τ/b] ≤b υ2.
We also know that σ3 is ∀{c}. υ3, where υ2[τ ′/a] ≤b υ3.
By substitution, we can show that υ1[τ/b][τ ′/a] ≤b υ2[τ ′/a]. Rewrite this as
υ1[τ [τ ′/a]/b] ≤b υ2[τ ′/a].
By induction, we have υ1[τ [τ ′/a]/b] ≤b υ3.
Therefore we can conclude ∀{b}. υ1 ≤b υ3.

G Higher-rank systems: properties of DSK System B

This section considers the Higher-Rank type systems with deep-skolemization,
described in Section 6.

G.1 Properties of Prenex conversion

Lemma 26 (Instantiation and Prenex). If υ ≤b υ
′ and prenex (υ) = ∀a. ρ

and prenex (υ′) = ∀b. ρ′, then ∀a. ρ ≤b ∀b. ρ′ and b ⊆ a.

Proof. Proof is by induction on υ ≤b υ
′.

Case B_InstS:
φ1[τ/b] ≤b φ2

∀a, b. φ1 ≤b ∀a. φ2
B_InstS

Say that prenex (υ) = ∀a, b, c. ρ′1 where prenex (φ) = ∀c. ρ′1.
This means that prenex (φ1[τ/b]) = ∀c. ρ′1[τ/b] as τ do not contain quanti-
fiers.
Say also that prenex (υ′) = ∀a, d . φ′2 where prenex (φ2) = ∀d . ρ′2.
By induction, we have that ρ′1[τ/b] ≤b ρ

′
2 where d ⊆ c.

Therefore we can conclude by B_InstS that
∀a. ρ′1 ≤b ∀b. ρ′2
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Case B_Fun:
υ3 ≤b υ1 υ2 ≤b υ4

υ1 → υ2 ≤b υ3 → υ4
B_Fun

Note that prenex (υ1 → υ2) = ∀a. υ1 → ρ2 where ∀a. ρ2 = prenex (υ2) and
the a are not free in υ1. prenex (υ3 → υ4) = ∀b. υ3 → ρ4 where ∀b. ρ4 =
prenex (υ4). So by induction, we have that ∀a. ρ2 ≤b ∀b. ρ4 and b ⊆ a.
By inversion, we have that ρ2[τ/a] ≤b ρ4. From this we can derive υ1 →
ρ2[τ/a] ≤b υ3 → ρ4 and then ∀a. υ1 → ρ2 ≤b ∀b. υ3 → ρ4.

Case B_Refl: trivial.

Lemma 27 (Prenex instantiates). If prenex (υ) = ∀a. ρ then υ ≤b ρ.

Proof. Proof is by induction on υ. If υ is a monotype, we are done. If υ = υ1 →
υ2, then prenex (υ) = ∀a. υ1 → ρ2 where prenex (υ2) = ∀a. ρ2. By induction,
we know that υ2 ≤b ρ, so by B_Fun, we have υ1 → υ2 ≤b υ1 → ρ.

If υ is a specified polytype, of the form ∀a. φ, then prenex (υ2) = ∀a, b. ρ′2
where prenex (φ) = ∀b. ρ′2. By induction, we know that ρ′1 ≤b ρ

′
2. We can then

show that ∀a, b. ρ′1 ≤b ρ
′
2 by B_InstS (and instantiating variables with them-

selves.)

G.2 Properties of DSK subsumption

Lemma 28 (Substitution for higher-rank subsumption). If υ1 ≤dsk υ2
then S (υ1) ≤dsk S (υ2). If σ1 ≤dsk υ2 then S (σ1) ≤dsk S (υ2).

See Vytiniotis et al. [26] Lemma 2.7.

Lemma 29 (Reflexivity for ≤dsk ). For all υ, υ ≤dsk υ.

Proof. Vytiniotis et al., [26] Lemma 2.21.

Lemma 30 (Transitivity for ≤dsk ). If υ1 ≤dsk υ2 and υ2 ≤dsk υ3, then
υ1 ≤dsk υ3.

Proof. Vytiniotis et al., [26] Lemma 2.22.

Lemma 31 (Single skol admissible). If σ1 ≤dsk υ2 then σ1 ≤dsk ∀c. υ2 (when
c are not free in σ1).

Proof. Proof is by induction on σ1 ≤dsk υ2.

Case DSK_Refl: Direct by DSK_InstS.
Case DSK_Fun:

υ3 ≤dsk υ1 υ2 ≤dsk ρ4

υ1 → υ2 ≤∗dsk υ3 → ρ4
DSK_Fun

Say prenex (υ4) = ∀b. ρ. By inversion, we know that υ1 → υ2 ≤dsk υ3 → ρ.
We also know that prenex (∀c. υ3 → υ4) = ∀c, b. υ3 → ρ, so we can conclude
with DSK_Inst.
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Case DSK_Inst:

prenex (υ2) = ∀c. ρ2
φ1[τ/a][τ ′/b] ≤∗dsk ρ2
∀{a}, b. φ1 ≤dsk υ2

DSK_Inst

We note that prenex (∀c. υ2) = ∀c, b. ρ2, so we can just apply DSK_Inst.
Case SB_Inst:

prenex (υ2) = ∀c. ρ2
φ1[τ/a][τ ′/b] ≤∗dsk ρ2
∀{a}, b. φ1 ≤dsk υ2

DSK_Inst

Similar reasoning to DSK_Inst.

Lemma 32 (Monotypes are instantiations). If σ ≤dsk τ then σ ≤b τ .

Proof. Proof is by induction on σ ≤dsk τ . In each case the result holds directly
by induction.

Lemma 33 (DSK and prenex). For all υ, we have υ ≤dsk prenex (υ).

Proof. Proof is by induction on υ.

Lemma 34 (DSK Subsumption contains OL Subsumption). If υ1 ≤ol υ2
then υ1 ≤dsk υ2.

Proof. Proof is by induction on the derivation.
Case OL_B_ARefl: Trivial.
Case OL_B_AFun: By induction.
Case OL_B_AInstS:

φ1[τ/a] ≤ol φ2 b 6∈ ftv(∀a. φ1)

∀a. φ1 ≤ol ∀b. φ2
OL_B_AInstS

By induction we know that φ1[τ/b] ≤dsk φ2. We want to show that
∀a. φ1 ≤dsk ∀b. φ2. Say prenex (φ2) = ∀c. ρ2, then by DSK_Inst it suffices
to show that φ1[τ ′/b] ≤dsk ρ2. Note that as ∀c. ρ2 ≤dsk ρ2, by transitivity,
we can reduce this to showing φ1[τ/b] ≤dsk prenex (φ2).
We can finish, again by transitivity, by showing via Lemma 33, that φ2 ≤dsk

prenex (φ2).

Corollary 35 (DSK Subsumption contains Instantiation). If υ1 ≤b υ2
then υ1 ≤dsk υ2.

Proof. See above and Lemma 47.

Lemma 36 (Transitivity of Higher-Rank subsumption I). If σ1 ≤b σ2
and σ2 ≤dsk υ3, then σ1 ≤dsk υ3.

Proof. Follows from Lemmas 30 and 35.

Lemma 37 (Transitivity of Higher-Rank subsumption II). If σ1 ≤dsk υ2
and υ2 ≤b υ3, then σ1 ≤dsk υ3.

Proof. Follows from Lemmas 30 and 35.
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G.3 Substitution

Although a more general substitution property is true for these systems, in this
development we need only substitute for generalized type variables. Therefore,
we state these lemmas is more restrictive forms.

Lemma 38 (Substitution for System B). Assume that the domain of S is
disjoint from the variables of Γ and from the free type variables of e.

1. If Γ b̀ e ⇒ σ then Γ b̀ e ⇒ S (σ)
2. If Γ b̀ e ⇐ υ then Γ b̀ e ⇐ S (υ)

Lemma 39 (Substitution for System SB). Assume that the domain of S is
disjoint from the variables of Γ and from the free type variables of e.

1. If Γ s̀b e ⇒ φ then Γ s̀b e ⇒ S (φ).
2. If Γ ∗̀

sb e ⇒ υ then Γ ∗̀
sb e ⇒ S (υ).

3. If Γ `gensb e ⇒ σ then Γ `gensb e ⇒ S (σ).
4. If Γ ∗̀

sb e ⇐ υ then Γ ∗̀
sb e ⇐ S (υ).

5. If Γ s̀b e ⇐ ρ then Γ s̀b e ⇐ S (ρ).

G.4 Soundness of syntax-directed system

Because of the differences between the syntax-directed and the declarative sys-
tem, we need the following lemma about System B to prove the soundness of
System SB.

Lemma 40 (Prenex System B). If Γ b̀ e ⇐ ρ and prenex (φ) = ∀a. ρ then
Γ b̀ e ⇐ φ.

Proof. Case B_DAbs

Γ, x :υ1 b̀ e ⇐ υ2

Γ b̀ λx . e ⇐ υ1 → υ2
B_DAbs

In this case, because we are pushing in ρ, we have υ2 = ρ2. We also know
that prenex (φ) = ∀a. υ1 → ρ2, so φ must be of the form υ1 → υ2.
Write υ2 as ∀a1. φ2. We also know that prenex (υ2) = ∀a1, a2. ρ2 where
prenex (φ2) = ∀a2. ρ2.
By induction, we have Γ, x :υ1 b̀ e ⇐ φ2 By (repeated) use of B_Skol, we
have Γ, x :υ1 b̀ e ⇐ ∀a. φ2 By B_DAbs, we can then conclude Γ b̀ λx . e ⇐
υ1 → ∀a. φ2, which is what we wanted to show.

Case B_DLet
Γ b̀ e1 ⇒ σ1
Γ, x :σ1 b̀ e2 ⇐ υ

Γ b̀ let x = e1 in e2 ⇐ υ
B_DLet

This case holds by induction.
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Case B_Skol This case is impossible, as the conclusion does not have the
form φ.

Case B_Infer

Γ b̀ e ⇒ σ1 σ1 ≤dsk υ2

Γ b̀ e ⇐ υ2
B_Infer

Here we know that υ2 is ρ. By inversion of σ ≤dsk ρ, we have σ =
∀{a1}, b1. φ2 where where prenex (φ2) = ∀c. ρ and ρ2[τ/a1][τ ′/b1] ≤dsk ρ.
However, as we also have prenex (φ) = ∀a. ρ, we can use the same informa-
tion to conclude, σ ≤dsk φ, and then use B_Infer to show that Γ b̀ e ⇐ φ.

Proof Soundness of System SB Lemma 7 states:

1. If Γ s̀b e ⇒ φ then Γ b̀ e ⇒ φ.
2. If Γ ∗̀

sb e ⇒ υ then Γ b̀ e ⇒ υ.
3. If Γ `gensb e ⇒ σ then Γ b̀ e ⇒ σ.
4. If Γ ∗̀

sb e ⇐ υ then Γ b̀ e ⇐ υ.
5. If Γ s̀b e ⇐ ρ then Γ b̀ e ⇐ ρ.

Proof. Most of the cases of this lemma follow via straightforward induction.
Cases SB_Spec, and SB_Var are similar to the cases for V_InstS and
V_Var, so are not shown. We include selected cases below.

Case SB_Annot:

Γ ` υ υ = ∀a, b. φ
Γ, a ∗̀sb e ⇐ φ

Γ ∗̀
sb (Λa.e : υ)⇒ υ

SB_Annot

By induction we know that Γ, a b̀ e ⇐ φ. By B_Annot, we can conclude
Γ b̀ (Λa.e : υ)⇒ υ.

Case SB_Infer:

Γ ∗̀
sb e ⇒ υ1 υ1 ≤dsk ρ2

no other rule matches
Γ s̀b e ⇐ ρ2

SB_Infer

By induction, we know that Γ b̀ e ⇒ υ1. We would like to show that
Γ b̀ e ⇐ ρ2. This follows immediately by B_Infer.

Case SB_DeepSkol

prenex (υ) = ∀a. ρ
a 6∈ ftv(Γ ) Γ s̀b e ⇐ ρ

Γ ∗̀
sb e ⇐ υ

SB_DeepSkol

By induction, we have Γ b̀ e ⇐ ρ. Note that if prenex (υ) = ∀a. ρ and υ is of
the form ∀a ′. φ, then, by definition prenex (φ) = ∀a ′′. ρ and a = a ′, a ′′. By
the prenex lemma 40, we know that Γ b̀ e ⇐ φ. We can then use multiple
applications of rule B_Skol to conclude Γ b̀ e ⇐ ∀a ′. φ.
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G.5 Completeness of syntax-directed system

Lemma 41 (Context Generalization). Suppose Γ ′ ≤b Γ

1. If Γ s̀b e ⇒ φ then there exists φ′ ≤b φ such that Γ ′ s̀b e ⇒ φ′.
2. If Γ ∗̀

sb e ⇒ υ then there exists υ′ ≤b υ such that Γ ′ ∗̀sb e ⇒ υ′.
3. If Γ `gensb e ⇒ σ then there exists σ′ ≤b σ such that Γ ′ `gensb e ⇒ σ′.
4. If Γ ∗̀

sb e ⇐ υ and υ ≤b υ
′ then Γ ′ ∗̀sb e ⇐ υ′.

5. If Γ s̀b e ⇐ ρ and ρ ≤b ρ
′ then Γ ′ s̀b e ⇐ ρ.

Proof. Proof is by induction on derivations.

Case SB_Abs:
Γ, x :τ ∗̀sb e ⇒ υ

Γ s̀b λx . e ⇒ τ → υ
SB_Abs

By induction, we know that Γ ′, x :τ ∗̀
sb e ⇒ υ′ for υ′ ≤b υ. Therefore,

Γ ′ s̀b λx . e ⇒ τ → υ′ and, by SB_Fun, τ → υ′ ≤b τ → υ.
Case SB_Int:

Γ s̀b n ⇒ Int
SB_Int

Trivial.
Case SB_InstS:

Γ ∗̀
sb e ⇒ ∀a. φ

no other rule matches
Γ s̀b e ⇒ φ[τ/a]

SB_InstS

By induction, we know that Γ ∗̀
sb e ⇒ υ′ where υ′ ≤b ∀a. φ. By inversion,

we know that υ′ must be of the form ∀a, b. φ′ where φ′[τ ′/b] ≤b φ. By
SB_InstS, we can conclude Γ ∗̀

sb e ⇒ (φ′[τ ′/b])[τ/a]. We also need to
show that (φ′[τ ′/b])[τ/a] ≤b φ[τ/a], which follows by substitution (Lemma
23).

Case SB_Var:
x :∀{a}. υ ∈ Γ
Γ ∗̀

sb x ⇒ υ[τ/a]
SB_Var

We know that x :σ ∈ Γ , where σ ≤b ∀{a}. υ. So by inversion, σ must
be ∀{b}. υ′ such that υ′[τ ′/b] ≤b υ. Therefore, by substitution lemma 23,
υ′[τ ′/b][τ/a] ≤b υ[τ/a]. As we know that the a are not free in υ′, we can
rewrite the left hand side as: υ′[τ ′[τ/a]/b], and choose those types in the use
of SB_Var.

Case SB_App:

Γ s̀b e1 ⇒ υ1 → υ2 Γ ∗̀
sb e2 ⇐ υ1

Γ ∗̀
sb e1 e2 ⇒ υ2

SB_App

By induction we have Γ ′ s̀b e1 ⇒ φ such that φ ≤b υ1 → υ2. By inversion,
this means that φ must be of the form υ′1 → υ′2 where υ1 ≤b υ

′
1 and υ′2 ≤b υ2.

By induction, we have Γ ′ ∗̀sb e2 ⇐ υ′1. So we can conclude by SB_App.
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Case SB_Let:

Γ `gensb e1 ⇒ σ1 Γ, x :σ1
∗̀
sb e2 ⇒ υ2

Γ ∗̀
sb let x = e1 in e2 ⇒ υ2

SB_Let

By induction Γ ′ `gensb e1 ⇒ σ′1 for σ′1 ≤b σ1. By induction (again), Γ ′, x :σ′1
∗̀
sb

e2 ⇒ υ′2 for υ′2 ≤b υ2. So we can conclude by SB_Let.
Case SB_TApp:

Γ ` τ
Γ ∗̀

sb e ⇒ ∀a. υ
Γ ∗̀

sb e @τ ⇒ υ[τ/a]
SB_TApp

By induction Γ ′ ∗̀sb e ⇒ υ′ where υ′ ≤b ∀a. υ. By inversion, υ′ is of the form
∀a. υ1 where υ1 ≤b υ. By substitution, υ1[τ/a] ≤b υ[τ/a].

Case SB_Annot:

Γ ` υ υ = ∀a, b. φ
Γ, a ∗̀sb e ⇐ φ

Γ ∗̀
sb (Λa.e : υ)⇒ υ

SB_Annot

By induction, we have Γ ′, a ∗̀sb e ⇐ φ, so we can use SB_Annot to conclude
Γ ′ ∗̀sb e ⇒ υ.

Case SB_Phi:
Γ s̀b e ⇒ φ
no other rule matches

Γ ∗̀
sb e ⇒ φ

SB_Phi

Holds directly by induction.
Case SB_Gen:

Γ ∗̀
sb e ⇒ υ a = ftv(υ) \ ftv(Γ )

Γ `gensb e ⇒ ∀{a}. υ
SB_Gen

By induction, we have Γ ′ ∗̀sb e ⇒ υ′ for υ′ ≤b υ. Let b = ftv(υ′)\ ftv(Γ ). We
want to prove that ∀{b}. υ′ ≤b ∀{a}. υ. This holds by B_InstG, choosing
τ = a.

Case SB_DAbs:

Γ, x :υ1
∗̀
sb e ⇐ ρ2

Γ s̀b λx . e ⇐ υ1 → ρ2
SB_DAbs

Let Γ ′ ≤b Γ and υ1 → ρ2 ≤b υ
′ be arbitrary. By inversion, we know that υ′

is υ′1 → υ′2 where υ′1 ≤b υ1 and ρ2 ≤b υ
′
2.

By inversion, we know that υ′2 must be of the form ρ′2, as ≤b cannot intro-
duce specified quantifiers.
By induction, we know that Γ ′, x :υ′1

∗̀
sb e ⇐ ρ′2.

So we can conclude by SB_DAbs.
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Case SB_Infer:

Γ ∗̀
sb e ⇒ υ1 υ1 ≤dsk ρ2

no other rule matches
Γ s̀b e ⇐ ρ2

SB_Infer

Let Γ ′ ≤b Γ and ρ2 ≤b ρ
′ be arbitrary. By induction, we know that Γ ′ ∗̀sb e ⇒

υ′ for υ′ ≤b υ1. We want to show that υ′ ≤dsk ρ
′. This holds by lemmas 36

and 37.
Case SB_DLet:

Γ `gensb e1 ⇒ σ1 Γ, x :σ1 s̀b e2 ⇐ ρ2

Γ s̀b let x = e1 in e2 ⇐ ρ2
SB_DLet

Let Γ ′ ≤b Γ and ρ2 ≤b ρ
′ be arbitrary. By induction, we have Γ ′ `gensb e1 ⇒ σ′1

for σ′1 ≤b σ1. By induction (again), Γ ′, x :σ′1
∗̀
sb e2 ⇐ ρ′. So we can conclude

by SB_DLet.
Case SB_DeepSkol

prenex (υ) = ∀a. ρ
a 6∈ ftv(Γ ) Γ s̀b e ⇐ ρ

Γ ∗̀
sb e ⇐ υ

SB_DeepSkol

Let Γ ′ ≤b Γ and υ ≤b υ′ be arbitrary. Let prenex (υ′) = ∀a ′. ρ′. By
Lemma 27, we know that ρ ≤b ρ

′.
So by induction, Γ ′ s̀b e ⇐ ρ′

Therefore, we can use SB_DeepSkol to conclude.

Proof of Completeness of System SB Lemma 8 states:

1. If Γ b̀ e ⇒ σ then Γ `gensb e ⇒ σ′ where σ′ ≤b σ.
2. If Γ b̀ e ⇐ υ then Γ ∗̀

sb e ⇐ υ.

Proof. Most cases of this lemma either follow by induction, or are analogous to
the completeness lemma for System V.

Case B_Var
x :σ ∈ Γ
Γ b̀ x ⇒ σ

B_Var

Suppose σ is for the form ∀{a}. υ. Then we use a to instantiate the variables
a. We know these a are not free in Γ by the Barendregt convention. It
may be the case that generalization quantifies over more variables, i.e. a ⊆
a ′ = ftv(υ) \ ftv(Γ ), leading to a more general result type. However, that is
permitted by the statement of the theorem.
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Case B_Abs
Γ, x :τ b̀ e ⇒ υ

Γ b̀ λx . e ⇒ τ → υ
B_Abs

The induction hypothesis gives us Γ, x :τ `gensb e ⇒ ∀{a}. υ′ where ∀{a}. υ′ ≤b

υ. Inverting `gensb gives us Γ, x :τ ∗̀
sb e ⇒ υ′ and inverting ≤b gives us

υ′[τ/a] ≤b υ. We can then substitute and use SB_Abs to get Γ s̀b λx . e ⇒
τ → υ′[τ/a]. Generalizing, we get Γ `gensb λx . e ⇒ ∀{a, a ′}. τ → υ′[τ/a]
where the new variables a ′ come from generalizing τ and the τ ′. We are
done because (τ → υ′)[τ/a] ≤b τ → υ and so ∀{a, a ′}. τ → υ′ ≤b τ → υ

Case B_App

Γ b̀ e1 ⇒ υ1 → υ2 Γ b̀ e2 ⇐ υ1

Γ b̀ e1 e2 ⇒ υ2
B_App

By induction we have Γ `gensb e1 ⇒ σ for some σ ≤b υ1 → υ2.
So by inversion σ = ∀{a}, b. υ′1 → υ′2, where (υ′1 → υ′2)[τ/a][τ ′/b] ≤b υ1 →
υ2 and υ1 ≤b υ

′
1[τ/a][τ ′/b] and υ′2[τ/a][τ ′/b] ≤b υ2.

Also by inversion of `gensb , we know that Γ ∗̀
sb e1 ⇒ ∀b. υ′1 → υ′2 and that the

a are not free in Γ or e1.
By substitution, we have Γ ∗̀

sb e1 ⇒ ∀b. (υ′1 → υ′2)[τ/a]
And by SB_InstS, we have Γ ∗̀

sb e1 ⇒ (υ′1 → υ′2)[τ/a][τ ′/b].
By induction we have Γ ∗̀

sb e2 ⇐ υ′1 and by lemma 54, we know that Γ ∗̀
sb

e2 ⇐ υ′1[τ/a][τ ′/b].
So we can conclude Γ ∗̀

sb e1 e2 ⇐ υ′2[τ/a][τ ′/b].
Case B_Let

Γ b̀ e1 ⇒ σ1 Γ, x :σ1 b̀ e2 ⇒ σ

Γ b̀ let x = e1 in e2 ⇒ σ
B_Let

The induction hypothesis gives us Γ `gensb e1 ⇒ σ′1 with σ′1 ≤b σ1. The
induction hypothesis also gives us Γ, x :σ1 `gensb e2 ⇒ σ2 with σ′2 ≤b σ2. Use
Lemma 54 to get Γ, x :σ′1 `

gen
sb e2 ⇒ σ′′2 where σ′′2 ≤b σ

′
2.

Let σ′′2 = ∀{b}. υ where b = ftv(υ)\ftv(Γ ). Inverting `gensb gives us Γ, x :σ′1
∗̀
sb

e2 ⇒ υ. We then use SB_Let to get Γ ∗̀
sb let x = e1 in e2 ⇒ υ. Generalizing

gives us Γ `gensb let x = e1 in e2 ⇒ ∀{b}. υ.
Transitivity of ≤b (Lemma 25) gives us ∀{b}. υ ≤hmv σ2.

Case B_Int

Γ b̀ n ⇒ Int
B_Int

Trivial.
Case B_TApp

Γ ` τ
Γ b̀ e ⇒ ∀a. υ

Γ b̀ e @τ ⇒ υ[τ/a]
B_TApp

The induction hypothesis (after inverting `gensb ) gives us Γ ∗̀
sb e ⇒ ∀a. υ′,

where b = ftv(∀a. υ′) \ ftv(Γ ) and υ′[τ/b] ≤b υ. Applying SB_TApp



Visible Type Application (Extended version) 61

gives us Γ ∗̀
sb e @τ ⇒ υ′[τ/a], and SB_Gen gives us Γ `gensb e @τ ⇒

∀{c}. υ′[τ/a] where c = ftv(υ′[τ/a]) \ ftv(Γ ). We want to show that
∀{c}. υ′[τ/a] ≤b υ[τ/a], which follows when there is some τ ′, such that
υ′[τ/a][τ ′/c] ≤b υ[τ/a].
This is equivalent to exchanging the substiution, i.e. finding a τ ′ such that
υ′[τ ′/c][τ/a] ≤b υ[τ/a].
By Substitution (Lemma 23), we have υ′[τ/b][τ/a] ≤b υ[τ/a]. We also know
that the b are a subset of the c. So we can choose τ ′ to be τ for the b, and
the remaining c elsewhere, and we are done.

Case B_Annot

Γ ` υ υ = ∀a, b. φ
Γ, a b̀ e ⇐ φ

Γ b̀ (Λa.e : υ)⇒ υ
B_Annot

By induction, we have Γ, a ∗̀sb e ⇐ φ. We can conclude by SB_Annot.
Case B_Gen

Γ b̀ e ⇒ σ a 6∈ ftv(Γ )

Γ b̀ e ⇒ ∀{a}. σ
B_Gen

The induction hypothesis gives us Γ `gensb e ⇒ σ′ where σ′ ≤b σ. We know
σ′ ≤b ∀{a}. σ. In other words, if σ′ = ∀{b}. υ1 and σ = ∀{c}. υ2, we have
some τ such that υ1[τ/b] = υ2. By the definition of ≤b we can use these
same τ to show that σ′ ≤b ∀{a, c}. υ2.

Case B_Sub
Γ b̀ e ⇒ σ1 σ1 ≤b σ2

Γ b̀ e ⇒ σ2
B_Sub

The induction hypothesis gives us Γ `gensb e ⇒ σ′ where σ′ ≤b σ1. By transi-
tivity of ≤b , we are done.

Case B_DAbs
Γ, x :υ1 b̀ e ⇐ υ2

Γ b̀ λx . e ⇐ υ1 → υ2
B_DAbs

By induction, we have that Γ, x :υ1
∗̀
sb e ⇐ υ2.

By inversion, we have prenex (υ2) = ∀a. ρ and Γ, x :υ1 s̀b e ⇐ ρ.
Therefore by SB_DAbs, we can conclude Γ ∗̀

sb λx . e ⇐ υ1 → ρ, and by
SB_DeepSkol, we know Γ ∗̀

sb λx . e ⇐ υ1 → υ2.
Case B_DLet

Γ b̀ e1 ⇒ σ1
Γ, x :σ1 b̀ e2 ⇐ υ

Γ b̀ let x = e1 in e2 ⇐ υ
B_DLet

By induction we have Γ, x :σ1
∗̀
sb e2 ⇐ υ. Also by induction, there is some

σ′ ≤b σ1, such that Γ `gensb e ⇒ σ′. By context generalization, we know that
Γ, x :σ′1

∗̀
sb e2 ⇐ υ. So we can use SB_DLet to conclude.
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Case B_Infer

Γ b̀ e ⇒ σ1 σ1 ≤dsk υ2

Γ b̀ e ⇐ υ2
B_Infer

In this case, we know that σ1 ≤dsk υ2. We would like to show that Γ ∗̀
sb e ⇐

υ2. Suppose prenex (υ2) = ∀a. ρ, by rule SB_DeepSkol, it suffices to show
Γ s̀b e ⇐ ρ.
Suppose σ1 is ∀{b}. υ1. By inversion of σ1 ≤dsk υ2, we know that υ1[τ ′/b] ≤dsk

ρ.
By induction, there is some σ′ ≤b σ1, such that Γ `gensb e ⇒ σ′. By inversion
of `gensb we know that σ′ is of the form ∀{a}. υ′ and that Γ ∗̀

sb e ⇒ υ′.
By inversion of σ′ ≤b σ1, we know that υ′[τ/a] ≤b υ1. By substitution,
this means υ′[τ/a][τ ′/b] ≤b υ1[τ ′/b]. By the Barendregt convention, the b
can appear in the τ but not in υ′. So we can rewrite this substitution as
υ′[τ [τ ′/b]/a]. We can then substitute (as the a were generalized) Γ ∗̀

sb e ⇒
υ′[τ [τ ′/b]/a].
By transitivity (Lemma 36) we know that υ′[τ [τ ′/b]/a] ≤dsk ρ. So we can
conclude Γ s̀b e ⇐ ρ using SB_Infer.

Case B_Skol
Γ b̀ e ⇐ υ a 6∈ ftv(Γ )

Γ b̀ e ⇐ ∀a. υ
B_Skol

By induction, we have Γ ∗̀
sb e ⇐ υ. We would like to conclude Γ ∗̀

sb e ⇐
∀a. υ. By inversion, we have Γ s̀b e ⇐ ρ where prenex (υ) = ∀a. ρ. However,
this means that prenex (∀a. υ) = ∀a, a. ρ. Therefore, we can conclude using
SB_DeepSkol.

Unlike System V, we have not shown that the algorithm determined by Sys-
tem SB computes principal types. We believe that all of the complexities of that
proof are already present in the corresponding proofs about System V and the
extensive proofs for the bidirectional type system of GHC [26].
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H Higher-rank systems: OL variant

This section concerns the properties of a higher-rank type system that does not
include deep skolemization and provides an alternative treatment of scoped type
variables.

We present this system mainly for comparison with Dunfield/Krishnaswami [10]
(see below). However, it also shows that the deep-skolemization relation is not
an essential component of our type system. Instead of ≤dsk, it uses the Odersky-
Läufer subsmption relation shown in Figure 13.

The only difference between this system and the DSK version of System B,
is the use of this relation in the B_Infer rule and the treatment of scoped
type variables in the B_Annot and B_Skol rules. See Figure 14. The syntax-
directed version of the system is in Figure 15. It differs from System SB in that
it again uses the ≤ol relation, introduces scoped type variables at SB_Skol and
does not do deep-skolemization in the checking rule for polytypes.

A note on scoped type variables The alternative mechanism for scoped type
variables leads to some “strange” binding behavior. In particular, if y has the
following type in the context

y : (∀a. a → a)→ Int

then the expression
y (λx . (x : a))

would be well typed, even though the specification of y ’s type could be very far
from this application. Likewise, we only introduce top-level variables into scope.
In particular,

(λy . λx . (x : a) : Int → ∀a. a → a)

would be well-typed if we introduced scoped type variables in rule B_Skol, but
is rejected by system B.

υ1 ≤ol υ2

τ ≤ol τ
OL_B_ARefl

υ3 ≤ol υ1 υ2 ≤ol υ4

υ1 → υ2 ≤ol υ3 → υ4
OL_B_AFun

φ1[τ/a] ≤ol φ2 b 6∈ ftv(∀a. φ1)

∀a. φ1 ≤ol ∀b. φ2

OL_B_AInstS

Fig. 13. Subsumption in the Odersky-Läufer type system



64 Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed

Γ b̀ e ⇒ σ Synthesis rules for System B

x :σ ∈ Γ
Γ b̀ x ⇒ σ

OL_B_Var

Γ, x :τ b̀ e ⇒ υ

Γ b̀ λx . e ⇒ τ → υ
OL_B_Abs

Γ b̀ e1 ⇒ υ1 → υ2 Γ b̀ e2 ⇐ υ1

Γ b̀ e1 e2 ⇒ υ2
OL_B_App

Γ b̀ e1 ⇒ σ1 Γ, x :σ1 b̀ e2 ⇒ σ

Γ b̀ let x = e1 in e2 ⇒ σ
OL_B_Let

Γ b̀ n ⇒ Int
OL_B_Int

Γ ` τ Γ b̀ e ⇒ ∀a. υ
Γ b̀ e @τ ⇒ υ[τ/a]

OL_B_TApp

Γ ` υ Γ b̀ e ⇐ υ

Γ b̀ (e : υ)⇒ υ
OL_B_Annot

Γ b̀ e ⇒ σ a 6∈ ftv(Γ )

Γ b̀ e ⇒ ∀{a}. σ OL_B_Gen

Γ b̀ e ⇒ σ1 σ1 ≤b σ2

Γ b̀ e ⇒ σ2
OL_B_Sub

Γ b̀ e ⇐ υ

Γ, x :υ1 b̀ e ⇐ υ2

Γ b̀ λx . e ⇐ υ1 → υ2
OL_B_DAbs

Γ b̀ e1 ⇒ σ1 Γ, x :σ1 b̀ e2 ⇐ υ

Γ b̀ let x = e1 in e2 ⇐ υ
OL_B_DLet

Γ, a b̀ e ⇐ υ a 6∈ ftv(Γ )

Γ b̀ e ⇐ ∀a. υ OL_B_Skol

Γ b̀ e ⇒ υ1 υ1 ≤ol υ2

Γ b̀ e ⇐ υ2
OL_B_Infer

Fig. 14. Declarative specification of System OL-B
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Γ s̀b e ⇒ φ

Γ, x :τ `∗sb e ⇒ υ

Γ s̀b λx . e ⇒ τ → υ
OL_SB_Abs

Γ s̀b n ⇒ Int
OL_SB_Int

Γ `∗sb e ⇒ ∀a. φ
no other rule matches
Γ s̀b e ⇒ φ[τ/a]

OL_SB_InstS

Γ `∗sb e ⇒ υ

x :∀{a}. υ ∈ Γ
Γ ∗̀

sb x ⇒ υ[τ/a]
OL_SB_Var

Γ s̀b e1 ⇒ υ1 → υ2 Γ `∗sb e2 ⇐ υ1

Γ ∗̀
sb e1 e2 ⇒ υ2

OL_SB_App

Γ `gensb e1 ⇒ σ1 Γ, x :σ1 `∗sb e2 ⇒ υ2

Γ ∗̀
sb let x = e1 in e2 ⇒ υ2

OL_SB_Let

Γ ` τ Γ `∗sb e ⇒ ∀a. υ
Γ ∗̀

sb e @τ ⇒ υ[τ/a]
OL_SB_TApp

Γ ` υ Γ `∗sb e ⇐ υ

Γ ∗̀
sb (e : υ)⇒ υ

OL_SB_Annot

Γ s̀b e ⇒ φ
no other rule matches

Γ ∗̀
sb e ⇒ φ

OL_SB_Phi

Γ `gensb e ⇒ σ

a = ftv(υ) \ ftv(Γ ) Γ `∗sb e ⇒ υ

Γ `gensb e ⇒ ∀{a}. υ OL_SB_Gen

Γ s̀b e ⇐ φ

Γ, x :υ1 `∗sb e ⇐ υ2

Γ s̀b λx . e ⇐ υ1 → υ2
OL_SB_DAbs

Γ `gensb e1 ⇒ σ1 Γ, x :σ1 s̀b e2 ⇐ φ2

Γ s̀b let x = e1 in e2 ⇐ φ2
OL_SB_DLet

Γ `∗sb e ⇒ υ1 υ1 ≤ol φ2

no other rule matches
Γ s̀b e ⇐ φ2

OL_SB_Infer

Γ `∗sb e ⇐ υ

Γ, a s̀b e ⇐ φ a 6∈ ftv(Γ )

Γ ∗̀
sb e ⇐ ∀a. φ

OL_SB_Skol

Fig. 15. Syntax-directed specification of System OL-SB
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H.1 Properties of OL subsumption

Lemma 42 (Substitution). If υ1 ≤ol υ2 then S (υ1) ≤ol S (υ2).

Proof. Vytiniotis et al., Lemma 2.1 ([26])

Lemma 43 (Reflexivity for ≤ol ). For all υ, υ ≤ol υ.

Proof. Vytiniotis et al., Lemma 2.2 ([26])

Lemma 44 (Transitivity for ≤ol ). If υ1 ≤ol υ2 and υ2 ≤ol υ3, then υ1 ≤ol υ3.

Proof. Vytiniotis et al., Lemma 2.3 ([26])

Lemma 45 (Single skol admissible). If υ1 ≤ol υ2 then υ1 ≤ol ∀c. υ2 (when
c is not free in υ1).

Proof. Proof is by induction on υ1 ≤ol υ2.

Lemma 46 (Monotypes are instantiations). If υ ≤ol τ then υ ≤b τ .

Proof. Proof is by induction on υ ≤ol τ . In each case the result holds directly by
induction.

Lemma 47 (Subsumption contains instantiation). If υ1 ≤b υ2 then υ1 ≤ol

υ2.

Proof. Proof is by induction.

Case B_Refl: Trivial
Case B_Fun: By induction.
Case B_InstS:

φ1[τ/b] ≤b φ2

∀a, b. φ1 ≤b ∀a. φ2
B_InstS

By induction we know that φ1[τ/b] ≤ol φ2. We can rewrite this as
φ1[a/a][τ/b] ≤ol φ2, and conclude by DSK_Inst.

Lemma 48 (Transitivity of Higher-Rank subsumption I). If υ1 ≤b υ2
and υ2 ≤ol υ3, then υ1 ≤ol υ3.

Proof. Follows from Lemmas 44 and 47.

Lemma 49 (Transitivity of Higher-Rank subsumption II). If υ1 ≤ol υ2
and υ2 ≤b υ3, then υ1 ≤ol υ3.

Proof. Follows from Lemmas 44 and 47.
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H.2 Substitution

Lemma 50 (Substitution for System B). Assume that the domain of S is
disjoint from the variables of Γ or the free type variables of e.

1. If Γ b̀ e ⇒ σ then Γ b̀ e ⇒ S (σ)
2. If Γ b̀ e ⇐ υ then Γ b̀ e ⇐ S (υ)

Lemma 51 (Substitution for System SB). Assume that the domain of S is
disjoint from the variables of Γ or the free type variables of e.

1. If Γ s̀b e ⇒ φ then Γ s̀b e ⇒ S (φ).
2. If Γ ∗̀

sb e ⇒ υ then Γ ∗̀
sb e ⇒ S (υ).

3. If Γ `gensb e ⇒ σ then Γ `gensb e ⇒ S (σ).
4. If Γ ∗̀

sb e ⇐ υ then Γ ∗̀
sb e ⇐ S (υ).

5. If Γ s̀b e ⇐ φ then Γ s̀b e ⇐ S (φ).

H.3 Other properties

Lemma 52 (Monotypes are uninformative). If Γ b̀ e ⇐ τ then Γ b̀ e ⇒ τ .

Proof. This follows because of the four checking rules, the first two have identical
monotype versions, the third doesn’t apply to monotypes and the last follows
by B_Sub and the fact that τ is an instantiation of σ (lemma 46).

H.4 Soundness of System SB

Lemma 53 (Soundness of System SB).

1. If Γ s̀b e ⇒ φ then Γ b̀ e ⇒ φ.
2. If Γ ∗̀

sb e ⇒ υ then Γ b̀ e ⇒ υ.
3. If Γ `gensb e ⇒ σ then Γ b̀ e ⇒ σ.
4. If Γ ∗̀

sb e ⇐ υ then Γ b̀ e ⇐ υ.
5. If Γ s̀b e ⇐ φ then Γ b̀ e ⇐ φ.

Proof. Most of the cases of this lemma follow via straightforward induction.
Cases SB_Spec, and SB_Var are similar to the cases for V_InstS and
V_Var.

Case SB_Infer:

Γ ∗̀
sb e ⇒ υ1 υ1 ≤ol φ2

no other rule matches
Γ s̀b e ⇐ φ2

OL_SB_Infer

By induction, we know that Γ b̀ e ⇒ υ1. We can show that Γ b̀ e ⇐ φ2 by
B_Infer.

Case SB_Skol

Γ, a s̀b e ⇐ φ a 6∈ ftv(Γ )

Γ ∗̀
sb e ⇐ ∀a. φ

OL_SB_Skol

By induction, we have Γ b̀ e ⇐ ρ. We can immediately use rule B_Skol to
conclude.
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H.5 Completeness of SB

Generalizing and specializing syntax-directed derivations

Lemma 54 (Context Generalization). Suppose Γ ′ ≤b Γ

1. If Γ s̀b e ⇒ φ then there exists φ′ ≤b φ such that Γ ′ s̀b e ⇒ φ′.
2. If Γ ∗̀

sb e ⇒ υ then there exists υ′ ≤b υ such that Γ ′ ∗̀sb e ⇒ υ′.
3. If Γ `gensb e ⇒ σ then there exists σ′ ≤b σ such that Γ ′ `gensb e ⇒ σ′.
4. If Γ ∗̀

sb e ⇐ υ and υ ≤b υ
′ then Γ ′ ∗̀sb e ⇐ υ′.

5. If Γ s̀b e ⇐ φ and φ ≤b φ
′ then Γ ′ s̀b e ⇐ φ.

Proof. Proof is by induction on derivations.

Case SB_Abs:
Γ, x :τ ∗̀sb e ⇒ υ

Γ s̀b λx . e ⇒ τ → υ
OL_SB_Abs

By induction, we know that Γ ′, x :τ ∗̀
sb e ⇒ υ′ for υ′ ≤b υ. Therefore,

Γ ′ s̀b λx . e ⇒ τ → υ′ and, by SB_Fun, τ → υ′ ≤b τ → υ.
Case SB_Int:

Γ s̀b n ⇒ Int
OL_SB_Int

Trivial.
Case SB_InstS:

Γ ∗̀
sb e ⇒ ∀a. φ

no other rule matches
Γ s̀b e ⇒ φ[τ/a]

OL_SB_InstS

By induction, we know that Γ ∗̀
sb e ⇒ υ′ where υ′ ≤b ∀a. φ. By inversion,

we know that υ′ must be of the form ∀a, b. φ′ where φ′[τ ′/b] ≤b φ. By
SB_InstS, we can conclude Γ ∗̀

sb e ⇒ (φ′[τ ′/b])[τ/a]. We also need to
show that (φ′[τ ′/b])[τ/a] ≤b φ[τ/a], which follows by substitution (Lemma
23).

Case SB_Var:
x :∀{a}. υ ∈ Γ
Γ ∗̀

sb x ⇒ υ[τ/a]
OL_SB_Var

We know that x :σ ∈ Γ , where σ ≤b ∀{a}. υ. So by inversion, σ must be
∀{b}. υ′ such that υ′[τ ′/b] ≤b υ. Therefore, by lemma 23, υ′[τ ′/b][τ/a] ≤b

υ[τ/a]. As we know that the a are not free in υ′, we can rewrite the left
hand side as: υ′[τ ′[τ/a]/b], and choose those types in the use of SB_Var.

Case SB_App:

Γ s̀b e1 ⇒ υ1 → υ2 Γ ∗̀
sb e2 ⇐ υ1

Γ ∗̀
sb e1 e2 ⇒ υ2

OL_SB_App

By induction we have Γ ′ s̀b e1 ⇒ φ such that φ ≤b υ1 → υ2. By inversion,
this means that φ must be of the form υ′1 → υ′2 where υ1 ≤b υ

′
1 and υ′2 ≤b υ2.

By induction, we have Γ ′ ∗̀sb e2 ⇐ υ′1[τ/b]. So we can conclude by SB_App.
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Case SB_Let:

Γ `gensb e1 ⇒ σ1 Γ, x :σ1
∗̀
sb e2 ⇒ υ2

Γ ∗̀
sb let x = e1 in e2 ⇒ υ2

OL_SB_Let

By induction Γ ′ `gensb e1 ⇒ σ′1 for σ′1 ≤b σ1. By induction (again), Γ ′, x :σ′1
∗̀
sb

e2 ⇒ υ′2 for υ′2 ≤b υ2. So we can conclude by SB_Let.
Case SB_TApp:

Γ ` τ Γ ∗̀
sb e ⇒ ∀a. υ

Γ ∗̀
sb e @τ ⇒ υ[τ/a]

OL_SB_TApp

By induction Γ ′ ∗̀sb e ⇒ υ′ where υ′ ≤b ∀a. υ. By inversion, υ′ is of the form
∀a. υ1 where υ1 ≤b υ. By substitution, υ1[τ/a] ≤b υ[τ/a].

Case SB_Annot:

Γ ` υ Γ ∗̀
sb e ⇐ υ

Γ ∗̀
sb (e : υ)⇒ υ

OL_SB_Annot

Holds directly by induction.
Case SB_Phi:

Γ s̀b e ⇒ φ
no other rule matches

Γ ∗̀
sb e ⇒ φ

OL_SB_Phi

Holds directly by induction.
Case SB_Gen:

a = ftv(υ) \ ftv(Γ ) Γ ∗̀
sb e ⇒ υ

Γ `gensb e ⇒ ∀{a}. υ
OL_SB_Gen

By induction, we have Γ ′ ∗̀sb e ⇒ υ′ for υ′ ≤b υ. Let b = ftv(υ′) \ vars(Γ ).
We want to prove that ∀{b}. υ′ ≤b ∀{a}. υ. This holds by definition.

Case SB_DAbs:

Γ, x :υ1
∗̀
sb e ⇐ υ2

Γ s̀b λx . e ⇐ υ1 → υ2
OL_SB_DAbs

Let Γ ′ ≤b Γ and υ1 → υ2 ≤b υ
′ be arbitrary. By inversion, we know that

υ′ is υ′1 → υ′2 where υ′1 ≤b υ1 and υ2 ≤b υ
′
2. By induction, we know that

Γ ′, x :υ′1
∗̀
sb e ⇐ υ′2. So we can conclude by SB_DAbs.

Case SB_Infer:

Γ ∗̀
sb e ⇒ υ1 υ1 ≤ol φ2

no other rule matches
Γ s̀b e ⇐ φ2

OL_SB_Infer

Let Γ ′ ≤b Γ and φ2 ≤b φ
′ be arbitrary. By induction, we know that Γ ′ ∗̀sb

e ⇒ υ′ for υ′ ≤b υ1. We want to show that υ′ ≤ol φ
′. This holds by lemmas 48

and 49.
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Case SB_DLet:

Γ `gensb e1 ⇒ σ1 Γ, x :σ1 s̀b e2 ⇐ φ2

Γ s̀b let x = e1 in e2 ⇐ φ2
OL_SB_DLet

Let Γ ′ ≤b Γ and φ2 ≤b φ′ be arbitrary. By induction, we have Γ ′ `gensb

e1 ⇒ σ′1 for σ′1 ≤b σ1. By induction (again), Γ ′, x :σ′1
∗̀
sb e2 ⇐ φ′. So we can

conclude by SB_DLet.
Case SB_Skol:

Γ, a s̀b e ⇐ φ a 6∈ ftv(Γ )

Γ ∗̀
sb e ⇐ ∀a. φ

OL_SB_Skol

Let Γ ′ ≤b Γ be arbitrary. Result holds by directly by induction and
SB_Skol.

Completeness theorem

Lemma 55 (Completeness of System SB).

1. If Γ b̀ e ⇒ σ then Γ `gensb e ⇒ σ′ where σ′ ≤b σ.
2. If Γ b̀ e ⇐ υ then Γ ∗̀

sb e ⇐ υ.

Proof. Most cases of this lemma either follow by induction, or are analogous
to the completeness lemma for System V. We discuss the most novel cases are
B_App, B_Annot, plus the checking rules.

Case B_Var
x :σ ∈ Γ
Γ b̀ x ⇒ σ

OL_B_Var

Let σ be ∀{a}. υ. We can use the types a to instantiate the variables a. We
know these a are not free in Γ by the Barendregt convention. It may be
the case that generalization quantifies over more variables, i.e. a ⊆ a ′ =
ftv(υ) \ vars(Γ ), leading to a more general result type. However, that is
permitted by the statement of the theorem.

Case B_Abs
Γ, x :τ b̀ e ⇒ υ

Γ b̀ λx . e ⇒ τ → υ
OL_B_Abs

The induction hypothesis gives us Γ, x :τ `gensb e ⇒ ∀{a}. υ′ where ∀{a}. υ′ ≤b

υ. Inverting `gensb gives us Γ, x :τ ∗̀
sb e ⇒ υ′ and inverting ≤b gives us

υ′[τ/a] ≤b υ. We can then substitute and use SB_Abs to get Γ s̀b λx . e ⇒
τ → υ′[τ/a]. Generalizing, we get Γ `gensb λx . e ⇒ ∀{a, a ′}. τ → υ′[τ/a]
where the new variables a ′ come from generalizing τ and the τ . We are done
because (τ → υ′)[τ/a] ≤b τ → υ and so ∀{a, a ′}. τ → υ′ ≤b τ → υ
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Case B_App

Γ b̀ e1 ⇒ υ1 → υ2 Γ b̀ e2 ⇐ υ1

Γ b̀ e1 e2 ⇒ υ2
OL_B_App

By induction we have Γ `gensb e1 ⇒ σ for some σ ≤b υ1 → υ2.
So by inversion σ = ∀{a}, b. υ′1 → υ′2, where (υ′1 → υ′2)[τ/a][τ ′/b] ≤b υ1 →
υ2 and υ1 ≤b υ

′
1[τ/a][τ ′/b] and υ′2[τ/a][τ ′/b] ≤b υ2.

Also by inversion, we know that Γ ∗̀
sb e1 ⇒ ∀b. υ′1 → υ′2 and that the a are

not free in Γ or e1.
By substitution, we have Γ ∗̀

sb e1 ⇒ ∀b. (υ′1 → υ′2)[τ/a]
And by SB_InstS, we have Γ ∗̀

sb e1 ⇒ (υ′1 → υ′2)[τ/a][τ ′/b].
By induction we have Γ ∗̀

sb e2 ⇐ υ′1 and by lemma 54, we know that Γ ∗̀
sb

e2 ⇐ υ′1[τ/a][τ ′/b].
So we can conclude Γ ∗̀

sb e1 e2 ⇐ υ′2[τ/a][τ ′/b].
Case B_Let

Γ b̀ e1 ⇒ σ1 Γ, x :σ1 b̀ e2 ⇒ σ

Γ b̀ let x = e1 in e2 ⇒ σ
OL_B_Let

The induction hypothesis gives us Γ `gensb e1 ⇒ σ′1 with σ′1 ≤b σ1. The
induction hypothesis also gives us Γ, x :σ1 `gensb e2 ⇒ σ2 with σ′2 ≤b σ2. Use
Lemma 54 to get Γ, x :σ′1 `

gen
sb e2 ⇒ σ′′2 where σ′′2 ≤b σ

′
2.

Let σ′′2 = ∀{b}. υ where b = ftv(υ) \ vars(Γ ). Inverting `gensb gives us
Γ, x :σ′1

∗̀
sb e2 ⇒ υ. We then use SB_Let to get Γ ∗̀

sb let x = e1 in e2 ⇒ υ.
Generalizing gives us Γ `gensb let x = e1 in e2 ⇒ ∀{b}. υ.
Transitivity of ≤b (Lemma 25) gives us ∀{b}. υ ≤hmv σ2.

Case B_Int

Γ b̀ n ⇒ Int
OL_B_Int

Trivial.
Case B_TApp

Γ ` τ Γ b̀ e ⇒ ∀a. υ
Γ b̀ e @τ ⇒ υ[τ/a]

OL_B_TApp

The induction hypothesis (after inverting `gensb ) gives us Γ ∗̀
sb e ⇒ ∀a. υ′,

where b = ftv(∀a. υ′) \ vars(Γ ) and υ′[τ/b] ≤b υ. Applying SB_TApp
gives us Γ ∗̀

sb e @τ ⇒ υ′[τ/a], and SB_Gen gives us Γ `gensb e @τ ⇒
∀{c}. υ′[τ/a] where c = ftv(υ′[τ/a]) \ vars(Γ ). We want to show that
∀{c}. υ′[τ/a] ≤b υ[τ/a], which follows when there is some τ ′, such that
υ′[τ/a][τ ′/c] ≤b υ[τ/a].
This is equivalent to exchanging the substiution, i.e. finding a τ ′ such that
υ′[τ ′/c][τ/a] ≤b υ[τ/a].
By Substitution (Lemma 23), we have υ′[τ/b][τ/a] ≤b υ[τ/a]. We also know
that the b are a subset of the c. So we can choose τ ′ to be τ for the b, and
the remaining c elsewhere, and we are done.
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Case B_Annot

Γ ` υ Γ b̀ e ⇐ υ

Γ b̀ (e : υ)⇒ υ
OL_B_Annot

The induction hypothesis gives us Γ b̀ e ⇐ υ, so the result immediately
follows.

Case B_Gen

Γ b̀ e ⇒ σ a 6∈ ftv(Γ )

Γ b̀ e ⇒ ∀{a}. σ
OL_B_Gen

The induction hypothesis gives us Γ `gensb e ⇒ σ′ where σ′ ≤b σ. We know
σ′ ≤b ∀{a}. σ. In other words, if σ′ = ∀{b}. υ1 and σ = ∀{c}. υ2, we have
some τ such that υ1[τ/b] = υ2. By the definition of ≤b we can use these
same τ to show that σ′ ≤b ∀{a, c}. υ2.

Case B_Sub
Γ b̀ e ⇒ σ1 σ1 ≤b σ2

Γ b̀ e ⇒ σ2
OL_B_Sub

The induction hypothesis gives us Γ `gensb e ⇒ σ′ where σ′ ≤b σ1. By transi-
tivity of ≤b , we are done.

Case B_DAbs
Γ, x :υ1 b̀ e ⇐ υ2

Γ b̀ λx . e ⇐ υ1 → υ2
OL_B_DAbs

By induction, we have that Γ, x :υ1
∗̀
sb e ⇐ υ2. Therefore by SB_DAbs, we

can conclude Γ ∗̀
sb λx . e ⇐ υ1 → υ2.

Case B_DLet

Γ b̀ e1 ⇒ σ1 Γ, x :σ1 b̀ e2 ⇐ υ

Γ b̀ let x = e1 in e2 ⇐ υ
OL_B_DLet

By induction we have Γ, x :σ1
∗̀
sb e2 ⇐ υ. Also by induction, there is some

σ′ ≤b σ1, such that Γ `gensb e ⇒ σ′. By context generalization, we know that
Γ, x :σ′1

∗̀
sb e2 ⇐ υ. So we can use SB_DLet to conclude.

Case B_Skol

Γ, a b̀ e ⇐ υ a 6∈ ftv(Γ )

Γ b̀ e ⇐ ∀a. υ
OL_B_Skol

By induction, we have Γ, a ∗̀
sb e ⇐ υ. We can conclude using SB_Skol.

(Actually, first inverting and then potentially applying SB_Skol multiple
times).

Case B_Infer

Γ b̀ e ⇒ υ1 υ1 ≤ol υ2

Γ b̀ e ⇐ υ2
OL_B_Infer
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By induction, there is some σ′ ≤b υ1, such that Γ `gensb e ⇒ σ′. By inversion
of `gensb we know that σ′ is of the form ∀{a}. υ′ and that Γ ∗̀

sb e ⇒ υ′, where
a do not appear in e and Γ .
By inversion of ≤b , we know that υ′[τ/a] ≤b υ1. By substitution, we know
that Γ ∗̀

sb e ⇒ υ′[τ/a].
By transitivity (Lemma 48) we know that υ′[τ/a] ≤ol υ2. So we can conclude
using SB_Infer.

H.6 Comparison with Dunfield / Krishnaswami

The presence of the non-deep-skolemization System B, makes it easy for us
to compare our type system with the system designed by Dunfield and Krish-
naswami. (We refer to this system as DK in the following.) In particular, we can
show that our system subsumes the DK system.

Suppose Γ `DK υ1 6 υ2 is the subtyping relation from the DK paper, Figure
1.

Lemma 56 (Higher-rank subsumption contains DK subtyping). If
Γ `DK υ1 6 υ2 then υ1 ≤ol υ2.

Proof. But induction on the DK subtyping judgement.

Case Decl6Var Immediate from DSK_Refl.
Case Decl6Unit Immediate from DSK_Refl.
Case Decl6→ Directly via induction and DSK_Fun.
Case Decl6 ∀L By induction and DSK_Inst.
Case Decl6 ∀R By induction and DSK_Inst.

The DK system includes an application judgement, written Γ `DK υ1 ◦ e ⇒
⇒ υ2, which means "applying a function of type υ1 to e synthesizes type υ2".

Our declarative system does not need this judgement because we allow im-
plicit instantiation for specified polytypes. In our system, the rule B_Sub allows
instantiation at any point in the judgement. However, in the DK system, instan-
tiation is restricted to be immediately before an application or when synthesis
mode and checking mode meet (via subtyping). This is what our algorithm actu-
ally does, but because we have the instantiation relation, our declarative system
need not make this constraint.

Lemma 57. If Γ `DK υ1 ◦ e ⇒⇒ υ2 then there exists some υ′1 such that υ1 ≤b

υ′1 → υ2 and Γ `DK e ⇐ υ′1.

Proof. Proof is by induction on the judgement. It requires an observation about
our instantiation judgement that if υ1 ≤b υ

′
1 → υ2 and υ1 is ∀b. ρ, then we must

have instantiated all of the b in the judgment. In otherwords, that ρ[τ/b] =
υ′1 → υ2.

Now let Γ `DK e ⇒ υ, Γ `DK e ⇐ υ be the judgements shown in Figure 4
of their paper. We can also argue that System B can typecheck the same terms.
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Lemma 58.

1. If Γ `DK e ⇐ υ then Γ b̀ e ⇐ υ.
2. If Γ `DK e ⇒ υ then Γ b̀ e ⇒ υ.

Proof. Proof is by induction on derivations. Most cases have direct analogues in
System B. Note that technically we replace their unit type with int. They view
the checking rule for the unit value as primitive and add a synthesis rule for
convenience. Our system does not have a checking rule for constants, but can
derive one from the synthesis rule and B_Sub.

The only other case that requires additional reasoning is the convenience
rule for inferring the types of functions. We need to use lemma 52 to convert a
checking judgement for monotypes into a synthesis judgement.
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