
COMBINATORIAL SPECIES AND

LABELLED STRUCTURES

Brent Abraham Yorgey

A DISSERTATION

in

Computer and Information Sciences

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2014
Supervisor of Dissertation

Stephanie Weirich
Associate Professor of CIS

Graduate Group Chairperson

Lyle Ungar
Professor of CIS

Dissertation Committee

Steve Zdancewic (Associate Professor of CIS; Committee Chair)

Jacques Carette (Associate Professor of Computer Science, McMaster University)

Benjamin Pierce (Professor of CIS)

Val Tannen (Professor of CIS)

COMBINATORIAL SPECIES AND LABELLED STRUCTURES

COPYRIGHT

2014

Brent Abraham Yorgey

This work is licensed under a Creative Commons Attribution 4.0
International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/

The complete source code for this document is available from

http://github.com/byorgey/thesis

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://github.com/byorgey/thesis

ὅς ἐστιν εἰκὼν τοῦ θεοῦ τοῦ ἀοράτου,

πρωτότοκος πάσης κτίσεως,

ὅτι ἐν αὐτῷ ἐκτίσθη τὰ πάντα ἐν τοῖς οὐρανοῖς

καὶ ἐπὶ τῆς γῆς, τὰ ὁρατὰ καὶ τὰ ἀόρατα,

εἴτε θρόνοι εἴτε κυριότητες εἴτε ἀρχαὶ εἴτε

ἐξουσίαι· τὰ πάντα δι’ αὐτοῦ καὶ εἰς αὐτὸν

ἔκτισται·

καὶ αὐτός ἐστιν πρὸ πάντων

καὶ τὰ πάντα ἐν αὐτῷ συνέστηκεν,

καὶ αὐτός ἐστιν ἡ κεφαλὴ τοῦ σώματος τῆς ἐκ-

κλησίας·

ὅς ἐστιν ἀρχή,

πρωτότοκος ἐκ τῶν νεκρῶν, ἵνα γένηται ἐν πᾶσιν

αὐτὸς πρωτεύων,

ὅτι ἐν αὐτῷ εὐδόκησεν πᾶν τὸ πλήρωμα κατοικῆσαι

καὶ δι’ αὐτοῦ ἀποκαταλλάξαι τὰ πάντα εἰς

αὐτόν, εἰρηνοποιήσας διὰ τοῦ αἵματος τοῦ

σταυροῦ αὐτοῦ, εἴτε τὰ ἐπὶ τῆς γῆς εἴτε τὰ

ἐν τοῖς οὐρανοῖς·

ΠΡΟΣ ΚΟΛΟΣΣΑΕΙΣ 1.15–20

iii

Acknowledgments

I first thank Stephanie Weirich, who has been a wonderful advisor, despite the fact
that we have fairly different interests and different approaches to research. She has
always encouraged me to pursue my passions, even to the point of allowing me to
take on a dissertation topic she knew very little about. Perhaps most importantly,
she has done a masterful job getting me to actually graduate (no mean feat)—by
turns encouraging and challenging me, each at the appropriate moment.

Jacques Carette has been an unofficial second advisor to me. Despite having plenty
of “official” advisees also demanding his time and attention, he has generously taken
the time to collaborate, give feedback and advice, and even twice to host me for a week
of focused, face-to-face collaboration. This dissertation literally would not exist were
it not for his academic and personal generosity, for which I will always be grateful.

My family has been, and continues to be, a constant source of joy and encour-
agement. My wife and bestest friend Joyia, more than anyone else, is the one who
encouraged me through the darkest points and convinced me to keep going. She has
also sacrificed much in order to give me the time and space necessary to finish. My
son Noah, too, has sacrificed—in ways he doesn’t even understand—while his daddy
wrote a “very long story about computers and numbers”. But I could always count
on him to cheer me up with tickle fights.

The other members of the Penn programming languages group—especially (though
by no means limited to) Chris Casinghino, Richard Eisenberg, Nate Foster, Michael
Greenberg, Peter-Michael Osera, Benjamin Pierce, Vilhelm Sjöberg, Daniel Wagner,
and Steve Zdancewic—deserve a great deal of thanks for all their support over the
years, through moral support and encouragement, critical feedback on papers and
talks, enlightening discussions, and simply friendship. PL Club has been a wonder-
fully collegial community in which to learn and work.

While developing the ideas in this dissertation I have benefited over the years,
both directly and indirectly, from conversations with many people in the Haskell
community and the wider FP and PL communities, particularly Faris Abou-Saleh,
Reid Barton, Gershom Bazerman, Conal Elliott, Jeremy Gibbons, Andy Gill, Jason
Gross, Ralf Hinze, Neel Krishnaswami, Dan Licata, Peter Lumsdaine, Simon Peyton
Jones, Ross Street, Andrea Vezzosi, and Nick Wu, along with many others. I am also
grateful to Heinrich Apfelmus, Toby Bartels, Shachaf Ben-Kiki, Gabor Greif, David
Harrison, Jay McCarthy, Colin McQuillan, David Roberts, Jon Sterling, and Ryan

iv

Yates, all of whom read early drafts of this dissertation and sent me typo reports as
well as more substantial suggestions, greatly improving the final product. Thanks also
to the anonymous MSFP and MFPS reviewers, whose feedback on submissions based
on this material led to many substantial improvements to the technical content.

The diagrams community—particularly Daniel Bergey, Chris Chalmers, Allen
Gardner, Niklas Haas, Claude Heiland-Allen, Chris Mears, Jeff Rosenbluth, Carter
Schonwald, Michael Sloan, Luite Stegeman, and Ryan Yates—has been a great source
of joy to me during the long process of completing my PhD. Not only have they
provided encouragement, camaraderie, and welcome distraction, but this dissertation
itself is richer for their contributions to diagrams—many of the diagrams throughout
this document make nontrivial use of features contributed by other members of the
community. It has also been a particular joy to see the project continue humming
along even during my virtual absence while writing.

It is staggering to consider the wealth of relationship accumulated during six
years at City Church Philadelphia. I particularly thank Tuck and Stacy Bartholomew,
Darren Bell, Dave and Katie Brindley, Zac and Joanna Brooks, Sara Cayless, Mike
and Sonja Chen, Tim and Ruth Creber, Chris and Bonnie Currie, Ben Doane and
Melissa McCarten, Megan and Ryan Dougherty, John Dyck, Brooke Fugate, Kevin
Funderburk, Will and Margaret Kendall, Dick Landis, Colin and Lauren Marlowe,
Drew and Susie Matter, Nick McAvoy, Chris and Sarah Miciek, Jeremy Millington,
Cat Ricketts, Ben Smith, Josh and Kory Stamper, Ben Sykora and Beth Dyson,
Matt Thanabalan and Carrie Lutjens, Gene and Laura Twilley, and Jackson Warren,
all of whom, at various times and in various ways, have provided encouragement and
support as I made my way through graduate school. It is certain that I have forgotten
others who should also be on this list, and in any case it is not even clear where the
list should stop!

I thank the Mustard Seed Foundation for their affirmation in selecting me as
a Harvey Fellow, and for their support, both financially, and in helping me think
through the integration of my faith and work.

A heartfelt thank you to the Williams College computer science department for the
genuine care and support I have received as a visiting faculty member, and especially
to Bill Lenhart for his generous gift of time in taking on most of the grungy legwork
for CS 134. Beginning a new job, teaching two classes, and simultaneously completing
a dissertation would be impossible even to contemplate were it not undertaken in such
a supportive environment.

In Philadelphia, the Green Line Cafe, Lovers & Madmen, the Penn Graduate
Student Center, and Van Pelt library—and in Williamstown, Tunnel City Coffee and
the Schow science library—have all provided wonderfully conducive environments for
focused writing sessions.

Last but certainly not least, a big thank you is due to Beeminder (http://
beeminder.com), and to its cofounders, Bethany Soule and Danny Reeves. The chance
that I would have successfully finished this dissertation without Beeminder is vanish-

v

http://beeminder.com
http://beeminder.com

ingly small, for the simple reason that a dissertation cannot be put off until a week
before it is due. $145 for the motivation to write a dissertation is quite a steal; I owe
the whole Beeminder team a round of beers!

Finally, my work has been supported by the National Science Foundation under
the following grants:

• NSF 1218002, CCF-SHF Small: Beyond Algebraic Data Types: Combinatorial
Species and Mathematically-Structured Programming

• NSF 1116620, CCF-SHF Small: Dependently-typed Haskell

• NSF 0910500, CCF-SHF Large: Trellys: Community-Based Design and Imple-
mentation of a Dependently Typed Programming Language

and by the Defense Advanced Research Projects Agency under the following grant:

• DARPA Computer Science Study Panel Phase II. Machine-Checked Metatheory
for Security-Oriented Languages.

Statement of contribution

Parts of Chapter 3, particularly the enumeration of categorical properties needed to
support various species operations, were carried out in collaboration with Jacques
Carette. The rest of this dissertation is my own original work.

vi

ABSTRACT

COMBINATORIAL SPECIES AND LABELLED STRUCTURES

Brent Abraham Yorgey

Stephanie Weirich

The theory of combinatorial species was developed in the 1980s as part of the

mathematical subfield of enumerative combinatorics, unifying and putting on a firmer

theoretical basis a collection of techniques centered around generating functions. The

theory of algebraic data types was developed, around the same time, in functional

programming languages such as Hope and Miranda, and is still used today in lan-

guages such as Haskell, the ML family, and Scala. Despite their disparate origins, the

two theories have striking similarities. In particular, both constitute algebraic frame-

works in which to construct structures of interest. Though the similarity has not gone

unnoticed, a link between combinatorial species and algebraic data types has never

been systematically explored. This dissertation lays the theoretical groundwork for

a precise—and, hopefully, useful—bridge bewteen the two theories. One of the key

contributions is to port the theory of species from a classical, untyped set theory to a

constructive type theory. This porting process is nontrivial, and involves fundamental

issues related to equality and finiteness; the recently developed homotopy type theory

is put to good use formalizing these issues in a satisfactory way. In conjunction with

this port, species as general functor categories are considered, systematically analyz-

ing the categorical properties necessary to define each standard species operation.

Another key contribution is to clarify the role of species as labelled shapes, not con-

taining any data, and to use the theory of analytic functors to model labelled data

vii

structures, which have both labelled shapes and data associated to the labels. Finally,

some novel species variants are considered, which may prove to be of use in explicitly

modelling the memory layout used to store labelled data structures.

viii

Contents

0 Introduction 1

1 Preliminaries 7
1.1 Metavariable conventions and notation 7
1.2 Set theory . 9
1.3 Homotopy type theory . 10

1.3.1 Terms and types . 10
1.3.2 Equality . 11
1.3.3 Path induction . 12
1.3.4 Equivalence and univalence 12
1.3.5 Propositions, sets, and n-types 13
1.3.6 Higher inductive types . 14
1.3.7 Truncation . 15
1.3.8 Why HoTT? . 16

1.4 Category theory . 17
1.4.1 Category theory fundamentals 17
1.4.2 Monoidal categories . 22
1.4.3 Ends and coends . 24
1.4.4 The Yoneda lemma . 27
1.4.5 Groupoids . 27

2 Equality and Finiteness 30
2.1 The axiom of choice (and how to avoid it) 31

2.1.1 The axiom of choice and constructive mathematics 31
2.1.2 Unique isomorphism and generalized “the” 33
2.1.3 AC and equivalence of categories 34
2.1.4 Cliques . 37
2.1.5 Anafunctors . 39

2.2 Category theory in HoTT . 43
2.2.1 Monoidal categories in HoTT 46
2.2.2 Coends in HoTT . 47

2.3 Finiteness in set theory . 48
2.4 Finiteness in HoTT . 50

ix

2.4.1 Preliminaries . 50
2.4.2 Cardinal-finiteness . 52
2.4.3 Manifestly finite sets and linear orders 55
2.4.4 Equivalence of P and B . 56

2.5 Conclusion . 59

3 Combinatorial species 60
3.1 Intuition and examples . 60
3.2 Definitions . 65

3.2.1 Species as functors . 65
3.2.2 Cardinality restriction . 68
3.2.3 The category of species . 68
3.2.4 Species in HoTT . 68

3.3 Isomorphism and equipotence . 70
3.3.1 Species isomorphism . 70
3.3.2 Shape isomorphism and unlabelled species 70
3.3.3 Equipotence . 72

3.4 Generating functions . 77
3.5 Conclusion . 79

4 Generalized species and species operations 80
4.1 Lifted monoids: sum and Cartesian product 81

4.1.1 Species sum . 81
4.1.2 Cartesian/Hadamard product 84
4.1.3 Lifting monoids . 87
4.1.4 Internal Hom for Cartesian product 88

4.2 Partitional product and Day convolution 90
4.2.1 Partitional/Cauchy product 90
4.2.2 Arithmetic/rectangular product 94
4.2.3 Day convolution . 99

4.3 Composition . 106
4.3.1 Definition and examples . 106
4.3.2 Generalized composition . 111
4.3.3 Internal Hom for composition 115

4.4 Functor composition . 115
4.5 Differentiation . 117

4.5.1 Differentiation in B⇒ Set . 118
4.5.2 Up and down operators . 121
4.5.3 Pointing . 125
4.5.4 Higher derivatives . 125
4.5.5 Internal Hom for partitional and arithmetic product 126

4.6 Regular, molecular and atomic species 129
4.7 Species eliminators . 135

x

5 Species variants 138
5.1 Generalized species properties . 138
5.2 Copartial species . 139

5.2.1 Copartial bijections . 140
5.2.2 Finite copartial bijections . 143
5.2.3 Copartial species . 146

5.3 Partial species . 152
5.4 Multisort species . 152

5.4.1 Recursive species . 156
5.5 L-species . 159
5.6 Other species variants . 160

6 Labelled structures 161
6.1 Kan extensions . 161
6.2 Analytic functors . 164

6.2.1 Definition and intuition . 165
6.2.2 Analytic functors and generating functions 166
6.2.3 Analytic functors and finiteness 167

6.3 An attempt at generalized functor composition 170
6.4 Introduction and elimination forms for labelled structures 171

6.4.1 Generalized analytic functors 172
6.5 Analytic functors for partial and copartial species 173

7 Conclusion and future work 175

A Lifting monoids 177

Bibliography 182

xi

List of Tables

1.1 “Sameness” relations . 9

5.1 Properties of (L⇒ S) needed for species operations 139

xii

List of Figures

1.1 An element of SetX or Set/X . 20
1.2 The groupoid P . 29

2.1 The axiom of choice . 31
2.2 Representing a many-to-many relationship via a junction table 40
2.3 Eliminating > from both sides of an equivalence 51
2.4 A path between inhabitants of UFin contains only triangles 53

3.1 Representative labelled shapes . 61
3.2 The species L of lists . 61
3.3 The species B of binary trees . 62
3.4 The species E of sets . 62
3.5 An example Mob-shape, drawn in four equivalent ways 63
3.6 The species C of cycles . 63
3.7 The species S of permutations . 64
3.8 An example End-shape . 64
3.9 Relabelling . 66
3.10 Inorder traversal is natural . 69
3.11 Permutations of size three . 70
3.12 Two permutations with the same form 71
3.13 Two permutations with different forms 71
3.14 S-forms of size 4 . 72
3.15 Lists and permutations on three labels 73
3.16 The fundamental transform . 74
3.17 Correspondence between species and generating functions 79

4.1 (B + L) 2 . 82
4.2 (B + B) 2 . 83
4.3 Four views on the Cartesian product B× L 85
4.4 The unique E 5 shape . 86
4.5 Two views on the partitional species product B · L 91
4.6 Permutation = fixpoints · derangement 93
4.7 Three views on the arithmetic product B� L 95

xiii

4.8 A Mat-shape of size 6 . 96
4.9 A Rect-shape of size 6 . 97
4.10 (X · X)-shapes . 99
4.11 Fin (m+ n) ∼−→ Fin m] Fin n ∼−→ Fin m] Fin n ∼−→ Fin (m+ n) . . 103
4.12 Distinct choices of ϕ that result in identical permutations f 103
4.13 Generic species composition . 107
4.14 An example (B ◦ L+)-shape . 107
4.15 The species Par of partitions . 107
4.16 An example (B× Par)-shape . 108
4.17 An example R-shape . 108
4.18 Example P-shapes . 109
4.19 An infinite family of (B ◦ L)-shapes of size 2 110
4.20 Indexed species product . 113
4.21 (C ◦ L)- and (L ◦ C)-forms of size 3 . 114
4.22 Internal Hom for composition . 116
4.23 An example B′-shape . 118
4.24 a′ ∼= E ◦ A . 119
4.25 C′ ∼= L . 119
4.26 L′ ∼= L2 . 119
4.27 The trivial up and down operators on E 122
4.28 An up operator on L . 122
4.29 An up operator on B . 122
4.30 A down operator on C . 123
4.31 An example down operator on B, via stacking 124
4.32 An example down operator on B, via promotion 124
4.33 Species pointing . 125
4.34 An example B(K)-shape . 126
4.35 “Currying” for partitional product of species 127
4.36 “Currying” for arithmetic product of species 129
4.37 A symmetry and a non-symmetry of a C-shape 130
4.38 Isomorphism between L5/Z5 and C5 134
4.39 Isomorphism between L>2/Z2 and E2 · L 134
4.40 The four molecular species of size 3 134

5.1 A typical copartial bijection . 141
5.2 Composition of copartial bijections 142
5.3 Lifting a strictly copartial bijection 147
5.4 B · E (bottom) is the prefix sum of B (top) 150
5.5 A copartial species which loses information 151
5.6 A two-sort species of binary trees . 153
5.7 A bicolored cycle . 153

6.1 Data structure = shape + data . 161

xiv

6.2 (One half of) “proof” of Proposition 6.1.2 in Haskell 164
6.3 The commuting condition for analytic functors over copartial species 173

xv

This document is typeset in LATEX using Computer Modern.

It was edited using emacs and stored using git and github.com.

The illustrations were produced with diagrams version 1.2 (http:
//projects.haskell.org/diagrams).

xvi

github.com
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams

Chapter 0

Introduction

The theory of algebraic data types has had a profound impact on the practice of
programming, especially in functional languages. The basic idea is that types can be
built up algebraically from a small set of primitive types and combinators: a unit
type, base types, sums (i.e. tagged unions), products (i.e. tupling), and recursion.
Most languages with support for algebraic data types also add bells and whistles
for convenience (such as labeled products and sums, convenient syntax for defining
types as a “sum of products”, and pattern matching), but the basic idea remains
unchanged.

For example, in Haskell [Marlow, 2010] we can define a type of binary trees with
integer values stored in the leaves as follows:

data Tree = Leaf Int
| Branch Tree Tree

Algebraically, we can think of this as defining the type which is the least solution to
the equation T = Int+T×T . This description says that a Tree is either an Int (tagged
with Leaf) or a pair of two recursive occurrences of Trees (tagged with Branch).

This algebraic view of data types has many benefits. From a theoretical point
of view, recursive algebraic data types can be interpreted as initial algebras (or fi-
nal coalgebras), which gives rise to an entire theory—both semantically elegant and
practical—of programming with recursive data structures via folds and unfolds [Mei-
jer et al., 1991, Gibbons, 2002]. A fold gives a principled way to compute a “summary
value” from a data structure; dually, an unfold builds up a data structure from an
initial “seed value”.

Folds (and unfolds) satisfy theorems which aid in transforming, optimizing, and
reasoning about programs defined in terms of them. As a simple example, a map
(i.e. applying the same function to every element of a data structure) followed by a
fold can always be rewritten as a single fold. These laws, and others, allow Haskell
compilers to eliminate intermediate data structures through an optimization called
deforestation [Wadler, 1988, Gill et al., 1993].

1

An algebraic view of data types also enables datatype-generic programming—
writing functions that operate generically over values of any algebraic data type by
examining its algebraic structure. For example, the following function (defined using
Generic Haskell-like syntax [Hinze, 2000, Clarke et al., 2002]) finds the product of all
the Int values contained in a value of any algebraic data type.

genProd {| Int |} i = i
genProd {| Sum t1 t2 |} (Inl x) = genProd {| t1 |} x
genProd {| Sum t1 t2 |} (Inr x) = genProd {| t2 |} x
genProd {| Prod t1 t2 |} (x , y) = genProd {| t1 |} x ∗ genProd {| t2 |} y
genProd {| |} = 1

Datatype-generic programming is a powerful technique for reducing boilerplate, made
possible by the algebraic view of data types, and supported by Haskell libraries and
extensions [Jansson and Jeuring, 1997, Lämmel and Jones, 2003, Cheney and Hinze,
2002, Weirich, 2006b,a].

The theory of combinatorial species has been similarly successful in the area of
combinatorics. First introduced by Joyal [1981], it is a unified theory of combinato-
rial structures or shapes. Its immediate goal was to generalize the existing theory
of generating functions, a central tool in enumerative combinatorics (the branch of
mathematics concerned with counting abstract structures). More broadly, it intro-
duced a framework— similar to algebraic data types—in which many combinatorial
objects of interest could be constructed algebraically, and in which those algebraic
descriptions can be used to reason about, manipulate, and derive properties of the
combinatorial structures. The theory of species has been used to give elegant new
proofs of classical results (for example, Cayley’s theorem giving the number of la-
belled trees [Joyal, 1981]), and some new results as well (for example, a combinatorial
interpretation and proof of Lagrange inversion [Bergeron et al., 1998, Chap. 3]).

Not only do the theory of algebraic data types and the theory of combinatorial
species have a similar algebraic flavor in general, but the specific details are tantaliz-
ingly parallel. For example, the species of binary parenthesizations (i.e. binary trees
with data stored in the leaves) can be defined by the recursive species equation

P = X + P · X · P

which closely parallels the Haskell definition given above. The theory of functional
programming languages has a long history of fruitful borrowing from pure mathemat-
ics, as, for example, in the case of category theory; so the fruit seems ripe for picking
in the case of combinatorial species.

There has already been some initial progress in this direction. The connection
between species and computation was first explored by Flajolet, Salvy, and Zim-
mermann, with their work on LUO [Flajolet et al., 1989, Flajolet and Salvy, 1995],
allowing the use of species in automated algorithm analysis. However, they carried
out their work in a dynamically typed setting.

2

The first to think about species specifically in the context of strongly typed func-
tional programming were Carette and Uszkay [2008], who explored the potential of
species as a framework to extend the usual notion of algebraic data types, and de-
scribed some preliminary work adding species types to Haskell. More recently, Joachim
Kock has done some theoretical work generalizing species, “container types”, and
other notions of “extended data type” [Kock, 2012]. (Most interestingly, Kock’s work
points to the central relevance of homotopy type theory [Univalent Foundations Pro-
gram, 2013], which also emerges as a central player in this dissertation.)

However, there has still yet to be a comprehensive treatment of the precise con-
nections between the theory of algebraic data types and the theory of combinatorial
species. Bergeron et al. [1998] give a comprehensive treatment of the theory of species,
but their book is written primarily from a mathematical point of view and is only tan-
gentially concerned with issues of computation. It is also written in a style that makes
it relatively inaccessible to researchers in the programming languages community—it
assumes mathematical background that many PL researchers do not have.

The investigations in this dissertation, therefore, all arise from considering the
central question, what is the connection between species and algebraic data
types? A precise connection between the two would have exciting implications.
It would allow taking much of the mathematical theory developed on the basis of
species—for example, enumeration, exhaustive generation, and uniform random gen-
eration of structures via Boltzmann sampling [Duchon et al., 2002, 2004, Flajolet
et al., 2007, Roussel and Soria, 2009]—and applying it directly to algebraic data
types. It is also possible that exploring the theory of species in an explicitly compu-
tational setting will yield additional insights into the combinatorial setting.

There is also the promise of using species not just as a tool to understand and work
with algebraic data types in better ways, but directly as a foundation upon which
to build (a richer notion of) algebraic data types. This is particularly interesting
due to the ability of the theory of species to talk about structures which do not
correspond to algebraic data types in the usual sense—particularly structures which
involve symmetry and sharing.

A data structure with symmetry is one whose elements can be permuted in certain
ways without affecting its identity. For example, permuting the elements of a bag
always results in the same bag. Likewise, the elements of an ordered cycle may be
cyclically permuted without affecting the cycle. By contrast, a typical binary tree
structure has no symmetry: any permutation of the elements may result in a different
tree. In fact, every structure of an algebraic data type has no symmetry, since every
element in an algebraic structure can be uniquely identified by a path from the root of
the structure to the element, so permuting the elements always results in an observably
different value.

A data structure with sharing is one in which different parts of the structure
may refer to the same subpart. For example, consider the type of undirected, simple
graphs, consisting of a set of vertices together with a set of edges connecting pairs of

3

vertices. In general, such graphs may involve sharing, since multiple edges may refer
to the same vertex, and vice versa.

In a language with first-class pointers, creating data structures with sharing is
relatively easy, although writing correct programs that manipulate them may be
another story. The same holds true for many languages without first-class pointers as
well. Creating data structures with sharing in the heap is not difficult in Haskell, but
it may be difficult or even impossible to express the programs that manipulate them.

For example, in the following code,

t = let t3 = Leaf 1
t2 = Branch t3 t3
t1 = Branch t2 t2
in Branch t1 t1

only one “Leaf” and three “Branch” structures will be allocated in memory. The tree
t2 will be shared in the node t1 , which will itself be shared in the node t . Furthermore,
in a lazy language such as Haskell, recursive “knot-tying” allows even cyclic structures
to be created. For example,

nums = 1 : 2 : 3 : nums

actually creates a cycle of three numbers in memory.
Semantically, however, t is a tree, not a DAG, and nums is an infinite list, not a

cycle. It is impossible to observe the sharing (without resorting to compiler-specific
tricks [Gill, 2009]) in either of these examples. Even worse, applying standard func-
tions such as fold and map destroys any sharing that might have been present and
risks non-termination.

When programmers wish to work with “non-regular” data types involving sym-
metry or sharing, they must instead work with suitable encodings of them as regular
data types. For example, a bag may be represented as a list, or a graph as an ad-
jacency matrix. However, this encoding puts extra burden on the programmer, both
to ensure that invariants are maintained (e.g. that the adjacency matrix for an undi-
rected graph is always symmetric) and that functions respect abstract structure (e.g.
any function on bags should give the same result when given permutations of the
same elements as inputs).

The promise of using the theory of species as a foundation for data types is to be
able to declare data types with symmetry and sharing, with built-in compiler support
ensuring that working with such data types is “correct by construction”.

The grand vision of this research program, then, is to create and exploit a bridge
between the theory of species and the theory and practice of programming languages.
This dissertation represents just a first step in this larger program, laying the theo-
retical groundwork necessary for its continued pursuit.

To even get started building a bridge between species and data types requires more
work than one might näıvely expect. The fundamental problem is that the theory of

4

species is traditionally couched in untyped, classical set theory. To talk about data
types, however, we want to work in typed and constructive foundations. Attempting
to port species to a typed, constructive setting reveals many implicit assumptions
that must be made explicit, as well as implicit uses of reasoning principles, such as
the axiom of choice, which are incompatible with constructive foundations. The bulk
of Chapter 2 defines the foundational groundwork which makes it possible to talk
about species in a typed, constructive setting. In particular, the biggest issues are
the difference between equality and isomorphism, and the constructive encoding of
finiteness (which is itself related to issues of equality and isomorphism). The recently
developed homotopy type theory [Univalent Foundations Program, 2013] turns out to
be exactly what is wanted to encode everything in a parsimonious way. The develop-
ment of cardinal-finite sets in HoTT (along with a related concept I term “manifestly
finite sets”) is novel, as is the development of HoTT analogues of the set-theoretic
groupoids B and P.

Chapter 3 presents the theory of species itself. Much of the chapter is not novel in
a technical sense. One of the main contributions of the chapter, instead, is simply to
organize and present some relevant aspects of the theory for a functional programming
audience. The existing species literature is almost entirely written for either hard-core
combinatorialists or hard-core category theorists, and is not very accessible to the
typical FP practitioner. Any attempt to make species relevant to computer scientists
must therefore first address this accessibility gap.

Chapter 3 does also make a few novel technical contributions—for example, a char-
acterization of equipotence in terms of manifestly finite sets, and a careful discussion
of finite versus infinite families of structures and the relation to species composition.
Most importantly, since Chapter 3 is already attempting to present at least two dif-
ferent variants of species—the traditional definition based on set theory, and a novel
variant based on homotopy type theory—it “bites the bullet” and considers arbitrary
functor categories, elucidating the categorical properties required to support each
species operation. Although many individual species generalizations have been con-
sidered in the past, this systematic consideration of the minimal features needed to
support each operation is novel. This allows operations to be defined for whole classes
of species-like things at once, and in some cases even allows for species-like things to
be constructed in a modular way, by applying constructions known to preserve the
required properties.

Chapter 5 goes on to explore particular species variants, evaluated through the
framework of Chapter 3. Some variants have already been considered in the literature;
others, such as the notion of copartial species considered in §5.2, are novel.

Finally, Chapter 6 considers extending species to labelled data structures, which
intuitively consist of a labelled shape, or species structure, paired with a mapping
from labels to data elements. The notion of analytic functors, as introduced by Joyal
[1986], turns out to be exactly the right framework in which to consider labelled
data structures. Analytic functors can be most generally defined in terms of Kan

5

extensions, and so the chapter opens with a presentation of Kan extensions, once again
aimed at functional programmers. Analytic functors are considered in the context of
copartial species, which, can serve as a foundation for further work codifying data
structures backed by memory storage (in applications where the memory layout really
matters, e.g. linear algebra libraries), and also for partial species, which may help
model situations where data need not be associated to every label.

6

Chapter 1

Preliminaries

The main content of this dissertation builds upon a great deal of mathematical for-
malism, particularly from set theory, category theory, and type theory. This chapter
provides a brief overview of the necessary technical background, giving definitions,
important intuitions, and references for further reading. Readers who merely need to
fill in a few gaps may find such brief treatments sufficient; it is hoped that readers with
less background will find it a useful framework and source of intuition for furthering
their own learning.

1.1 Metavariable conventions and notation

A great many variables and named entities appear in this dissertation. To aid the
reader’s comprehension, the following metavariable conventions are (mostly) adhered
to:

• Metavariables f , g, h range over functions.

• Greek metavariables (especially α, β, σ, τ , φ, ψ) often range over bijections.

• Blackboard bold metavariables (e.g. C, D, E) range over categories, as do fraktur
variables such as L and S.

• Names of specific categories use boldface (e.g. Set, Cat, Spe, B, P).

• Names of types or categories defined within homotopy type theory often use a
calligraphic font (e.g. U , B, P , S).

• Metavariables A, B, C, range over arbitrary sets or types.

• Metavariables K, L range over finite sets or types.

• Metavariables F , G, H range over functors (and in particular over species).

7

• Names of specific species use a sans-serif font (e.g. X, E, L, C, B, R).

This dissertation also features a menagerie of notations to indicate “sameness”.
To the outsider this must seem quite bewildering: how complicated can “sameness”
be? Why would one ever need anything other than plain old equality (=)? On the
other hand, to computer scientists and philosophers this should come as no surprise;
equality turns out to be an incredibly subtle concept. Each of these symbols and their
corresponding concepts will later be discussed in more depth; however, as an aid to
the reader, we give a brief enumeration of them here, which can referred back to in
case of confusion or forgetfulness.

• Equality (=) is the only notation which is overloaded. In the context of set
theory, two sets A and B are equal, denoted A = B, when they have the same
elements. In the context of homotopy type theory (§1.3), = denotes propositional
equality; A = B denotes the type of paths between the types A and B.

• In the context of set theory, the symbol := is used to introduce a definitional
equality; that is, x := y is a definition of x rather than a proposition asserting
the equality of two things.

• A ∼−→ B denotes the set (or type) of bijections between sets (or types) A and
B. That is, if f : A ∼−→ B then f is a function from A to B which possesses
both a left and right inverse (denoted f−1). Note that in set theory, sets which
are in bijection are typically not equal.

• In homotopy type theory, ≡ denotes judgmental equality, not to be confused
with propositional equality (=). A fuller discussion of judgmental versus propo-
sitional equality can be found in §1.3.2.

• The symbol :≡ also denotes a definitional equality, but in homotopy type the-
ory rather than set theory. The symbol emphasizes the fact that a definition
introduces a judgmental rather than a propositional equality.

• Again in homotopy type theory, A ' B denotes the equivalence of two types
A and B. Intuitively, equivalence can be thought of as a “very well-behaved”
bijection, i.e. a bijection with some extra coherence conditions.

• A ↔ B denotes logical equivalence of A and B, that is, that each logically
implies the other; more familiarly, it can also be read as “if and only if”. Via
the logical interpretation of types as propositions, this is also to say that there
exist functions A→ B and B → A. Logical equivalence is thus a weaker notion
than bijection or equivalence, since there is no requirement that the functions
be inverse.

8

= (propositional) equality
:= definitional equality (set theory)
∼−→ bijection
≡ judgmental equality
:≡ definition equality (HoTT)
' equivalence
↔ logical equivalence
∼= isomorphism
#
= species equipotence
≈ relabelling equivalence
∼ generic equivalence relation

Table 1.1: “Sameness” relations

• An isomorphism is an invertible arrow in a category (§1.4), and is denoted by
A ∼= B. The precise meaning of ∼= thus depends on the category under consid-
eration. For example, in Set, the category of sets, isomorphisms are precisely
bijections; in the category of pointed sets, isomorphisms are those bijections
which preserve the distinguished element, and so on. Generally speaking, iso-
morphisms can be thought of as “structure-preserving correspondences”.

• F #
= G denotes the equipotence of two species, discussed in §3.3.

• f1 ≈ f2 denotes equivalence up to relabelling of species shapes, discussed in
§3.3.2.

• Finally, x ∼ y is often used in general to denote an equivalence relation (whichever
one happens to be under consideration at the moment).

These notations are summarized in Table 1.1.

1.2 Set theory

A grasp of basic set theory (the element-of (∈) and subset (⊆) relations, intersec-
tions (∩), unions (∪), and so on) is assumed. However, no background is assumed in
axiomatic set theory, or in particular its role as a foundation for mathematics. Issues
relating to axiomatic set theory are spelled out in detail as necessary (for example,
the axiom of choice, in §2.1).

The set of natural numbers is denoted N = {0, 1, 2, . . . }. The size or cardinality of
a finite set X, a natural number, is denoted #X (rather than the more traditional |X|,
since that notation is used for another purpose; see §1.3). Given a natural number n ∈
N, the canonical size-n prefix of the natural numbers is denoted [n] = {0, . . . , n− 1}.

Given a function f : A→ B, an element b ∈ B, and subsets X ⊆ A and Y ⊆ B,

9

• f(X) = {f(a) | a ∈ X} denotes the image of X under f ;

• f−1(b) = {a ∈ A | f(a) = b} denotes the preimage or fiber of b;

• f−1(Y) =
⋃
b∈Y f

−1(b) = {a ∈ A | f(a) ∈ Y } likewise denotes the preimage of
an entire set.

1.3 Homotopy type theory

Homotopy Type Theory (HoTT) is a relatively new variant of Martin-Löf type the-
ory [Martin-Löf, 1975, Martin-Löf and Sambin, 1984] arising out of Vladimir Voevod-
sky’s Univalent Foundations program [Voevodsky]. There is certainly not space to
give a full description here; in any case, given the existence of the excellent HoTT
Book [Univalent Foundations Program, 2013], such a description would be superflu-
ous. Instead, it will suffice to give a brief description of the relevant parts of the
theory, and explain the particular benefits of carrying out this work in the context of
HoTT. Some particular results from the HoTT book are also reproduced as necessary,
especially in §2.2. It is thus hoped that readers with no prior knowledge of HoTT will
still be able to follow everything in this dissertation, at least at a high level, though
a thorough understanding will probably require reference to the HoTT book.

Homotopy type theory, I will argue, is the right framework in which to carry
out the work in this dissertation. Intuitively, this is because the theory of species is
based centrally around groupoids and isomorphism—and these are topics central to
homotopy type theory as well. In a sense, HoTT is what results when one begins with
Martin-Löf type theory (MLTT) and then takes the principle of equivalence (§1.3.4)
very seriously, generalizing equality to isomorphism in a coherent way.

We begin our brief tour of HoTT with its syntax.

1.3.1 Terms and types

Some familiarity with dependent type theory on the part of the reader is assumed;
we simply note quickly the standard features of HoTT, including:

• an empty type ⊥, with no inhabitants;

• a unit type >, with inhabitant ?;

• sum types A + B, with constructors inl : A → A + B and inr : B → A + B, as
well as a case construct for doing case analysis;

• dependent pairs (x : A) × B(x), with constructor 〈−,−〉, and projection func-
tions π1 : (x : A)×B(x)→ A and π2 : (p : (x : A)×B(x))→ B(π1 p);

• dependent functions (x : A)→ B(x); and

10

• a hierarchy of type universes U0, U1, U2. . . .

Following standard practice, universe level subscripts will usually be omitted, with U
being understood to represent whatever universe level is appropriate in the context.

HoTT also allows inductive definitions. For example, N : U0 denotes the inductively-
defined type of natural numbers, with constructors O : N and S : N→ N; we will use
Arabic notation like 3 as a shorthand for S (S (S O)). We also have Fin : N → U0,
which denotes the usual indexed type of finite sets, with constructors FO : Fin (S n)
and FS : Fin n → Fin (S n). For example, one can check that Fin 3 has the three in-
habitants FO, FS FO, and FS (FS FO), and that in general Fin n is the type-theoretic
counterpart to [n] = {0, 1, . . . , n− 1}.

Although Agda notation [Norell, 2007] is mostly used in this dissertation for depen-
dent pairs and functions, the traditional notations

∑
x:AB(x) and

∏
x:AB(x) (instead

of (x : A)×B(x) and (x : A)→ B(x), respectively) are sometimes used for emphasis.
As usual, the abbreviations A × B and A → B denote non-dependent (i.e. when x
does not appear free in B) pair and function types, respectively.

1.3.2 Equality

HoTT distinguishes between two different types of equality:

• Judgmental equality, denoted x ≡ y, is defined via a collection of judgments
stating when things are equal to one another, and encompasses things like basic
rules of computation. For example, the application of a lambda term to an argu-
ment is judgmentally equal to its β-reduction. Judgmental equality is reflexive,
symmetric, and transitive as one would expect. Note, however, that judgmental
equality is not reflected as a proposition in the logical interpretation of types,
so it is not possible to reason about or to prove judgmental equalities internally
to HoTT.

• Propositional equality. Given x, y : A, we write x =A y for the proposition that
x and y are equal (at the type A). The A subscript may also be omitted, x = y,
when it is clear from the context. Unlike judgmental equality, where x ≡ y is
a judgment, the propositional equality x = y is a type (or a proposition) whose
inhabitants are evidence or proofs of the equality of x and y. Thus propositional
equalities can be constructed and reasoned about within HoTT. Inhabitants of
x = y are often called paths from x to y; the intuition, taken from homotopy
theory, is to think of paths between points in a topological space. The most
important aspect of this intuition is that a path from a point x to a point
y does not witness the fact that x and y are literally the same point, but
rather specifies a process for getting from one to the other. The analogue of this
intuition in type theory is the fact that a path of type x = y can have nontrivial
computational content specifying how to convert between x and y. There is
a special value reflx : x = x which witnesses the reflexivity of propositional

11

equality, and corresponds to a “trivial path with no computational content”;
but, as the discussion above indicates, there can be other inhabitants of path
types besides refl.

Note that it is possible (and often useful!) to have nontrivial higher-order paths,
i.e. paths between paths, paths between paths between paths, and so on.

1.3.3 Path induction

To make use of a path p : x = y, one may use the induction principle for paths, or
path induction. Path induction applies when trying to prove a statement of the form

∀x, y. (p : x = y)→ P (x, y, p). (1.3.1)

For the precise details of path induction, see the HoTT book [Univalent Foundations
Program, 2013]. For this work, however, a simple intuition suffices: to prove 1.3.1 it
suffices to assume that p is refl and that x and y are literally the same, i.e. it suffices
to prove ∀x. P (refl, x, x).

It is important to note that this does not imply all paths are equal to refl! It simply
expresses that all paths must suitably “act like” refl, inasmuch as proving a statement
holds for refl is enough to guarantee that it will hold for all paths, no matter how
they are derived or what their computational content.

Path induction has some immediate consequences. First, it guarantees that func-
tions are always functorial with respect to propositional equality. That is, if e : x = y
is a path between x and y, and f is a function of an appropriate type, then it is
possible to construct a proof that f(x) = f(y) (or a suitable analogue in the case
that f has a dependent type). Indeed, this is not hard to prove via path induc-
tion: it suffices to show that one can construct a proof of f(x) = f(x) in the case
that e is refl, which is easily done using refl again. Given e : x = y we also have
P (x)→ P (y) for any type family P , called the transport of P (x) along e and denoted
transportP (e), or simply e∗ when P is clear from context. For example, if e : A = B
then transportX 7→X×(X→C)(e) : A× (A→ C)→ B × (B → C). Transport also follows
easily from path induction: it suffices to note that id : P (x)→ P (x) in the case when
e is refl.

1.3.4 Equivalence and univalence

Another notion of “sameness” definable in HoTT is equivalence. An equivalence be-
tween A and B, written A ' B, is a “coherent bijection”, that is, a pair of inverse
functions f : A→ B and g : B → A, along with an extra condition ensuring coherence
of higher path structure. The precise details are unimportant for the purposes of this
dissertation, and can be found in the HoTT book [2013, Chapter 4]. The important
point is that equivalence and bijection are logically equivalent—that is, each implies
the other. In particular, to prove an equivalence it suffices to exhibit a bijection.

12

The identity equivalence is denoted by id , and the composition of h : B ' C and
k : A ' B by h ◦ k : A ' C. As a notational shortcut, equivalences of type A ' B
can be used as functions A→ B where it does not cause confusion.

HoTT’s main novel feature is the univalence axiom, which states that equivalence
is equivalent to propositional equality, that is, (A ' B) ' (A = B). One direction,
(A = B) → (A ' B), follows easily by path induction. The interesting direction,
which must be taken as an axiom, is ua : (A ' B) → (A = B). This formally
encodes the principle of equivalence [nLab, 2014e], namely, that sensible properties of
mathematical objects must be invariant under equivalence. Univalence, in conjunction
with transport, implies that equivalent values are completely interchangeable.

Propositional equality thus takes on a meaning richer than the usual conception
of equality. In particular, A = B does not mean that A and B are identical, but that
they can be used interchangeably—and moreover, interchanging them may require
some work, computationally speaking. Thus an equality e : A = B can have non-
trivial computational content, particularly if it is the result of applying ua to some
equivalence.

As of yet, univalence has no direct computational interpretation1, so using it to
give a computational interpretation of species may seem suspect. However, ua satisfies
the β law transportX 7→X(ua(f)) = f , so univalence introduces no computational prob-
lems as long as applications of ua are only ultimately used via transport. In particular,
sticking to this restricted usage of ua still allows a convenient shorthand: packaging up
an equivalence into a path and then transporting along that path results in “automat-
ically” inserting the equivalence and its inverse in all the necessary places throughout
the term. For example, let P (X) :≡ X × (X → C) as in the example from the end
of §1.3.3, and suppose e : A ' B, so ua e : A = B. Then transportP (ua(e)) : P (A)→
P (B), and in particular transportP (ua(e))〈a, g〉 = 〈e(a), g ◦e−1〉, which can be derived
mechanically by induction on the shape of P .

1.3.5 Propositions, sets, and n-types

As noted previously, it is possible to have arbitrary higher-order path structure: paths
between paths, paths between paths between paths, and so on. This offers great
flexibility but also introduces many complications. It is therefore useful to have a
vocabulary for explicitly talking about types with limited higher-order structure.

Definition 1.3.1. A mere proposition, or (−1)-type, is a type for which any two
inhabitants are propositionally equal.

The word “mere” is often used for emphasis (“mere proposition”) but is also
sometimes dropped (“proposition”). Intuitively, the only interesting thing that can
be said about a mere proposition is whether it is inhabited or not. Although it may

1Though as of this writing there seems to be some good progress on this front via the theory of
cubical sets [Bezem et al., 2014].

13

have many syntactically different inhabitants, they are all equal and hence internally
indistinguishable. Such types are called “propositions” since they model the way one
usually thinks of propositions in, say, first-order logic. There is no value in distin-
guishing the different possible proofs of a proposition; what counts is only whether
or not the proposition is provable at all.

Definition 1.3.2. A type A is a set, or 0-type, if there is (up to propositional equal-
ity) at most one path between any two elements; that is, more formally, for any
x, y : A and p, q : x = y, there is a path p = q. Put another way, for any x, y : A, the
type x = y is a proposition.

Standard inductive types such as N, Fin n, and so on, are sets, although proving this
takes a bit of work. Generally, one shows via induction that paths between elements of
the type are equivalent to an indexed type given by ⊥ when the elements are different
and > when they are the same; ⊥ and > are mere propositions and hence so is the
type of paths. See the HoTT book for proofs in the particular case of N, which can
be adapted to other inductive types as well [Univalent Foundations Program, 2013,
§2.13, Example 3.1.4, §7.2].

As noted above, propositions and sets are also called, respectively, (−1)-types and
0-types. As these names suggest, there is an infinite hierarchy of n-types (beginning at
n = −2 for historical reasons) which have no interesting higher-order path structure
above level n. As an example of a 1-type, consider the type of all sets,

Set :≡ (A : U)× isSet(A),

where isSet(A) :≡ (x, y : A)→ (p, q : x = y)→ (p = q) is the proposition that A is a
set. Given two elements A,B : Set it is not the case that all paths A = B are equal;
such paths correspond to bijections between A and B, and there may be many such
bijections.

Note that isSet(A) itself is always a mere proposition for any type A (see Lemma
3.3.5 in the HoTT book).

1.3.6 Higher inductive types

Another novel feature of HoTT (albeit one that is not yet fully understood) is the
presence of higher inductive types (HITs). Standard inductive data types are specified
by a collection of data constructors which freely generate all values of the type. For
example, the values of N are precisely those constructed by any (finite) combination
of the constructors O and S. HITs add the possibility of constructors which build not
values, but paths between values (or paths between paths, or. . .). They also come
with an induction principle requiring uses of the values to respect all the equalities
built by the higher constructors.

This gives a natural way to build quotient types. For example, consider the HIT
T : U with data constructors TO : T and TS : T → T , as well as a higher path

14

constructor P2 : (t : T) → t = TS (TS t). This corresponds to quotienting N by the
reflexive, transitive closure of the relation n = n + 2. In this case, we can see (and
could even prove formally) that T is equivalent to the type 2 with two inhabitants.
However, if we really have in mind the quotient N/(n = n + 2), instead of the type
2, it may be more convenient to work with it directly using the HIT T . For example,
in order to define functions T → A, one specifies a function f : N → A and then
proves separately that f is compatible with the equality n = n+ 2. In any case, there
are also many HITs which are not equivalent to some standard inductive type, so the
presence of HITs really does represent a large jump in expressive power. For a good
example of a nontrivial “real-world” application of HITs, see Angiuli et al. [2014].

1.3.7 Truncation

The last important concept from HoTT to touch upon is propositional truncation,
which is also an example of a nontrivial higher inductive type. If A is a type, then
‖A‖ is also a type, with a data constructor |−| : A → ‖A‖ that allows injecting
values of A into ‖A‖. However, in addition to being able to construct values of ‖A‖,
there is also a way to construct paths between them: in particular, for any two values
x, y : ‖A‖, there is a path x =‖A‖ y. Thus, ‖A‖ is a copy of A but with all values
considered equal. This is called the propositional truncation of A since it evidently
turns A into a proposition, which can intuitively be thought of as the proposition “A
is inhabited”.

If we have an inhabitant of ‖A‖, we know some a : A must have been used to
construct it. However, the recursion principle for ‖A‖ places some restrictions on how
we are allowed to use the underlying a : A. In particular, to construct a function
‖A‖ → P , one must give a function f : A → P , along with a proof that f respects
the equalities introduced by the higher constructor of ‖A‖. Hence all the outputs of
f must be equal—that is, P must be a mere proposition. That is, a function A→ P
can be used to construct a function ‖A‖ → P if and only if P is a mere proposition.
Intuitively, this means that one is allowed to look at the value of type A hidden
inside a value of ‖A‖, as long as one “promises not to reveal the secret”. Keeping this
promise means producing an inhabitant of a proposition P , because it cannot “leak”
any information about the precise inhabitant a : A. Up to propositional equality, there
is at most one inhabitant of P , and hence no opportunity to convey information.

What about defining a function ‖A‖ → B, when B is not a mere proposition?
In this case, the recursion principle for propositional truncation cannot be applied
directly. However, there is a useful trick which makes it possible: if one can uniquely
characterize a particular value of B—that is, create a predicate Q : B → U such
that (b : B) × Q(b) is a mere proposition—one can then define a function ‖A‖ →
(b : B) × Q(b) from a function A → (b : B) × Q(b), and finally project out the B
to obtain a function ‖A‖ → B. Since the function guarantees to always construct
the same, uniquely characterized value of B for any input type A, it cannot reveal
any information about the particular value of A it is given. This trick is detailed

15

in the HoTT book [2013, §3.9]; Exercise 3.19 affords some good intuition for this
phenomenon.

As in the HoTT book (see Chapter 3), the adjective “mere” will be used more
generally to refer to truncated things. In particular, an important example is the
distinction between the type

(a : A)×B(a),

pronounced “there constructively exists an inhabitant of A such that B”, and its
truncation

‖(a : A)×B(a)‖ ,

pronounced “there merely exists an inhabitant of A such that B”. The latter more
closely corresponds to the notion of existence in classical logic: classically, given a
proof of an existence statement, it may not be possible to extract an actual witness.
Given an inhabitant of ‖(a : A)×B(a)‖, we know only that some (a : A) satisfying
B exists, without getting to know its identity.

1.3.8 Why HoTT?

In the context of this dissertation, homotopy type theory is much more than just a
convenient choice of concrete type theory to work in. It is, in fact, quite central to
this work. It is therefore appropriate to conclude with a summary of specific ways
that this work benefits from its use. Many of these points are explored in more detail
later in the dissertation.

• HoTT gives a convenient framework for making formal the idea of “transport”:
using an isomorphism σ : L1

∼−→ L2 to functorially convert objects built from
L1 to ones built from L2. This is a fundamental operation in HoTT, and is also
central to the definition of species (§3.2). In fact, when constructing species with
HoTT as a foundation, transport simply comes “for free”—in contrast to using
set theory as a foundation, where transport must be tediously defined (and
proved correct) for each new species. In other words, within HoTT it is simply
impossible to write down an invalid species; any function giving the action of a
species on objects extends automatically to a functor. In a material set theory,
on the other hand, it is quite possible to define non-functorial functions on
objects.

• The univalence axiom (§1.3.4) and higher inductive types (§1.3.6) make for a
rich notion of propositional equality, over which the “user” has a relatively
high degree of control. For example, using higher inductive types, it is easy to
define various quotient types which would be tedious to define and work with
in Martin-Löf type theory. One particular manifestation of this general idea is
coends (§1.4.3) which can be directly defined as a higher inductive type (§2.2.2).

• Homotopy type theory allows doing category theory without using the axiom of

16

choice (§2.1, §2.2), which is essential in a constructive or computational setting.
It also makes many constructions simpler; for example, a coend over a functor
with a groupoid as its domain is just a plain Σ-type, with no need for higher
inductive types at all.

• Propositional truncation (§1.3.7) is an important tool for properly modelling
concepts from classical mathematics in a constructive setting. In particular we
use it to model the concept of finiteness (§2.4).

Although not the main goal, I hope that this work can serve as a good exam-
ple of the “practical” application of HoTT and its benefits for programming. Much
of the work on HoTT has so far been aimed at mathematicians rather than com-
puter scientists—appropriately so, since mathematicians tend to be more skeptical
of type theory in general and constructive foundations in particular. However, new
foundations for constructive mathematics must almost by necessity have profound
implications for the foundations of programming as well [Martin-Löf, 1982].

1.4 Category theory

This dissertation makes extensive use of category theory, which is the natural language
in which to explore species and related concepts. A full understanding of the contents
of this dissertation requires an intermediate-level background in category theory, but a
grasp of the basics should suffice to understand the overall ideas. A quick introduction
to necessary concepts beyond the bare fundamentals is presented here, with useful
intuition and references for further reading. It is hoped that this section can serve
as a useful guide for “bootstrapping” one’s knowledge of category theory, for those
readers who are so inclined.

This section presents traditional category theory as founded on set theory, to make
it easy for readers to correlate it with existing literature. However, as explained in §2.2
and as evidenced throughout this work, HoTT makes a much better foundation for
category theory than set theory does! §2.2 highlights the most significant differences
and advantages of HoTT-based category theory; most of the other definitions and
inutition carry over essentially unchanged.

1.4.1 Category theory fundamentals

At a bare minimum, an understanding of the foundational trinity of category the-
ory (categories, functors, and natural transformations) is assumed, along with some
standard universal constructions such as terminal and initial objects, products, and
coproducts. For an introduction to these concepts (and a much more leisurely intro-
duction to those sketched below), the reader should consult one of the many excellent
references on the subject [Lawvere and Schanuel, 2009, Awodey, 2006, Pierce, 1991,
Barr and Wells, 1990, Mac Lane, 1998].

17

The notations f ; g = g ◦ f are both used to denote composition of morphisms.

Standard categories We begin by listing some standard categories which will
appear throughout this work.

• 1 = •, the trivial category with a single object and only the required identity
morphism.

• 2 = • → •, the category with two objects and one nontrivial morphism between
them (as well as the required identity morphisms).

• |2| = • •, the discrete category with two objects and only identity morphisms.
A discrete category is a category with only identity morphisms; |C| denotes the
discrete category with the objects of C. Also, note that any set can be treated
as a discrete category.

• Set, the category with sets as objects and (total) functions as morphisms.

• FinSet, like Set but with only finite sets as objects.

• Cat, the category of all small categories (a category is small if its objects
and morphisms both form sets, as opposed to proper classes; considering the
category of all categories gets us in trouble with Russell). Note that 1 is the
terminal object in Cat.

• Grp, the category of groups and group homomorphisms.

• VecK , the category of vector spaces over the field K, together with linear maps.

• Hask, the category whose objects are Haskell types and morphisms are (total)
functions definable in Haskell.2

Bifunctors The concept of bifunctors can be formalized as a two-argument ana-
logue of functors; bifunctors thus map from two categories to a single category. One
can define a bifunctor B : C,D→ E as a function sending pairs of objects to a single
object, pairs of morphisms to a single morphism, and so on, but this turns out to be
equivalent to a regular (one-argument) functor B : C×D→ E, where C×D denotes
the product category of C with D. Product categories are given by the usual universal
product construction in Cat; objects in C×D are pairs of objects from C and D, and
likewise morphisms in C × D are pairs of morphisms from C and D. One place that
bifunctors come up often is in the context of monoidal categories; see §1.4.2.

2Technically, this is a polite fiction, and requires pretending that ⊥ does not exist. Fortunately,
laziness does not play an important role in this work.

18

Natural transformations To denote a natural transformation η between functors
F,G : C→ D, we use the notation η : F

•−→ G, or sometimes just η : F −→ G when it
is clear that F and G are functors. The notation η : ∀A. FA→ GA will also be used,
which meshes well with the intuition of Haskell programmers: naturality corresponds
to parametricity, a property enjoyed by polymorphic types in Haskell [Reynolds, 1983,
Wadler, 1989]. This notation is also more convenient when the functors F and G do
not already have names but can be readily specified by expressions, especially when
those expressions involve A more than once or in awkward positions3—for example,
∀A. A⊗ A→ C(B,HA). This notation can be rigorously justified using ends ; see
§1.4.3.

Hom sets In a similar vein, the set of morphisms between objects A and B in a
category C is usually denoted C(A,B) or HomC(A,B), but I will also occasionally use
the notation A⇒ B, or A⇒C B when the category C should be explicitly indicated.
− ⇒C − : Cop × C → Set is a bifunctor, contravariant in its first argument and

covariant in the second argument; its action on morphisms is given by

(f ⇒C g) h = f ; h ; g.

We will often have occasion to make use of the fact that X ⇒ − preserves limits
(for example, (X ⇒ Y × Z) ∼= (X ⇒ Y) × (X ⇒ Z)), and, dually, − ⇒ X
turns colimits into limits (for example, in a category with coproducts and products,
(Y + Z ⇒ X) ∼= (Y ⇒ X)× (Z ⇒ X)).

Slice categories Given a category C and an object X ∈ C, the slice category C/X
has as its objects diagrams C

f−→ X, that is, pairs (C, f) where C ∈ C and f is
a morphism from C to X. Morphisms (C1, f1) → (C2, f2) in C/X are morphisms
g : C1 → C2 of C which make the relevant diagram commute:

C1
g

//

f1

C2

f2~~

X

A good intuition is to think of the morphism f : C → X as giving a “weighting”
or “labelling” to C. The slice category C/X thus represents objects of C weighted
or labelled by X, with weight/label-preserving maps as morphisms. For example,
objects of Set/R are sets where each element has been assigned a real-number weight;
morphisms in Set/R are weight-preserving functions.

3As Haskell programmers are well aware, writing everything in point-free style does not neces-
sarily improve readability!

19

J

K

E

L

I

B

D

H

F

G

C

A

Figure 1.1: An element of SetX or Set/X

Functor categories Given two categories C and D, the collection of functors from
C to D forms a category (a functor category), with natural transformations as mor-
phisms. This category is denoted by both of the notations C⇒ D and DC, as conve-
nient.4 The notation DC is often helpful since intuition for exponents carries over to
functor categories; for example, CD+E ' CD×CE, (C×D)E ' CE×DE, and so on. (In
fact, this is not specific to functor categories; for example, the second isomorphism
holds in any Cartesian closed category.)

Given a set X, the functor category SetX (considering X as a discrete category)
is equivalent to the slice category Set/X. In particular, a functor of type X → Set
is an X-indexed collection of sets, whereas an object of Set/X is a set S with a
function f : S → X labelling each element of S by some x ∈ X. Taking the preimage
or fiber f−1(x) of each x ∈ X recovers an X-indexed collection of sets; conversely,
given an X-indexed collection of sets we may take their disjoint union and construct
a function assigning each element of the disjoint union its corresponding element of
X. Figure 1.1 illustrates the situation for X = {red, blue, green, purple}. Following
the arrows from bottom to top, the diagram represents a functor X → Set, with each
element of X mapped to a set. Following the arrows from top to bottom, the diagram
represents an object in Set/X consisting of a set of 12 elements and an assignment
of a color to each.

Equivalence of categories When are two categories “the same”? In traditional
category theory, founded on set theory, there are quite a few different definitions of

4Traditionally the notation [C,D] is also used, but C⇒ D is consistent with the general notation
for exponentials explained in §1.4.2; the functor category C ⇒ D is an exponential object in the
Cartesian closed category of all small categories, Cat.

20

sameness for categories. There are many different notions of “equality” (isomorphism,
equivalence, . . .), and they often do not correspond to the underlying equality on
sets, so one must carefully pick and choose which notions of equality to use in which
situations (and some choices might be better than others!). Many concepts come
with “strict” and “weak” variants, depending on which version of equality is being
used. Maintaining the principle of equivalence in this setting requires hard work and
vigilence.

A näıve first attempt is as follows:

Definition 1.4.1. Two categories C and D are isomorphic if there are inverse func-

tors C
F // D
G
oo , such that GF = 1C and FG = 1D.

This definition has the right idea in general, but it is subtly flawed. It talks about
equality of functors (GF and FG must be equal to the identity). However, two functors
H and J can be isomorphic without being equal. In particular, two functors are
naturally isomorphic if there is a pair of natural transformations φ : H

•−→ J and
ψ : J

•−→ H such that φ ◦ ψ and ψ ◦ φ are both equal to the identity natural
transformation. For example, consider the functors given by the Haskell types

data Rose a = Node a [Rose a]
data Fork a = Leaf a | Fork (Fork a) (Fork a)

These are obviously not equal, but they are isomorphic (though not obviously so!), in
the sense that there are natural transformations, i.e. polymorphic functions, rose2fork ::
∀a.Rose a → Fork a and fork2rose :: ∀a.Fork a → Rose a, such that rose2fork ◦
fork2rose = id and fork2rose ◦ rose2fork = id [Yorgey, 2010, Hinze and James, 2010].

Definition 1.4.1 therefore violates the principle of equivalence—to be discussed in
more detail in §2.1—which states that properties of mathematical structures should
be invariant under isomorphism. Here, then, is a better definition:

Definition 1.4.2. Categories C and D are equivalent if there are functors C
F // D
G
oo

which are inverse up to natural isomorphism, that is, there are natural isomorphisms
1C ∼= GF and FG ∼= 1D.

That is, the compositions of the functors F and G do not literally have to be the
identity functor, but only (naturally) isomorphic to it.5 This does turn out to be a
well-behaved notion of sameness for categories [nLab, 2014c].

5The astute reader may note that the stated definition of natural isomorphism of functors men-
tions equality of natural isomorphism—do we also need to replace this with some sort of isomorphism
to avoid violating the principle of equivalence? Is it turtles all the way down (up)? This is a subtle
point, but it turns out that there’s nothing wrong with equality of natural transformations. For the
usual notion of category, there is no higher structure after natural transformations, i.e. no nontrivial
morphisms (and hence no nontrivial isomorphisms) between natural transformations.

21

There is much more to say about equivalence of categories; §2.1 picks up the thread
with a much fuller discussion of the relationships among equivalence of categories,
equality, the axiom of choice, and classical versus constructive logic.

Adjunctions The topic of adjunctions is much too large to adequately cover here.
For the purposes of this dissertation, the most important form of the definition to
keep in mind is that a functor F : C → D is left adjoint to G : D → C, notated
F a G, if and only if

∀AB. (FA⇒D B) ∼= (A⇒C GB),

that is, if there is some natural isomorphism matching morphisms FA → B in the
category D with morphisms A → GB in C. If F is left adjoint to G, we also say,
symmetrically, that G is right adjoint to F .

One example familiar to functional programmers is currying,

(A×B ⇒ C) ∼= (A⇒ (B ⇒ C)),

which corresponds to the adjunction

(−×B) a (B ⇒ −).

1.4.2 Monoidal categories

Recall that a monoid is a set S equipped with an associative binary operation

� : S × S → S

and a distinguished element ε : S which is an identity for �. (See, for example, Yorgey
[2012] for a discussion of monoids in the context of Haskell.) A monoidal category
is the appropriate “categorification” of the concept of a monoid, i.e. with the set S
replaced by a category, the binary operation by a bifunctor, and the equational laws
by natural isomorphisms.

Definition 1.4.3. Formally, a monoidal category is a category C equipped with

• a bifunctor ⊗ : C× C→ C;

• a distinguished object I ∈ C;

• a natural isomorphism α : ∀ABC. (A⊗B)⊗ C ∼= A⊗ (B ⊗ C); and

• natural isomorphisms λ : ∀A. I ⊗ A ∼= A and ρ : ∀A. A⊗ I ∼= A.

α, λ, and ρ must additionally satisfy some coherence axioms, which ensure that par-
allel isomorphisms constructed from α, λ, and ρ are always equal; for details, see
Mac Lane [1998, §VII.2].

22

We often write (C,⊗, I) when we wish to emphasize the choice of a monoidal
functor and identity object for a monoidal category C.

Note that ⊗ is not just a function on objects, but a bifunctor, so there must also
be a way to combine morphisms f : A1 −→ A2 and g : B1 −→ B2 into a morphism
f ⊗ g : A1 ⊗B1 −→ A2 ⊗B2 which respects identities and composition.

Note also that a category can be monoidal in more than one way. In fact, as
we will see in Chapter 3, the category of species is monoidal in at least six different
ways! Another example is Set, which has both Cartesian product and disjoint union as
monoidal structures. More generally, categories with products (together with a termi-
nal object) and/or coproducts (together with an initial object) are always monoidal.

There are many variants on the basic theme of monoidal categories; a few of the
most important, for the purposes of this dissertation, are given here:

Definition 1.4.4. A monoidal category is symmetric if there is additionally a natural
isomorphism γ : ∀AB. A⊗B ∼= B ⊗ A such that γAB ◦ γBA = id (along with some
coherence conditions; see Mac Lane [1998, §VII.7]).

For example, Set is symmetric monoidal under both Cartesian product and dis-
joint union. As an example of a non-symmetric monoidal category, consider the func-
tor category C→ C, with the monoid given by composition of functors.

Definition 1.4.5. A monoidal category (C,⊗, I) is closed if there some bifunctor
[−,−] : Cop × C→ C such that there is a natural isomorphism

∀ABC. (A⊗B ⇒ C) ∼= (A⇒ [B,C]), (1.4.1)

that is, − ⊗ B is left adjoint to [B,−]. The object [B,C] is called an exponential
object, and can also be notated by CB or by B ⇒ C. The bifunctor [−,−] is also
called an internal Hom functor.

Remark. The notation [B,C] for the exponential of B and C is common, and used in
the definition above for clarity. However, in the remainder of this dissertation, we will
use the alternate notation B ⇒ C instead. That is, the natural isomorphism (1.4.1)
will be written instead as

∀ABC. (A⊗B ⇒ C) ∼= (A⇒ (B ⇒ C)).

This certainly does have the potential to introduce some ambiguity (although the am-
biguity is only apparent, since it can always be resolved by type inference). However,
it emphasizes the fact that exponential objects “act like” morphisms, and moreover
it plays to the intuition of Haskell programmers, since Haskell makes no notational
distinction between top-level functions and first-class functions passed as arguments
or returned as results.

23

(Set,×) is closed: B ⇒ C is defined as the set of functions from B to C, and the
required isomorphism is currying. Categories, like Set, which are closed with respect
to the categorical product are called Cartesian closed. Intuitively, Cartesian closed
categories are those which can “internalize” arrows, with objects that “act like” sets
of morphisms. Put another way, Cartesian closed categories are those with “first-
class morphisms”. Functional programmers are familiar with this idea: in a language
with first-class functions, the class of functions (morphisms) between two given types
(objects) is itself a type (object).

Definition 1.4.6. A strict monoidal category is one in which α, λ, and ρ are equal-
ities rather than natural isomorphisms.

It is often remarked that every monoidal category is equivalent to some strict one
(for example, using the theory of cliques [Joyal and Street, 1991], explained in §2.1.4),
which is used to justify the pretense that every monoidal category is strict; however,
proving this requires the axiom of choice.

1.4.3 Ends and coends

Intuitively, ends and coends can be thought of as abstract categorical formulations of
the concepts of parametricity and modularity, respectively. Both play an important
role in this dissertation.

Coends Given a functor T : Cop × C→ D, a coend over T , denoted ∃C. T (C,C),6

is an object of D with morphisms ωX : T (X,X) → ∃C. T (C,C) for every X, such
that the diagram

T (X ′, X)
T (1,f)

��

T (f,1)

��

T (X ′, X ′)

ωX′��

T (X,X)

ωX ��

∃C. T (C,C)

commutes for all X,X ′ : C and f : X → X ′. (This square represents dinaturality of
ω.) Additionally, a coend must satisfy an appropriate universal property guaranteeing
its uniqueness up to isomorphism (see [Mac Lane, 1998, §IX.5–6]).

6Traditionally, coends are notated as
∫ C

T (C,C), and ends as
∫
C
T (C,C) (for example, this is

the notation used by Mac Lane [1998]). However, the link to calculus is somewhat obscure [Fetisov,
2011] and not very helpful for building intuition. Moreover, using the traditional notation, it is hard
to keep ends and coends straight. On the other hand, as I will show, ∃C. T (C,C) and ∀C. T (C,C)
are deeply appropriate notations for coends and ends, respectively; they are easier to keep straight;
and they help computer scientists and logicians build on existing intuition. I am fairly certain I have
seen this notation used before, but cannot remember where; pointers are appreciated.

24

Since there must be morphisms ωX : T (X,X) → ∃C. T (C,C) for every C, one’s
first try might be to implement the coend as an indexed coproduct,

⊎
C∈C T (C,C).

Then the ωX are just injections. This is a good start, but does not (in general) satisfy
the commutative diagram shown above.

In the specific case when the objects of D can be thought of as sets or types with
“elements”, we can “force” the commutative diagram to hold by taking a quotient
of the indexed coproduct. Elements of the indexed coproduct look like pairs (C, t)
where C ∈ C and t ∈ T (C,C). The idea behind the quotient is that we want to
consider two pairs (C, t) and (C ′, t′) equivalent if they are related by the functoriality
of T . In particular, for each arrow f : C → C ′ in C and each x ∈ T (C ′, C), we set
(C, T (f, 1) x) ∼ (C ′, T (1, f) x). That is, we will consider (C, t) and (C ′, t′) inter-
changeable as long as we have some way to map from C to C ′, and the associated
values t and t′ are related by the same mapping. (More generally, even if the objects
of D are not sets, the same thing can be accomplished using coequalizers.)

Intuitively, the functor T can be thought of as an interface; (C, t) can then be
thought of as a module with representation type C and implementation t. The mor-
phisms ωX thus package up a concrete representation type and implementation into
a module, and the dinaturality condition ensures that one cannot directly observe
the concrete representation type, but only distinguish values up to behavioral equiv-
alence. Indeed, in Haskell, the coend of T is given by the type exists c. T c c

[Kmett, 2008]—or rather, by an isomorphic encoding such as

data Coend t where
Coend :: t c c → Coend t

since exists is not actually valid Haskell syntax. T is required to be a functor from
Cop ×C since the representation type may occur both co- and contravariantly in the
interface.

Coends preserve colimits; for example, in Set,

(∃A. F A+G A) ∼= (∃A. F A) + (∃A. G A).

(This is one place where using integral notation actually helps with intuition—but
only for coends.)

Remark. ∃L1, L2. . . . is used as an abbrevation for a coend over the product category
L × L. (Given suitable assumptions it is also equivalent to an iterated coend; see
Mac Lane [1998, §IX.8].)

Ends An end of a functor T : Cop×C→ D, notated ∀C. T (C,C), is the categorical
dual of a coend. That is, an end is an object of D together with morphisms αX :

25

∀C. T (C,C)→ T (X,X) such that

∀C. T (C,C)
αC

��

αC′

��

T (C,C)

T (1,f)��

T (C ′, C ′)

T (f,1) ��

T (C,C ′)

commutes for all C,C ′ : C and f : C → C ′, together with an appropriate universal
property. The end ∀C. T (C,C) can thus be “instantiated” at any type X by the
morphism αX , and the dinaturality of α ensures that these instantiations all “behave
uniformly”. It should come as no surprise that ends in Haskell are given by universal
quantification, that is, ∀c.T c c [Kmett, 2008].

In fact, there is an even deeper connection between ends and Haskell’s ∀ no-
tation. It is well-known in the Haskell community that polymorphic—i.e. univer-
sally quantified—functions somehow correspond to natural transformations, via para-
metricity; this correspondence can be made formally precise as follows. Given two
functors F,G : C→ D, consider the bifunctor

F− ⇒ G− : Cop × C→ Set,

which sends objects X, Y ∈ C to the set of morphisms F X ⇒D G Y and acts on
morphisms f : X ′ → X and g : Y → Y ′ by

(F f ⇒ G g) h = G g ◦ h ◦ F f.

Then an end ∀C. F C ⇒ G C is a set with projections αX : (∀C. F C ⇒ G C) →
(F X ⇒ G X) such that

∀C. F C ⇒ G C

αC

��

αC′

��

F C ⇒ G C

G g◦−
��

F C ′ ⇒ G C ′

−◦F f
��

F C ⇒ G C ′

commutes. Reading off the edges of this diagram, we have αC′ ◦ F f = Gg ◦ αC—
precisely the definition of naturality for α. Thus an end over F− ⇒ G− is precisely
a natural transformation, that is,

(∀C. F C ⇒ G C) ∼= (F
•−→ G).

26

This is sometimes called the naturality formula [Cáccamo and Winskel, 2001], and
formally justifies using the notation ∀C. F C ⇒ G C for natural transformations
between F and G, just as in Haskell. (See also Cheng and Willerton [2014a,b].)

Dually to coends, which preserve colimits, ends preserve limits. For example, in
Set,

(∀A. F A×G A) ∼= (∀A. F A)× (∀A. G A).

1.4.4 The Yoneda lemma

Given a functor F : C→ Set, the Yoneda lemma states that for every A ∈ C,

F A ∼= (∀B. (A⇒ B)⇒ F B),

that is, the set F A is isomorphic to the set of natural transformations from A ⇒
− to F . Haskell programmers may enjoy trying to implement a function of type
Functor f ⇒ f a → (∀b.(a → b) → f b) and its inverse—doing so successfully will
give some intuition into the nature of the lemma and why it is true.

The functor j : Cop → (C ⇒ Set) defined on objects by j(A) := (A ⇒ −) is
known as the Yoneda embedding. As a corollary of the Yoneda lemma, j is full and
faithful.

For further reading and intuition about the Yoneda lemma, see, for example, Baez
[1999], Piponi [2006], or Kmett [2011].

1.4.5 Groupoids

A groupoid is a category in which all morphisms are invertible, that is, for each
morphism f there is another morphism f−1 for which f ◦ f−1 = id and f−1 ◦ f = id.
Groupoids play a prominent role in both HoTT and in the theory of species and
related theories [Byrne, 2006, Kock, 2012].

Example. Any group can be thought of as a groupoid with a single element, just as
a monoid can be thought of as a one-object category. Conversely, groupoids can be
thought of as “groups with types”, where elements can only be composed if their types
match (in contrast to a group, where any two elements can always be composed).

Example. There is a groupoid whose objects are natural numbers, and whose mor-
phisms m −→ n are the invertible m× n matrices over some field, with composition
given by matrix multiplication. (Hence there are no morphisms when m 6= n, since
only square matrices are invertible.)

The next two examples will play important roles in the remainder of the disser-
tation, so they merit the status of formal definitions.

Definition 1.4.7. B is the groupoid whose objects are finite sets and whose mor-
phisms are bijections between finite sets.

27

Definition 1.4.8. L is the groupoid whose objects are finite sets equipped with a
linear order, and whose morphisms are order-preserving bijections.

Note that there is exactly one order-preserving bijection between two linear orders
of the same size, so L is rather impoverished compared with B. Nonetheless, there is
a close relationship between them, which will be explored more in Chapters 2 and 3.

It is worth pointing out that B is an instance of a more general phenomenon:

Definition 1.4.9. Any category C gives rise to a groupoid C∗, called the core of C,
whose objects are the objects of C and whose morphisms are the isomorphisms in C.

Checking that C∗ is indeed a groupoid is left as an easy exercise. Note in particular
that B = FinSet∗.

Definition 1.4.10. The symmetric groupoid P is defined as the groupoid whose
objects are natural numbers and whose morphisms m −→ n are bijections [m] ∼−→ [n].

Definition 1.4.11. The type of permutations on a set S, that is, bijections from S
to itself, is denoted S!.

Note that the set of morphisms m −→ n in P is empty unless m = n, and
morphisms n −→ n are permutations [n]!.

P is called the symmetric groupoid since it is isomorphic to an infinite coproduct∐
n>0 Sn, where Sn denotes the symmetric group of all permutations on n elements,

considered as a one-object groupoid. In other words, P consists of a collection of
non-interacting “islands”, one for each natural number, as illustrated in Figure 1.2.
In particular, this means that any functor F : P → C is equivalent to a collection
of functors

∏
n>0 Sn → C, one for each natural number. Each functor Sn → C is

entirely independent of the others, since there are no morphisms between different Sn
to introduce constraints.

There is a close relationship between B and P. In the presence of the axiom of
choice, they are equivalent; intuitively, P is what we get by noting that any two sets
of the same size are isomorphic, so we might as well just forget about the elements
of finite sets and work directly with their sizes. However, if the axiom of choice is
rejected, the details become much more subtle; this is addressed in §2.3.

B and P do not have products or coproducts. For example, to see that B does not
have coproducts, let A,B ∈ B be arbitrary finite sets, and suppose they have some

coproductA+B. By definition this comes with a diagram A
ι1 // A+B B

ι2oo in B.
Since morphisms in B are bijections, this would imply that A and B are in bijection,
but since A and B were arbitrary finite sets, this is absurd. A similar argument applies
in the case of products. More generally, any category with all products or coproducts
is necessarily connected, i.e. has some zig-zag sequence of arrows connecting any two
objects, and this is clearly not true of B.

28

Figure 1.2: The groupoid P

B does, however, have monoidal structures given by Cartesian product and disjoint
union of finite sets, even though these are not a categorical product or coproduct. In
particular, two bijections σ1 : S1

∼−→ T1 and σ2 : S2
∼−→ T2 naturally give rise to

a bijection (S1 × S2)
∼−→ (T1 × T2), which sends (s1, s2) to (σ1(s1), σ2(s2)), as well

as a bijection (S1] S2)
∼−→ (T1] T2) which sends inl s1 to inl(σ1(s1)) and inr s2 to

inr(σ2(s2)). In fact, something more general is true:

Proposition 1.4.12. Any monoid (⊗, 1) on a category C restricts to a monoid (⊗∗, 1)
on the groupoid C∗.

Proof. There is a forgetful functor U : C∗ → C which is the identity on both objects
and morphisms. Given X, Y ∈ C∗, we may define

X ⊗∗ Y = UX ⊗ UY ;

this may be considered as an object of C∗ since C and C∗ have the same objects.
Given morphisms σ and τ of C∗, we also define

σ ⊗∗ τ = Uσ ⊗ Uτ,

and note that the result must be an isomorphism in C—hence a morphism in C∗—
since all functors (here, U and ⊗ in particular) preserve isomorphisms.

The fact that 1 is an identity for ⊗∗, associativity, and the coherence conditions
all follow readily from the definitions. SDG

29

Chapter 2

Equality and Finiteness

Before delving into combinatorial species proper, we must first tackle some founda-
tional issues—in particular, how equality and finiteness are handled in a constructive
setting. As we will see, these topics require much more care in a constructive setting
than in a classical one, but the extra care pays off in the form of deeper insight and
even (in the case of finiteness) practical implementations.

We have already glimpsed some of the complexity surrounding equality in Chap-
ter 1. Indeed, equality is the central focus of HoTT, and we saw that HoTT allows
us to talk about many different notions of sameness.

This chapter highlights several other places where equality emerges as the key
issue at stake. §2.1 begins by discussing the status of the axiom of choice (AC),
which is frequently used in practice but inadmissible in a constructive setting. One
of the main reasons that AC is used frequently in the context of category theory in
particular has to do with the difference between equality and isomorphism. Several
approaches to doing without AC are outlined, culminating in explaining (§2.2, §2.4)
why it is unnecessary when formulating category theory inside of HoTT.

Interwoven with the story of equality and the axiom of choice is a story about
finiteness (§2.3, §2.4). In a classical setting, the notion of a finite set is relatively
uncomplicated. In a constructive setting, however, it becomes much more subtle.
One must consider what counts as constructive evidence of finiteness, and how such
evidence may be used. Finiteness turns out to play an important role in the theory
of species, which are labelled by finite sets.

The key contributions of this chapter are

• a synthesis and presentation of many topics relevant to equality and finiteness
(the axiom of choice, equivalence of categories, anafunctors, cliques, and some
relevant results in HoTT) in a way accessible to functional programmers;

• a development of the theory of cardinal-finite sets in HoTT;

• development of HoTT-based analogues to the categories B, P, and L.

30

Figure 2.1: The axiom of choice

2.1 The axiom of choice (and how to avoid it)

The (in)famous axiom of choice (hereafter, AC) plays a central role in much of modern
mathematics. In a constructive setting, however, it is problematic (§2.1.2, §2.1.3).
Much effort has been expended attempting to avoid it [Makkai, 1995, 1996, 1998,
Voevodsky]; in a sense, this can be seen as one of the goals of the univalent foundations
program. In §2.2 and §2.4 we will see how HoTT indeed provides an excellent AC-free
foundation for the mathematics we want to do. First, however, we give an introduction
to AC and related issues in set theory.

2.1.1 The axiom of choice and constructive mathematics

The axiom of choice can be formulated in a number of equivalent ways. Perhaps the
most well-known is

The Cartesian product of any collection of non-empty sets is non-empty. (AC)

Given a family of sets {Xi | i ∈ I}, an element of their Cartesian product is some
I-indexed tuple {xi | i ∈ I} where xi ∈ Xi for each i. Such a tuple can be thought
of as a function (called a choice function) which picks out some particular xi from
each Xi. This can be visualized (for a particularly small and decidedly finite case) as
shown in Figure 2.1.

Note that AC is independent of the usual set theory foundations (the so-called
Zermelo-Fraenkel axioms, or ZF), in the sense that it is consistent to add either AC
or its negation to ZF. It is somewhat controversial since it has some (seemingly)

31

strange consequences, e.g. the Banach-Tarski paradox [Wagon, 1993]. However, most
mathematicians have come to accept it, and work (in principle) within ZF extended
with AC, known as ZFC.

Consider how to express AC in type theory. First, we assume we have some type
I which indexes the collection of sets; that is, there will be one set for each value of
type I. Given some type A, we can define a subset of the values of type A using a
predicate, that is, a function P : A → U . For some particular a : A, applying P to a
yields a type, which can be thought of as the type of evidence that a is in the subset
P ; a is in the subset if and only if P (a) is inhabited. An I-indexed collection of subsets
of A can then be expressed as a function C : I → A→ U . In particular, C(i, a) is the
type of evidence that a is in the subset indexed by i. (Note that we could also make
A into a family of types indexed by I, that is, A : I → ?, which makes the encoding
more expressive but doesn’t ultimately affect the subsequent discussion.)

A set is nonempty if it has at least one element, so the fact that all the sets in C
are nonempty can be modeled by a dependent function which yields an element of A
for each index, along with a proof that it is contained in the corresponding subset:

(i : I)→ (a : A)× C(i, a).

An element of the Cartesian product of C can be expressed as a function I → A that
picks out an element for each I (the choice function), together with a proof that the
chosen elements are in the appropriate sets:

(g : I → A)× ((i : I)→ C(i, g(i))).

Putting these together, apparently the axiom of choice can be modelled by the type

((i : I)→ (a : A)× C(i, a))→ (g : I → A)× ((i : I)→ C(i, g(i))).

Converting to Π and Σ notation and squinting actually gives some good insight into
what is going on: (∏

i:I

∑
a:A

C(i, a)

)
→

(∑
g:I→A

∏
i:I

C(i, g(i))

)

Essentially, this says that we can “turn a (dependent) product of sums into a (depen-
dent) sum of products”. This sounds a lot like distributivity, and indeed, the strange
thing is that this is simply true: implementing a function of this type is a simple
exercise! The intuitive idea can be grasped by implementing a non-dependent ana-
logue, say, a Haskell function of type (i → (a, c)) → (i → a, i → c). This is quite
easy to implement, and the dependent version is essentially no harder; only the types
get more complicated, not the implementation. So what’s going on here? Why is AC
so controversial if it is simply true in type theory?

32

The problem, it turns out, is that we’ve modelled the axiom of choice improperly,
and it all boils down to how “non-empty” is defined. When a mathematician says “S
is non-empty”, they typically don’t actually mean “. . . and here is an element of S
to prove it”. Instead, they literally mean “it is not the case that S is empty”, that
is, assuming S is empty leads to a contradiction. (Actually, there is something yet
more subtle going on, to be discussed below, but this is a good first approximation.)
In classical logic, these viewpoints are equivalent; in constructive logic, however, they
are very different! In constructive logic, knowing that it is a contradiction for S to be
empty does not actually help you find an element of S. We modelled the statement
“this is a collection of non-empty sets” essentially by saying “here is an element in
each set”, but in constructive logic that is a much stronger statement than simply
saying that each set is not empty.

From this point of view, we can see why the “axiom of choice” in the previous
section was easy to implement: it had to produce a function choosing a bunch of
elements, but it was given a bunch of elements to start. All it had to do was shuffle
them around a bit. The “real” AC, on the other hand, has a much harder job: it
is told some sets are non-empty, but without any actual elements being mentioned,
and it then has to manufacture a bunch of elements out of thin air. In the context
of constructive logic, this is deeply impossible: it turns out that the axiom of choice
implies the law of excluded middle [Diaconescu, 1975, Goodman and Myhill, 1978],
[Univalent Foundations Program, 2013, Theorem 10.1.14]! Working as we are in a type
theory based on intuitionistic logic, we must therefore reject the axiom of choice.

Remark. It is worth noting that within HoTT, the notion of a “non-empty” set can be
defined in a more nuanced way. The best way to model what classical mathematicians
mean when they say “S is non-empty” is probably not with a negation, but instead
with the propositional truncation of the statement that S contains an element [Uni-
valent Foundations Program, 2013, Chapter 3]. This more faithfully mirrors the way
mathematicians use it, for example, in reasoning such as “S is non-empty, so let s ∈ S
. . . ”. Non-emptiness does in fact imply an inhabitant, but such an inhabitant can only
be used to prove propositions.

Unfortunately, traditional category theory (founded in set theory) makes frequent—
though hidden—use of the axiom of choice. The next sections explain the places where
it occurs and some approaches to doing without it.

2.1.2 Unique isomorphism and generalized “the”

In category theory, one is typically interested in specifying objects only up to (unique)
isomorphism. In fact, definitions which make use of actual equality on objects are
sometimes referred to (half-jokingly) as evil. More positively, the principle of equiv-
alence states that properties of mathematical structures should be invariant under
isomorphism. This principle leads naturally to speaking of “the” object having some

33

property, when in fact there may be many objects with the given property but all
such objects are uniquely isomorphic; this cannot cause confusion if the principle of
equivalence is in effect.

Beneath this seemingly innocuous use of “the” (often referred to as generalized
“the”), however, lurks the axiom of choice! In particular, one often wishes to define
functors whose action on objects is defined only up to unique isomorphism, with no
way to make a canonical choice of output object. In order to define such a functor one
must resort to the axiom of choice to arbitrarily choose particular outputs. This seems
like a fairly “benign” use of AC: if we have a collection of equivalence classes, where
the elements in each class are all uniquely isomorphic, then using AC to pick one
representative from each really “does not matter” in the sense that we cannot tell the
difference between different choices (as long as we refrain from evil). Unfortunately,
even such “benign” use of AC still poses a problem for computation.

2.1.3 AC and equivalence of categories

As hinted in §1.4.1, a particular example of the need for AC relates to equivalence
of categories. The underlying issue is exactly that described in the previous section:
namely, the need for functors defined only up to unique isomorphism.

Recall, from §1.4.1, the definition of equivalence of categories:

Definition 1.4.2. An equivalence between C and D is given by functors C
F // D
G
oo

which are inverse up to natural isomorphism, that is, 1C ∼= GF and FG ∼= 1D.

In set theory, a function is a bijection—that is, an isomorphism of sets—if and only
if it is both injective and surjective. By analogy, one might wonder what properties
a functor F : C→ D must have in order to be one half of an equivalence. This leads
to the following definition:

Definition 2.1.1. C is protoequivalent to D if there is a functor F : C → D which
is full and faithful (i.e. a bijection on each hom-set) as well as essentially surjective,
that is, for every object D ∈ D there exists some object C ∈ C such that F (C) ∼= D.

Intuitively, this says that F “embeds” an entire copy of C into D (the “full and
faithful” part of the definition), and that every object of D which is not directly in
the image of F is isomorphic to one that is. So every object of D is “included” in the
image of C, at least up to isomorphism (which is supposed to be all that matters).

So, are equivalence and protoequivalence the same thing? In one direction, it is
not too hard to show that every equivalence is a protoequivalence: if F and G are
inverse up to natural isomorphism, then they must be fully faithful and essentially
surjective. It would be nice if the converse were also true: in that case, in order to
prove two categories equivalent, it would suffice to construct a single functor F from
one to the other, and show that F has the requisite properties. This often ends up

34

being more convenient than explicitly constructing two functors and showing they
are inverse. However, it turns out that the converse is provable only if one accepts
the axiom of choice!1 To get an intuitive sense for why this is, suppose F : C → D
is fully faithful and essentially surjective. To construct an equivalence between C
and D requires defining a functor G : D → C which is inverse to F (up to natural
isomorphism). However, to define G we must give its action on each object D ∈ D,
that is, we must exhibit a function ObD → ObC. We know that for each D ∈ D
there exists some object C ∈ C with F C ∼= D. That is,

{{C ∈ C | F C ∼= D} | D ∈ D}

is a collection of nonempty sets. However, in a non-constructive logic, knowing these
sets are nonempty does not actually give us any objects. Instead, we must use the
axiom of choice, which yields a choice function ObD→ ObC, and this function can
serve as the object mapping of the functor G.

Remark. It should be noted that without AC, protoequivalence is actually not even
an equivalence relation on categories. To fix this, one must pass to the notion of a
weak equivalence of categories, which consists of a span of protoequivalences [nLab,
2014d].

So AC is required to prove that every protoequivalence is an equivalence. In fact,
the association goes deeper yet: it turns out that the statement

every protoequivalence is an equivalence (AP)

(let’s call this the “Axiom of Protoequivalence”, or AP) not only requires AC, but
is equivalent to it, in the sense that AC is derivable given AP as an axiom [nLab,
2014a]!

On purely intuitive grounds, however, it still feels like AP ought to be true. The
particular choice of functor G : D→ C doesn’t matter, since it makes no difference up
to isomorphism. One is therefore left in the awkward position of having two logically
equivalent statements which it seems ought to be respectively affirmed and rejected.

Obviously this is not a tenable state of affairs; there are (at least) four options for
resolving the situation.

1. If one is feeling particularly rational, one can simply say, “Since AC and AP
are equivalent and I reject AC, I must therefore reject AP as well; my feelings
about it are irrelevant.”

This is a perfectly sensible and workable approach. It’s important to highlight,
therefore, that the “problem” is in some sense more a philosophical problem than

1At this point I should note that “protoequivalence” is not standard terminology, and now it
should be clear why: there is no need for a distinct term if one accepts the axiom of choice.

35

a technical one. One can perfectly well adopt the above solution and continue to do
category theory; it just may not be the “nicest” (a philosophical rather than technical
notion!) way to do it.

There are also, however, several more creative options:

2. In a classical setting, one can avoid AC and affirm (an analogue of) AP by gen-
eralizing the notion of functor to that of anafunctor [Makkai, 1996]. Essentially,
an anafunctor is a functor “defined only up to unique isomorphism”. It turns
out that the appropriate analogue of AP, where “functor” has been replaced by
“anafunctor”, is indeed true—and neither requires nor implies AC. Anafunctors
act like functors in a sufficiently strong sense that one can simply do category
theory using anafunctors in place of functors. However, one also has to replace
natural transformations with “ananatural transformations”, and so on, and it
quickly gets rather fiddly. Anafunctors are defined and discussed in more detail
in §2.1.5.

3. In a constructive setting, a witness of essential surjectivity is necessarily a func-
tion which gives an actual witness C ∈ C, along with a proof that F C ∼= D,
for each D ∈ D. In other words, a constructive witness of essential surjectivity
is already a “choice function”, and an inverse functor G can be defined directly,
with no need to invoke AC and no need for anafunctors. So in constructive
logic, AP is simply true. However, this version of “essential surjectivity” is
rather strong, in that it forces you to make choices you might prefer not to
make: for each D ∈ D there might be many isomorphic C ∈ C to choose from,
with no canonical choice, and it is annoying (again, a philosophical rather than
technical consideration!) to be forced to choose one.

4. Instead of generalizing functors, a more direct solution is to generalize the notion
of equality. After all, what really seems to be at the heart of all these problems is
differing notions of equality (i.e. equality of sets, isomorphism, equivalence . . .).
Of course, this is precisely what is done in HoTT.2 It turns out that if one builds
up suitable notions of category theory on top of HoTT instead of set theory,
then AP is true, without the need for AC, and even with a weaker version of
essential surjectivity that corresponds more closely to essential surjectivity in
classical logic, using propositional truncation to encode the classical notion of
existence. This is discussed in more detail in §2.2.

Ultimately, this last option using HoTT is the best. However, to fully appreciate
it, it is helpful to first explore the notion of anafunctors, and the closely related notion
of cliques.

2As a historical note, it seems that the original work on anafunctors is part of the same intellectual
thread that led to the development of HoTT: see http://byorgey.wordpress.com/2014/05/13/

unique-isomorphism-and-generalized-the/#comment-13123.

36

http://byorgey.wordpress.com/2014/05/13/unique-isomorphism-and-generalized-the/#comment-13123
http://byorgey.wordpress.com/2014/05/13/unique-isomorphism-and-generalized-the/#comment-13123

2.1.4 Cliques

As a preface to anafunctors, we begin with a brief outline of the theory of cliques,
which are a formal way of representing the informal notion of an “equivalence class of
uniquely isomorphic objects”. Cliques were introduced by Joyal and Street [1991] for
the specialized purpose of relating strict and non-strict monoidal categories. Makkai
[1996] later noted that cliques are a special case of anafunctors; the precise relationship
will be explained in §2.1.5.

The theory of cliques (and of anafunctors) amounts to a way of doing (set-
theoretic) category theory without using the axiom of choice. However, building
category theory directly in homotopy type theory (§2.2), instead of set theory, also
obviates the need for the axiom of choice, but without the extra complication of
anafunctors. This subsection and the next, therefore, are not strictly prerequisite to
the remainder of this dissertation, but they help build intuition for the success of
homotopy type theory, explained in §2.4.

Definition 2.1.2. A clique (I, A, u) in a category C is given by

• a non-empty collection of objects A = {Ai | i ∈ I}, indexed by some collection
I, and

• a collection of morphisms u = { Ai
uij
// Aj | i, j ∈ I},

such that for all i, j, k ∈ I,

• uii = idAi
, and

• uij ; ujk = uik.

Remark. There are two things worth pointing out about this definition. First, the
same object may occur multiple times in the collection A—that is, multiple different
values of I may index the same object of C. Second, the last two conditions together
imply uij = u−1ji , since uij ; uji = uii = id.

A clique can thus be visualized as a graph-theoretic clique in a directed graph,
with a unique morphism between any two objects:

A1

��

//

A2
oo

��~~

A3

OO

//

>>

A4oo

OO``

Equivalently, a clique may be visualized as a clique in an undirected graph, with
each edge representing an isomorphism. That is, a clique represents a collection of
objects in C which are all isomorphic, with a single chosen isomorphism between each
pair of objects.

37

Definition 2.1.3. A morphism between two cliques (I, A, u) and (J,B, v) is given
by a collection of arrows

{ Ai
fij
// Bj | i ∈ I, j ∈ J}

such that

Ai
fij
//

uik
��

Bj

vjl

��

Ak fkl
// Bl

commutes for all i, k ∈ I and j, l ∈ J . In other words, a morphism of cliques maps
an entire class of isomorphic objects to another class—in particular, mapping each
representative of the first class to each representative of the second—in a way that
preserves the isomorphisms.

As one would expect, the class of cliques and clique morphisms in a category
C itself forms a category, which we call clqC. It is easy to imagine what the iden-
tity morphism of cliques must be—the one that maps each Ai to Aj via uij. How-
ever, composition of clique morphisms is more subtle. Suppose we have three cliques

with morphisms (I, A, u)
f
// (J,B, v)

g
// (K,C,w) . We must define a collection

of morphisms Ai
hik // Ck . For any given Ai and Ck, we have morphisms from Ai to

each of the Bj, and from each of the Bj to Ck, with a representative example shown
below.

B1

��

//

**

��

B2
oo

��

g2k

%%

��

Ai

fi1
99

fi3 %%

44

**

Ck

B3

OO

//

44

CC

B4
oo

OO

g4k

99

[[

If we pick a fixed j ∈ J , for each i ∈ I and k ∈ K we can define hik = fij ; gjk.
Moreover, the resulting hik are independent of the choice of j, since everything in
sight commutes. Specifically,

fij ; gjk
= { vjl ; vlj = vjj = id }
fij ; vjl ; vlj ; gjk

= { f , g are clique morphisms }
uii ; fil ; glk ; wkk

= { uii = id ; wkk = id }
fil ; glk.

38

Since J is non-empty, it must contain some element j which we may arbitrarily use
to define the hik.

Remark. If defining the theory of cliques within HoTT instead of set theory, this can
be done in an even more principled way: the fact that J is non-empty should be
modeled by its propositional truncation, ‖J‖. This means that in order to be able to
use the particular value of J hidden inside the truncation, we must show that the hik
thus defined are independent of the choice of j.

The idea now is to replace functors C → D with functors C → clqD, which map
objects of C to entire equivalence classes of objects in D, instead of arbitrarily picking
some object from each equivalence class. This gets rid of the need for AC in defining
such functors. However, it is somewhat cumbersome to replace D by clqD in this
way. To make it tenable, one could imagine defining a new notion of “clique functor”

F : C clq→ D given by a regular functor C → clqD, and showing that these clique
functors act like functors in suitable ways. For example, it is easy to see that any
regular functor C→ D can be made into a trivial functor C→ clqD, by sending each
C ∈ C to the singleton clique containing only F (C). One can also show that clique
functors can be composed, have a suitable notion of natural transformations between
them, and so on3. In fact, it turns out that this is precisely the theory of anafunctors.

2.1.5 Anafunctors

As an intuition for anafunctors it is helpful to keep in mind the equivalent concept
of functors C→ clqD—both represent functors whose values are specified only up to
unique isomorphsim. Such functors represent a many-to-many relationship between
objects of C and objects of D. Normal functors, as with any function, may of course
map multiple objects of C to the same object in D. The novel aspect is the ability to
have a single object of C correspond to multiple objects of D. The key idea is to add a
class of “specifications” which mediate the relationship between objects in the source
and target categories, in exactly the same way that a “junction table” must be added
to support a many-to-many relationship in a database schema. This is illustrated in
Figure 2.2. On the left is a many-to-many relation between a set of shapes and a
set of numbers. On the right, this relation has been mediated by a “junction table”
containing a set of “specifications”—in this case, each specification is simply a pair
of a shape and a number—together with two mappings (one-to-many relations) from
the specifications to both of the original sets, such that a specification maps to a
shape s and number n if and only if s and n were originally related.

Definition 2.1.4 (Makkai [1996]). An anafunctor F : C→ D is defined as follows.

• There is a class S of specifications.

3In fact, clq− turns out to be a (2-)monad, and the category of clique functors is its Kleisli
category [nLab, 2014b].

39

4
3
2
1

4

3

2

1

2

1

4
3
2
1

Figure 2.2: Representing a many-to-many relationship via a junction table

• There are two functions ObC S
←−
Foo

−→
F // ObD mapping specifications to ob-

jects of C and D.

S,
←−
F , and

−→
F together define a many-to-many relationship between objects of C and

objects of D. D ∈ D is called a specified value of F at C if there is some specification

s ∈ S such that
←−
F (s) = C and

−→
F (s) = D, in which case we write Fs(C) = D.

Moreover, D is a value of F at C (not necessarily a specified one) if there is some s
for which D ∼= Fs(C).

The idea now is to impose additional conditions which ensure that F acts like a
regular functor C→ D.

• Functors are defined on all objects; so we require each object of C to have at

least one specification s which corresponds to it—that is,
←−
F must be surjective.

• Functors transport morphisms as well as objects. For each s, t ∈ S (the middle

of the below diagram) and each f :
←−
F (s) →

←−
F (t) in C (the left-hand side

below), there must be a morphism Fs,t(f) :
−→
F (s)→

−→
F (t) in D (the right-hand

side):

• Functors preserve identities: for each s ∈ S we should have Fs,s(id←−
F (s)

) = id−→
F (s)

.

• Finally, functors preserve composition: for all s, t, u ∈ S (in the middle below),

f :
←−
F (s) →

←−
F (t), and g :

←−
F (t) →

←−
F (u) (the left side below), it must be the

case that Fs,u(f ; g) = Fs,t(f) ; Ft,u(g):

40

Remark. Our initial intuition was that an anafunctor should map objects of C to
equivalence classes of objects in D. This may not be immediately apparent from the
definition, but is in fact the case. In particular, the identity morphism idC maps to
isomorphisms between specified values of C; that is, under the action of an anafunctor,
an object C together with its identity morphism “blow up” into a clique. To see this,

let s, t ∈ S be two different specifications corresponding to C, that is,
←−
F (s) =

←−
F (t) =

C. Then by preservation of composition and identities, we have

Fs,t(idC) ; Ft,s(idC) = Fs,s(idC ; idC) = Fs,s(idC) = id−→
F (s)

,

so Fs,t(idC) and Ft,s(idC) constitute an isomorphism between Fs(C) and Ft(C).

Remark. It is not hard to show that cliques in D are precisely anafunctors from 1 to
D. In fact, more is true: the class of functors C → clqD is naturally isomorphic to
the class of anafunctors C→ D (for the proof, see Makkai [1996, pp. 31–34]).

There is an alternative, equivalent definition of anafunctors, which is somewhat
less intuitive but usually more convenient to work with.

Definition 2.1.5. An anafunctor F : C → D is a category S together with a span

of functors C S
←−
Foo

−→
F // D where

←−
F is fully faithful and (strictly) surjective on

objects.

Remark. In this definition,
←−
F must be strictly (as opposed to essentially) surjective

on objects, that is, for every C ∈ C there is some S ∈ S such that
←−
F (S) = C,

rather than only requiring
←−
F (S) ∼= C. Given this strict surjectivity on objects, it

is equivalent to require
←−
F to be full, as in the definition above, or to be (strictly)

surjective on the class of all morphisms.

We are punning on notation a bit here: in the original definition of anafunctor,

S is a set and
←−
F and

−→
F are functions on objects, whereas in this more abstract

definition S is a category and
←−
F and

−→
F are functors. Of course, the two are closely

related: given a span of functors C S
←−
Foo

−→
F // D , we may simply take the objects

of S as the class of specifications S, and the actions of the functors
←−
F and

−→
F on

41

objects as the functions from specifications to objects of C and D. Conversely, given

a class of specifications S and functions
←−
F and

−→
F , we may construct the category S

with Ob S = S and with morphisms
←−
F (s) →

←−
F (t) in C acting as morphisms s → t

in S. From S to C, we construct the functor given by
←−
F on objects and the identity

on morphisms, and the other functor maps f : s → t in S to Fs,t(f) :
−→
F (s) →

−→
F (t)

in D.
Every functor F : C→ D can be trivially turned into an anafunctor

C CIdoo F // D .

Anafunctors also compose. Given compatible anafunctors F : C S
←−
Foo

−→
F // D and

G : D T
←−
Goo

−→
G // E , consider the action of their composite on objects: each object of

C may map to multiple objects of E, via objects of D. Each such mapping corresponds
to a zig-zag path

t

�� ��

E

s

�� ��

DC

In order to specify such a path it suffices to give the pair (s, t), which determines
C, D, and E. Note, however, that not every pair in S × T corresponds to a valid
path, but only those which agree on the middle object D ∈ D. Thus, we may take

{(s, t) | s ∈ S, t ∈ T,
−→
F (s) =

←−
G(t)} as the set of specifications for the composite F ;G,

with
←−−−
F ;G(s, t) =

←−
F (s) and

−−−→
F ;G(s, t) =

−→
G(t). On morphisms, (F ; G)(s,t),(u,v)(f) =

Gt,v(Fs,u(f)). One can check that this satisfies the anafunctor laws.
The same thing can also be defined at a higher level in terms of spans:

S×D T←−
F ′

��

−→
G ′

��

T←−
G

��

−→
G

��

E

S←−
F

��

−→
F

��

DC

Cat is complete, and in particular has pullbacks, so we may construct a new anafunc-

tor from C to E by taking a pullback of
−→
F and

←−
G and then composing appropriately,

as illustrated in the diagram.
One can go on to define ananatural transformations between anafunctors, and

show that together these constitute a 2-category AnaCat which is analogous to
the usual 2-category of (small) categories, functors, and natural transformations; in
particular, there is a fully faithful embedding of Cat into AnaCat, which moreover

42

is an equivalence if AC holds. See Makkai [1996] for details.
To work in category theory based on set theory and classical logic, while avoid-

ing AC, one is therefore justified in “mixing and matching” functors and anafunc-
tors as convenient, but discussing them all as if they were regular functors (except
when defining a particular anafunctor). Such usage can be formalized by turning ev-
erything into an anafunctor, and translating functor operations and properties into
corresponding operations and properties of anafunctors. However, this is tediously
complex (imagine if an introductory category theory textbook followed up the defini-
tion of categories with the definition of anafunctors!) and, as we will see, ultimately
unnecessary. By founding category theory on HoTT instead of set theory, we can avoid
the axiom of choice without incurring such complexity overhead. In a sense, HoTT
takes all the added complexity of anafunctors and moves it into the background the-
ory, so that “normal” functors secrectly become anafunctors.

2.2 Category theory in HoTT

Category theory works much better when founded in HoTT instead of set theory. Pri-
marily, this is because in set theory the only notion of equality (extensional equality
of sets) is too impoverished—one really wants to work up to isomorphism rather than
literal equality, and the mismatch between isomorphism and strict equality introduces
all sorts of difficulties and extra work. For example, many concepts have subtly dif-
ferent “strict” and/or “weak” variants, having to do with the sort of equality used
in the definition. In contrast, via the univalence axiom, HoTT has a very rich—yet
coherent—notion of equality that is able to encompass isomorphism in categories.

This section lays out a few relevant definitions along with some intuition and
commentary. A fuller treatment may be found in Chapter 9 of the HoTT book [2013].
Generally, the term “h-widget” is used to refer to widgets as defined in HoTT, to
distinguish from widgets as defined in set theory. There is nothing fundamentally new
in this section, but it is valuable to collect and synthesize the particularly relevant
bits of information which are otherwise scattered throughout the HoTT book.

We begin with the definition of a precategory.

Definition 2.2.1. A precategory C consists of

• A type C0 : U of objects (we often write simply c : C instead of c : C0);

• a function − ⇒ − : C → C → Set associating a set (0-type) of morphisms to
each pair of objects (we often write X ⇒C Y to indicate the precategory being
referenced, especially when multiple precategories are under consideration);

• a function id : (X : C) → (X ⇒ X) associating an identity morphism to each
object;

• a function − ;− : (X, Y, Z : C)→ (X ⇒ Y)→ (Y ⇒ Z)→ (X ⇒ Z); and

43

• proofs of the identity and associativity laws.

Remark. Note how well the idea of types fits the definition: in the usual set-theoretic
definition of a category, one must resort to awkward constructions like saying that
composition is a partial function, with f ; g being defined only when tgt(f) = src(g).
Here, the same idea is expressed simply as the type of the composition operator.

The restriction that X ⇒ Y is a set, i.e. a 0-type (rather than an arbitrary type)
is important: otherwise one runs into problems with coherence of the identity and
associativity laws, and extra laws become necessary. Down this path lie n-categories or
even (∞, 1)-categories; but to model traditional (1-)categories, it suffices for X ⇒ Y
to be a 0-type. In particular, this means that the identity and associativity laws,
being equalities between elements of a 0-type, are themselves (−1)-types, i.e. mere
propositions.

One might wonder why the term precategory is used for something that seems to be
a direct port of the definition of a category from set theory into HoTT. The reason is
that the usual formal definition of categories as expressed in set theory is incomplete:
categories in fact come equipped with an extra social convention regarding their
use—namely, “don’t be evil”, i.e. don’t violate the principle of equivalence. In HoTT,
we can formally encode this social convention as an axiom, which makes categories
much nicer to work with in practice (after all, the social convention is not arbitrary,
but encodes what category theorists have found to be a particularly nice way to do
category theory).

Definition 2.2.2. An isomorphism in C is a morphism f : X ⇒ Y together with a
morphism g : Y ⇒ X such that f ; g = idX and g ; f = idY . We write X ∼= Y for the
type of isomorphisms between X and Y .

Remark. Note the distinction between X ∼= Y , the type of isomorphisms between X
and Y as objects in the precategory C, and X ' Y , the type of equivalences between
the types X and Y . The latter consists of a pair of inverse functions; the former of a
pair of inverse morphisms. Morphisms, of course, need not be functions, and moreover,
objects need not be types.

It is immediate, by path induction and the fact that idX is an isomorphism, that
equality implies isomorphism: we call this idtoiso : (X = Y) → (X ∼= Y). However,
the other direction is not automatic; in particular, it does not follow from univalence,
due to the distinction between X ∼= Y and X ' Y . However, requiring the other
direction as an axiom is what allows us to formalize the principle of equivalence:
isomorphic objects in a category should be truly interchangeable.

Definition 2.2.3. An h-category is a precategory C together with the additional
univalence-like axiom that for all X, Y : C,

(X ∼= Y) ' (X = Y).

44

We write isotoid : (X ∼= Y) → (X = Y) for the left-to-right direction of the equiva-
lence.

An h-groupoid is an h-category where every morphism is an isomorphism. The
following example will play an important role later.

Definition 2.2.4. Any 1-type T gives rise to an h-groupoid G(T) where the objects
are values a : T and morphisms are equalities a ⇒ b :≡ (a = b), that is, morphisms
from a to b are paths p : a = b.

Proof. The fact that T is a 1-type means that a⇒ b is a 0-type for a, b : T , as required.
Identity morphisms, composition, the identity laws, associativity, and the fact that
every morphism is an isomorphism all follow directly from properties of propositional
equality. Since isomorphisms are already paths, isotoid is just the identity. SDG

Another important example of an h-category is an analogue to the usual category
Set of sets and functions.

Definition 2.2.5 (HoTT book, 9.1.5, 9.1.7). S denotes the h-category of sets,
that is, the category whose objects are 0-types, i.e. sets, and whose morphisms are
functions A→ B.

Proof. This category is defined in the HoTT book in examples 9.1.5 and 9.1.7, and
explored extensively in Chapter 10. However, the proof given in Example 9.1.7 leaves
out some details, and it is worth spelling out the construction here.

Of course, identity morphisms are given by the identity function, and morphism
composition by function composition, so the identity and associativity laws are satis-
fied. The definition also satisfies the requirement that the type of morphisms is a set,
since A→ B is a set whenever B is.

Finally, suppose A ∼= B, that is, there are functions f : A → B and g : B → A
such that f ◦ g = idB and g ◦ f = idA. It is not a priori obvious that this is the
same as an equivalence A ' B—indeed, it turns out to be so only because A and
B are sets. Technically, (A ∼= B) constitutes a quasi-inverse between A and B, that
is, (A ∼= B) ' (f : A → B) × qinv(f), where qinv(f) :≡ (g : B → A) × (f ◦ g =
idB)× (g ◦ f = idA). On the other hand, (A ' B) ' (f : A → B)× isequiv(f). The
precise definition of isequiv(f) can be found in Chapter 4 of the HoTT book; for the
present purpose, it suffices to say that although qinv(f) and isequiv(f) are logically
equivalent (that is, each implies the other), isequiv(f) is always a mere proposition
but in general qinv(f) may not be. However, in the specific case that A and B are sets,
qinv(f) is indeed a mere proposition: by Lemma 4.1.4 in the HoTT book, if qinv(f) is
inhabited then it is equivalent to (x : A) → (x = x), which is a mere proposition by
function extensionality and the fact that A is a set. Therefore qinv(f) ' isequiv(f),
since logically equivalent mere propositions are equivalent, and we have (A ∼= B) '
(A ' B) ' (A = B) by univalence. SDG

45

The definitions of h-functors and h-natural transformations are straightforward
ports of their usual definitions in set theory.

Definition 2.2.6. An h-functor F between (pre)categories C and D is a pair of func-
tions

• F0 : C0 → D0

• F1 : (X, Y : C)→ (X ⇒C Y)→ (F0(X)⇒D F0(Y))

together with proofs of the functor laws,

• (X : C)→ (F1(idX) = idF0(X)), and

• (X, Y, Z : C)→ (f : X ⇒C Y)→ (g : Y ⇒C Z)→ (F1(f ; g) = F1(f) ; F1(g)).

As is standard, we often write F X and F f instead of F0(X) and F1(f).

Definition 2.2.7. An h-natural transformation γ between h-functors F,G : C → D
is a family of morphisms

• γX : F X ⇒D G X

for each X : C, satisfying

• (X, Y : C)→ (f : X ⇒C Y)→ (γX ;Gf = Ff ; γY).

It may not be readily apparent from the definitions, but as claimed earlier, this
turns out to be a much nicer framework in which to carry out category theory. An
extended example is given in §2.4. For now we describe two smaller (but also relevant)
examples.

2.2.1 Monoidal categories in HoTT

The first example is the theory of monoidal categories. Recall that a monoidal cat-
egory C is one with a bifunctor ⊗ : C2 → C, an identity object 1 ∈ C, and nat-
ural isomorphisms α, λ, and ρ expressing the associativity and identity laws (along
with some extra coherence laws). In set theory, there is also a notion of a strict
monoidal category, where associativity and the identity laws hold up to equality rather
than just isomorphism. In HoTT-based category theory, however, functors between
h-categories—as opposed to precategories—are naturally isomorphic if and only if
they are equal (HoTT book, Theorem 9.2.5). Thus, there is no difference between
strict and non-strict monoidal h-categories.

46

2.2.2 Coends in HoTT

The second example is the notion of a coend. Recall that a coend over a functor
T : Cop × C → D is an object of D, denoted ∃C. T (C,C), together with a family of
morphisms ωX : T (X,X)→ ∃C. T (C,C) for each X ∈ C, such that

T (X ′, X)
T (1,f)

��

T (f,1)

��

T (X ′, X ′)

ωX′��

T (X,X)

ωX ��

∃C. T (C,C)

(2.2.1)

commutes for all X,X ′ : C and f : X → X ′. In set theory, recall that
⊎
C T (C,C),

together with the obvious family of injections ωC t = (C, t), comes close to being the
right implementation of ∃C. T (C,C), but fails to satisfy (2.2.1): in particular, the
outputs of ωX and ωX′ are never equal when X 6= X ′, precisely because]C denotes
a disjoint union. Instead, we must quotient this disjoint union by the equivalence
relation induced by (2.2.1).

In HoTT, given some categories C and D and a functor T : Cop × C → D, we can
directly encode this quotient as a higher inductive type ∃T . We first introduce a data
constructor

〈〈−,−〉〉 : (X : C)→ T (X,X)→ ∃T.

So far this is equivalent to the Σ-type
∑

C T (C,C), which corresponds to the disjoint
union

⊎
C T (C,C). However, we also introduce a path constructor with type

(X,X ′ : C)→ (t : T (X ′, X))→ (f : X ⇒ X ′)→ 〈〈X,T (f, 1) t〉〉 = 〈〈X ′, T (1, f) t〉〉

which ensures that the commutative diagram (2.2.1) is satisfied.
It is already convenient to be able to work directly with a data type representing a

coend. The special case where C is a groupoid is even more convenient. In a groupoid,
any morphism f : X ⇒ X ′ is automatically an isomorphism, f : X ∼= X ′, and hence
there is a path isotoid f : X = X ′. Moreover, one can show that

(isotoid f)∗(T (f, 1) t) = T (1, f) t

((isotoid f)∗ applies f covariantly and f−1 contravariantly), and therefore the above
path constructor comes for free! In other words, when C is a groupoid and T :
Cop × C → D, the coend type ∃T defined above is equivalent to the simple Σ-type∑

C T (C,C)—that is, the extra higher path constructor is entirely redundant. The
equalities which were missing in set theory are supplied automatically by HoTT’s
richer system of equality.

47

2.3 Finiteness in set theory

Finally, we can assemble the foregoing material on anafunctors and category theory
in HoTT into a coherent story about finiteness, first using set-theoretic foundations,
and then using HoTT. The material in this section and the next (other than the
lemmas and theorems cited from the HoTT book) is novel.

Recall that B denotes the groupoid of finite sets and bijections, and P the groupoid
of natural numbers and permutations. In classical category theory, P is a skeleton of
B—roughly, we may think of it as the result of replacing each equivalence class of
isomorphic objects in B with a single object. In this case, we identify each equivalence
class of isomorphic finite sets with a natural number size—size being the one property
of sets which is invariant under isomorphism. The relationship between B and P is
central to the concept of finiteness: passing from B to P corresponds to taking the
size of finite sets, and passing from P to B corresponds to constructing canonical
finite sets of a given size. The study of B and P is also critical for the theory of
species; as we will shortly see in Chapter 3, traditional species are defined as functors
B→ Set.

It is a simple result in classical category theory that every category is equivalent
to its skeletons. This equivalence allows one to pass freely back and forth between
functors B→ Set and functors P→ Set, and this is often implicitly exploited in the
literature on species. However, we are interested in the computational content of this
equivalence, and it is here that we run into trouble. After the foregoing discussion of
cliques and anafunctors, the idea of quotienting out by equivalence classes of isomor-
phic objects ought to make us squeamish—and, indeed, the proof that B and P are
equivalent requires AC.

In more detail, it is easy to define a functor [−] : P→ B which sends the natural
number n to the finite set [n] and preserves morphisms; defining an inverse functor
#− : B → P, however, is more problematic. We can send each set S to its size
#S, but we must send each bijection S ∼−→ T to a permutation [#S] ∼−→ [#T], and
there is no obvious way to pick one. For example, suppose S = {cat, dog,moose} and
T = { , , }. Given a bijection matching each animal with its favorite shape4, it
must be sent to a permutation on {0, 1, 2}—but to which permutation should it be
sent? Knowing that the size of {cat, dog,moose} is 3 does not tell us anything about
how to match up animals with {0, 1, 2}.

Abstractly, [−] : P → B is fully faithful and essentially surjective (every finite
set is in bijection with [n] for some n); this yields an equivalence of categories, and
hence an inverse functor #− : B→ P, only in the presence of AC. More concretely,
we can use AC to choose an arbitrary bijection ϕS : S ∼−→ [#S] for each finite set
S, somehow matching up S with the canonical set of size #S. Given α : S ∼−→ T we
can then construct

[#S]
ϕ−1
S // S

α // T
ϕT // [#T] .

4The details are left as an exercise for the reader.

48

This use of AC is “benign” in the sense that all choices yield equivalent functors; this
construction using AC thus in some sense yields a well-defined functor but has no
computational interpretation.

We can avoid the use of AC by constructing an anafunctor #− : B→ P instead
of a functor. In particular, as the class of specifications S#, we choose the class of
sets paired with bijections to canonical finite sets of the appropriate size,∑

T∈B

(T ∼−→ [#T]).

The function
←−
: S# → Ob B simply forgets the chosen bijection, that is,

←−
(T, ϕ) =

T , and
−→
: S# → Ob P sends finite sets to their size,

−→
(T, ϕ) = #T . Note that both

←−
and

−→
ignore ϕ, which is instead needed to define the action of # on morphisms.

In particular, given α : S ∼−→ T in B, we define #(S,ϕS),(T,ϕT)(α) = ϕ−1S ;α ;ϕT , which
can be visualized as

S

α

��

[#S]
ϕ−1
Soo

#α

��

T ϕT

// [#T]

.

Proof that # preserves identities and composition is given by the following diagrams:

S

id

��

[#S]
ϕ−1
Soo

#id
��

S ϕS

// [#S]

S

α

��

[#S]
ϕ−1
Soo

#α
��

T

β

��

ϕT // [#T]
ϕ−1
T

oo

#β
��

U
ϕU // [#U]

=

S

α;β

��

[#S]
ϕ−1
Soo

#(α;β)

��

U
ϕU // [#U]

The left-hand diagram represents the definition of #id , in which ϕS and its inverse
cancel, resulting in the identity. The center diagram shows the result of composing
#α and #β; because ϕT cancels with ϕ−1T it is the same as the definition of #(α ; β)
(the right-hand diagram).

As a side note, it is worth mentioning an alternate way around the use of AC in
this particular case, using the theory of hereditarily finite sets.

Definition 2.3.1. A hereditarily finite set is a finite set, all of whose elements are
hereditarily finite.

This definition gets off the ground since the empty set is vacuously hereditarily finite.
As is usual in set theory, this definition is interpreted inductively, so there cannot be
any infinitely descending membership chains. Hereditarily finite sets are thus identi-

49

fied with finitely-branching, finite-depth trees (with no inherent order given to sibling
nodes).

Now consider the groupoid H obtained by replacing “finite” with “hereditarily
finite” in the definition of B. That is, the elements of H are hereditarily finite sets,
and the morphisms are bijections. This is no great loss, since given some finite set we
are not particularly interested in the intensional properties of its elements, but only
in its extensional properties (how many elements it has, which elements are equal to
other elements, and so on).

Unlike the class of all sets, however, the class of all hereditarily finite sets (normally
written Vω) has a well-ordering. For example, we can compare two hereditarily finite
sets by first inductively sorting their elements, and then performing a lexicographic
comparison between the two ordered sequences of elements. This means that every
hereditarily finite set has an induced ordering on its elements, since the elements are
themselves hereditarily finite. In other words, picking a well-ordering of Vω is like
making a “global” choice of orderings, assigning a canonical bijection S ∼−→ [#S] for
every hereditarily finite set S.

However, this construction is somewhat arbitrary, and has no natural counterpart
in type theory, or indeed in a structural set theory. The concept of hereditary finiteness
only makes sense in a material set theory such as ZF. To determine the canonical
ordering on, say, {dog, cat,moose}, we need to know the precise identity of the set
used to encode each animal—but knowing their precise encoding as sets violates the
principle of equivalence, since there may be many possible encodings with the right
properties.

2.4 Finiteness in HoTT

We now turn to developing counterparts to the groupoids P and B in type theory.
§2.4.1 presents some necessary lemmas and defines P as a type-theoretic analogue to
P. §2.4.2 then presents the theory of cardinal-finiteness in HoTT and uses it to define
B, a type-theoretic analogue to B. This leads to an interesting tangent exploring
“manifestly finite” sets and their relation to linear orders in §2.4.3; finally, §2.4.4 ties
things together by considering the equivalence of P and B, in particular showing how
using HoTT as a foundation allows us to avoid the axiom of choice.

2.4.1 Preliminaries

Lemma 2.4.1. Equivalence preserves set-ness, that is, if A and B are sets, then so
is A ' B.

Proof. (A ' B) ' ((f : A→ B)× isequiv(f)), where isequiv(f) is a mere proposition
expressing the fact that f is an equivalence (i.e. has a suitable inverse). This is a set
since isequiv(f) is a mere proposition (and hence a set), A→ B is a set whenever B
is, and × takes sets to sets [HoTT book, Lemma 3.3.4, Examples 3.1.5 and 3.1.6]. SDG

50

⇒
+

+

Figure 2.3: Eliminating > from both sides of an equivalence

Corollary 2.4.2. If A and B are sets, then so is A = B.

Proof. Immediate from univalence and Lemma 2.4.1. SDG

Lemma 2.4.3. For all n1, n2 : N, if Fin n1 ' Fin n2 then n1 = n2.

Proof. The proof is by double induction on n1 and n2.

• If both n1 and n2 are zero, the result is immediate.

• The case when one is zero and the other a successor is impossible. In particular,
taking the equivalence in the appropriate direction gives a function Fin (S . . .)→
Fin O, which can be used to produce an element of Fin O = ⊥, from which
anything follows.

• In the case when both are a successor, we have Fin (S n′1) ' Fin (S n′2), which is
equivalent to >+ Fin n′1 ' >+ Fin n′2. If we can conclude that Fin n′1 ' Fin n′2,
the inductive hypothesis then yields n′1 = n′2, from which S n′1 = S n′2 follows
immediately. The implication (>+ Fin n′1 ' >+ Fin n′2)→ (Fin n′1 ' Fin n′2) is
true, but not quite as straightforward to show as one might think! In particular,
an equivalence (> + Fin n′1 ' > + Fin n′2) may not match the > values with
each other. As illustrated in Figure 2.3, given e : (>+ Fin n′1 ' >+ Fin n′2), it
suffices to define e′(e−1 ?) = e ?, with the rest of e′ : Fin n′1 ' Fin n′2 defined as
a restriction of e. This construction corresponds more generally to the Gordon
complementary bijection principle [Gordon, 1983], whereby a bijection A1

∼−→
B1 can be constructively “subtracted” from a bijection (A0+A1)

∼−→ (B0+B1),
yielding a bijection A0

∼−→ B0. (Unfortunately, I do not currently know of a good
way to encode a proof of the fully general bijection principle in a constructive
logic.) SDG

Remark. It seems somewhat strange that the above proof has so much computational
content—the required manipulations of equivalences are quite nontrivial—when the
end goal is to prove a mere proposition. I do not know whether there is a simpler
proof.

51

Constructing a type-theoretic counterpart to P is now straightforward.

Definition 2.4.4. P is the h-groupoid where

• the objects are values of type N, and

• the morphisms m⇒ n are equivalences of type Fin m ' Fin n.

It is easy to check that this satisfies the axioms for an h-category, the salient points
being that Fin m ' Fin n is a set by Lemma 2.4.1 and that isotoid follows from
Lemma 2.4.3.

2.4.2 Cardinal-finiteness

Developing a counterpart to B is more subtle. The first order of business is to decide
how to port the concept of a “finite set”. Generally, “a set with property X” ports to
type theory as “a type paired with constructive evidence of property X” (or perhaps
“a 0-type paired with evidence of X”, depending how seriously we want to take the
word set); so what is constructive evidence of finiteness? This is not a priori clear,
and indeed, there are several possible answers [nLab, 2013]. However, the discussion
of §2.3, where bijections S ∼−→ [#S] played a prominent role, suggests that we adopt
the simplest option, cardinal-finiteness.

Definition 2.4.5. A set A is cardinal-finite iff there exists some n ∈ N and a bijection
A ∼−→ [n]; n is called the size or cardinality of A.

Our first try at encoding this in type theory is

UFin :≡ (A : U)× (n : N)× (A ' Fin n).

We would like to build a groupoid having such finite types as objects, and equiv-
alences between them as morphisms. Recall that, given some 1-type A, the groupoid
G(A) has values (a : A) as its objects and paths a = b as its morphisms. For this
to be applicable, we must check that UFin is a 1-type. In fact, it turns out that it
is a 0-type, i.e. a set—but this won’t do, because the resulting groupoid is therefore
discrete, with at most one morphism between each pair of objects. B, of course, has
n! distinct morphisms between any two sets of size n. Intuitively, the problem is that
paths between objects in G(UFin) involve not just the types in question but also the
evidence of their finiteness, so that a path between two finite types requires them to
be not just equivalent as types, but also “finite in the same way”.

The situation can be pictured as shown in Figure 2.4. The elements of types A1 and
A2 are shown on the sides; the evidence of their finiteness is represented by bijections
between their elements and the elements of Fin n, shown along the bottom. The catch
is that the diagram necessarily contains only triangles: corresponding elements of A1

and A2 must correspond to the same element of Fin n on the bottom row. Therefore,

52

Figure 2.4: A path between inhabitants of UFin contains only triangles

there are only two degrees of freedom. Once the evidence of finiteness is determined
for A1 and A2, there is only one valid correspondence between them—but there ought
to be n! such correspondences.

Proposition 2.4.6. UFin is a set, that is, for any X, Y : UFin, if p1, p2 : X = Y then
p1 = p2.

Proof (sketch). A path (A1, n1, e1) = (A2, n2, e2) is equivalent to (p : A1 = A2)× (q :
n1 = n2) × (q∗(p∗(e1)) = e2). The transport of e1 by p is given by the composition
e1 ◦ (ua−1(p))−1, but this essentially means that p is uniquely determined by e1 and
e2. SDG

The underlying problem is that UFin does not actually do a very good job at
encoding what classical mathematicians usually mean by “finite set”. Saying that
a set A is finite with size n does not typically imply there is some specific, chosen
bijection A ∼−→ [n], but merely that A can be put in bijection with [n], with no
mention of a specific bijection. This is justified by the fact that, up to isomorphism,
any bijection A ∼−→ [n] is just as good as any other.

This suggests a better encoding of finiteness in type theory.

Definition 2.4.7. The type of finite sets is given by

U‖Fin‖ :≡ (A : U)× isFinite(A),

where
isFinite(A) :≡ ‖(n : N)× (A ' Fin n)‖ .

Here we make use of propositional truncation to encode the fact that there merely
exists some size n and an equivalence between A and Fin n, but without exposing a
precise choice. The finiteness evidence is now irrelevant to paths in U‖Fin‖, since there
is always a path between any two elements of a truncated type.

In an abuse of notation, we will often write A : U‖Fin‖ instead of (A, f) : U‖Fin‖
where f : isFinite(A). We first record a few properties of U‖Fin‖.

53

Proposition 2.4.8. U‖Fin‖ is a 1-type.

Proof. We first show that if (A, f) : U‖Fin‖, then A is a set. Being a set is a mere
proposition, so we may use the equivalence A ' Fin n hidden inside f . But Fin n is
a set, and equivalence preserves set-ness (Lemma 2.4.1), so A is a set as well.

Finally, since isFinite(A) is a mere proposition, paths between U‖Fin‖ values are
characterized by paths between their underlying types. Since those types must be
sets, i.e. 0-types, U‖Fin‖ is consequently a 1-type. SDG

Proposition 2.4.9. For any type A,

‖(n : N)× (A ' Fin n)‖ ' (n : N)× ‖A ' Fin n‖ .

This says that the size n of a finite type may be freely moved in and out of the
propositional truncation. Practically, this means we may freely refer to the size of
a finite type without worrying about how it is being used (in contrast, the value of
the equivalence A ' Fin n may only be used in constructing mere propositions). The
proof hinges on the fact that (n : N)×‖A ' Fin n‖ is a mere proposition; intuitively,
if a type is finite at all, there is only one possible size it can have, so putting n inside
the truncation does not really hide anything.

Proof. We must exhibit a pair of inverse functions between the given types. A function
from right to left is given by

f(n, |e|) = |(n, e)| ,

where pattern matching on |e| : ‖A ' Fin n‖ is shorthand for an application of the
recursion principle for propositional truncation. Recall that this recursion principle
only applies in the case that the result is a mere proposition; in this case, the result
is itself a propositional truncation, which is a mere proposition by construction.

In the other direction, define

g(|(n, e)|) = (n, |e|),

which is clearly inverse to f . It remains only to show that the implicit use of recursion
for propositional truncation is justified, i.e. that (n : N) × ‖A ' Fin n‖ is a mere
proposition.

We must show that any two values (n1, e1), (n2, e2) : (n : N) × ‖A ' Fin n‖ are
propositionally equal. Since e1 and e2 are mere propositions, it suffices to show that
n1 = n2. This equality is itself a mere proposition (since N is a set; see §1.3.5), so we
may apply the recursion principle for propositional truncation to e1 and e2, giving us
equivalences A ' Fin n1 and A ' Fin n2 to work with. By symmetry and transitivity
of equivalences, Fin n1 ' Fin n2, and thus n1 = n2 by Lemma 2.4.3. SDG

54

Although it is not possible to explicitly extract the equivalence with Fin n from
a finite set, it can still be implicitly used for certain purposes, such as deciding the
equality of any two elements.

Proposition 2.4.10. If (A, f) : U‖Fin‖, then A has decidable equality.

Proof. Let x, y : A; we must show (x = y) + ¬(x = y). We first show that (x =
y) + ¬(x = y) is a mere proposition, and then show how to use the equivalence
A ' Fin n contained in f to construct the desired value.

Since A is a set, x = y is a mere proposition; ¬(x = y) is also a mere proposition
since ¬Q is always a mere proposition for any Q. Now let p, q : (x = y) + ¬(x = y),
and consider a case analysis on p and q. If one is inl and the other inr, then we can
derive ⊥, and hence p = q since anything follows. If both are inl or both inr, then
p = q again, since x = y and ¬(x = y) are both mere propositions. We therefore
conclude that (x = y) + ¬(x = y) is itself a mere proposition.

Since we are constructing a mere proposition, we may make use of the equivalence
A ' Fin n contained in f . In particular, Fin n has decidable equality, which we may
transport along the equivalence (using univalence for convenience, although its use
here is not strictly necessary) to obtain decidable equality for A. That is, computa-
tionally speaking, given x, y : A, one may send them across the equivalence to find
their corresponding Fin n values, and then decide the equality of those Fin n values. SDG

Using U‖Fin‖, we can now finally define a HoTT counterpart to B.

Definition 2.4.11. B is defined by

B :≡ G(U‖Fin‖),

the groupoid of cardinal-finite sets and paths between them.

Remark. It is worth pointing out that with this definition of B, we have ended up
with something akin to the category of specifications S# used to define the anafunctor
: B → P in §2.3, rather than something corresponding directly and näıvely to B
itself. The main difference is that B uses a propositional truncation to “hide” the
explicit choice of finiteness evidence.

2.4.3 Manifestly finite sets and linear orders

We now return to our first attempt at encoding cardinal-finiteness,

UFin :≡ (A : U)× (n : N)× (A ' Fin n).

Recall that UFin turned out to be unsuitable as a basis for B because it has at most
one path between any two elements. However, UFin turns out to be quite interesting in
its own right; instead of a counterpart to B, it yields a counterpart to L, the category

55

whose objects are finite sets equipped with linear orders, and whose morphisms are
order-preserving bijections.

For ease of reference, we will call UFin the type of manifestly finite sets. The
claim is that manifestly finite sets are the same as linearly ordered finite sets. In one
direction, the evident linear order on Fin n induces a corresponding linear order on A
via transport through the equivalence A ' Fin n. Conversely, given a linear order on
a finite set A, we may construct an equivalence with Fin n by matching the smallest
element to 0, the second smallest to 1, and so on. More formally:

Proposition 2.4.12. Manifestly finite sets are equivalent to linear orderings of finite
sets, that is,

UFin ' (A : U‖Fin‖)× linOrd(A),

where linOrd(A) is suitably defined as the (constructive) existence of an antisymmetric,
transitive, total binary relation on A.

Proof. As described above, the left-to-right direction is easy: there is a canonical
inhabitant of linOrd(Fin n), which we can turn into an inhabitant of linOrd(A) via
transport.

The right-to-left direction, while not hard to understand intuitively, is more subtle
from a constructive point of view. The key observation is that the smallest element
of A (according to the given linear order) is uniquely determined, and hence we
are justified in “peeking” at the specific isomorphism contained in the propositional
truncation in order to construct it (see §1.3.7). By induction on the size n, we can
thus enumerate the elements of A in order to find the smallest. We then proceed
to recursively construct the isomorphism corresponding to the linear order with the
smallest element removed, and then to add back the smallest element, incrementing
the indices of the remaining elements. SDG

Paths between elements of UFin are thus necessarily order-preserving, since they
correspond to paths between elements of (A : U‖Fin‖) × linOrd(A). (Note that this
constitutes an alternate proof of the fact that there is at most one path between any
two elements of UFin.) We can now define a counterpart to L:

Definition 2.4.13. Let L denote

L :≡ G(UFin),

the groupoid of manifestly finite—i.e. linearly ordered—sets, and (order-preserving)
paths between them.

2.4.4 Equivalence of P and B
Finally, we turn to the equivalence of P and B, with a goal of defining inverse functors
[−] : P → B and # : B → P . We begin with [−].

56

Definition 2.4.14. The functor [−] : P → B is defined as follows; the essential idea
is to send the natural number n to the canonical finite set Fin n, and permutations
to paths.

• On objects, [n] :≡ (Fin n, |(n, id)|), where id : Fin n ' Fin n witnesses the
finiteness of Fin n.

• Recall that a morphism ψ : m⇒P n is an equivalence ψ : Fin m ' Fin n. Thus
ua ψ : Fin m = Fin n, and we define [ψ] :≡ u (ua ψ) : [m] = [n], where u is some
function witnessing the fact, mentioned immediately following Definition 2.4.7,
that paths in U‖Fin‖ are characterized by paths between their underlying types.

Before turning to # : B → P , we note the following property of [−]:

Lemma 2.4.15. [−] : P → B is full and faithful.

Proof. For any m,n : P , we must exhibit an equivalence between (m ⇒P n) ≡
(Fin m ' Fin n) and ([m] ⇒B [n]) ≡ ([m] = [n]) ' (Fin m = Fin n). such an
equivalence is given by univalence. SDG

On the other hand, it is not at all obvious how to directly define a functor # : B →
P . Just as with B → P, defining its action on morphisms requires a specific choice
of equivalence A ' Fin n. The objects of B contain such equivalences, in the proofs
of finiteness, but they are propositionally truncated; the type of functors B → P is
decidedly not a mere proposition, so it seems the recursion principle for truncation
does not apply.

However, all is not lost! We could try porting the concept of anafunctor into
HoTT, but it turns out that there is a better way. Recall that in set theory, every
fully faithful, essentially surjective functor is an equivalence if and only if the axiom
of choice holds. In HoTT the situation turns out much better, thanks to the richer
notion of equality and the extra axiom associated with a category.

First, there are two relevant notions of essential surjectivity (taken from the HoTT
book):

Definition 2.4.16. A functor F : C → D between precategories C and D is split
essentially surjective if for each object D : D there constructively exists an object
C : C such that F C ∼= D. That is,

splitEssSurj(F) :≡ (D : D)→ (C : C)× (F C ∼= D).

Definition 2.4.17. A functor F : C → D between precategories C and D is essen-
tially surjective if for each object D : D there merely exists an object C : C such that
F C ∼= D. That is,

essSurj(F) :≡ (D : D)→ ‖(C : C)× (F C ∼= D)‖ .

57

It turns out that being split essentially surjective is a rather strong notion. In
particular:

Proposition 2.4.18. For any precategories C and D and functor F : C → D, F is
fully faithful and split essentially surjective if and only if it is an equivalence.

Proof. See the HoTT book [2013, Lemma 9.4.5]. Intuitively, the split essential sur-
jectivity gives us exactly what we need to unambiguously construct an inverse func-
tor G : D → C: the action of G on D : D is defined to be the C—which exists
constructively—such that F C ∼= D. SDG

That is, a fully faithful, essentially surjective functor is an equivalence given AC;
a fully faithful, split essentially surjective functor is an equivalence even without AC.

Now, what about [−] : P → B? We have the following:

Proposition 2.4.19. [−] is essentially surjective.

Proof. Given (S, f) : B, we must show that there merely exists some n : P such that
[n] ∼= S—but this is precisely the content of the isFinite proof f . SDG

On the other hand, it would seem that [−] is not split essentially surjective, since
that would require extracting finiteness proofs from the propositional truncation,
which is not allowed in general. However:

Proposition 2.4.20 (HoTT book, Lemma 9.4.7). If F : C → D is fully faithful
and C is a category, then for any D : D the type (C : C) × (F C ∼= D) is a mere
proposition.

Proof (sketch). From F C ∼= D and F C ′ ∼= D we derive F C ∼= F C ′, and thus
C ∼= C ′ (since F is fully faithful), and C = C ′ (since C is a category). The transport
of the isomorphism (F C ∼= D) along this derived path C = C ′ is precisely the
isomorphism (F C ′ ∼= D). SDG

Intuitively, for a fully faithful functor F : C → D out of a category C, there is
“only one way” for some object D : D to be isomorphic to the image of an object of
C. That is, if it is isomorphic to the image of multiple objects of C, then those objects
must in fact be equal.

This brings us to the punchline:

Corollary 2.4.21. If C is a category, a fully faithful functor F : C → D is essentially
surjective if and only if it is split essentially surjective.

Corollary 2.4.22. Since [−] is a fully faithful and essentially surjective functor out
of a category, it is in fact split essentially surjective and thus an equivalence. In
particular, it has an inverse (up to natural isomorphism) which we call # : B → P,
and thus

: B ∼= P : [−].

58

As a final remark, note that this is at root an instance of the “trick” explained at
the end of §1.3.7, whereby a function ‖A‖ → B may be defined, even if B is not a
mere proposition, as long as the value of B produced can be uniquely characterized.
Computationally speaking, # : B → P does precisely what we thought was not
allowed—its action on morphisms works by extracting concrete equivalences out of
the finiteness proofs in the objects of B and using them to construct the required
permutation, just as in the construction of the anafunctor # : B → P in §2.3.
Indeed, we are not allowed to project finiteness evidence out from the propositional
truncation when defining arbitrary functors B → P . However, we are not interested
in constructing any old functor, but rather a very specific one, namely, an inverse to
[−] : P → B—and the inverse is uniquely determined. In essence, the construction
of # proceeds by first constructing a functor paired with a proof that, together with
[−], it forms an equivalence—altogether a mere proposition—and then projecting out
the functor.

2.5 Conclusion

In this chapter we have seen that encoding category theory and the notion of finiteness
in a constructive type theory is more subtle than one might expect. The difficulty
with both—as often in type theory—can be traced back to the foundational notion
of equality. Homotopy type theory, with its richer notion of equality, gives us exactly
the framework we need in which to encode category theory without the use of the
axiom of choice. Via propositional truncation, we can also constructively encode the
notion of finiteness such that we can “have our cake and eat it too”—with concrete,
computationally relevant isomorphisms witnessing finiteness that nonetheless do not
“leak” information inappropriately. The close connection between the encodings of
B and L, when viewed via HoTT, came as a surprise, and yields new insight into
equipotence as well as L-species (discussed in §5.5). In fact, the work on homotopy
type theory itself came as a fortuitous surprise—I had been grappling with some of
the questions in this chapter, off and on, for several years before the publication of
the HoTT book.

The next chapter explains the formal definition of species, and puts together the
tools developed in this chapter into an encoding of species within homotopy type
theory.

59

Chapter 3

Combinatorial species

The theory of combinatorial species, introduced by Joyal [1981], is a unified, algebraic
theory of combinatorial structures or shapes. The algebraic nature of species is of
particular interest in the context of data structures and will be explored in depth
in this chapter. The theory can also be seen as a categorification of the theory of
generating functions.

The present chapter begins in §3.1 by presenting an intuitive sense for species along
with a collection of examples. §3.2 presents Joyal’s formal definition of species and
related definitions in set theory, along with more commentary and intuition. The same
section also discusses an encoding of species within homotopy type theory (§3.2.4),
and the benefits of such an encoding. As a close follow-up to the formal definition, §3.3
presents two equivalence relations on species, isomorphism and equipotence, and in
particular sheds some new light on equipotence via the encoding of species in HoTT.
Finally, §3.4 introduces generating functions, which are in some sense the point of
origin for the entire theory.

3.1 Intuition and examples

In the process of generalizing the theory of generating functions, one of Joyal’s great
insights in formulating the theory of species was to take the notion of labelled struc-
tures as fundamental, and to build other notions (such as unlabelled structures) on
top of it. Species fundamentally describe labelled objects; for example, Figure 3.1
shows two representative examples, a labelled tree and a labelled “octopus”. In these
examples the integers {0, . . . , 7} are used as labels, but in general, labels can be drawn
from any set.

Why labelled shapes? In the tree shown in Figure 3.1, one can uniquely identify
each location in the tree by a path from the root, without referencing labels at all.
However, the “octopus” illustrates one reason labels are needed. The particular way it
is drawn is intended to indicate that the structure has fourfold rotational symmetry,
which means there would be no way to uniquely refer to any location except by label.

60

7

6

5

4

3

2

1

0

7

05

612

4

3

Figure 3.1: Representative labelled shapes

L

Figure 3.2: The species L of lists

More abstractly, unlabelled shapes can be defined as equivalence classes of labelled
shapes (§3.3.2), which is nontrivial in the case of shapes with symmetry.

Besides its focus on labels, the power of the theory of species also derives from
its ability to describe structures of interest algebraically, making them amenable to
analysis with only a small set of general tools.

Example. Consider the species L of lists, or linear orderings ; Figure 3.2 illustrates all
the labelled list structures (containing each label exactly once) on the set of labels
[3] = {0, 1, 2}. Of course, there are exactly n! such list structures on any set of n
labels.

The species of lists can be described by the recursive algebraic expression

L = 1 + X · L.

The meaning of this will be made precise later. For now, its intuitive meaning should
be clear to anyone familiar with recursive algebraic data types in a language such as
Haskell or OCaml: a labelled list (L) is empty (1) or (+) a single label (X) together
with (·) another labelled list (L).

Example. As another example, consider the species B of (rooted, ordered) binary trees.
The set of all labelled binary trees on {0, 1, 2} is shown in Figure 3.3.

Algebraically, such trees can be described by

B = 1 + B · X · B.

Example. The species E of sets describes shapes consisting simply of an unordered
collection of unique labels, with no other structure imposed. There is exactly one such
shape for any set of labels, as illustrated in Figure 3.4.

61

B

Figure 3.3: The species B of binary trees

E

Figure 3.4: The species E of sets

Example. The species Mob of mobiles consists of non-empty binary trees where each
node has exactly zero or two subtrees, and sibling subtrees are considered unordered.
Figure 3.5 shows a single example Mob-shape, drawn in four (equivalent) ways.
Algebraically,

Mob = X + X · (E2 ◦Mob),

that is, a mobile is either a single label, or a label together with an unordered pair
(E2) of (◦) mobiles.

Example. The species C of cycles, illustrated in Figure 3.6, describes shapes that
consist of an ordered cycle of labels. One way to think of the species of cycles is as
a quotient of the species of lists, where two lists are considered equivalent if one is a
cyclic rotation of the other (see §4.6).

Example. The species S of permutations—i.e. bijective endofunctions—is illustrated
in Figure 3.7. Algebraically, it can be described by

S = E ◦ C,

that is, a permutation is a set of cycles.

Example. The species End of endofunctions consists of directed graphs correspond-
ing to valid endofunctions on the labels—that is, where every label has exactly one
outgoing edge (Figure 3.8).

Some reflection shows that endofunctions can be characterized as permutations of
rooted trees,

End = S ◦ T = E ◦ C ◦ T,

where T = X · (E ◦ T). Each element which is part of a cycle serves as the root of
a tree; iterating an endofunction starting from any element must eventually reach a

62

Figure 3.5: An example Mob-shape, drawn in four equivalent ways

C

Figure 3.6: The species C of cycles

63

S

Figure 3.7: The species S of permutations

16

15

14 13 12

11

10

9

8

7

6

5
4

3

2

1

0

Figure 3.8: An example End-shape

64

cycle, so every element belongs to some tree. Figure 3.8 illustrates this by highlighting
each tree in a different color. The large component contains a central cycle of four
elements, each a different color, with a tree hanging off of each; the small component
consists of just a single tree with a self-loop at its root.

Joyal [1981] makes use of this characterization in giving an elegant combinatorial
proof of Cayley’s formula, namely, that there are nn−2 labelled trees (in the graph-
theoretic sense) of size n. One can likewise give characterizations of the species of
endofunctions with various special properties, such as injections, surjections, and
involutions.

In a computational context, it is important to keep in mind the distinction be-
tween labels and data, or more generally between labelled shapes and (labelled) data
structures. Labels are merely names for locations where data can be stored, and (typ-
ically) have no particular computational significance beyond the ability to compare
them for equality. Data structures contain data associated with each label, whereas
labelled shapes have no data, only labels. Put more intuitively, species shapes are
“form without content”. As a concrete example, the numbers in Figure 3.1 are not
data being stored in the structures, but merely labels for the locations. To talk about
a data structure, one must additionally specify a mapping from labels to data; this
will be made precise in Chapter 6.

Such a distinction is also important when considering the semantics of imperative
languages. See, for example, Dowek [2009, §1.3.2], who decomposes states mapping
variables to values into pairs of a mapping from variables to references (i.e. labels)
and a mapping from references to values.

3.2 Definitions

Informally, as we have seen, a species is a family of labelled shapes. Crucially, the
actual labels used shouldn’t matter: for example, we should get the “same” family of
binary trees no matter what labels we want to use. This intuition is made precise in
the formal definition of combinatorial species as functors. In fact, one of the reasons
Joyal’s work was so groundbreaking was that it brought category theory to bear on
combinatorics, showing that many specific combinatorial insights could be modeled
abstractly using the language of categories.

3.2.1 Species as functors

Definition 3.2.1 (Species [Joyal, 1981]). A species is a functor F : B→ Set.

Recall that B is the groupoid of finite sets whose morphisms are bijections, and
Set is the category of sets and (total) functions.

It is worth spelling out this definition in more detail, which will also give an op-
portunity to explain some intuition and terminology. Even for those who are very

65

db

ea

c

43

20

1

d

4

b

3

e

2

c

1

a

0

Figure 3.9: Relabelling

comfortable with category theory, it may be hard to grasp the intuition for the ab-
stract definition right away.

Definition 3.2.2. A species F is a pair of mappings which

• sends any finite set L (of labels) to a set F L (of shapes), and

• sends any bijection on finite sets σ : L ∼−→ L′ (a relabelling) to a function
F σ : F L→ F L′ (illustrated in Figure 3.9),

satisfying the following functoriality conditions:

• F idL = idFL, and

• F (σ ◦ τ) = F σ ◦ F τ .

We call F L the set of “F -shapes with labels drawn from L”, or simply “F -shapes
on L”, or even (when L is clear from context) just “F -shapes”.1 F σ is called the
“transport of σ along F”, or sometimes the “relabelling of F -shapes by σ”.

The functoriality of a species F means that the actual labels used don’t matter; the
resulting family of shapes is independent of the particular labels used. We might say
that species are parametric in label sets of a given size. In particular, F ’s action on all
label sets of size n is determined by its action on any particular such set: if |L1| = |L2|
and we know F L1, we can determine F L2 by lifting an arbitrary bijection between
L1 and L2. More formally, although Definitions 3.2.1 and 3.2.2 say only that a species
F sends a bijection σ : L ∼−→ L′ to a function F σ : F L→ F L′, the functoriality of
F guarantees that F σ is a bijection as well. In particular, (F σ)−1 = F (σ−1), since
F σ ◦ F (σ−1) = F (σ ◦ σ−1) = F id = id, and similarly F (σ−1) ◦ F σ = id. Thus,
up to isomorphism, a functor F must do the same thing for any two label sets of the
same size.

We may therefore take the finite set of natural numbers [n] = {0, . . . , n−1} as the
canonical label set of size n, and write F n (instead of F [n]) for the set of F -shapes

1Margaret Readdy’s translation of Bergeron et al. [1998] uses the word “structure” instead of
“shape”, but that word is likely to remind computer scientists of “data structures”, which is, again,
the wrong association: data structures contain data, whereas species shapes contain only labels. I try
to consistently use the word “shape” to refer to the elements of a species, and reserve “structure”
for the labelled data structures to be introduced in Chapter 6.

66

built from this set. In fact, since B and P are equivalent, we may formally take the
definition of a species to be a functor P→ Set (or an anafunctor, if we wish to avoid
AC; see §2.3), which amounts to the same thing.

Remark. Typically, the sets of shapes F L are required to be finite, that is, species
are defined as functors B→ FinSet into the category of finite sets. Of course, this is
important if the goal is to count things! However, nothing in the present work hinges
on this restriction, so it is simpler to drop it.

It should be noted, however, that requiring finiteness in this way would be no great
restriction: requiring each particular set of shapes F L to be finite is not at all the
same thing as requiring the entire family of shapes,]n∈NF n, to be finite. Typically,
even in the cases that programmers care about, each individual F n is finite but the
entire family is not—that is, a type may have infinitely many inhabitants but only
finitely many of a given size.

Remark. In my experience, computer scientists tend to have a bit of trouble with
these definitions, because their first instinct is to think of a functor B → Set from
a computational point of view: i.e. a species F : B → Set, given some set of labels
L ∈ B, computes some family of shapes having those labels.

However, I find this intuition unhelpful, since it places too much emphasis on
analyzing the “input” set of labels, making case distinctions on the size of the set,
and so on. Instead of thinking of functors B→ Set as computational, it is better to
think of them as descriptive. We begin with some entire family of labelled shapes,
and want to classify them according to the labels that they use. A functor B→ Set
is then a convenient technical device for organizing such a classification: it describes
a family of labelled shapes indexed by their labels.

Given this shift in emphasis, one might think it more natural to define a set of
labelled shapes along with a function mapping shapes to the set of labels contained
in them (indeed, down this path lie the notions of containers [Abbott et al., 2003a,
2004, 2005, Morris and Altenkirch, 2009] and stuff types [Baez and Dolan, 2000, Byrne,
2006]). Species can be seen as roughly dual to these shapes-to-labels mappings, giving
the fiber of each label set. This is parallel to the equivalence between the functor cat-
egory SetN and the slice category Set/N (see the discussion under functor categories
in §1.4.1). However, since B is not discrete, there is not an equivalence between SetB

and Set/B; this seems to account for the fact that species and containers (and, more
generally, operads and stuff types/clubs [Kelly, 2005, p. 2]) seem so closely related
but without a simply expressible relationship.

Remark. Historically, Joyal’s first paper [1981] defined species as endofunctors B →
B. Given a restriction to finite families of shapes, and the observation that functors
preserve isomorphisms, this is essentially equivalent to B → FinSet, which is the
definition used in Joyal’s second paper [1986] as well as, later, by Bergeron et al. [1998].
It can be argued, however, that this second formulation is more natural, especially

67

when one wishes to make the connection to functors FinSet → FinSet (or Set →
Set); see Chapter 6.

3.2.2 Cardinality restriction

For any species F and natural number n, we may define

Fn L :=

{
F L if #L = n

∅ otherwise
.

That is, Fn is the restriction of F to label sets of size exactly n. For example, E is the
species of sets of any size; E4 is the species of sets of size 4. This is well defined since
the action of a species is determined independently on label sets of each size. More
abstractly, as noted previously, B (and P) are disconnected categories, so functors out
of them are equivalent to a disjoint union of individual functors out of each connected
component; replacing the component functors at individual sizes will always result in
another valid overall functor.

More generally, we can “kill” any subset of sizes using arbitrary predicates. For
example, F6n is the species of F -shapes of size n or less; similarly, F>n is the species
of F -shapes of size n or greater. We also write F+ as a shorthand, and say “nonempty
F”, for F>1, the species F restricted to nonempty sets of labels.

3.2.3 The category of species

Recall that C⇒ D denotes the functor category whose objects are functors and whose
morphisms are natural transformations between functors. We may thus consider the
category of species, Spe := (B⇒ Set), where the objects are species, and morphisms
between species are label-preserving mappings which commute with relabelling—that
is, mappings which are entirely “structural” and do not depend on the labels in any
way. For example, an in-order traversal constitutes such a mapping from the species
of binary trees to the species of lists, as illustrated in Figure 3.10: computing an in-
order traversal and then relabelling yields the same list as first relabelling and then
doing the traversal.

It turns out that functor categories have a lot of interesting structure. For example,
as we will see, B ⇒ Set has (at least) six different monoidal structures! Much of
Chapter 4 is dedicated to exploring and generalizing this structure.

3.2.4 Species in HoTT

We now turn to porting the category of species from set theory into HoTT. Recall
that B denotes the h-groupoid with objects

U‖Fin‖ := (A : U)× isFinite(A),

68

gf

e

d

c

b

a

65

4

3

2

1

0

6450132

gefabdc

Figure 3.10: Inorder traversal is natural

where
isFinite(A) := ‖(n : N)× (A ' Fin n)‖

and with morphisms given by paths.

Definition 3.2.3. A constructive species, or h-species, is an h-functor F : B → S. We
use Spe = B ⇒ S to refer to the h-category of constructive species, the same name
as the category B ⇒ Set of set-theoretic species; while technically ambiguous, this
should not cause confusion since it should always be clear from the context whether
we are working in set theory or in HoTT. Likewise, when working in the context of
HoTT we will often simply say “species” instead of “constructive species”.

The above definition corresponds directly to the definition of species in set theory.
However, it is more specific than necessary. In fact, in HoTT, any function of type
B → S (that is, a function from objects of B to objects of S) is automatically
an h-functor. Since the morphisms in B are just paths, functoriality corresponds to
transport. Thus, as hinted in Chapter 1, within HoTT it is simply impossible to write
down an invalid species. This is a strong argument for working within type theory
in general and HoTT in particular: it provides exactly the right sort of type system
which allows expressing only valid species.

Nevertheless, it is still not perfectly clear whether this is the right encoding of
species within homotopy type theory. It cannot be directly justified by showing that
B ⇒ Set and B ⇒ S are categorically equivalent; this does not even make sense
since they live in entirely different foundational frameworks. Rather, a justification

69

Figure 3.11: Permutations of size three

must be extensional, in the sense of showing that the two definitions have similar
properties and support similar operations. In a sense, much of Chapter 4 is precisely
such an extensional justification.

3.3 Isomorphism and equipotence

Just as with HoTT itself, sameness and related notions are also at the heart of the
theory of species. In this section we explore isomorphism of species and of species
shapes, as well as a coarser notion of equivalence on species known as equipotence.

3.3.1 Species isomorphism

An isomorphism of species is just an isomorphism in the category of species, that
is, a pair of inverse natural transformations. Species isomorphism preserves all the
interesting combinatorial properties of species; hence in the combinatorics literature
everything is always done up to isomorphism. However, this is usually done in a
way that glosses over the computational properties of the isomorphisms. Formulating
species within HoTT gives us the best of both worlds: naturally isomorphic functors
between h-categories are equal, and hence isomorphic species are literally identified;
however, equalities (i.e. paths) in HoTT may still have computational content.

3.3.2 Shape isomorphism and unlabelled species

In addition to isomorphism of entire species, there is also a natural notion of isomor-
phism for individual species shapes. For example, consider the set of permutations
on the labels {0, 1, 2}, shown in Figure 3.11. Notice that some of these permutations
“have the same form”. For example, the only difference between the two permutations
shown in Figure 3.12 is their differing labels. On the other hand, the two permutations
shown in Figure 3.13 are fundamentally different, in the sense that there is no way to
merely relabel one to get the other.

We can formalize this idea as follows.

Definition 3.3.1. Given a species F and F -shapes f1 : F L1 and f2 : F L2, we say
f1 and f2 are equivalent up to relabelling, or have the same form, and write f1 ≈ f2, if

70

Figure 3.12: Two permutations with the same form

Figure 3.13: Two permutations with different forms

there is some bijection σ : L1
∼−→ L2 such that F σ f1 = f2. If we wish to emphasize

the particular bijection relating f1 and f2 we may write f1 ≈σ f2.

Thus, the two labelled shapes shown in Figure 3.12 are related by ≈, whereas
those shown in Figure 3.13 are not.

Definition 3.3.2. Given a species F , denote by sh(F) the groupoid whose objects
are F -shapes—that is, finite sets L together with an element of F L—and whose
morphisms are given by the ≈ relation.

Proof. We need to show this is a well-defined groupoid, i.e. that ≈ is an equivalence
relation. The ≈ relation is reflexive, yielding identity morphisms, since any shape is
related to itself by the identity bijection. If f ≈ g ≈ h then f ≈ h by composing the
underlying bijections. Finally, f ≈ g implies g ≈ f since the underlying bijections are
invertible. SDG

Given these preliminary definitions, we can now define what we mean by a form,
or unlabelled shape.

Definition 3.3.3. An F -form is an equivalence class under ≈, that is, a connected
component of the groupoid sh(F).

In other words, an F -form is a maximal class of labelled F -shapes which are all
interconvertible by relabelling, that is, a maximal clique. As defined, such classes are
rather large, as they include labellings by all possible sets of labels! Typically, we
consider only a single label set of each size, such as Fin n. For example, Figure 3.14
shows all the S-forms of size four, using two different representations: on the right

71

Figure 3.14: S-forms of size 4

are the literal equivalence classes of permutations on Fin 4 which are equivalent up to
relabelling. On the left are schematic representations of each form, drawn by replacing
labels with indistinguishable dots. Note that the schematic representations, while
convenient, can break down in more complex situations, so it is important to also
keep in mind the underlying definition in terms of equivalence classes.

Remark. What are here called forms are more often called types in the species litera-
ture; but using that term would lead to unnecessary confusion in the present context.

3.3.3 Equipotence

It turns out that there is another useful equivalence relation on species which is weaker
(i.e. coarser) than isomorphism/equality, known as equipotence.

Definition 3.3.4. An equipotence between species F and G, denoted F
#
= G,2 is

defined as an “unnatural” isomorphism between F and G—that is, two families of
functions ϕL : F L→ G L and ψL : G L→ F L such that ϕL ◦ψL = ψL ◦ϕL = id for
every finite set L. Note in particular there is no requirement that ϕ or ψ be natural.

We can see that an equipotence preserves the number of shapes of each size, since
ϕ and ψ constitute a bijection, for each label set L, between the set of F -shapes
F L and the set of G-shapes G L. Isomorphic species are of course equipotent, where
the equipotence also happens to be natural. It may be initially surprising, however,
that the converse is false: there exist equipotent species which are not isomorphic.
Put another way, having the same number of structures of each size is not enough to
ensure isomorphism.

One good example is the species L of lists and the species S of permutations. As is
well-known, there are the same number of linear orderings of n labels as there are per-
mutations of n labels (namely, n!). In fact, this is so well-known that mathematicians

2In the species literature, equipotence is usually denoted F ≡ G, but we are already using that
symbol to denote judgmental equality.

72

Figure 3.15: Lists and permutations on three labels

routinely conflate the two, referring to an ordered list as a “permutation”. Figure 3.15
shows the six lists and six permutations on three labels.

However, L and S are not isomorphic. The intuitive way to see this is to note that
although there is only a single list form of any given size, for n > 2 there are multiple
permutation forms. Every permutation, i.e. bijective endofunction, can be decom-
posed into a set of cycles, and a relabelling can only map between permutations with
the same number of cycles of the same sizes. There is thus one S-form corresponding
to each integer partition of n (Figure 3.14 shows the five permutation forms of size 4,
corresponding to 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1).

More formally, suppose there were some natural isomorphism witnessed by ϕ :
L

•−→ S and ψ : S
•−→ L. In particular, for any σ : K ∼−→ K we would then have

L K
ϕK //

L σ
��

S K

S σ
��

L K ϕK

// S K

and similarly for ψK in the opposite direction. This says that any two K-labelled lists
related by the relabelling σ correspond to permutations which are also related by σ.
However, as we have seen, any two lists are related by some relabelling, and thus
(since ϕ and ψ constitute a bijection) any two permutations would have to be related
by some relabelling as well, but this is false.

This argument shows that there cannot exist a natural isomorphism between L
and S. However, the claim is that they are nonetheless equipotent. Again, this fact is
very well known, but it is still instructive to work out the details of a formal proof.

The first and most obvious “proof” is to send the permutation σ : (Fin n)! to the
list whose ith element is σ(i), and vice versa. Note, however, that this is not really a
proof, since it only gives us a specific bijection L (Fin n) ∼−→ S (Fin n), rather than a
family of bijections L K ∼−→ S K. We will return to this point shortly.

The second proof, known as the fundamental transform, is more elegant from a
combinatorial point of view. For more details, see Cartier and Foata [1969], Knuth
[1973], or Bergeron et al. [1998, p. 22]. We first describe the mapping from permuta-
tions on Fin n to lists on Fin n: given a permutation, order its cycles in decreasing order

73

Figure 3.16: The fundamental transform

of their smallest element, and then transcribe each cycle as a list beginning with the
smallest element. Figure 3.16 shows an example where the permutation (35)(26)(014)
(whose cycles have minimum elements 3, 2, and 0 respectively) is sent to the list
3526014, which for emphasis is drawn with the height of each node corresponding to
the size of its label. To invert the transformation, partition a list into segments with
each record minimum beginning a new segment, and turn each such segment into a
cycle. For example, in the list 3526014, the elements 3, 2, and 0 are the ones which
are smaller than all the elements to their left, so each one marks off the beginning of
a new cycle.

The way the fundamental transform is presented also makes it clear how to gen-
eralize from Fin n to other finite sets of labels L: all we require is a linear order on L,
in order to find the minimum label in a given cycle and sort the cycles by minimum
element, and to determine the successive record minima in a list. Looking back at
the first, “obvious” proof, which sends σ to the list whose ith element is σ(i), we
can see that it also can be generalized to work for any finite set L equipped with a
linear order. In particular, being equipped with a linear order is equivalent to being
equipped with a bijection to Fin n, as explained in §2.4.3.

Intuitively, then, the reason that these two families of bijections are not natural is
that they do not work uniformly for all sets of labels, but require some extra structure.
Any finite label set can be given a linear order, but the precise choice of linear order
determines how the bijections work.

Considering this from the viewpoint of HoTT yields additional insight. A family
of functions like ϕK would typically correspond in HoTT to a function of type

ϕ : (K : U‖Fin‖)→ L K → S K.

It is certainly possible to implement a function with the above type (for example, one
which sends each list to the cyclic permutation with elements in the same order), but
as we have seen, it is not possible to implement one which is invertible. Writing an
invertible such function also requires a linear ordering on the type K. We could, of
course, simply take a linear order as an extra argument,

ϕ : (K : U‖Fin‖)→ LinOrd K → L K → S K.

74

Alternatively, recall that K contains evidence of its finiteness in the form of an
equivalenceK ' Fin n. This equivalence induces a linear ordering onK, corresponding
to the natural linear ordering 0 < 1 < 2 < . . . on Fin n. In other words, each
finite set K already comes equipped with a linear ordering! However, recall that the
finiteness evidence is sealed inside a propositional truncation, so we cannot use it in
implementing a function of type (K : U‖Fin‖)→ L L→ S K. If we could, the resulting
function would indeed not be natural, and it is instructive to see why. A path K = K
corresponds to a permutation onK, but does not have to update the finiteness evidence
in conjunction with the permutation. Thinking of the finiteness evidence as giving a
linear order on K, another way to say this is that permutations K = K need not be
order-preserving. Naturality is not satisfied, therefore, since applying the fundamental
transform directly may give results completely incompatible with those obtained by
applying a non-order-preserving permutation followed by the fundamental transform.

Bergeron et al. [1998, p. 22] note that the fundamental transform is in fact com-
patible with order-preserving bijections. If we consider functors L → Set, where L
is the groupoid of finite sets equipped with linear orders, along with order-preserving
bijections, then the fundamental transform is indeed a natural isomorphism between
L and S. Such functors are called L-species, and are discussed further in §5.5.

Back in U‖Fin‖, however, in order to use the linear order associated to each finite set
K, we must produce a mere proposition. We cannot directly produce an equivalence—
but we certainly can produce the propositional truncation of one. In particular we
can encode the fundamental transform as a function of type

χ : (K : U‖Fin‖)→ ‖L K ' S K‖ .

This is precisely the right way to encode equipotence in HoTT. For suppose we
know that L K is finite of size n, that is, we have an inhabitant of the type (n :
N) × ‖L K ' Fin n‖. Then we can conclude that S K has the same size: since we
want to produce the mere proposition ‖S K ' Fin n‖, we are allowed to use the
equivalence L K ' Fin n as well as the equivalence L K ' S K produced by χK ;
composing them and injecting back into a truncation yields the desired result. On
the other hand, we cannot use the results of χ to actually compute a correspondence
between elements of L K and S K.

One might expect that there are other ways to obtain an equipotence. That is, the
correspondence between L and S is not a natural isomorphism because it additionally
requires a linear order structure on the labels; might there be other equipotences
which require other sorts of structure on the labels?

I conjecture that a linear order is as strong as one could ever want; that is, for
any species which are provably equipotent, there exists a proof making use of a linear
order on the set of labels.

Conjecture 3.3.5. The type of natural isomorphisms with access to a linear order

75

is logically equivalent to the type of equipotences. That is, for all species F and G,

((L : UFin)→ (F L ' G L))↔ ((L : U‖Fin‖)→ ‖F L ' G L‖).

Note that on the left-hand side, F L and G L are not well-typed as written, but
are used as shorthands for the application of F and G to ιL, where ι : UFin → U‖Fin‖
is the evident injection.

Proof (sketch). I describe here a plan of attack, i.e. an outline of a possible proof,
although as explained below, I expect that completing the proof will require a con-
siderable amount of effort.

(→) This direction is certainly true and quite easy to show. We are given a func-
tion f : (L : UFin) → (F L ' G L) and some L : U‖Fin‖, and must produce
‖F L ' G L‖. Since we are producing a mere proposition we may unwrap the
finiteness evidence in L to turn it into a UFin, pass it to f , and then wrap the
result in a propositional truncation. Intuitively, this direction is true since every
natural isomorphism is also an equipotence.

(←) This is the more interesting direction. We are given a function f : (L : U‖Fin‖)→
‖F L ' G L‖ and some L : UFin, i.e. a finite set equipped with a linear order.
We must produce an equivalence F L ' G L. We can easily turn L into a
U‖Fin‖ by applying a propositional truncation; passing this to f results in some
s : ‖F L ' G L‖.
The trick is now to uniquely characterize the particular equivalence F L '
G L we wish to produce, which we can do by producing linear orderings on
the (F L)-shapes and (G L)-shapes, and matching them in order. We have
the linear ordering on L to help, but the task still seems impossible without
some sort of knowledge about F and G. Fortunately, it is possible to deeply
characterize species based on their extensional behavior. In particular, every
species can be uniquely decomposed as a sum of molecular species [Bergeron
et al., 1998, §2.6], where each molecular species is of the form Xn/H for some
natural number n and some subgroup H ⊆ Sn of the symmetric group on n
elements. That is, molecular species are lists of a particular length quotiented
by some symmetries: we let H act on Xn-shapes by permuting their elements,
and consider equivalence classes of Xn-shapes corresponding to orbits under
H. (For a fuller discussion of such quotient species, see §4.6.) The study and
classification of, molecular and atomic species takes up an entire section of
Bergeron et al. [1998], and porting all of the definitions and theorems there
to HoTT would be a formidable undertaking, though I expect it would yield
considerable insight. Such an undertaking is left to future work.

In any case, an equivalence F L ' M1 L + M2 L + M3 L + . . . should yield
a canonical ordering on the classes of F -shapes resulting from each Mi: all the

76

M1 shapes come first, followed by the M2 shapes, and so on. It remains to show
that we can put a linear ordering on the F shapes generated by each Mi.

Recall that each Mi is of the form Xn/H. We can thus use the linear order on
L to put an ordering on Mi L as follows. First, in the case that H = 1, i.e. the
trivial group, we can order all the n! labelled Xn shapes using a lexicographic
order (or some other appropriate order derived from the order on L). If H is
nontrivial, then the orbits of Xn under the action of H are themselves the Mi-
shapes, and we can extend the ordering on the Xn shapes to orbits thereof, for
example, by ordering the orbits according to the smallest Xn-shape contained
in each.

Even if we succeed in uniquely characterizing some equivalence, note that the
equivalence we thus characterize may not be the same as the s obtained as
the output of the function f . We must construct the final equivalence “from
scratch”, somehow using the fact that we know some equivalence exists to con-
struct the one we have characterized. It is not entirely clear how to do this. One
idea might be to construct a permutation on G L which, when composed with
the equivalence given by f , produces the desired equivalence. However, this is
admittedly the sketchiest part of the proof. SDG

3.4 Generating functions

Generating functions are a well-known tool in combinatorics, used to manipulate
sequences of interest by representing them as the coefficients of certain formal power
series. As Wilf says, “A generating function is a clothesline on which we hang up a
sequence of numbers for display” [Wilf, 1990]. Generating functions are important
to discuss here since they are in some sense the point of departure for the entire
theory of species: although species can be understood independently, from a historical
point of view species were explicitly developed in order to generalize (specifically, to
categorify) the theory of generating functions. As such, generating functions yield
important insights into the theory of species.

There are many types of generating functions; we will consider two in particu-
lar: ordinary generating functions (ogfs), and exponential generating functions (egfs).
Ordinary generating functions are of the form∑

n>0

anx
n

and represent the sequence a0, a1, a2, For example, the ogf x + 2x2 + 3x3 + . . .
represents the sequence 0, 1, 2, 3, Exponential generating functions are of the form∑

n>0

an
xn

n!
.

77

For example, the egf 1/(1 − x) = 1 + x + x2 + x3 + · · · = 1 + x + 2x2

2
+ 6x3

6
+ . . .

represents the sequence 1, 1, 2, 6, 24,
This would be unremarkable if it were just a notation for sequences, but it is much

more. The crucial point is that natural algebraic operations on generating functions
correspond to natural combinatorial operations on the sequences they represent (or,
more to the point, on the combinatorial objects the sequences are counting). This
theme will be explored throughout the chapter: as each combinatorial operation on
species is introduced, its corresponding algebraic operation on generating functions
will also be discussed.

To each species F we associate two generating functions3, an egf F (x) and an ogf

F̃ (x), defined as follows.

Definition 3.4.1. The egf F (x) associated to a species F is defined by

F (x) =
∑
n>0

fn
xn

n!
,

where fn = #(F n) is the number of labelled F -shapes of size n.

Example. There are n! labelled L-shapes (that is, linear orders) on n labels, so

L(x) =
∑
n>0

n!
xn

n!
=
∑
n>0

xn =
1

1− x
.

Note that this is a formal power series, and in particular we do not worry about issues
of convergence.

Definition 3.4.2. The ogf F̃ (x) associated to a species F is defined by

F̃ (x) =
∑
n>0

f̃nx
n,

where f̃n = #(F n/≈) is the number of distinct F -forms (that is, equivalence classes
of F -shapes under relabelling) of size n.

Example. There is only one list form of each size, so

L̃(x) =
∑
n>0

xn =
1

1− x

as well. Species for which F (x) = F̃ (x) are called regular and are discussed in more
detail in §4.6. For an example of a non-regular species, the reader is invited to work
out the egf and ogf for the species C of cycles.

3There are more, e.g. the cycle index series and asymmetry index series [Bergeron et al., 1998],
but they are outside the scope of this dissertation.

78

Figure 3.17: Correspondence between species and generating functions

One can see that the mapping from species to generating functions discards in-
formation, compressing an entire set of shapes or forms into a single number (Fig-
ure 3.17). Once one has defined the notion of species, it is not hard to come up with
the notion of generating functions as a sort of “structured summary” of species.

Historically, however, generating functions came first. As Joyal makes explicit in
the introduction to his seminal paper Une Théorie Combinatoire des Séries Formelles
[1981]—in fact, it is even made explicit in the title of the paper itself—the main
motivation for inventing species was to generalize the theory of generating functions,
putting it on firmer combinatorial and categorical ground. The theory of generating
functions itself was already well-developed, but no one had yet tried to view it through
a categorical lens.

The general idea is to “blow everything up”, replacing natural numbers by sets;
addition by disjoint union; product by pairing; and so on. In a way, one can see this
process as “imbuing everything with constructive significance”; this is one argument
for the naturalness of developing the theory of species within a constructive type
theory.

3.5 Conclusion

In this chapter we have seen the definition of species, both in set theory and type
theory, and related definitions such as isomorphism and equipotence of species and
generating functions. We have seen that defining species within homotopy type theory
has some benefits: for example, it becomes impossible to write down invalid species
within the type theory, and homotopy type theory sheds new light on some of the
fundamental equivalence relations on species. However, up to this point everything
has been “low-level”, in the sense of working directly with the definition of species. In
the next chapter we will see how to build a higher-level algebraic framework on top
of species, and how this also gives us a framework for generalizing species to other
categories.

79

Chapter 4

Generalized species and species
operations

The definition of species, in either set theory or type theory, is straightforward: species
are objects in a certain functor category. However, it is not the functors themselves
which are fundamentally interesting, but the structure of the functor category. As
we will see in this chapter, the functor category B ⇒ Set has at least six different
monoidal structures, corresponding to combinatorially sensible operations on species.

This also opens up the possibility of considering other functor categories with
similar monoidal structures, instead of remaining tied to B ⇒ Set, which is too
specific and restrictive. In particular, we will consider arbitrary functor categories
in place of traditional species, determining the properties necessary to support each
species operation. First of all, this allows us to justify B ⇒ S as an analogue of
species in HoTT. Even within the realm of pure mathematics, however, there are
extensions to the basic theory of species (e.g. multisort species, weighted species, L-
species, vector species, . . .) which require generalizing from B⇒ Set to other functor
categories.

Sections §4.1–§4.5 examine species operations—in particular, the six monoidal
structures referred to above, along with differentiation—in the context of general
functor categories L⇒ S (where L and S are arbitrary categories), in order to iden-
tify precisely what properties of L and S are necessary to define each operation. That
is, starting “from scratch”, we will build up a generic notion of species that supports
the operations we are interested in. In the process, we get a much clearer picture of
where the operations “come from”. In particular, B and Set enjoy special properties
as categories (for example, Set is cartesian closed, has all limits and colimits, and
so on), and it is enlightening to see precisely which of these properties are required
in which situations. Although more general versions of specific operations have been
defined previously [Kelly, 2005, Fiore et al., 2008, Lack and Street, 2014], I am not
aware of any previous systematic generalization similar to this work. In particular,
the general categorical treatments of arithmetic product (§4.2.2) and multisort species
(§5.4) are new.

80

Along the way, we will explore particular instantiations of the general framework.
Each instantiation arises from considering particular categories in place of B and
Set. To keep these functor categories straight, we will use the word “species” for
B ⇒ Set, and “generalized species” (or, more specifically, “(L ⇒ S)-species”)1 for
some abstract L⇒ S. Each section begins by defining a particular species operation
in B⇒ Set, then generalizes it to arbitrary functor categories L⇒ S, and exhibits
examples in other functor categories.

The chapter concludes with some comments on the relationship between symmetry
and species operations (§4.6) and on eliminators for species (§4.7, which become
important when considering species as a basis for data structures, as in Chapter 6.

4.1 Lifted monoids: sum and Cartesian product

Two of the simplest operations on species are sum and Cartesian product. These
operations are structurally analogous: the only difference is that species sum arises
from coproducts in Set (disjoint union), whereas the Cartesian product of species
arises from products in Set. We first define and give examples of these operations in
the context of B⇒ Set and then generalize to other functor categories.

4.1.1 Species sum

The sum of two species is given by their disjoint union: an (F + G)-shape is either
an F -shape or a G-shape, together with a tag to distinguish them.

Definition 4.1.1. Given F,G : B→ Set, their sum F +G : B→ Set is defined on
objects by

(F +G) L := F L]G L,

where] denotes disjoint union (coproduct) of sets, and on morphisms by

(F +G) σ := F σ]G σ,

where] is considered as a bifunctor in the evident way: (f] g) (inl x) := inl (f x)
and (f] g) (inr y) := inr (g y).

It remains to prove that the F +G defined above is actually functorial.

Proof. The functoriality of F +G follows from that of F , G, and]:

(F +G) id = F id]G id = id] id = id,

and

1Not to be confused with the generalized species of Fiore et al. [2008], who define “(A,B)-species”
as functors from BA (a generalization of B) to B̂, the category of presheaves Bop → Set over B.

81

Figure 4.1: (B + L) 2

(F +G)(f ◦ g)
= { + definition }
F (f ◦ g)]G (f ◦ g)

= { F , G functors }
(F f ◦ F g)] (G f ◦G g)

= {] bifunctor }
(F f]G f) ◦ (F g]G g)

= { + definition }
(F +G) f ◦ (F +G) g.

SDG

Remark. More abstractly, when defining a functor with a groupoid as its domain (such
as F + G above), it suffices to specify only its action on objects, using an arbitrary
expression composed of (co- and contravariant) functors. For example, (F + G) L =
F L]G L is defined in terms of the functors F , G, and]. In that case the action of the
functor on morphisms can be derived automatically by induction on the structure of
the expression, simply substituting the morphism in place of covariant occurrences of
the object, and the morphism’s inverse in place of contravariant occurrences. In fact,
in HoTT, this is simply transport; that is, given an h-groupoid B and a (pre)category
C, any function B0 → C0 extends to a functor B → C.

By the same token, to define a functor with an arbitrary category (not necessarily a
groupoid) as its domain, it suffices to define its action on an object using an expression
containing only covariant occurrences of the object.

Example. B + L is the species of shapes which are either binary trees or lists (Fig-
ure 4.1).

Example. As another example, consider B + B. It is important to bear in mind that
+ yields a disjoint or “tagged” union; so B + B consists of two copies of every binary
tree (Figure 4.2), and in particular it is distinct from B.

Species sum corresponds to the sum of generating functions: we have

(F +G)(x) = F (x) +G(x) and ˜(F +G)(x) = F̃ (x) + G̃(x).

82

Figure 4.2: (B + B) 2

This is because the sum of two generating functions is computed by summing corre-
sponding coefficients,(∑

n>0

anx
n

)
+

(∑
n>0

bnx
n

)
=
∑
n>0

(an + bn)xn

(and likewise for egfs), and since species sum is given by disjoint union, the number
of (F + G)-shapes and -forms of a given size is the sum of the number of F - and
G-shapes (respectively -forms) of that size.

There is also a primitive species which is an identity element for species sum.

Definition 4.1.2. The zero or empty species, 0, is the unique species with no shapes
whatsoever. That is, on objects, 0 L := ∅, and on morphisms 0 sends every σ to the
unique function ∅→ ∅.

We evidently have

0(x) = 0̃(x) = 0 + 0x+ 0x2 + · · · = 0.

Proposition 4.1.3. (+, 0) is a symmetric monoid on B⇒ Set.

Proof. First, we must show that + is a bifunctor. By definition it sends two functors
to a functor, but this is only its action on the objects of Spe. We must also specify its
action on morphisms, that is, natural transformations between species, and we must
show that it preserves identity natural transformations and (vertical) composition of
natural transformations.

In this case it’s enough simply to unfold definitions and follow the types. Given
species F , F ′, G, and G′ and natural transformations φ : F

•−→ F ′ and ψ : G
•−→ G′,

we should have φ+ ψ : F +G
•−→ F ′ +G′. The component of φ+ ψ at some L ∈ B

should thus be a morphism in Set of type F L]G L→ F ′ L]G′ L; the only thing
that fits the bill is φL] ψL.

This nicely fits with the “elementwise” definition of + on species: (F + G) L =
F L]G L, and likewise (φ+ψ)L = φL]ψL. The action of + on natural transformations
thus reduces to the elementwise action of] on their components. From this it follows
that

• φ+ ψ is natural (because φ and ψ are), and

• + preserves identity and composition (because] does).

83

Finally, we note that + inherits the symmetry of]. SDG

Stepping back a bit, we can see that this monoidal structure on species arises
straightforwardly from the corresponding monoidal structure on sets: the sum of two
functors is defined as the pointwise coproduct of their outputs, and likewise 0, the
identity for the sum of species, is defined as the functor which pointwise returns ∅,
the identity for the coproduct of sets. More generally, any monoidal structure on a
category S lifts to a corresponding monoidal structure on a functor category L⇒ S
(this construction is spelled out in §4.1.3). This leads us naturally to consider another
species operation which arises in the same way, but based on a different monoid.

4.1.2 Cartesian/Hadamard product

The definition of species sum involves coproducts in Set. Of course, Set also has
products, given by S × T = {(s, t) | s ∈ S, t ∈ T}, with any one-element set as the
identity. We may suppose there is some canonical choice of one-element set, {?}; since
there is exactly one bijection between any two singleton sets, we do not even need the
axiom of choice to implicitly make use of them. (In type theory, there is by definition
a canonical singleton type >.)

Definition 4.1.4. The Cartesian or Hadamard product of species is defined on ob-
jects by (F ×G) L = F L×G L.

This is the “obvious” definition of product for species, though as we will see it is not
the most natural one from a combinatorial point of view. Nonetheless, it is the simplest
to define and is thus worth studying first. The action of (F × G) on morphisms,
functoriality, etc. are omitted; the details are exactly parallel to the definition of
species sum, and are presented much more generally in §4.1.3 and Chapter A.

An (F × G)-shape is both an F -shape and a G-shape, on the same set of labels.
There are several ways to think about this situation, as illustrated in Figure 4.3. One
can think of two distinct shapes, with labels duplicated between them; this is the most
literal interpretation of the definition. One can also think of the labels as pointers for
locations in a shared memory. Finally, one can think of the shapes themselves as being
superimposed. This last view highlights the fact that × is symmetric, but only up to
isomorphism, since at root it still consists of an ordered pair of shapes.

In parallel with sum, we can see that

(F ×G)(x) = F (x)×G(x) and ˜(F ×G)(x) = F̃ (x)× G̃(x),

where (∑
n>0

anx
n

)
×

(∑
n>0

bnx
n

)
=
∑
n>0

(anbn)xn

84

6452301

65

4

3

2

1

0

Figure 4.3: Four views on the Cartesian product B× L

85

Figure 4.4: The unique E 5 shape

and (∑
n>0

an
xn

n!

)
×

(∑
n>0

bn
xn

n!

)
=
∑
n>0

(anbn)
xn

n!

denote the elementwise or Hadamard product of two generating functions. This is
not a particularly natural operation on generating functions (although it is easy to
compute); in particular it is not what one usually thinks of as the product of generat-
ing functions. As we will see in §4.2, there is a different combinatorial operation that
corresponds to the usual product of generating functions.

There is also a species, usually called E, which is an identity element for Cartesian
product. Considering that we should have (E×G) L = E L×G L ' G L, the proper
definition of E becomes clear:

Definition 4.1.5. The species of sets, E, is defined as the constant functor yielding
{?}, that is, E L = {?}.

The ogf for E is given by

Ẽ(x) = 1 + x+ x2 + · · · = 1

1− x
,

and the egf by

E(x) = 1 + x+
x2

2!
+
x3

3!
+ · · · = ex.

The notation E was probably chosen as an abbreviation of the French ensemble (set),
but it is also a clever pun on the fact that E(x) = ex.

Remark. E is called the species of sets since there is exactly one shape on any set of
labels, which can be thought of as the set of labels itself, with no additional struc-
ture. In fact, since all one-element sets are isomorphic, we may define E L = {L}
(Figure 4.4).

Proposition 4.1.6. (×,E) is a symmetric monoid on Spe.

Proof. The proof is omitted, since it is almost exactly the same as the proof for (+, 0);
the only difference is the substitution of Cartesian product of sets for disjoint union. SDG

86

4.1.3 Lifting monoids

Both these constructions generalize readily. In fact, any monoidal structure on a
category S can be lifted to one on L⇒ S where everything is done elementwise. The
basic idea is exactly the same as the standard Haskell type class instance

instance Monoid a ⇒ Monoid (e → a) where
ε = λ → ε
f � g = λa → f a � g a

but quite a bit more general.

Proposition 4.1.7. Any (strict) monoid (⊗, I) on S lifts to a monoid, denoted
(⊗L, IL), on the functor category L⇒ S. In particular, (F⊗LG) L = F L⊗G L, and
IL is ∆I , the functor which is constantly I. Moreover, this lifting preserves products,
coproducts, symmetry, and distributivity.

In fact, non-strict monoids lift as well; a yet more general version of this proposi-
tion, along with a detailed proof, will be given later. First, however, we consider some
examples.

Example. Lifting coproducts in Set to B⇒ Set yields the (+, 0) structure on species,
and likewise lifting products yields (×,E). According to Proposition 4.1.7, since (],∅)
is a categorical coproduct on Set, (+, 0) is likewise a categorical coproduct on the
category B⇒ Set of species, and similarly (×,E) is a categorical product.

Example. Take L = 1 (the trivial category with one object and one morphism). In
this case, functors in 1⇒ S are just objects of S, and a lifted monoidal operation is
isomorphic to the unlifted one.

Example. Take L = |2|, the discrete category with two objects. Then a functor F :
|2| → S is just a pair of objects in S. For example, if S = Set, a functor |2| → Set is a
pair of sets. In this case, taking the lifted sum F +G of two functors F,G : |2| → Set
corresponds to summing the pairs elementwise, that is, (S1, T1) + (S2, T2) = (S1]
S2, T1] T2).

Recall that when X is a discrete category, the functor category X ⇒ Set is
equivalent to the slice category Set/X. This gives another way to think of a functor
|2| → Set, namely, as a single set of elements S together with a function S → |2|
which “tags” each element with one of two tags (“left” or “right”, 0 or 1, etc.). From
this point of view, a lifted sum can be thought of as a tag-preserving disjoint union.

Example. As an example in a similar vein, consider L = N, the discrete category
with natural numbers as objects. Functors N → S are countably infinite sequences
of objects [S0, S1, S2, . . .]. One way to think of this is as a collection of S-objects,
one for each natural number size. For example, when S = Set, a functor N → Set

87

is a sequence of sets [S0, S1, S2, . . .], where Si can be thought of as some collection
of objects of size i. (This “size” intuition is actually fairly arbitrary at this point—
the objects of N are in some sense just an arbitrary countably infinite set of labels,
and there is no particular reason they should represent “sizes”. However, the “size”
intuition carries over well to species.)

Again, (N ⇒ Set) ∼= Set/N, so functors N → Set can also be thought of as a
single set S along with a function S → N which gives the size of each element.

Lifting a monoidal operation to countable sequences of objects performs a “zip”,
applying the monoidal operation between matching positions in the two lists:

[S1, S2, S3, . . .]⊕ [T1, T2, T3, . . .] = [S1 ⊕ T1, S2 ⊕ T2, S3 ⊕ T3, . . .]

Example. All the previous examples have used a discrete category in place of L; it
is instructive to see an example with nontrivial morphisms involved. As the simplest
nontrivial example, consider L = 2, the category with two objects 0 and 1 and a
single non-identity morphism 0 −→ 1. A functor 2→ S is not just a pair of objects
(as with L = |2|) but a pair of objects with a morphism between them:

S0
f−→ S1.

Combining two such functors with a lifted monoidal operation combines not just the
objects but also the morphisms:

(S0
f−→ S1)⊕ (T0

g−→ T1) = (S0 ⊕ T0)
f⊕g−→ (S1 ⊕ T1)

This is possible since the monoidal operation ⊕ is, by definition, required to be a
bifunctor.

Example. In S, the coproduct of two types A and B is given by their sum, A + B,
with the void type ⊥ serving as the identity. We may thus lift this coproduct structure
to the functor category B ⇒ S—or indeed to any L⇒ S, since no requirements are
imposed on the domain category.

Example. Similarly, categorical products in S are given by product types A×B, with
the unit type > as the identity. This then lifts to products on B ⇒ S (or, again, any
L⇒ S) which serve as an analogue of Cartesian product of species.

A more detailed proof of the fact that any monoid on a category S lifts to a
corresponding monoid on L⇒ S can be found in Chapter A.

4.1.4 Internal Hom for Cartesian product

Recall that a Cartesian closed category is one which is closed with respect to Cartesian
product, that is, there exists some bifunctor B ⇒ C such that

∀ABC. (A×B ⇒ C) ∼= (A⇒ (B ⇒ C)).

88

Such categories allow morphisms to be “internalized”, that is, represented as objects.

Proposition 4.1.8. Spe is Cartesian closed.

If L is locally small and S is complete and Cartesian closed, then L⇒ S is also
complete and Cartesian closed [Shulman]. In particular, the exponential of F,G : L→
S is given by

GF L = ∀K ∈ L.
∏

L(L,K)

G(K)F (K).

For example, B, P, B, and P are all locally small, and Set and S are complete and
Cartesian closed, so B ⇒ Set, P ⇒ Set, B ⇒ S, and P ⇒ S are all complete and
Cartesian closed as well.

Let’s unpack this result a bit in the specific case of P ⇒ S. By a dual argument
to the one given in §2.2.2, ends in S over the groupoid P are given by Π-types, i.e.
universal quantification; hence, we have

(HG) n = ∀m ∈ P .
∏
P(m,n)

(H n)G n

= (m : N)→ (Fin m ' Fin n)→ G n→ H n

' (Fin n ' Fin n)→ G n→ H n

where the final isomorphism follows since (Fin m ' Fin n) is only inhabited when
m = n.

Being Cartesian closed means there is an adjunction −×G a −G between products
and exponentials, which yields a natural isomorphism

(F ×G⇒SP H) ' (F ⇒SP HG).

Expanding morphisms of the functor category P ⇒ S as natural transformations,
and expanding the definition of HG derived above, this yields

((n : N)→ (F ×G) n→ H n) ' ((n : N)→ F n→ (Fin n ' Fin n)→ G n→ H n) .

Intuitively, this says that a size-polymorphic function taking a Cartesian product
shape F × G and yielding an H-shape of the same size is isomorphic to a size-
polymorphic function taking a triple of an F -shape, a G-shape, and a permutation
on Fin n, and yielding an H-shape. The point is that an (F ×G)-shape consists not
just of separate F - and G-shapes, but those shapes get to “interact”: in particular we
need a permutation to tell us how the labels on the separate F - and G-shapes line
up. An (F × G)-shape encodes this information implicitly, by the fact that the two
shapes share the exact same set of labels.

Practically speaking, this result tells us how to express an eliminator for (F ×G)-
shapes. That is, to be able to eliminate (F × G)-shapes, it suffices to be able to

89

eliminate F - and G-shapes individually, with an extra permutation supplied as an ar-
gument. Eliminators for species shapes are treated more generally and systematically
in §4.7.

On the surface, the fact that Spe is Cartesian closed only allows us to internalize
species morphisms as species, but not to interpret functions between data types. Spe
being Cartesian closed does mean that the simply typed lambda calculus can be
interpreted internally to Spe; but it is not yet clear to me what this would mean on
an intuitive level.

4.2 Partitional product and Day convolution

There is another notion of product for species, the partitional or Cauchy product. It
it is the partitional product, rather than Cartesian product, which corresponds to the
product of generating functions and which gives rise to the usual notion of product
on algebraic data types. For these reasons, partitional product is often (both in this
thesis and in species literature generally) simply referred to as “product”, without
any modifier.

There is also another lesser-known product, arithmetic product [Maia and Méndez,
2008], which can be thought of as a symmetric form of composition. These two
products arise in an analogous way, via a categorical construction known as Day
convolution.

In this section, we explore each operation in turn, and then give a general account
of their common abstraction.

4.2.1 Partitional/Cauchy product

The partitional product F · G of two species F and G consists of paired F - and G-
shapes, as with the Cartesian product, but with the labels partitioned between the
two shapes instead of replicated (Figure 4.5). The divided box with rounded corners
used in Figure 4.5 will often be used to schematically indicate a partitional product.

Definition 4.2.1. The partitional or Cauchy product of two species F and G is the
functor defined on objects by

(F ·G) L =
⊎

LF ,LG`L

F LF ×G LG

where
⊎

denotes an indexed coproduct (i.e. disjoint union) of sets, and LF , LG ` L
indicates that LF and LG constitute a partition of L, (i.e. LF ∪LG = L and LF ∩LG =
∅); note that LF and LG may be empty. In words, an (F ·G)-shape with labels taken
from L consists of some partition of L into two disjoint subsets, with an F -shape on
one subset and a G-shape on the other.

90

745

62

10

3

Figure 4.5: Two views on the partitional species product B · L

91

On morphisms, (F ·G) σ is the function

(LF , LG, x, y) 7→ (σ LF , σ LG, F (σ|LF
) x,G (σ|LG

) y),

where LF , LG ` L and x ∈ F LF and y ∈ G LG. That is, σ acts independently on the
two subsets of L.

To compute the ogf of a product species F ·G, consider the product of ogfs

F̃ (x)G̃(x) =

(∑
n>0

fnx
n

)(∑
n>0

gnx
n

)
=
∑
n>0

(∑
06k6n

fkgn−k

)
xn.

Note that the inner sum
∑

06k6n fkgn−k is indeed the number of (F ·G)-forms of size
n: such forms necessarily consist of an F -form of size k paired with a G-form of size
n− k. Hence

˜(F ·G)(x) = F̃ (x)G̃(x).

The computation of the egf of a product species is similar.

F (x)G(x) =

(∑
n>0

fn
xn

n!

)(∑
n>0

gn
xn

n!

)

=
∑
n>0

(∑
06k6n

fk
k!

gn−k
(n− k)!

)
xn

=
∑
n>0

(∑
06k6n

(
n

k

)
fkgn−k

)
xn

n!
.

Again, we verify that the inner sum
∑

06k6n

(
n
k

)
fkgn−k is the number of labelled

(F · G)-shapes of size n: for each 0 6 k 6 n, there are
(
n
k

)
ways to partition the n

labels into two subsets of size k and n − k, and then there are fk ways to make an
F -shape on the first subset, and gn−k ways to make a G-shape on the second. We
therefore have

(F ·G)(x) = F (x)G(x)

as well.
The identity for partitional product should evidently be some species 1 such that

(1 ·G) L =

(⊎
LF ,LG`L

1 LF ×G LG

)
' G L.

The only way for this isomorphism to hold naturally in L is if 1 ∅ = {?} (yielding a
summand of G L when ∅, L ` L) and 1 LF = ∅ for all other LF (cancelling all the
other summands).

92

Figure 4.6: Permutation = fixpoints · derangement

Definition 4.2.2. The unit species, 1, is defined by

1 L =

{
{?} L = ∅
∅ otherwise.

Remark. Recall that one should not think of 1 as doing case analysis. Rather, a more
intuitive way to think of it is “there is a single 1-shape, and it has no labels”; that is,
the unit species denotes a sort of “trivial” or “leaf” structure containing no labels.
Intuitively, it corresponds to a Haskell type like

data Unit a = Unit

The generating functions for 1 are given by

1(x) = 1̃(x) = 1.

Example. The following example is due to Joyal [1981]. Recall that S denotes the
species of permutations. Consider the species Der of derangements, that is, permu-
tations which have no fixed points. It is not possible, in general, to directly express
species using a “filter” operation, as in, “all F -shapes satisfying predicate P”. How-
ever, it is possible to get a handle on Der in a more constructive manner by noting
that every permutation can be canonically decomposed as a set of fixed points paired
with a derangement on the rest of the elements (Figure 4.6). That is, algebraically,

S = E · Der. (4.2.1)

This does not directly give us an expression for Der, since there is no notion of mul-
tiplicative inverse for species2. However, this is still a useful characterization of de-
rangements. For example, since the mapping from species to egfs is a homomorphism

2Multiplicative inverses can in fact be defined for suitable virtual species [Bergeron et al., 1998,
Chapter 3]. However, virtual species are beyond the scope of this dissertation.

93

with respect to product, (4.2.1) becomes

1

1− x
= ex · Der(x).

We can solve to obtain the egf Der(x) = e−x/(1 − x), even though we cannot make
direct combinatorial sense out of Der = S/E.

Proposition 4.2.3. (Spe, ·, 1) is symmetric monoidal.

Proof. We constructed 1 so as to be an identity for partitional product. Associativity
and symmetry of partitional product are not hard to prove and are left as an exercise
for the reader. SDG

In fact, (Spe, ·, 1) is closed as well, but a discussion of the internal Hom functor
corresponding to partitional product must be postponed to §4.5.5, after discussing
species differentiation.

4.2.2 Arithmetic/rectangular product

There is another, more recently discovered monoidal structure on species known as
arithmetic product [Maia and Méndez, 2008]. The arithmetic product of the species
F and G, written F � G, can intuitively be thought of as an “F -assembly of cloned
G-shapes”, that is, an F -shape containing multiple copies of a single G-shape. Unlike
the usual notion of composition (§4.3), where the F -shape is allowed to contain many
different G-shapes, this notion is symmetric: an F -assembly of cloned G-shapes is
isomorphic to a G-assembly of cloned F -shapes. Another intuitive way to think of
the arithmetic product, which points out the symmetry more clearly, is to think of a
rectangular grid of labels, together with an F -shape labelled by the rows of the grid,
and a G-shape labelled by the columns. Figure 4.7 illustrates these intuitions with
the arithmetic product B� L.

A more formal definition requires the notion of a rectangle on a set [Maia and
Méndez, 2008, Baddeley et al., 2004], which plays a role similar to that of set par-
tition in the definition of partitional product. (So arithmetic product can also be
called rectangular product.) In particular, whereas a binary partition of a set L is a
decomposition of L into a sum, a rectangle on L can be thought of as a decomposition
into a product. The basic idea is to partition L in two different ways, and require the
partitions to act like the “rows” and “columns” of a rectangular matrix, which have
the defining characteristic that every pair of a row and a column have a single point
of intersection.

Definition 4.2.4 (Maia and Méndez [2008]). A rectangle on a set L is a pair
(π, τ) of families of subsets of L, such that

• π ` L and τ ` L, and

94

Figure 4.7: Three views on the arithmetic product B� L

95

Figure 4.8: A Mat-shape of size 6

• |X ∩ Y | = 1, for all X ∈ π, Y ∈ τ .

Here, π ` L denotes that π is a partition of L into any number of nonempty parts,
that is, the elements of π are nonempty, pairwise disjoint, and have L as their union.
We write π, τ L to denote that (π, τ) constitute a rectangle on L, and call π and τ
the sides of the rectangle.

We can now formally define arithmetic product as follows:

Definition 4.2.5. The arithmetic product F�G of two species F and G is the species
defined on objects by

(F �G) L =
⊎

LF ,LGL

F LF ×G LG.

(F � G) lifts bijections σ : L ∼−→ L′ to functions (F � G) L → (F � G) L′ as
follows:

(F �G) σ (LF , LG, f, g) = (P(σ) LF ,P(σ) LG, F P(σ) f,G P(σ) g),

where P(σ) : P(L) ∼−→ P(L′) denotes the functorial lifting of σ to a bijection between
subsets of L and L′.

Remark. The similarity of this definition to the definition of partitional product
should be apparent: the only real difference is that rectangles (LF , LG L) have
been substituted for partitions (LF , LG ` L).

Example. Mat = L�L is the species of (two-dimensional) matrices. Mat-shapes consist
simply of labels arranged in a rectangular grid (Figure 4.8).

Example. Rect = E�E is the species of rectangles. One way to think of rectangles is as
equivalence classes of matrices up to reordering of the rows and columns. Each label
has no fixed “position”; the only invariants on any given label are the sets of other

96

Figure 4.9: A Rect-shape of size 6

labels which are in the same row or column. Figure 4.9 shows an illustration; each
rounded outline represents a set of labels. One can also take the species of rectangles
as primitive and define arithmetic product in terms of it.

Example. Just as topological cylinders and tori may be obtained by gluing the edges
of a square, species corresponding to cylinders or tori may be obtained by starting
with the species of 2D matrices and “gluing” along one or both edges by turning lists
L into cycles C. In particular, Cyl = L � C is the species of (oriented) cylinders, and
Tor = C� C is the species of (oriented) tori.

Although species corresponding to Klein bottles and real projective planes (which
arise from gluing the edges of a square with one or both pairs of edges given a half-twist
before gluing, respectively) certainly exist, it does not seem they can be constructed
using �, since in those cases the actions of the symmetric group along the two axes
are not independent.

The ogf for F �G is given by

F̃ (x)� G̃(x) =

(∑
n>0

fnx
n

)
�

(∑
n>0

gnx
n

)
=
∑
n>0

∑
d|n

fdgn/d

xn,

since an (F �G)-form of size n consists of a pair of an F -form and a G-form, whose
sizes have a product of n.

Likewise, the egf is ∑
n>0

∑
d|n

{
n

d

}
fdgn/d

 xn

n!
,

where {
n

d

}
=

n!

d!(n/d)!

97

denotes the number of d× (n/d) rectangles on a set of size n.
An identity element for arithmetic product should be some species X such that

(X�G) L =

(⊎
LX,LGL

X LX ×G LG

)
∼= G L.

Thus we want X LX = {?} when LG = L, and X LX = ∅ otherwise. Consider
LX, L L. Of course, L does not have the right type to be one side of a rectangle
on itself, but it is isomorphic to the set of all singleton subsets of itself, which does.
The definition of a rectangle now requires every element of LX to have a nontrivial
intersection with every singleton subset of L (such intersections will automatically
have size 1). Therefore LX has only one element, namely, L itself, and is isomorphic
to {?}. Intuitively, {?}, L L corresponds to the fact that we can always make a
1×n rectangle on any set of size n, that is, any number n can be “factored” as 1×n.

This leads to the following definition:

Definition 4.2.6. The singleton species, X, is defined by

X L =

{
{?} |L| = 1

∅ otherwise.

Remark. Like the unit species 1, the singleton species X denotes a sort of “leaf”
structure; however, instead of being a trivial leaf structure with no labels, it contains
a single label, that is, it marks the spot where a single piece of data can go. Intuitively,
it corresponds to the Haskell data type

data X a = X a

One can see that the egf and ogf for X are

X(x) = X̃(x) = x.

Species corresponding to a wide variety of standard data structures can be defined
using X.

Example. The species of ordered pairs is given by X ·X. Since there is only an X-shape
on a single label, and product partitions the labels, there are only (X · X)-shapes on
label sets of cardinality 2, and there are two such shapes, one for each ordering of the
two labels (Figure 4.10).

More generally, Xn = X · · · · · X︸ ︷︷ ︸
n

is the species of ordered n-tuples ; there are exactly

n! many (Xn)-structures on n labels and none on label sets of any other size.

98

Figure 4.10: (X · X)-shapes

Example. Recall that L denotes the species of lists, i.e. linear orderings. Besides the
interpretation of recursion, to be explored in §5.4.1, we have now seen all the necessary
pieces to understand the algebraic definition of L:

L = 1 + X · L.

That is, a list structure is either the trivial structure on zero labels, or a single
label paired with a list structure on the remainder of the labels. We also have L =
1 + X + X2 + X3 +

Example. Similarly, recall that the species B of binary trees is given by

B = 1 + B · X · B.

Example. The species X · E is variously known as the species of pointed sets (which
may be denoted E•) or the species of elements (denoted ε). (X · E)-structures consist
of a single distinguished label paired with an unstructured collection of any number
of remaining labels. There are thus n such structures on each label set of cardinality
n, one for each label.

The two different names result from the fact that we may “care about” the labels
in an E-structure or not—that is, when considering data structures built on top of
species, E may correspond either to a bag data structure, or instead to a “sink”
where we throw labels to which we do not wish to associate any data. This makes
no difference from a purely combinatorial point of view, but makes a difference when
considering labelled structures (Chapter 6).

4.2.3 Day convolution

Just as sum and Cartesian product were seen to arise from the same construction
applied to different monoids, both partitional and arithmetic product arise from Day
convolution, applied to different monoidal structures on B.

It is worth first briefly mentioning the definition of an enriched category, which
is needed here and also in §4.3. Enriched categories are a generalization of categories
where the set of morphisms between two objects is replaced by an object of some
other category.

99

Definition 4.2.7. Given some monoidal category (D,⊗, I), a category enriched over
D consists of

• a collection of objects O;

• for every pair of objects A,B ∈ O, a corresponding object of D, which we notate
A⇒ B;

• for each object A ∈ O, a morphism I → (A⇒ A) in D, which “picks out” the
identity morphism for each object;

• for every three objects A,B,C ∈ O, a morphism ◦A,B,C : (B ⇒ C) ⊗ (A ⇒
B)→ (A⇒ C) representing composition.

Of course, identity and composition have to satisfy the usual laws, expressed via
commutative diagrams. Note we are technically overloading the⇒ notation, but it is
natural to extend it from denoting hom sets to denoting hom objects in general.

Enriched categories and categories are notionally distinct, but we often conflate them.
In particular, any category can be seen as an enriched category over Set, and we
also often say that a category C is enriched over D if there exists some functor
− ⇒ − : Cop × C→ D satisfying the above criteria.

We can now give the definition of Day convolution. The essential idea, first de-
scribed by Day [1970], is to construct a monoidal structure on a functor category
[Lop,S] based primarily on a monoidal structure on the domain category L. In par-
ticular, Day convolution requires

• a monoidal structure ⊕ on the domain L;

• that L be enriched over S, so hom sets of L can be seen as objects in S;

• a symmetric monoidal structure ⊗ on the codomain S (satisfying an additional
technical requirement, to be explained below); and

• that S be cocomplete, and in particular have coends over L.

In addition, ⊗ must preserve colimits in each of its arguments. That is, − ⊗ B
and A⊗− must both preserve colimits for any A and B. It is sufficient (though not
necessary) that ⊗ is a left adjoint. For example, the product bifunctor in Set is left
adjoint (via currying), and thus preserves colimits—the distributive law (X × (Y +
Z) ∼= X × Y + X × Z is a well-known example. On the other hand, the coproduct
bifunctor in Set does not preserve colimits; it is not the case, for example, that
X + (Y + Z) ∼= (X + Y) + (X + Z). The important point to note is that Day
convolution can be instantiated using any monoidal structure on the source category
L, but requires a very particular sort of monoidal structure on the target category S.

100

Definition 4.2.8. Given the above conditions, the Day convolution product of F,G :
Lop ⇒ S is given by the coend

(F ~G) L = ∃LF , LG. F LF ⊗G LG ⊗ (L⇒L LF ⊕ LG).

Remark. Since groupoids are self-dual, we may ignore the −op in the common case
that L is a groupoid. Note that F LF and G LG are objects in S, and (L⇒L LF⊕LG)
is a hom set in L, viewed as an object in S as well.

This operation is associative, and has as a unit j(I), where I is the unit for ⊕
and j : L→ (Lop ⇒ S) is the co-Yoneda embedding, that is, j(L) = (− ⇒L L). See
Kelly [2005] for proof.

Example. Let’s begin by looking at the traditional setting of L = B and S = Set. As
noted in §1.4.5, B has a monoidal structure given by disjoint union of finite sets. B is
indeed enriched over Set, which is also cocomplete and has an appropriate symmetric
monoidal structure given by Cartesian product.

Specializing the definition to this case, we obtain

(F ·G) L = ∃LF , LG. F LF ×G LG × (L ∼−→ LF] LG).

We can simplify this further by characterizing the coend more explicitly. Let

R :=
⊎

LF ,LG

F LF ×G LG × (L ∼−→ LF] LG).

Elements of R look like quintuples (LF , LG, f, g, i), where f ∈ F LF , g ∈ G LG, and
i : L ∼−→ LF] LG witnesses a partition of L into two subsets. Then, as we have
seen, the coend can be expressed as a quotient R /∼, where every pair of bijections
(σF : LF

∼−→ L′F , σG : LG
∼−→ L′G) induces an equivalence of the form

(LF , LG, f, g, i) ∼ (L′F , L
′
G, F σF f, G σG g, i ; (σF] σG)).

That is, f ∈ F LF is sent to F σF f (the relabelling of f by σF); g ∈ G LG is sent to
G σG g; and i : L ∼−→ LF] LG is sent to

L
∼
i

// LF] LG ∼
σF]σG

// L′F] L′G .

When are two elements of R inequivalent, that is, when can we be certain two ele-
ments of R are not related by a pair of relabellings? Two elements (LF1, LG2, f1, g1, i1)
and (LF2, LG2, f2, g2, i2) of R are unrelated if and only if

• f1 and f2 have different forms, that is, they are unrelated by any relabelling, or

• g1 and g2 have different forms, or

101

• LF1 and LG1 “sit inside” L differently than LF2 and LG2 in L2, that is, i−11 (LF1) 6=
i−12 (LF2).

(Note they are also unrelated if there is no bijection LF1
∼−→ LF2 or no bijection

LG1
∼−→ LG2, but in those cases one of the first two bullets above would hold as

well.) The first two bullets are immediate; the third follows since a pair of relabellings
can permute the elements of LF and LG arbitrarily, or replace LF and LG with any
other sets of the same size, but relabelling alone can never change which elements of
L correspond to LF and which to LG, since that is preserved by composition with a
coproduct bijection σF] σG.

Therefore, all the equivalence classes of R / ∼ can be represented canonically by
a partition of L into two disjoint subsets, along with a choice of F and G structures,
giving rise to the earlier definition:

(F ·G) L =
⊎

LF ,LG`L

F LF ×G LG. (4.2.2)

Also, in this case, the identity element is j(I) = j(∅) = B(−,∅), that is, the
species which takes as input a label set L and constructs the set of bijections between
L and the empty set. Clearly there is exactly one such bijection when L = ∅, and
none otherwise: as expected, this is the species 1 defined in the previous section.

Example. Although B and P are equivalent, it is still instructive to work out the
general definition in the case of P, particularly because, as we have seen, proving
B ∼= P requires the axiom of choice.

We find that P has not just one but many monoidal structures corresponding
to disjoint union. The action of such a monoid on objects of P is clear: the natural
numbers m and n are sent to their sum m+ n. For the action on morphisms, we are
given σ : (Fin m)! and τ : (Fin n)! and have to produce some (Fin (m+n))!. However,
there are many valid ways to do this. One class of examples arises from considering
bijections

ϕ : Fin m] Fin n ∼−→ Fin (m+ n),

which specify how to embed {0, . . . ,m−1} and {0, . . . , n−1} into {0, . . . ,m+n−1}.
Given such a ϕ, we may construct

Ω(ϕ)(σ, τ) := Fin (m+ n)
ϕ−1

∼−→ Fin m] Fin n
σ]τ
∼−→ Fin m] Fin n

ϕ
∼−→ Fin (m+ n),

as illustrated in Figure 4.11. (Note that conjugating by ϕ is essential for the functo-
riality of the result; picking some other bijection in place of, say, ϕ−1, would result in
a permutation that sent σ = τ = id to something other than the identity.)

Remark. Although it is not essential to what follows, we note that the Ω defined
above, which sends bijections ϕ : Fin m] Fin n ∼−→ Fin (m + n) to functorial maps

102

Figure 4.11: Fin (m+ n) ∼−→ Fin m] Fin n ∼−→ Fin m] Fin n ∼−→ Fin (m+ n)

Figure 4.12: Distinct choices of ϕ that result in identical permutations f

(Fin m)! → (Fin n)! → (Fin (m + n))!, is neither injective nor surjective. It is not
injective since, for example, with m = n = 1, there are two distinct inhabitants
of Fin 2 ∼−→ Fin 1 + Fin 1, but both give rise to the same function (Fin 1)! →
(Fin 1)!→ (Fin 2)! (Figure 4.12), namely, the one which constantly returns the identity
permutation (which, indeed, is the only such function which is functorial).

Neither is Ω surjective. Consider the case where m = n = 2, and the function
f : (Fin 2)!→ (Fin 2)!→ (Fin 4)! given by the table:

id (12)
id id (12)(34)

(12) (12) (34)

It is not hard to verify that f is functorial; for example, f id (12) ; f (12) id =
(12)(34) ; (12) = (34) = f (12) (12). However, we will show that f cannot be of the
form f σ τ = ϕ ◦ (σ] τ) ◦ ϕ−1 for any ϕ.

For a permutation ψ, denote by Fix(ψ) = {x | ψ(x) = x} the set of fixed points
of ψ, and by fix(ψ) = # Fix(ψ) the number of fixed points. Note that fix(σ] τ) =
fix(σ) + fix(τ), since if some value inl s is fixed by σ] τ , then s must be fixed by σ,
and conversely (and similarly for inr and τ). We also note the following lemma:

103

Lemma 4.2.9. fix is invariant under conjugation; that is, for any permutations ψ
and ϕ we have fix(ψ) = fix(ϕ ◦ ψ ◦ ϕ−1).

Proof. Calculate as follows:

ψ(x) = x
↔ { apply ψ−1 to both sides }
x = ψ−1(x)

↔ { apply ϕ ◦ ψ ◦ ϕ−1 ◦ ϕ to both sides }
ϕ(ψ(ϕ−1(ϕ(s)))) = ϕ(ψ(ϕ−1(ϕ(ψ−1(s)))))

↔ { simplify }
(ϕ ◦ ψ ◦ ϕ−1)(ϕ(s)) = ϕ(s).

Thus ϕ is a bijection between the fixed points of ψ and those of ϕ ◦ ψ ◦ ϕ−1. SDG

If f σ τ is of the form ϕ ◦ (σ] τ) ◦ ϕ−1, we therefore have

fix(f σ τ) = fix(ϕ ◦ (σ] τ) ◦ ϕ−1) = fix(σ] τ) = fix(σ) + fix(τ).

However, the f exhibited in the table above does not satisfy this equality: in particular,

fix(f id (12)) = fix((12)(34)) = 0 6= 2 = fix(id) + fix((12)).

We may now instantiate the definition of Day convolution (for some particular
choice of monoid in P), obtaining

(F ·G) n = ∃nF , nG. F nF ×G nG × (Fin n ∼−→ Fin (nF + nG)).

Again, letting R :=
⊎
nF ,nG

FnF
× GnG

× (Fin n ∼−→ Fin (nF + nG)), the coend is
equivalent to R /∼, where

(nF , nG, f, g, i) ∼ (nF , nG, F σF f, G σG g, i ; (σF +ϕ σG))

for any σF : (Fin nF)! and σG : (Fin nG)!. Note that the meaning of σF + σG depends
on the particular monoid we have chosen, which fixes an interpretation of Fin (m+n)
as representing a disjoint union.

Unlike in the case of B ⇒ Set, we cannot really simplify this any further. In
particular, it is not equivalent to ⊎

nF+nG=n

F nF ×G nG,

since that does not take into account the different ways the overall set of labels could
be distributed between F and G—that is, it throws away the information contained in
the bijection Fin n ∼−→ Fin (nF + nG). The reason we could “get rid of” the bijection

104

in (4.2.2) is that the bijection is secretly encoded in the partition LF , LG ` L. In
contrast, nF + nG = n says nothing about the relationship of the actual labels, but
only about the sizes of the label sets.

Example. There is another monoidal structure on B corresponding to the Cartesian
product of sets. If we instantiate the framework of Day convolution with this product-
like monoidal structure—but keep everything else the same, in particular continuing
to use products on Set—we obtain the arithmetic product.

That is,

(F �G) L = ∃LF , LG. F LF ×G LG × (L ∼−→ LF × LG).

By a similar argument to the one used above, this is equivalent to⊎
LF ,LGL

F LF ×GLG.

In this case we also have j(I) = j({?}) = B(−, {?}), the species which constructs all
bijections between the label set and {?}. There is only one such bijection whenever
the label set is of size 1 and none otherwise, so this is equivalent to the species X, as
expected.

Example. We now verify that B and S have the right properties, so that partitional
and arithmetic product are well defined on (B ⇒ S)-species.

• As with B, there are monoidal structures on B corresponding to the coproduct
and product of types. Note that when combining two finite types, their finiteness
evidence must be somehow combined to create evidence for the finiteness of
their product or coproduct. For example, given equivalences A ' Fin m and
B ' Fin n, one must create an equivalence A+B ' Fin (m+ n) (in the case of
coproduct) or A×B ' Fin (mn) (in the case of product). In the first case, this
can be accomplished by combining the given equivalences with an equivalence
Fin m+ Fin n ' Fin (m+ n), which can be implemented, say, by matching the
elements of Fin m with the first m elements of Fin (m + n), and the elements
of Fin n with the remaining n elements. Likewise, A × B ' Fin (mn) can be
implemented via an equivalence Fin m × Fin n ' Fin (mn), e.g. the one which
sends (i, j) to in + j. Fundamentally, there are many ways to implement such
equivalences, but since everything is wrapped in a propositional truncation it
does not ultimately matter, as long as there is some way to implement them.

• B can indeed be seen as enriched over S, since morphisms in B are paths,
which are equivalent to paths between the underlying sets, and because by
Corollary 2.4.2, A = B is a set when A and B are.

• We have already seen that there is a symmetric monoidal structure on S given
by the product of types, which does preserve colimits.

105

• Finally, S does have coends over B. In fact, since B is a groupoid, recall from
§2.2.2 that coends are just Σ-types.

Given F,G : B ⇒ S, and picking the monoid corresponding to coproduct on B,
we can instantiate the definition of Day convolution to get

(F ·G) L =
∑
LF ,LG

F LF ×G LG × (L = LF + LG).

That is, a value of type (F · G) L consists of a choice of finite types LF and LG, an
F -shape and a G-shape, labelled by LF and LG respectively, and a path between L
and LF + LG.

4.3 Composition

We have already seen that arithmetic product can be thought of as a restricted sort
of composition, where an F -structure contains G-structures all of the same shape
(or vice versa). More generally, there is an unrestricted version of composition, where
(F ◦G)-shapes consist of F -shapes containing arbitrary G-shapes. That is, intuitively,
to create an (F ◦G)-shape over a given set of labels L, we first partition L into subsets;
create a G-shape over each subset; then create an F -shape over the resulting set of
G-shapes.

4.3.1 Definition and examples

We begin with the formal definition of Bergeron et al. [1998]:

(F ◦G) L =
∑
π`L

F π ×
∏
p∈π

G p (4.3.1)

(there are some subtle issues with this definition, to be discussed shortly, but it
will suffice to consider the general idea and some examples). Figure 4.13 shows an
abstract representation of the definition, in which labels are shown as dots, and shapes
are represented abstractly as arcs drawn across edges leading to the labels contained
in the shape, identified by the name of a species. So the diagram illustrates how an
(F ◦G)-shape consists abstractly of a top-level F -shape with subordinate G-shapes.

Example. Figure 4.14 shows a concrete example of a (B ◦ L+)-shape, a binary tree
containing nonempty lists.

Example. As an example, we may define the species Par of set partitions, illustrated
in Figure 4.15, by

Par = E ◦ E+.

106

F
=

Figure 4.13: Generic species composition

4891

7530

62

Figure 4.14: An example (B ◦ L+)-shape

Par

Figure 4.15: The species Par of partitions

107

6

3

0

1

5

2

4

Figure 4.16: An example (B× Par)-shape

7

05

612

4

3

Figure 4.17: An example R-shape

That is, a set partition is a set of non-empty sets. Similarly, the species S of permu-
tations is given by S = E ◦ C, a set of cycles.

Given the species Par, we may define the species B×Par of partitioned trees. Struc-
tures of this species are labeled binary tree shapes with a superimposed partitioning
of the labels (as illustrated in Figure 4.16), and can be used to model trees containing
data elements with decidable equality; the partition indicates equivalence classes of
elements.

Example. The species R of nonempty n-ary (“rose”) trees, with data stored at internal
nodes, may be defined by the recursive species equation

R = X · (L ◦ R).

An example R-shape is shown in Figure 4.17. Note the use of L means the children
of each node are linearly ordered. Using E in place of L yields a more graph-theoretic
notion of a rooted tree, with no structure imposed on the neighbors of a particular
node.

108

765432103210100

Figure 4.18: Example P-shapes

Plan = X · (C ◦ R) is the species of planar embeddings of rooted trees, where the
top-level subtrees of the root are ordered cyclically. Each node other than the root,
on the other hand, still has a linear order on its children, fixed by the distinguished
edge from the node towards the root.

Example. The species P of perfect trees, with data stored in the leaves, may be defined
by

P = X + (P ◦ X2).

That is, a perfect tree is either a single node, or a perfect tree containing pairs.
Functional programmers will recognize this as a non-regular or nested recursive type;
it corresponds to the Haskell type:

data P a = Leaf a | Branch (P (a, a))

Figure 4.18 illustrates some example P-shapes.

In addition to being the identity for �, X is the (two-sided) identity for ◦ as well.
We have

(X ◦G) L =
∑
π`L

X π ×
∏
p∈π

G p,

in which X π is ∅ (cancelling the summands in which it occurs) except in the case
where π is the singleton partition {L}, in which case the summand is isomorphic to
G L. On the other side,

(F ◦ X) L =
∑
π`L

F π ×
∏
p∈π

X p;

the only way to get a product in which none of the X p are ∅ is when π ∼= L is the
complete partition of L into singleton subsets, in which case we again have something
isomorphic to F L.

As for generating functions, the mapping from species to egfs is indeed homomor-
phic with respect to composition:

(F ◦G)(x) = F (G(x)).

A direct combinatorial proof can be given, making use of Faà di Bruno’s formula [John-
son, 2002].

109

101010

Figure 4.19: An infinite family of (B ◦ L)-shapes of size 2

On the other hand, in general,

˜(F ◦G)(x) 6= F̃ (G̃(x)).

Bergeron et al. [1998, Exercise 1.4.3] pose the specific counterexample of S̃(x) 6=
Ẽ(C̃(x)), which is not hard to show (hint: S̃(x) =

∏
k>1

1
1−xk and C̃(x) = x+x2 +x3 +

· · · = x
1−x). A more intuitive explanation of the failure of ogfs to be homomorphic

with respect to composition—along with a characterization of the situations when
homomorphism does hold—is left to future work. In any case, to compute ogfs for
composed species, one may turn to cycle index series, which can be seen as a gener-
alization of both egfs and ogfs, and which retain more information than either; see
Bergeron et al. [1998, §1.2, §1.4] for details.

As hinted previously, the formal definition of composition given in (4.3.1) requires
additional qualification; in particular, it requires delicate treatment with regard to
partitions and infinite families of shapes. To see the issue, let B and L be the species
of binary trees and lists. Consider the species B ◦ L, whose shapes should consist
of binary trees containing lists at their nodes. Intuitively, this gives rise to infinite
families of shapes such as those illustrated in Figure 4.19, which are all of size 2.

There are several possible reactions to Figure 4.19, depending on the exact setting
in which we are working.

• If we are working in (B ⇒ Set), where the set of shapes on a given set of
labels may be infinite, then this should be allowed, and is exactly the meaning
that composition ought to have in this case. Note, however, that this means we
would need to allow π ` L to include “partitions” with arbitrary numbers of
empty parts (to correspond to the empty lists). Typically, the notation π ` L
denotes partitions into nonempty parts.

• On the other hand, if we are working in (B⇒ FinSet), as is more traditional
in a combinatorial setting, this must not be allowed. One possibility would be
to simply insist that π ` L in (4.3.1) excludes partitions with empty parts, as is
usual. But as we have just seen, this does not generalize nicely to (B ⇒ Set),
and in any case it would still be a bit strange, since, for example, B ◦ L and

110

B ◦ L+ would “silently” end up being the same. It is better to front the issue by
simply insisting that F ◦G is only defined when G ∅ = ∅.

We can reformulate the definition of composition in a better way which naturally
allows for empty parts and which also makes for a clearer path to a generalized
notion of composition (to be discussed in the next section). In fact, Joyal [1981, p. 11]
already mentions this as an alternative definition. The idea is to use another finite
set P , representing parts of a partition, and a function χ : L→ P which assigns each
l ∈ L to some p ∈ P . The fibers of χ, i.e. the sets χ−1(p) for p ∈ P , thus constitute
a partition of L. Note, however, that this naturally allows for empty parts, since χ
may not be surjective. We then say that an (F ◦G)-shape on the labels L consists of
some set P , a partition function χ : L→ P , an F -shape on P , and G-shapes on the
fibers of χ. However, we must also quotient out by bijections between P and other
finite sets; the precise identity of P should not matter. We can thus define (F ◦ G)
using a coend:

(F ◦G) L = ∃P ∈ B.
∑

χ:L→P

F P ×
∏
p∈P

G (χ−1 p). (4.3.2)

In the case that G ∅ = ∅ is required, only surjective χ will result in shapes, so the
coend reduces to the original definition (4.3.1), using the notation π ` L with its
usual meaning of a partition into nonempty parts.

4.3.2 Generalized composition

We first show how to carry out the definition of composition in B⇒ Set even more
abstractly, then discuss how it may be generalized to other functor categories L⇒ S.
Street [2012] gives the following abstract definition of composition:

(F ◦G) L = ∃K. F K ×G#K L, (4.3.3)

where Gn = G · · · · ·G︸ ︷︷ ︸
n

is the n-fold partitional product of G. Intuitively, this corre-

sponds to a top-level F -shape on labels drawn from the “internal” label set K, paired
with #K-many G-shapes, with the labels from L partitioned among all the G-shapes.
The coend abstracts over K, ensuring that the precise choice of “internal” labels does
not matter up to isomorphism.

Remark. Note how this corresponds to the second definition of composition given in
(4.3.2). In particular, binary partitional product allows for the labels to be parti-
tioned into the empty subset and the entire subset, so an iterated partitional product
corresponds to partitions which contain an arbitrary number of empty parts.

However, this definition is somewhat puzzling from a constructive point of view,
since it would seem that G#K retains no information about which element of K

111

corresponds to which G-shape in the product. The problem boils down, again, to
the use of the axiom of choice. For each finite set K we may choose some ordering
K ∼−→ [#K]; this ordering then dictates how to match up the elements of K with
the G-shapes in the product G#K . More formally, given a species G we can define the
anafunctor G− : B → Spe which sends each finite set K to the clique of (#K)-ary
products of G, with the morphisms in the clique corresponding to permutations (since
Spe is symmetric monoidal with respect to partitional product). This then becomes
a regular functor in the presence of the axiom of choice.

In the particular case of B⇒ Set, we can also avoid the axiom of choice by using
a more explicit construction (again due to Street3). For a finite set K and category C,
recall that we may represent a K-indexed tuple of objects of C by a functor K → C
(where K is considered as a discrete category). It’s important to note that this “K-
tuple” has no inherent ordering (unless K itself has one)—it simply assigns an object
of C to each element of K. Denote by ∆K : C→ CK the diagonal functor which sends
an object C ∈ C to the K-tuple containing only copies of C.

Consider C = FinSet. Given any discrete category K, the diagonal functor ∆K :
FinSet→ FinSetK has both a left and right adjoint, which we call ΣK and ΠK :

ΣK a ∆K a ΠK .

In particular, ΣK : FinSetK → FinSet constructs K-indexed coproducts, and ΠK

constructs indexed products. (In the special case K = |2|, Σ|2| and Π|2| resolve to the
familiar notions of disjoint union and Cartesian product of finite sets, respectively.)
One can see this by considering the expansion of the adjoint relations as natural
isomorphisms between hom-sets. For example, in the case of ΠK , we have

(∆K A→ T) ∼= (A→ ΠK T)

where A ∈ FinSet and T ∈ FinSetK . Essentially this expands to something like

(A→ T1)× · · · × (A→ Tn) ∼= (A→ ΠK T),

and it is easy to see that in order for the isomorphism to hold, we should have
ΠK T = T1×· · ·×TN . (In general, of course, K need not have some associated indexing
1 . . . n, but the same argument can be generalized.) We often omit the subscripts,
writing simply Σ and Π when K is clear from the context.

Now consider C = B. ∆K does not have adjoints in B; in fact, categorical products
and coproducts can be exactly characterized as adjoints to ∆|2|, and we have already
seen that B does not have categorical products or coproducts. However, we can take
ΠK ,ΣK : FinSetK → FinSet and restrict them to functors BK → B. This is
well-defined since FinSet and B have the same objects, and ΠK and ΣK produce
only isomorphisms when applied to isomorphisms. For example, if α : A ∼−→ A′,

3Personal communication, 6 March 2014.

112

L

F

64

F

25

F

031P

Figure 4.20: Indexed species product

β : B ∼−→ B′, and γ : C ∼−→ C ′, then Π|3|(α, β, γ) is the isomorphism α × β × γ :

A×B × C ∼−→ A′ ×B′ × C ′.
We can now define a general notion of indexed species product. For a species

F : B ⇒ Set and K ∈ B a finite set, FK : B ⇒ Set represents the #K-fold
partitional product of F , indexed by the elements of K (see Figure 4.20):

FK L = ∃(P : BK). B(ΣP,L)× Π(F ◦ P).

Note that K is regarded as a discrete category, so P ∈ BK is a K-indexed collection
of finite sets. B(ΣP,L), a bijection between the coproduct of P and L, witnesses
the fact that P represents a partition of L; the coend means there is only one shape

per fundamentally distinct partition. The composite F ◦ P = K
P // B F // Set is

a K-indexed collection of F -structures, one on each finite set of labels in P ; the Π
constructs their product.

It is important to note that this is functorial in K: the action on a morphism
σ : K ∼−→ K ′ is to appropriately compose σ with P .

The composition F ◦G can now be defined by

(F ◦G) L = ∃K. F K ×GK L.

This is identical to the definition given in (4.3.3), except that G#K has been replaced
by GK , which explicitly records a mapping from elements of K to G-shapes.

This explicit construction relies on a number of specific properties of B and Set,
and it is unclear how it should generalize to other functor categories. Fortunately,
in the particular case of B ⇒ S, in HoTT, this more complex construction is not
necessary. The anafunctor G− : B→ Spe discussed earlier corresponds in HoTT to a
regular functor G− : B → (B ⇒ S): in a symmetric monoidal category, the (#K)-ary
tensor product of G is unique up to isomorphism, which in an h-category corresponds
to actual equality.

More generally, if we focus on the high-level definition

(F ◦G) L = ∃K. F K ×GK L,

113

Figure 4.21: (C ◦ L)- and (L ◦ C)-forms of size 3

leaving the definition of GK abstract, we can enumerate the properties required of a
general functor category L⇒ S to accommodate it: for starters, S must have coends
over L, and (S,×) must be monoidal. We can also say that, whatever the definition
of GK , it will involve partitional product—so we must add in all the requirements for
that operation, enumerated in §4.2.3. In fact, this already covers the requirements of
S having coends and a monoid ×, so any functor category L ⇒ S which supports
partitional product already supports composition as well.

For a formal proof that composition is associative, see Kelly [2005, pp. 5–6], al-
though some reflection on the intuitive idea of composition should be enough to
convince informally: for example, a tree which contains cycles-of-lists is the same
thing as a tree-of-cycles containing lists.

Unlike the other monoidal structures on Spe (sum and Cartesian, arithmetic, and
partitional product), composition is not symmetric. For example, as illustrated in
Figure 4.21, there are different numbers of (C ◦ L)-forms and (L ◦ C)-forms of size 3,
and hence C ◦ L 6∼= L ◦ C.

Proposition 4.3.1. (Spe, ◦,X) is monoidal.

Proof. We have already seen that ◦ is associative and that X is an identity for com-
position. For formal proofs in a more generalized setting see, again, Kelly [2005]. SDG

Like associativity, the right-distributivity laws

(F +G) ◦H ∼= (F ◦H) + (G ◦H)

(F ·G) ◦H ∼= (F ◦H) · (G ◦H)

are easy to grasp on an intuitive level. Their formal proofs are not too difficult; the
second specifically requires an isomorphism GK1+K2 ∼= GK1 ·GK2 , which ought to hold
no matter what the definition of GK . The reader may also enjoy discovering why
the corresponding left-distributivity laws are false (although they do correspond to
species morphisms rather than isomorphisms).

114

4.3.3 Internal Hom for composition

We have seen that (Spe, ◦,X) is monoidal; in this section we show that it is monoidal
closed. Indeed, we can compute as follows (essentially the same computation also
appears in Kelly [2005, p. 7], though in a more general form):

F ◦G⇒Spe H
∼= { natural transformations are ends }
∀L. (F ◦G) L⇒Set H L

∼= { definition of ◦ }
∀L. (∃K. F K ×GK L)⇒Set H L

∼= { (− ⇒Set H L) turns colimits into limits }
∀L. ∀K. (F K ×GK L)⇒Set H L

∼= { currying }
∀L. ∀K. F K ⇒Set (GK L⇒Set H L)

∼= { (F K ⇒Set −) preserves limits }
∀K. F K ⇒Set ∀L. (GK L⇒Set H L)

∼= { natural transformations are ends }
∀K. F K ⇒Set (GK ⇒Spe H)

∼= { natural transformations are ends }
F ⇒Spe (G− ⇒Spe H)

Thus we have the adjunction

(F ◦G⇒Spe H) ∼= (F ⇒Spe (G⇒◦ H)),

where
(G⇒◦ H) := (G− ⇒Spe H)

is the species whose K-labelled shapes are species morphisms from GK to H. An
illustrated example is shown in Figure 4.22: a species morphism from a binary tree
of cycles to a rose tree is equivalent to a species morphism that takes the underlying
tree shape on the label set K and produces another species morphism, which itself
expects a K-indexed partitional product of cycles and produces a rose tree. One can
see how the composition is decomposed into its constituent parts, with a new label
type K introduced to mediate the relationship between them.

4.4 Functor composition

There is a more direct variant of composition, known as functor composition [Bergeron
et al., 1998, Décoste et al., 1992]. When species are defined as endofunctors B→ B,
the functor composition F � G can literally be defined as the composition of F and

115

6

8

5

10

234

9

7

8

6

9

5

d

4

2

c

0

b

73

1

a

d

ba

c

≅

6

8

5

10

234

9

7

8

6

9

5

0

73

1

4

2

Figure 4.22: Internal Hom for composition

116

G as functors, that is,
(F �G) L = F (G L).

However, if species are viewed as functors B → Set then this operation is not well-
typed as stated, and indeed feels somewhat unnatural. This problem is discussed
further in §6.3. For the most part, incorporating functor composition into this frame-
work is left to future work, but it is worth describing briefly here.

An (F �G)-shape on the set of labels L can intuitively be thought of as consisting
of all possible G-shapes on the labels L, with an F -shape on this collection of G-shapes
as labels. Functor composition thus has a similar relationship to partitional compo-
sition as Cartesian product has to partitional product. With partitional product, the
labels are partitioned into two disjoint sets, whereas with Cartesian product the labels
are shared. With partitional composition, the labels are partitioned into (any number
of) subsets with a G-shape on each; with functor composition, the labels are shared
among all possible G-shapes.

Remark. There is no standard operation which directly creates an F -shape on only
some G-shapes, with the labels L shared among them. To accomplish this one can
simply use (F · E)�G.

Example. The species of simple, directed graphs can be described by

(E · E)� (X2 · E).

Each (X2 · E)-shape applied to the same set of labels L picks out an ordered pair
of distinct labels, which can be thought of as a directed edge. Taking the functor
composition with (E · E) thus picks out a subset of the total collection of possible
directed edges.

A number of variants are also possible. For example, to allow self-loops, one can
replace X2 by (X + X2); to use undirected instead of directed edges, one can replace
X2 by E2; and so on.

4.5 Differentiation

The derivative of container types is a notion already familiar to many functional
programmers through the work of Huet [1997], McBride [2001, 2008] and Abbott
et al. [2003b]: the derivative of a type is its type of “one-hole contexts”. For example,
Figure 4.23 shows a B′-shape, where B is the species of rooted binary trees; there is
a “hole” in a place where a label would normally be.

This section begins by presenting the formal definition of derivative for species,
along with some examples (§4.5.1). Some related notions such as up and down opera-
tors (§4.5.2) and pointing (§4.5.3) follow. The basic notion of differentiation does not
generalize nicely to other functor categories, but this is rectified by a more general
notion of higher derivatives, of which the usual notion of derivative is a special case

117

2

30

145

6

Figure 4.23: An example B′-shape

(§4.5.4). Finally, this notion of higher derivatives paves the way for discussing the
internal Hom functors for partitional and arithmetic product (§4.5.5).

There is much more that can be said about differentiation [Menni, 2008, Labelle
and Lamathe, 2009, Piponi, 2010b,a, Stay, 2014, McBride, 2012]; in general, there
seems to remain a great deal of rich material on differentiation waiting to be explored.

4.5.1 Differentiation in B⇒ Set

Formally, we create a “hole” by adjoining a new distinguished label to the existing
set of labels:

Definition 4.5.1. The derivative F ′ of a species F is defined by

F ′ L = F (L] {?}).

The transport of relabellings along the derivative is defined as expected, leaving the
distinguished label alone and transporting the others.

In other words, an F ′-shape on the set of labels L is an F -shape on L plus one addi-
tional distinguished label. It is therefore slightly misleading to draw the distinguished
extra label as an indistinct “hole”, as in Figure 4.23, since, for example, taking the
derivative twice results in two different, distinguishable holes. But thinking of “holes”
is still a good intuition for most purposes.

Example. Denote by a the species of unrooted trees, i.e. trees in the pure graph-
theoretic sense of a collection of vertices and unoriented edges with no cycles. Also
let A = X · (E ◦ A) denote the species of rooted trees (where each node can have
any number of children, which are unordered). It is difficult to get a direct algebraic
handle on a; however, we have the relation

a′ ∼= E ◦ A,

since an unrooted tree with a hole in it is equivalent to the set of all the subtrees
connected to the hole (Figure 4.24). Note that the subtrees connected to the hole

118

711

610

0

9

2

31

4125

8

≅
12

11

10
9

8

7
6

54

3
2

1

0

Figure 4.24: a′ ∼= E ◦ A

become rooted trees; their root is distinguished by virtue of being the node adjacent
to the hole.

Example. C′ ∼= L, as illustrated in Figure 4.25.

≅

Figure 4.25: C′ ∼= L

Example. L′ ∼= L2, as illustrated in Figure 4.26.

Example. Well-scoped terms of the (untyped) lambda calculus may be represented as
shapes of the species

Λ = ε+ Λ2 + Λ′.

Recall that ε = X · E is the species of elements. (This example appears implicitly—
without an explicit connection to species—in the work of Altenkirch et al. [2010],
and earlier also in that of Altenkirch and Reus [1999] and Fiore et al. [2003].) Labels

≅

Figure 4.26: L′ ∼= L2

119

correspond to (free) variables, that is, the elements of Λ V are well-scoped lambda
calculus terms with free variables taken from the set V . The above equation for Λ
can thus be interpreted as saying that a lambda calculus term with free variables in
V is either

• an element of V , i.e. a variable,

• a pair of terms (application), or

• a lambda abstraction, represented by a term with free variables taken from the
set V] {?}. The new variable ? of course represents the variable bound by the
abstraction.

The set of closed terms is thus given by Λ ∅. Note that there are infinitely many
terms with any given number of free variables, so this is not useful for doing combi-
natorics ; as an equation of generating functions, Λ(x) = ε(x) + Λ2(x) + Λ′(x) has no
solution. To do combinatorics with lambda terms one must also count applications
and abstractions as contributing to the size, e.g. using a two-sort species (§5.4) such
as

Ξ = X · E + Y · Ξ2 + Y · ∂
∂X

Ξ

which uses labels of sort Y to mark occurrences of applications and abstractions. For
a similar approach see Grygiel and Lescanne [2013], Lescanne [2013].

The operation of species differentiation obeys laws which are familiar from calcu-
lus:

1′ ∼= 0

X′ ∼= 1

E′ ∼= E

(F +G)′ ∼= F ′ +G′

(F ·G)′ ∼= F ′ ·G+ F ·G′

(F ◦G)′ ∼= (F ′ ◦G) ·G′

The reader may enjoy working out combinatorial interpretations of these laws.

120

In addition, differentiation of species corresponds to differentiation of exponential
generating functions, as one might hope. We have

d

dx
(F (x)) =

d

dx

(∑
n>0

fn
xn

n!

)

=
∑
n>1

fn
xn−1

(n− 1)!

=
∑
n>0

fn+1
xn

n!

=

(
d

dx
F

)
(x),

since by definition the number of (F ′)-shapes of size n is indeed equal to fn+1, the
number of F -shapes on n+ 1 labels.

Unfortunately, once again

(̃F ′)(x) 6= F̃ ′(x)

in general, though a corresponding equation does hold for cycle index series, which
may be used to compute the ogf for a species defined via differentiation.

4.5.2 Up and down operators

Aguiar and Mahajan [2010, §8.12] define up and down operators on species; although
the import or usefulness of up and down operators is not yet clear to me, my in-
stinct tells me that they will indeed have important roles to play, so I include a brief
discussion of them here.

Definition 4.5.2. An up operator on a species F is a species morphism u : F → F ′.

Since a species morphism is a natural, label-preserving map, an up operator must
essentially “add” an extra “hole” somewhere in a shape. (Of course it can also rear-
range existing labels, as long as it does so in a natural way that does not depend on
the identity of the labels at all.)

Example. The species E of sets has a trivial up operator which sends the unique set
shape on L to the unique set shape on L] {?} (Figure 4.27).

Example. The species L of linear orders has an up operator which adds a hole in the
leftmost position (Figure 4.28). There is a similar operator which adds a hole in the
rightmost position. In fact, there are many other examples (particularly since species
maps are allowed to do something completely different at every size), but these are
two of the most apparent.

121

Figure 4.27: The trivial up and down operators on E

Figure 4.28: An up operator on L

Figure 4.29: An up operator on B

122

Figure 4.30: A down operator on C

Example. We can similarly make an up operator for the species B of binary trees,
which adds a hole as the leftmost (or rightmost) leaf (Figure 4.29).

Example. The species C of cycles, on the other hand, has no up operator. Recall that
C′ = L; there is no way to define a natural map ϕ : C → L. As a counterexample,
consider

C 2
ϕ2
//

C σ
��

L 2

L σ
��

C 2 ϕ2

// L 2

where 2 = {0, 1} is a two-element set, and σ : 2 ∼−→ 2 is the permutation that swaps
0 and 1. The problem is that C σ is the identity on C 2, but L σ is not the identity
on L 2, so this square cannot possibly commute.

Generalizing from this example, one intuitively expects that there is no up operator
whenever taking the derivative breaks some symmetry, as in the case of C. Formalizing
this intuitive observation is left to future work.

Down operators are defined dually, as one would expect:

Definition 4.5.3. A down operator on a species F is a species morphism d : F ′ → F .

Example. Again, E has a trivial down operator, which is the inverse of its up operator.

Example. Although we saw previously that the species C of cycles has no up operator,
it has an immediately apparent down operator, namely, the natural map C′ → C which
removes the hole from a cycle, that is, which glues together the two ends of a list.

Example. The species L of linear orders also has an apparent down operator, which
simply removes the hole.

Remark. Aguiar and Mahajan [2010, p. 275, Example 8.56] define a down operator
on L which removes the hole if it is in the leftmost position, and “sends the order
to 0” otherwise. However, this seems bogus. First of all, it is not clear what is meant
by 0 in this context; assuming it denotes the empty list, it is not well-typed, since
species morphisms must be label-preserving.

123

Figure 4.31: An example down operator on B, via stacking

Figure 4.32: An example down operator on B, via promotion

Example. It takes a bit more imagination, but it is not too hard to come up with
examples of down operators for the species B of binary trees. For example, the two
subtrees beneath the hole can be “stacked”, with the first subtree added as the left-
most leaf of the remaining tree, and the other subtree added as its leftmost leaf
(Figure 4.31), or nodes could be iteratively promoted to fill the hole, say, preferring
the left-hand node when one is available (Figure 4.32).

These operators are somewhat reminiscent of deletion from data structures such as
binary search trees or heaps. Those algorithms rely on a linear order on the labels, and
hence do not qualify as natural species morphisms. However, they do indeed qualify
as down operators on the L-species of binary search trees and heaps, respectively (see
§2.4.3 and §5.5).

124

7

05

612

3

4≅
7

05

612

4

3

Figure 4.33: Species pointing

4.5.3 Pointing

Definition 4.5.4. The operation of pointing can be defined in terms of the species
of elements, ε = X · E, and Cartesian product:

F • = ε× F.

As illustrated on the left-hand side of Figure 4.33, an F •-structure can be thought of
as an F -structure with one particular distinguished element.

As is also illustrated in Figure 4.33, pointing can also be expressed in terms of
differentiation,

F • ∼= X · F ′.

Similar laws hold for pointing as for differentiation; they are left for the reader to
discover.

4.5.4 Higher derivatives

Aguiar and Mahajan [2010, §8.11] describe a generalization of species derivatives to
“higher derivatives”. The idea of higher derivatives in the context of functions of a
single variable should be familiar: the usual derivative is the first derivative, and by
iterating this operation, one obtains notions of the second, third, . . . derivatives. More
abstractly, we generalize from a single notion of “derivative”, f ′, to a whole family of
higher derivatives f (n), parameterized by a natural number n.

Note that taking the derivative of a polynomial reduces the degree of all its terms
by one. More generally, the nth derivative reduces the degrees by n. According to
the correspondence between species and generating functions, the degrees of terms in
a generating function correspond to the sizes of label sets. Recall that the general
principle of the passage from generating functions to species is to replace natural
number sizes by finite sets of labels having those sizes. Accordingly, just as higher
derivatives of generating functions are parameterized by a natural number which acts
on the degree, higher derivatives of species are parameterized by a finite set which
acts on the labels.

125

e

0c

d12

b

a

Figure 4.34: An example B(K)-shape

Definition 4.5.5. For a species F and finite set K, the K-derivative of F is defined
by

F (K) L = F (K] L).

As should be clear from the above discussion, the exponential generating function
corresponding to the K-derivative of F is

(F (K))(x) = F (#K)(x),

i.e. the (#K)-th derivative of F . Note that we recover the simple derivative of F by
setting K = {?}. Note also that F (∅) = F .

An F (K)-shape with labels L is an F -shape populated by both L and K. The
occurrences of labels from K can be thought of as “K-indexed holes”, since they do
not contribute to the size. For example, an “F (K)-shape of size 3” consists of an F -
shape with three labels that “count” towards the size, as well as one “hole” for each
element of K. Figure 4.34 illustrates a B(K)-shape of size 3, where K = {a, b, c, d, e}.

Higher derivatives generalize easily to any functor category L⇒ S where (L,⊕, I)
is monoidal; we simply define

F (K) L := F (K ⊕ L).

4.5.5 Internal Hom for partitional and arithmetic product

As promised, we now return to consider the existence of an internal Hom functor
corresponding to partitional product. We are looking for some

− ⇒• − : Speop × Spe→ Spe

for which
(F ·G⇒Spe H) ∼= (F ⇒Spe (G⇒• H)). (4.5.1)

Intuitively, this is just like currying—although there are labels to contend with which
make things more interesting.

126

2b0a13

3

01

2

ab

≅

2b0a13

3

01

2

ab

Figure 4.35: “Currying” for partitional product of species

Recall that an (F ·G)-shape on L is a partition L1]L2 = L together with shapes
from F L1 and G L2. Another way of saying this is that an (F · G)-shape consists
of an F -shape and a G-shape on two different sets of labels, whose disjoint union
constitutes the label set for the entire product shape. Thus, a morphism out of F ·G
should be a morphism out of F , which produces another morphism that expects a G
and produces an H on the disjoint union of the label sets from the F - and G-shapes.

This can be formalized using the notion of higher derivatives developed in the
previous subsection. In particular, define − ⇒• − by

(G⇒• H) L := G⇒Spe H
(L).

That is, a (G ⇒• H)-shape with labels taken from L is a species morphism, i.e. a
natural, label-preserving map, from G to the L-derivative of H. This definition is
worth rereading a few times since it mixes levels in an initially surprising way—the
shapes of the species G⇒• H are species morphisms between other species. However,
this should not ultimately be too surprising to anyone used to the idea of higher-order
functions; it corresponds to the idea that functions can output other functions.

Thus, a (G ⇒• H)-shape with labels from L is a natural function that takes
a G-shape as input and produces an H-shape which uses the disjoint union of L
and the labels from G. This is precisely what is needed to effectively curry a species
morphism out of a product while properly keeping track of the labels, as illustrated in
Figure 4.35. The top row of the diagram illustrates a particular instance of a species
morphism from L · B to L. The bottom row shows the “curried” form, with a species
morphism that sends a list to another species morphism, which in turn sends a tree
to a higher derivative of a list, containing holes corresponding to the original list.

Formally, we have the adjunction (4.5.1). The same result appears in Kelly [2005]

127

in a slightly different guise.
This result hints at a close relationship between partitional product and higher

derivatives. In particular, both are defined using the same monoidal structure on
B (the one corresponding to disjoint union of finite sets), and this gives rise to the
fundamental Leibniz-like law relating the two,

(F ·G)(L) =
∑

J]K=L

F (J) ·G(K).

Setting L = {?} yields the familiar product rule for differentiation,

(F ·G)′ = F ′ ·G+ F ·G′,

since there are only two possibilities for J and K given J]K = {?}. This generalizes
to functor categories other than B ⇒ Set: any functor category which supports a
Day convolution product also has a corresponding notion of higher derivatives, and a
corresponding Leibniz law.

This also suggests considering an alternate sort of higher derivative, based on the
other monoidal structure on B (corresponding to Cartesian product of finite sets),
and thus related to arithmetic product rather than partitional product. In particular,
we define the arithmetic derivative by

F {K} L = F (K × L).

We have
(F �G⇒Spe H) ∼= (F ⇒Spe (G⇒� H))

where
(G⇒� H) := (G⇒Spe H

{L}).

This is a bit harder to visualize, but works on a similar principle to higher derivative
for partitional product. The problem, from a visualization point of view, is that no
specific labels correspond to “holes”; an F {K}-shape with labels taken from L actually
has (#K)(#L) labels, with an entire K-indexed set of labels corresponding to each
element of L. Figure 4.36 illustrates the adjunction: a natural, label-preserving map
from an arithmetic product F � G to some other species (here a cycle) corresponds
to a nested map that takes each of F and G in turn and then produces a species on
the product of their labels.

If F (x) =
∑

n>0 fn
xn

n!
, then

F {K}(x) =
∑
n>0

fkn
xn

n!
,

where k = #K; I do not know whether there is a nice way to express this transfor-
mation on generating functions.

128

≅

Figure 4.36: “Currying” for arithmetic product of species

4.6 Regular, molecular and atomic species

We now consider the three related notions of regular, molecular, and atomic species.
Regular species, roughly speaking, are those that correspond to algebraic data types
in Haskell or OCaml. A first characterization is as follows:

Definition 4.6.1. The class of regular species consists of the smallest class contain-
ing 0, 1, and X, and closed under (countable) sums and products.

There are a few apparent differences between regular species and algebraic data types.
First, programming languages do not actually allow infinite sums or products. For
example, the species

X2 + X3 + X5 + X7 + X11 + . . .

of prime-length lists is a well-defined regular species, but is not expressible as, say, a
data type in Haskell4. Second, Haskell and OCaml also allow recursive algebraic data
types. However, this is not a real difference: the class of regular species is also closed
under least fixed points (any implicit recursive definition of a species can in theory
be unfolded into an infinite sum or product). Essentially, recursion in algebraic data
types can be seen as a tool that allows some infinite sums and products to be encoded
via finite expressions.

However, there is a more abstract characterization of regular species which does
a better job of capturing their essence. We first define the symmetries of a structure.

4At least not in Haskell 2010.

129

Recall that Sn denotes the symmetric group of permutations on n elements under
composition.

Definition 4.6.2. A permutation σ ∈ Sn is a symmetry of an F -shape f ∈ F L if
and only if σ fixes f , that is, F σ f = f .

Example. The C-shape in the upper left of Figure 4.37 has the cyclic permutation
(01234) as a symmetry, because applying it to the labels results in the same cycle (in
the upper right). On the other hand, (12) is not a symmetry; it results in the cycle
on the lower left, which is not the same as the original cycle.

≠

=

Figure 4.37: A symmetry and a non-symmetry of a C-shape

Example. An L-shape has no nontrivial symmetries: applying any permutation other
than the identity to a linear order results in a different linear order.

Example. An E-shape has all possible symmetries: applying any permutation to the
labels in a set results in the same set.

We can now state the more abstract definition of regular species; this definition
and Definition 4.6.1 turn out to be equivalent.

130

Definition 4.6.3. A species F is regular if every F -shape has the identity permuta-
tion as its only symmetry. Such shapes are also called regular.

Example. Regular species include 0, 1, X, linear orders (L), rooted binary trees (B),
and rose trees (R). Non-regular species include sets (E), cycles (C), and any sum or
product of a non-regular species with any other species.

Remark. According to this definition, in addition to least fixed points, regular species
are also closed under Cartesian and arithmetic product, since the Cartesian or arith-
metic product of two regular shapes is also regular. That is, Cartesian and arithmetic
product cannot introduce any symmetries if none are present. Given the previous def-
inition, this means that if F and G are two species expressed entirely in terms of 1,
X, sum, and partitional product, the Cartesian or arithmetic products of F and G are
both themselves isomorphic to some species expressed using only those operations,
without any mention of Cartesian or arithmetic product. This is certainly far from
obvious.

This definition also shows why regular species can be characterized as those for
which F (x) = F̃ (x): with no symmetries, each F -form of size n corresponds to n!
distinct labelled shapes. Hence

F (x) =
∑
n>0

fn
xn

n!
=
∑
n>0

f̃nn!
xn

n!
=
∑
n>0

f̃nx
n = F̃ (x).

That species built from 0, 1, X, sum, product, and fixed point have no symmetries
is not hard to see intuitively; less obvious is the fact that up to isomorphism, every
species with no symmetries can be expressed in this way. To understand why this is
so, we turn to molecular species.

Definition 4.6.4. A species F is molecular if there is only a single F -form, that is,
all F -shapes are related by relabelling.

Example. The species X2 of ordered pairs is molecular, since any two ordered pairs
are related by relabelling.

Example. On the other hand, the species L of linear orderings is not molecular, since
list structures of different lengths are fundamentally non-isomorphic.

Any two shapes with different numbers of labels are unrelated by relabelling.
Thus, any molecular species M necessarily has a size, i.e. some n ∈ N such that all
M -shapes have size n. In other words, M ∼= Mn (where Mn is the restriction of M to
cardinality n; see §3.2.2).

Clearly, any species of the form F + G is not molecular (as long as F and G are
not 0), since the set of (F + G)-forms consists of the disjoint union of the sets of
F -forms and G-forms. It turns out that the converse is true as well:

131

Proposition 4.6.5 (Yeh [1985, 1986]). The molecular species are precisely those
that cannot be decomposed as the sum of two nonzero species.

Molecular species can be characterized more deeply yet, via quotient species. Recall
first the definition of a group action:

Definition 4.6.6. An action of a group G on a set S is a function

−�− : G× S → S

such that, for all g, h ∈ G and s ∈ S,

• id � s = s and

• g � (h� s) = (gh)� s.

Remark. Note that this is identical to the definition of a monoid action [Yorgey, 2012];
the only difference is that G has inverses, but no special laws are needed to deal with
the interaction of inverses with the action.

If the action function is curried, G→ (S → S), then the laws state that a group
action must be a group homomorphism from G into the symmetric group of bijections
on S. Intuitively, a group action can be thought of as describing symmetries of the
set S.

Definition 4.6.7. Let H be a group and F a species. H is said to act naturally on
F if there is a family of group actions

ρL : H × F L→ F L

such that the following diagram commutes for all σ : L ∼−→ K:

H × F L
ρL //

id×F σ
��

F L

F σ
��

H × F K ρK
// F K

Example. Intuitively, H acts naturally on F if its action does not depend on the
particular identity of the labels—that is, if it commutes with relabelling. For example,
consider the species L5, of linear orders on exactly 5 labels, and the cyclic group
Z5 = {0, . . . , 4} under addition modulo 5. There is an action of Z5 on L5, where
n ∈ Z5 sends the list a0, . . . , a4 to the list an, . . . , an+4 (where the indices are taken
modulo 5). In other words, n ∈ Z5 “rotates” the list n places to the left. It is clear
that this is a group action (rotating a list by 0 places is indeed the identity; rotating
by m and then by n is the same as rotating by m+ n). It is also natural: the action
does not depend on the identity of the labels, and is fully compatible with relabelling.

132

Example. More generally, by Cayley’s theorem, any group of order n is isomorphic
to a group of permutations, and thus has a natural action on Ln ∼= Xn, given by
permuting the list elements.

Example. Z2 has an action on L (the species of linear orders of any length) whereby
the non-identity element acts on a linear order by reversing it.

Example. Z2 also acts on L>2 by swapping the first two elements, and leaving the rest
alone.

Definition 4.6.8 (Quotient species [Labelle, 1985]). Let F be a species and let
H act naturally on F . Then define the quotient species F/H as the species which
sends the finite set of labels L to the set of orbits of F L under the action of H.

Put another way, for f1, f2 ∈ F L, define f1 ∼H f2 if there is some h ∈ H such
that h� f1 = f2; this defines an equivalence relation on F L, and we define (F/H) L
to be the set of equivalence classes under this equivalence relation.

For a given σ : L ∼−→ K, we define (F/H) σ : (F/H) L→ (F/H) K by

F σ [f] := [F σ f].

For this to be well-defined, we must show that if f1 ∼H f2 then F σ f1 ∼H F σ f2.
This follows from the naturality of the action of H: if f1 ∼H f2, that is, there is some
h ∈ H such that h � f1 = f2, then h � (F σ f1) = F σ (h � f1) = F σ f2, that is,
F σ f1 ∼H F σ f2. It is also easy to see that F/H inherits the functoriality of F .

Example. Consider again the action of Z5 on L5 described previously. Each orbit under
the action of Z5 contains five elements: all the possible cyclic rotations of a given linear
order. In fact, L5/Z5 is isomorphic to C5, the species of size-5 cycles. Each equivalence
class of five lists is sent to the unique cycle which results from “gluing” the beginning
and end of each list together; conversely, each cycle is sent to the equivalence class
consisting of all possible ways of cutting the cycle to obtain a list (Figure 4.38).

Example. Considering the reversing action of Z2 on L, shapes of the quotient L/Z2

consist of (unordered) pairs of lists which are the reverse of each other. This can
be thought of as the species of “unoriented lists” (sometimes called the species of
chains).

Example. Considering the action of Z2 on L>2 which swaps the first two elements,
the quotient L>2/Z2 is isomorphic to the species E2 · L (Figure 4.39).

We can now state the following beautiful result:

Proposition 4.6.9 (Bergeron et al. [1998]). Every molecular species is isomor-
phic to Xn/H for some natural number n and some subgroup H of the symmetric
group Sn. Moreover, Xn/G and Xn/H are isomorphic if and only if G and H are
conjugate (that is, if there exists some ϕ ∈ Sn such that G = ϕHϕ−1).

133

Figure 4.38: Isomorphism between L5/Z5 and C5

Figure 4.39: Isomorphism between L>2/Z2 and E2 · L

In particular, this means that, up to isomorphism, molecular species of size n are
in one-to-one correspondence with conjugacy classes of subgroups of Sn. This gives a
complete classification of molecular species. For example, it is not hard to verify that
there are four conjugacy classes of subgroups of S3, yielding the four molecular species
illustrated in Figure 4.40. The leftmost is X3, corresponding to the trivial group. The
second is X · E2, corresponding to the subgroups of S3 containing only a single swap.
The third is C3, corresponding to Z3. The last is E3, corresponding to S3 itself.

This can in fact be extended to a classification of all species: up to isomorphism,
every species has a unique decomposition as a sum of molecular species. As a very
simple example, the molecular decomposition of L is

L = 1 + X + X2 + X3 +

Figure 4.40: The four molecular species of size 3

134

Bergeron et al. [1998, p. 141] give a more complex example:

A = X + X2 + (X3 + X · E2) + (2X4 + X2 · E2 + X · E3) + . . .

Remark. We can now see why the two definitions of regular species given previously
are equivalent. Any regular species must be isomorphic to a sum of regular molecular
species; but regular molecular species must be of the form Xn. Hence, up to isomor-
phism, regular species are always of the form

∑
n>0 anXn with an ∈ N.

The story does not end here, however; molecular species can be decomposed yet
further.

Definition 4.6.10. An atomic species F 6= 1 is one which is indecomposable under
partitional product. That is, F is atomic if F = G ·H implies G = 1 or H = 1.

Theorem 4.6.11 (Yeh [1985]). Every molecular species M can be uniquely decom-
posed as a product of atomic species

M = An1
1 · An2

2 . . . Ank
k .

Remark. Of course “unique” here means “unique up to isomorphism”, which includes
reordering of the factors.

Example. Of the four molecular species of size 3 shown in Figure 4.40, only the last
two (C3 and E3) are atomic. The first two, X3 and X · E2, decompose as the product
of three and two atomic species, respectively.

4.7 Species eliminators

With the molecular and atomic decompositions of species under our belt, we now
turn to eliminators for species. Generally speaking, this is not of much interest to
combinatorialists, but it will play an important role in using species as a basis for
data types, to be explored in the next chapter.

The idea is to characterize outgoing species morphisms. That is, for a given species
F , what can one say about species morphisms F ⇒ G for arbitrary species G?

Zero Since 0 L = ∅ for all label sets L, there is only a single species morphism
0 ⇒ G for any species G, namely, the one which consists of the empty function at
every size.

One There is only a single 1-shape, which has size zero, so a species morphism
1⇒ G is equivalent to a specified inhabitant of G ∅.

135

Singleton By a similar argument, a species morphism X ⇒ G is equivalent to a
specified inhabitant of G {?}.

Sum Intuitively, a species morphism (F + G)⇒ H should correspond to a pair of
morphisms (F ⇒ H) × (G ⇒ H), characterizing the morphism in terms of the two
possible cases. Indeed, this follows abstractly from the fact that contravariant Hom
functors turn colimits (here, a coproduct of species) into limits (here, the product
in Set). One may also calculate this result more directly by expanding the species
morphism as an end and manipulating morphisms in Set.

Products Species morphisms out of various types of product (Cartesian, parti-
tional, and arithmetic) have already been characterized in terms of the internal Hom
functors for these operations (see §4.1.4 and §4.5.5):

((F ×G)⇒ H) ∼= (F ⇒ HG)

((F ·G)⇒ H) ∼= (F ⇒ (G⇒• H))

((F �G)⇒ H) ∼= (F ⇒ (G⇒� H))

where HG is defined in §4.1.4, and G⇒• H and G⇒� H are defined in §4.5.5. Note
that in all three cases, one may continue to recursively characterize the results in
terms of an eliminator for F . It ought to be the case that the internal Hom functors
can likewise be characterized in terms of an eliminator for G, although the details are
not yet clear to me.

Composition Species morphisms out of compositions have also already been char-
acterized in terms of an internal Hom functor, in §4.3.3:

((F ◦G)⇒ H) ∼= (F ⇒ (G⇒◦ H)).

Molecular and atomic species We first consider molecular species, which by the
discussion in the previous section are equivalent to Xn/H for some H ⊆ Sn. Unfolding
definitions,

Xn/H ⇒Spe G
= { definition }
∀L. (Xn/H) L⇒Set G L

= { definition of F/H }
∀L. (Xn L)/∼H ⇒Set G L

where f1 ∼H f2 iff there exists some σ ∈ H such that Xn σ f1 = f2. We now note that
a function out of a set of equivalence classes can be characterized as a function out

136

of the underlying set which respects the equivalence relation. That is, the last line of
the computation above is isomorphic to

(f : ∀L. Xn L⇒Set G L)× ((σ ∈ H)→ (f = f ◦ (Xn σ)),

i.e. a species morphism Xn ⇒ G paired with a proof that it respects the equivalence
induced by H. Note that the same argument applies unchanged to the more general
case of a quotient species F/H.

Example. Consider species morphisms ψ : C5 → B5, from cycles to binary trees of
size 5. (You may want to pause to think about what such morphisms could look like.)

As noted earlier, C5
∼= X5/Z5. So any ψ : C5 → B5 is isomorphic to a species

morphism χ : X5 → B5 together with a proof that χ = χ ◦ (X5 σ) for all σ ∈ Z5. By
naturality of χ, we have χ ◦ (X5 σ) = (B5 σ) ◦ χ, and hence χ = (B5 σ) ◦ χ. However,
we now see that this was something of a trick “example”: since B5 is regular, B5 σ
has no fixed points unless σ = id , and Z5 certainly contains nontrivial permutations.
Therefore no such morphisms ψ : C5 → B5 can exist!

For molecular species which are not atomic, of course it is possible to decompose
them as a product, and characterize morphisms out of them via currying. So in some
sense we are only “forced” to use the above characterization of morphisms out of
quotient species in the case of atomic species.

137

Chapter 5

Species variants

One of the goals of the previous chapter was to determine the properties needed to
define operations on “variant species”, i.e. functors in some category (L ⇒ S). We
have seen a few variants already:

• B⇒ Set

• B ⇒ FinSet, a more traditional notion of species which is more appropriate
for doing combinatorics.

• P⇒ Set, species as families of shapes organized by size instead of by labels.

• B ⇒ S, species as constructed in HoTT.

There are quite a few other possible variants, some of which we explore in this chapter.
First, §5.2 and §5.3 develop two novel species variants based on the idea of replacing
bijections between labels with injections (or coinjections). Such species variants are
conjectured to be especially useful for modelling data structures that takes memory
allocation and layout into account. Multisort species (§5.4) are a standard species
variant that can also be seen as functors between certain categories other than B
and Set. Multisort species are discussed in some detail, and also enable a discussion
of recursive species and the Implicit Species Theorem (§5.4.1). Finally, some other
standard species variants (such as L-species) are mentioned in §5.5 and §5.6.

5.1 Generalized species properties

We first gather and summarize the properties needed on L and S to support the
operations we have studied. The data are summarized in Table 5.1. At the head of
each column is an operation or group of operations. In general, �-E denotes the
eliminator for �; in some cases the eliminator for a given operation requires different
or additional properties than the operation itself. ∂ indicates (higher) differentiation.
The rows are labelled by properties, to be elaborated below.

138

+, × +-E ×-E ·, �, ◦, ∂ ·-E, �-E ◦-E

S monoidal X X X X X X
. . . coproduct X
. . . symm., pres. colimits X X X
. . . left adjoint X
L locally small X
S complete, Cart. closed X
L monoidal X X X
L enriched over S X X X
S has coends over L X X X
L⇒ S enriched over self X X

Table 5.1: Properties of (L⇒ S) needed for species operations

• All operations require S to be monoidal. Some require additional properties of
this monoidal structure:

– The eliminator for + assumes that it is derived from the actual coproduct
in S.

– All the operations built on Day convolution or something similar require
the monoidal structure on S to be symmetric and to preserve colimits. It
suffices, but is not necessary, for the monoidal product to be a left adjoint.

– On the other hand, the eliminator for ◦ really does require the monoidal
product to be a left adjoint.

• The eliminator for Cartesian product, which corresponds to the Cartesian clo-
sure of (L⇒ S), requires that L be locally small and S complete and Cartesian
closed.

• Again, the operators defined via Day convolution and related operators require
that L be monoidal and enriched over S, and that S have coends over L.

• Finally, eliminators for partitional and arithmetic product and for composition
require (L ⇒ S) to be enriched over itself: for example, in the context of
(B⇒ Set) we end up treating a species morphism as itself being a species.

In each of the following sections we describe a particular species variant, identifying
the categories L and S, and verifying which of the above properties hold.

5.2 Copartial species

As a larger example, which will also recur in Chapter 6, we develop the theory of
species based on injections (and their dual, coinjections, in the subsequent section).

139

The development will be carried out in HoTT, though it works equally well in set
theory.

5.2.1 Copartial bijections

We begin by exploring the notion of a copartial bijection, a bijection which is allowed
to be partial in the backwards direction, as illustrated in Figure 5.1. Clasically, a
copartial bijection is the same as an injection; constructively, we must take care to
distinguish them.

Remark. A bijection in HoTT is taken to be a pair of inverse functions. Recall that
in general, this may not be the same as an equivalence, although in the specific case
of sets (0-types) the notions of bijection and equivalence do coincide. The following
discussion sticks to the terminology of “bijections”, but the reader should bear in
mind that “equivalences” could also be used with no difference.

The basic idea is to introduce a type of evidence witnessing the fact that one set
(0-type) is a “subset” of another, written A ⊆ B.1 Of course there is no subtyping
in HoTT, so there is no literal sense in which one type can be a subset of another.
However, the situation can be modelled using constructive evidence for the embedding
of one type into another. In order to focus the discussion, we begin with copartial
bijections between arbitrary sets, and only later restrict to finite ones.

Definition 5.2.1. A copartial bijection f : A ⊆ B between two sets A and B is given
by:

• an embedding function f→ : A → B (we will often simply use f , rather than
f→, to refer to the embedding function),

• a projection function f← : B → >+ A,

together with two round-trip laws:

• f← ◦ f→ = inr, and

• for all a : A and b : B, if f← b = inr a then f→ a = b.

That is, A ⊆ B witnesses that there is a 1-1 correspondence between all the
elements of A and some (possibly all) of the elements of B, as pictured in Figure 5.1.
This concept is also known as a prism in the Haskell lens library [Kmett, b].

There is also a more elegant, though perhaps less intuitive, formulation of the
round-trip laws in Definition 5.2.1.

1There should be no problem in generalizing copartial bijections to copartial equivalences which
work over any types, using an appropriate notion of copartial adjoint equivalences. However, there
is no need for such generalization in the present work, so we stick to the simpler case of 0-types.

140

⊤

⊤

Figure 5.1: A typical copartial bijection

Proposition 5.2.2. The round-trip laws given in Definition 5.2.1 are equivalent to

∀ab. (f→ a = b)↔ (inr a = f← b). (5.2.1)

Proof. Since the laws in question are all mere propositions, it suffices to show that
they are logically equivalent; moreover, since the right-to-left direction of (5.2.1) is
precisely the second round-trip law, it suffices to show that the left-to-right direction
is logically equivalent to the first round-trip law. In one direction, (5.2.1) implies the
first round-trip law, by setting b = f→ a. Conversely, given the first round trip law,

f→ a = b
→ { apply f← to both sides }
f← (f→ a) = f← b

↔ { first round-trip law }
inr a = f← b.

SDG

As an aid in discussing copartial bijections we define pInv(f) which together with
f : A→ B constitutes a copartial bijection A ⊆ B.

Definition 5.2.3. A partial inverse pInv(f) to f : A→ B is defined so that

(A ⊆ B) ≡ (f : A→ B)× pInv(f),

that is,

pInv(f) :≡ (g : B → >+ A)× (∀ab. (f a = b)↔ (inr a = g b)).

We also define some notation to make working with copartial bijections more
convenient.

141

=

Figure 5.2: Composition of copartial bijections

Definition 5.2.4. First, for any types A and B, there is a canonical copartial bijec-
tion A ⊆ A+B, which we denote simply by inl; similarly, inr : B ⊆ A+B.

For the remainder, assume there is a copartial bijection p : K ⊆ L.

• p→ K denotes the image of K under p, that is, the set of values in L in the
range of p→; we often simply write p K instead of p→ K.

• p|K : K ∼−→ p K denotes the bijection between K and the image of K in L.

• When some q : K ′ ⊆ K is understood from the context, we also write p|K′ as
an abbreviation for (p ◦ q)|K′ , the bijection between K ′ and the image of K ′ in
L under the composite (p ◦ q).

• p> = {l : L | l← = inl ?} denotes the “extra” values in L which are not in the
image of K.

• p̃ denotes the canonical bijection K + p>
∼−→ L.

We now turn to the category structure on copartial bijections.

Proposition 5.2.5. Copartial bijections compose, that is, there is an associative op-
eration

− ◦ − : (B ⊆ C)→ (A ⊆ B)→ (A ⊆ C).

Proof. This can be intuitively grasped by studying a diagram such as the one shown
in Figure 5.2.

More formally, we set (g ◦ f)→ = g→ ◦ f→ and (g ◦ f)← = f← • g←, where − • −
denotes Kleisli composition for the > + − monad (i.e. (<=<) :: (b → Maybe c) →
(a → Maybe b) → (a → Maybe c) in Haskell). Associativity thus follows from the
associativity of function composition and Kleisli composition. In the following proof
we also make use of (−)∗ : (A→ >+B)→ (>+ A→ >+B), i.e. (=<<) in Haskell.

To show the required round-trip property we reason as follows.

142

(g ◦ f)→ a = c
↔ { definition }

(g→ ◦ f→) a = c
↔ { take b = f→ a }
∃b. f→ a = b ∧ g→ b = c

↔ { round-trip laws for f and g }
∃b. inr a = f← b ∧ inr b = g← c

↔ { definition of (−)∗; case analysis }
inr a = (f←)∗ (g← c)

↔ { Kleisli composition }
inr a = (f← • g←) c

↔ { definition }
inr a = (g ◦ f)← c

SDG

Proposition 5.2.6. Copartial bijections form an h-category, S⊆, with sets as objects.

Proof. The identity morphism id : A ⊆ A is given by id→ = id and id← = inr. The
identity laws follow from the fact that id is the identity for function composition, and
inr is the identity for Kleisli composition.
S⊆ is thus a precategory. It remains only to show that isomorphism is equivalent

to equality. An isomorphism A ∼= B is given by f : A ⊆ B and g : B ⊆ A such
that f ◦ g = id = g ◦ f . Note that we have f→ : A → B and g→ : B → A
with f→ ◦ g→ = (f ◦ g)→ = id→ = id , and likewise for g→ ◦ f→. Thus, f→ and
g→ constitute a bijection A ∼−→ B; since A and B are sets, this is the same as an
equivalence A ' B, and hence by univalence an equality A = B. SDG

Remark. Note that a bijection f : A ∼−→ B can be made into a copartial bijection
h : A ⊆ B trivially by setting h→ = f and h← = inr ◦ f−1, and moreover that this
is a homomorphism with respect to composition; that is, the category of bijections
embeds into the category of copartial bijections as a subcategory. We will usually
not bother to note the conversion, simply using bijections as if they were copartial
bijections when convenient.2

5.2.2 Finite copartial bijections

Finally, we turn to the theory of copartial bijections on finite sets. In the case of finite
sets, it turns out that copartial bijections A ⊆ B can be more simply characterized as
injective functions A ↪→ B. This might seem obvious, and indeed, it is straightforward

2In fact, using the lens library—and more generally, using a van Laarhoven formulation of
lenses [Jaskelioff and O’Connor, 2014]—this all works out automatically: the representations of
bijections (isomorphisms) and copartial bijections (prisms) are such that the former simply are the
latter, and they naturally compose via the standard function composition operator.

143

in a classical setting. One direction, namely, converting a copartial bijection into an
injection, is straightforward in HoTT as well (Lemma 5.2.8). However, to produce a
copartial bijection from an injection, we must be able to recover the computational
content of the backwards direction, and this depends on the ability to enumerate
the elements of A. Recall that the computational evidence for the finiteness of A is
propositionally truncated (Definition 2.4.7), so it is not a priori obvious that we are
allowed do this. However, given a function f : A → B, its partial inverse (if any
exists) is uniquely determined, independent of the evidence for the finiteness of A
(Lemma 5.2.9), so such evidence may be used in the construction of a partial inverse
(Lemma 5.2.10).

Definition 5.2.7. The type of injections A ↪→ B is defined in HoTT analogously to
the usual definition in set theory:

A ↪→ B :≡ (f : A→ B)× isInjective(f),

where
isInjective(f) :≡

∏
a1,a2:A

(f a1 = f a2)→ (a1 = a2).

Remark. Note that isInjective(f) is a mere proposition when A is a set: given i, j :
isInjective(f), for all a1, a2 : A and e : f a1 = f a2, we have i a1 a2 e = j a1 a2 e
(since they are parallel paths between elements of a set) and hence i = j by function
extensionality.

Lemma 5.2.8. Every copartial bijection is an injection, that is, (A ⊆ B) → (A ↪→
B).

Proof. Let f : A ⊆ B. Then f→ : A→ B is injective:

f→ a1 = f→ a2
→ { apply f← to both sides }
f← (f→ a1) = f← (f→ a2)

↔ { f is a copartial bijection }
inr a1 = inr a2

↔ { inr is injective }
a1 = a2.

SDG

Lemma 5.2.9. If A and B are sets and f : A→ B, then pInv(f) is a mere proposi-
tion.

Proof. Let (g, p), (g′, p′) : pInv(f). That is, g, g′ : B → >+ A, and

• p : ∀ab. (f a = b)↔ (inr a = g b), and

144

• p′ : ∀ab. (f a = b)↔ (inr a = g′ b).

We must show that (g, p) = (g′, p′). To this end we first show g = g′. By function
extensionality it suffices to show that g b = g′ b for arbitrary b : B. We proceed by
case analysis on g b and g′ b:

• If g b = g′ b = inl ? we are done.

• If g b = inr a then by p and p′ we also have g′ b = inr a and hence g b = g′ b; a
symmetric argument handles the case g′ b = inr a.

Letting r : g = g′ denote the equality just constructed, we complete the argument
by noting that r∗(p) and p′ are parallel paths between elements of a set, and hence
equal. SDG

Lemma 5.2.10. If A is a finite set and B a set with decidable equality, then

(A ↪→ B)→ (A ⊆ B).

Proof. Let f : A → B be an injective function; we must construct h : A ⊆ B. First,
we set h→ = f . It remains to construct pInv(h→), which is a mere proposition by
Lemma 5.2.9. Thus, by the recursion principle for propositional truncation, we are
justified in using the constructive evidence of A’s finiteness, that is, its cardinality
n : N and bijection σ : A ' Fin n. We define h← : B → > + A on an input b : B as
follows: by recursion on n, find the smallest k : Fin n such that h→ (σ−1 k) = b. If
such a k exists, yield inr (σ−1 k); otherwise, yield inl ?.

Finally, we establish the round-trip law ∀ab. (h→ a = b)↔ (inr a = h← b).

(→) Suppose h→ a = b. Then h← b will certainly find some k : Fin n with h→ (σ−1 k) =
b, and thus h← b = inr (σ−1 k); since h→ is injective it must actually be the case
that σ−1 k = a.

(←) This follows directly from the definition of h←. SDG

Proposition 5.2.11. For A a finite set and B a set with decidable equality,

(A ↪→ B) ' (A ⊆ B).

Proof. Lemma 5.2.8 and Lemma 5.2.10 establish functions in both directions. It is
easy to see that they act as the identity on the underlying f : A→ B functions, and
the remaining components are mere propositions by Lemma 5.2.9 and the remark fol-
lowing Definition 5.2.7. Thus the functions defined by Lemma 5.2.8 and Lemma 5.2.10
are inverse. SDG

145

Definition 5.2.12. Denote by B⊆ the h-category of finite sets and copartial bi-
jections (i.e. injections). That is, objects in B⊆ are values of type U‖Fin‖ ≡ (A :
U)× isFinite(A), and morphisms (A, fA)⇒B⊆ (B, fB) are copartial bijections A ⊆ B.
Showing that this is indeed an h-category is left as an easy exercise.

B⊆ also has a corresponding skeleton category, just like B:

Definition 5.2.13. Denote by P↪→ the h-category whose objects are natural numbers
and whose morphisms are given by m⇒P↪→ n :≡ Fin m ↪→ Fin n. The proof that this
is an h-category is also left as an exercise.

Remark. P↪→ has m!
(
n
m

)
distinct morphisms m ⇒ n, since there are

(
n
m

)
ways to

choose the m distinct objects in the image of the morphism, and m! ways to permute
the mapping. Note this this means there are zero morphisms when m > n, and exactly
n! morphisms n⇒ n.

Proposition 5.2.14. B⊆ ∼= P↪→.

Proof. The proof is similar to the proof that B is equivalent to P (Corollary 2.4.22).
We define a functor [−]⊆ : P↪→ → B⊆ which sends n to (Fin n, |(n, id)|) (just like the
functor [−] : P → B defined in Definition 2.4.14), and which sends ι : m ⇒P n ≡
Fin m ↪→ Fin n to the corresponding copartial bijection (Proposition 5.2.11). It is not
hard to show that this functor is full, faithful, and essentially surjective, which by
Proposition 2.4.18 and Corollary 2.4.21 implies that [−]⊆ : P↪→ → B⊆ is one half of
an equivalence. SDG

5.2.3 Copartial species

The point of all this machinery is that we can now use the category B⊆ as the category
of labels for a new notion of species.

Definition 5.2.15. A copartial species is a functor F : B⊆ → S. We denote by
Spe⊆ = B⊆ ⇒ S the functor category of copartial species.

Remark. Since B⊆ ∼= P↪→ (Proposition 5.2.14) copartial species are also equivalent to
functors P↪→ → S.

Since the objects of B⊆ are the same as the objects of B, the object mapping of a
copartial species is similar to that of a normal species. That is, one can still think of
a copartial species as mapping a finite set of labels to a set of structures “built from”
those labels.

A copartial species F also has an action on morphisms: it must lift any copartial
bijection K ⊆ L to a function F K → F L. Of course, bijections are (trivially)
copartial bijections, so this includes the familiar case of “relabelling”; bijections are

146

52

3

14

0

0

23

1

5

4

3

2

1

0

3

2

1

0

Figure 5.3: Lifting a strictly copartial bijection

isomorphisms in B⊆, and functors necessarily preserve isomorphisms, so bijections on
labels are still sent to bijections between structures.

The case of strictly copartial bijections, that is, K ⊆ L where #K < #L, is more
interesting. Each structure in the set F K, with labels inK, must map to a structure in
F L, given an embedding of K into L. Intuitively, this can be thought of as introducing
extra labels which must be incorporated into the structure in a suitably canonical way.
However, the copartial bijection p : K ⊆ L affords no structure whatsoever on the
extra labels (that is, those l ∈ L for which p← l = inl ?). So it is not acceptable, for
example, to prepend the extra labels to the front of a list structure, since there is no
canonical way to choose an ordering on the extra labels. The only feasible approach
is to simply attach the extra labels in a set, as illustrated in Figure 5.3.

Moreover, note that one cannot adjoin a new set of labels with every lift. Perform-
ing multiple lifts would then result in multiple sets of extra labels (e.g. a list of such
sets), but this fails to be functorial, since separately lifting two copartial bijections
(resulting in a list of two extra sets) would be different than lifting their composition
(resulting in only one). So the only option is to have every copartial species structure
accompanied by a set of “extra” labels (which may be empty). Transporting along a
strictly copartial bijection results in some labels being added to the set.

Intuitively, every normal species F gives rise to a copartial species F⊆ which acts
like the species F · E. In fact, along these lines we can formally define a fully faithful
embedding of Spe into Spe⊆.

147

Definition 5.2.16. The functor −⊆ : Spe→ Spe⊆ is defined as follows.
First consider the action of −⊆ on objects, that is, species F : B → S. We define

F⊆ : B⊆ → S as the copartial species which

• sends the finite set of labels K to the set of structures (F · E) K, and

• lifts the copartial bijection p : K ⊆ L to a function p⊆ : F⊆ K → F⊆ L. This
function takes as input a structure of type (F · E) K, that is, a tuple

(K1, K2, f, ?, σ)

where f : F K1 is a K1-labelled F -structure, the unit value ? represents a K2-
labeled set, and σ : K ∼−→ K1 +K2 witnesses that K1 and K2 form a partition
of the label set K. As output, p⊆ yields

(L1, L2 + p>, F (p1|K1) f, ?, ψ),

where:

– p1 is the “restriction of p to K1”, that is, the composite copartial bijection

p1 : K1
⊆
inl
// K1 +K2

∼
σ−1
// K

⊆
p
// L .

Similarly, p2 : K2 ⊆ L.

– L1 = p1 K1 is the image of K1 under the restricted copartial bijection p1.
Similarly, L2 = p2 K2. Note that we “throw in the extra labels” by using
the coproduct L2 + p> as the second set of labels.

– Recall that p1|K1 : K1
∼−→ p1 K1; thus F (p1|K1) f denotes the relabelling

of the F -structure f from K1 to p K1 = L1.

– ψ : L ∼−→ L1 + (L2 + p>) is given by the composite

L ∼
p̃

// p K + p> .

Next, consider the action of −⊆ on morphisms, that is, natural transformations
ϕ : ∀L. F L→ G L where F and G are species. Define (ϕ⊆)L : F⊆ L→ G⊆ L by

(L1, L2, f, ?, σ) 7→ (L1, L2, ϕL1 f, ?, σ).

For this to be natural, the following square must commute for all F,G : B → S, all

148

ϕ : ∀L. F L→ G L, and all p : K ⊆ L:

F⊆ K

F⊆ p

��

(ϕ⊆)K
// G⊆ K

G⊆ p

��

F⊆ L
(ϕ⊆)L

// G⊆ L

Consider an arbitrary element (K1, K2, f, ?, σ) of the top-left corner. Note that the
action of ϕ⊆ on a five-tuple only affects the middle value, and likewise note that the
action of F⊆ p and G⊆ p are identical on all but the middle value (that is, the middle
value is the only one affected by F or G specifically). Thus, it suffices to consider
only the fate of f as it travels both paths around the square. Travelling around the
left and bottom sides yields

ϕL1 (F (p1|K1) f),

whereas the top and right sides yield

G (p1|K1) (ϕK1 f).

These are equal by naturality of ϕ.
Finally, it is easy to verify that −⊆ itself satisfies the functor laws, since the

mapping
(L1, L2, f, ?, σ) 7→ (L1, L2, ϕL1 f, ?, σ)

clearly preserves identity and composition of natural transformations.

Conjecture 5.2.17. −⊆ is full and faithful.

The above discussion might lead one to believe that −⊆ must also be essentially
surjective, i.e. that there is an equivalence of categories Spe ∼= Spe⊆. However, this
is not the case. To see why, we consider the connection between species, copartial
species, and generating functions.

According to our intuition so far, a copartial species corresponds to a regular
species with a set of extra labels possibly attached. Consider, therefore, the relation-
ship of the species F to the species F · E. An (F · E)-shape of size n consists of an
F -shape, of any size from 0 to n, paired with a (unique) E-shape on the remain-
ing labels. F · E thus represents a sort of “prefix sum” of F , where the collection of
(F ·E)-shapes of size n consists of the sum of all F -shapes of sizes 0 through n. This is
illustrated in Figure 5.4. In terms of generating functions, the operator −·E(x) = −·ex
indeed corresponds to a prefix sum on coefficients:

− · ex : (a0 + a1x+ a2x
2 + . . .) 7→ (a0 + (a0 + a1)x+ (a0 + a1 + a2)x

2 + . . .).

149

Figure 5.4: B · E (bottom) is the prefix sum of B (top)

Note that as an operator on generating functions, this has an inverse, given by

(b0 + b1x+ b2x
2 + . . .) 7→ (b0 + (b1 − b0)x+ (b2 − b1)x2 + . . .). (5.2.2)

Consider, then, an attempted proof that −⊆ : Spe → Spe⊆ is essentially sur-
jective. Given a copartial species S ∈ Spe⊆, this would require us to produce some
F ∈ Spe such that F⊆ ∼= S. If we think of F⊆ as intuitively acting like F · E, we see
that S should correspond to a “prefix sum” of F . Then we should ideally be able to
construct F via an operation similar to (5.2.2). That is (passing to P ⇒ Set and
P↪→ ⇒ S), we would define

F 0 := S 0

F (n+ 1) := S (n+ 1)− S n.

However, we must make sense of this subtraction. We cannot simply take a set differ-
ence (indeed, set difference makes no sense in the context of HoTT). What is needed
is some sort of canonical injection ι : S n ↪→ S (n+ 1), in which case we could make
sense of S (n+ 1)−S n as the elements of S (n+ 1) not in the image of ι. In the case
of species of the form F ·E, there indeed exists such a canonical injection, which sends
each shape in (F · E) n to the same shape with the extra label n adjoined to the set.
The whole point, however, is that we are trying to prove that every S ∈ Spe⊆ is of

150

4

32

1
0

0
23

1

5

4

3

2

1

0

3

2

1

0

Figure 5.5: A copartial species which loses information

this form. We must therefore come up with some injection S n ↪→ S (n+ 1) without
any intensional knowledge about S.

This is precisely where we get stuck. There is, of course, a canonical injection
Fin n ↪→ Fin n + 1, but the functoriality of S only guarantees that this lifts to a
function S n → S (n + 1)—functors may preserve isomorphisms, but in general,
they need not preserve monomorphisms. This insight guides us to a counterexample.
Consider the (B⊆ ⇒ S)-species whose shapes of size 5 or smaller consist of a binary
tree paired with a set, and on larger sizes simply consist of a set (Figure 5.5).

One may verify that this does, in fact, describe a valid functor B⊆ → S. However,
it does not preserve information: above size 5 the shapes all collapse, and information
about smaller shapes is lost. The intuition that all copartial species shapes must come
equipped with a set of labels is correct, in a sense, but there is some latitude in the
way the rest of the shape is handled.

We may also, therefore, consider the subcategory B⊆ ↪→ S of monomorphism-
preserving functors B⊆ ⇒ S; along the lines sketched above, we can indeed prove
an equivalence between this category and Spe. At present, the pros and cons of
considering Spe⊆ versus this subcategory are not clear to me.

Finally, we consider which of the properties from Table 5.1 hold for B⊆ ⇒ S.

• Since the target category is just S we automatically get all the properties re-
quired of S alone (e.g. monoidal, complete, and Cartesian closed); S is also
cocomplete and so has coends over B⊆.

151

• B⊆ is locally small.

• B⊆ is monoidal: though it does not have products or coproducts, it is not hard to
see that it has monoidal structures corresponding to the Cartesian product and
disjoint union of finite sets. Given injections f : S1 ↪→ T1 and g : S2 ↪→ T2 we can
use them to form the evident injections S1]S2 ↪→ T1]T2 and S1×S2 ↪→ T1×T2.

• B⊆ is enriched over S, since its morphisms can be seen as injective functions.

5.3 Partial species

We now consider the dual category Bop
⊆ , whose objects are finite sets and whose

morphisms are partial bijections, i.e. coinjections, and written K ⊇ L. These can be
thought of as partially defined functions which are both injective and surjective.

Species corresponding to Bop
⊆ ⇒ S were studied by Schmitt [1993] (under the name

“species with restriction”, or “R-species”) and correspond to species with a natural
notion of “induced subspecies”. That is, F : Bop

⊆ → S must lift morphisms of the
form K ⊇ L to functions F K → F L. Instead of adding more labels, this operation
may delete labels. Examples include the species of lists, where labels may simply
be deleted, keeping the rest of the labels in the same order; similarly, the species of
cycles; and the species of simple graphs, where the lifting operation corresponds to
forming induced subgraphs.

When we consider the properties in Table 5.1, however, we find in particular that
Bop
⊆ is not enriched over S. Coinjections are not, in general, total functions, so there

is no way to canonically treat morphisms in Bop
⊆ as objects of S. Instead of S, we

actually want to consider the category S⇀ of sets and partial functions. One may
check that S⇀ is monoidal, complete, and Cartesian closed, that it has coends over
Bop
⊆ , and that Bop

⊆ is indeed enriched over S⇀.

5.4 Multisort species

Multisort species are a generalization of species in which the labels are classified
according to multiple sorts. We often use X, Y, Z or X1, X2, . . . to denote sorts.
In particular, (say) Y denotes the species, analogous to X, for which there is a single
shape containing a single label of sort Y (and none of any other sort). More generally,
multisort species correspond to multivariate generating functions. See Bergeron et al.
[1998, §4.2] for a precise, detailed definition. For now, an intuitive sense is sufficient;
we will give a more abstract definition later.

Example. Consider
T = Y + X · T2,

152

42

2

30

11

3

0

Figure 5.6: A two-sort species of binary trees

Figure 5.7: A bicolored cycle

the two-sort species of binary trees with internal nodes and leaves labelled by distinct
sorts. Figure 5.6 illustrates an example shape of this species, with one label sort
represented by blue circles, and the other by green squares.

Example. C ◦ (X + Y) is the species of bicolored cycles, i.e. cycles whose labels are
colored with one of two colors (Figure 5.7).

Example. Recall the example from §4.5.1, in which open terms of the untyped lambda
calculus are modeled using the species

Λ = ε+ Λ2 + Λ′.

However, this species does not correctly model the size of lambda calculus terms.
§4.5.1 suggested instead using the multisort species

Ξ = X · E + Y · Ξ2 + Y · ∂
∂X

Ξ.

153

An even better idea is to use a three-sort species, as in

Ξ = X · E + Y · Ξ2 + Z · ∂
∂X

Ξ,

where X stands in for variables, Y for applications, and Z for lambdas.
In general, any algebraic data type may be modelled by a multisort species, with

one sort corresponding to each constructor. The singletons of a given sort count
occurrences of the corresponding construct and ensure that species structures of a
finite size correspond to data structures that take only a finite amount of memory.

Bergeron et al. [1998] detail how to extend operations such as sum, partitional
product, and composition to multisort species. For example, partitional product is
straightforward: an (F ·G)-shape over a given collection of labels (of multiple sorts)
corresponds to a pair of an F -shape and G-shape over a binary partition of the
collection (which can also be thought of as a collection of binary partitions over each
sort). Composition can also be extended to multisort species—although, as we will
see, it does not follow quite as naturally from the single-sort setting. If F is an m-sort
species, and (G1, . . . , Gm) is an m-tuple of n-sort species, then F ◦ (G1, . . . , Gm) is an
n-sort species whose shapes consist of a top-level F -shape with Gi-shapes substituted
for each label of sort i. Of course, this presentation assumes a linear ordering on the
sorts of F ; more generally, if the sorts of F are indexed by some finite set S, then
F can be composed with an S-indexed tuple of T -sort species, resulting in a T -sort
species.

Remark. Multisort species are often notated using “multi-argument function” nota-
tion, for example,

H(X,Y) = X + Y2.

This makes clear which singleton species are being used to represent the various sorts,
and makes it possible to refer to them positionally as well. This notation also meshes
well with the notion of generalized composition just introduced: writing something like
H(F,G) can be interpreted as H◦ (F,G) and corresponds exactly to the substitution
of F and G for X and Y.

Defining multisort species and all the operations on them (such as composition)
from scratch is unnecessary; they can be defined abstractly as objects in a certain
functor category, and hence fit into the abstract framework developed in Chapter 3
and outlined in §5.1. Bergeron et al. [1998] acknowledge as much in Exercise 2.4.6, but
only as something of an afterthought; the following development is yet more general
than the intended solution to the exercise.

Let S be a finite set, thought of as a collection of names for sorts; that is, each
element s ∈ S represents a different sort. Let L be a category, thought of as a category
of labels (e.g. B). Now consider the functor category LS (with S considered as a
discrete category, as usual). Objects of LS are functors S → L, that is, assignments

154

of an object from L to each s ∈ S. Morphisms in LS are natural transformations,
that is, S-indexed families of L-morphisms between corresponding objects of L. For
example, in the case L = B, objects of BS are just S-tuples of finite sets, and
morphisms are S-tuples of bijections between them.

Remark. Recall that SetS ∼= Set/S (§1.4.1). It is not the case that BS ∼= B/S, since
objects of B/S consist of a finite set L paired with a bijection L ∼−→ S, which only
allows one label of each sort. However, it is possible to consider the category whose
objects are finite sets L paired with a function χ : L → S, as in Set/S, but whose
morphisms (L1, χ1)→ (L2, χ2) are bijections σ : L1

∼−→ L2 such that χ2 ◦ σ = χ1. In
other words, the objects are finite sets with sorts assigned to their elements, and the
morphisms are sort-preserving bijections. This category is indeed equivalent to BS.

However, this construction only works because the objects of B are sets; in the
general case we must stick with LS.

Definition 5.4.1. For a finite set S, define S-sorted (L,S)-species as functors

LS → S.

One can verify that taking L = B, S = Set, and S = [k] for some k ∈ N, we
recover exactly the definition of k-sort species given by Bergeron et al.

The payoff is that we can now check that LS inherits the relevant properties from
L, and thus conclude that (LS,S)-species inherit operations from (L,S)-species.
Simply unfolding definitions is then enough to describe the action of the operations
on S-sorted species.

• LS inherits all the monoidal structure of L, as seen in §4.1.3.

• LS is a groupoid whenever L is.

• If L is enriched over S and S has finite products, then LS can be seen as
enriched over S as well: morphisms in LS are represented by S-indexed products
of morphisms in L.

• LS is locally small whenever L is.

• S has coends over LS as long as it has products and coends over L, which we can
argue as follows. Since S is discrete, everything in LS naturally decomposes into
discrete S-indexed collections. For example, a morphism in LS is isomorphic to
an S-indexed collection of morphisms in L, a functor LS → S is isomorphic to
an S-indexed product of functors L→ S, and so on. Note that (LS)op × LS ∼=
(Lop)S × LS ∼= (Lop × L)S, so a functor T : (LS)op × LS → S can also be
decomposed in this way. In particular, this means that, as long as S has S-
indexed products, we may construct the coend ∃L. T (L,L) componentwise,
that is,

∃L. T (L,L) :=
∏
s∈S

∃K. Ts(K,K),

155

where Ts denotes the s-component of the decomposition of T . One can check
that this defines a valid coend.

• By a similar argument, LS ⇒ S is enriched over itself as long as L ⇒ S is
enriched over itself, and S (and hence L⇒ S) has products.

We can thus instantiate the generic definitions to obtain notions of sum, Carte-
sian, arithmetic, and partitional product, and differentiation (along with correspond-
ing eliminators) for S-sorted species. For example, the notion of partitional product
obtained in this way is precisely the definition given above.

One operation that we do not obtain quite so easily is composition: the generic
definition relied on a definition of the “K-fold partitional product” GK where, in this
case, G : LS → S and K ∈ LS. It is not a priori clear what should be meant by
the K-fold partitional product of G where K itself is a collection of labels of different
sorts. We could ignore the sorts on K, using a monoidal structure on L to reduce K to
an object of L; for example, in BS ⇒ Set, given some collection of finite sets K, each
corresponding to a different sort, we can simply take their coproduct. This results in
a notion of composition F ◦ G where we simply ignore the sorts on the labels of F ,
replacing each with a (sorted) G-shape. This certainly yields a monoid on LS ⇒ S,
but one that does not really make use of the sorts at all.

The generalized notion of composition defined earlier, on the other hand, is not a
monoid on LS ⇒ S (indeed, it is not a monoid at all). Instead, it has the type

− ◦ − : (LS ⇒ S)→ (LT ⇒ S)S → (LT ⇒ S).

This seems somewhat reminiscent of a relative monad [Altenkirch et al., 2010]; ex-
ploring the connection is left to future work.

5.4.1 Recursive species

Multisort species make it possible to give a precise semantics to recursively defined
species, which have been used in examples throughout this document. Given a recur-
sive equation of the form

F = . . . F . . . ,

we can turn the right-hand side into a two-sort species H(X,Y), with Y replacing the
recursive occurrences of F . For example, the recursive equation

R ∼= X · (L ◦ R)

corresponds to the two-sort species H(X,Y) = X ·(L◦Y). We then define R as the least
fixed point (if it exists) of H(X,−), that is, a solution to R ∼= H(X,R). The following
theorem expresses the conditions on H under which such fixed point solutions exist.

156

Theorem 5.4.2 (Implicit Species Theorem, [Joyal, 1981, Bergeron et al., 1998]).
Let H be a two-sort species satisfying

• H(0, 0) ∼= 0

• ∂H
∂Y

(0, 0) ∼= 0

Then there exists a species F , unique up to isomorphism, satisfying

F ∼= H(X,F),

with F (0) ∼= 0.

Remark. Recall that the notation H(0, 0) = H ◦ (0, 0) denotes the composition of
the two-sort species H with the pair of one-sort species (0, 0). These criteria are
thus expressed in the form of species isomorphisms, but in this particular case they
could equally well be expressed in terms of the action of H on empty label sets, e.g.
H(∅,∅) = ∅.

The proof essentially proceeds by constructing F as the infinite expansion

F = H(X,H(X,H(X, . . .))).

The conditions on H ensure that this is well-defined. In particular, since (∂H/∂Y)-
shapes have a single hole in the place of a Y, which is the placeholder for recursive
occurrences of F , ∂H

∂Y
(0, 0) ∼= 0 means that there are no H(X,Y)-shapes consisting

solely of (some constant multiple of) a Y. Such shapes would allow a recursive step
that did not “use” any X’s, resulting in infinitely large shapes of size 0. For details of
the proof, see Bergeron et al. [1998, §3.2]. The implicit species theorem can also be
suitably generalized to systems of mutually recursive equations; see Bergeron et al.
[1998] as well as Pivoteau et al. [2012].

Many common examples of recursively defined species, such as L = 1 + X · L, or
B = 1 + X ·B2, do not actually satisfy the premises of the implicit species theorem, in
particular the requirement that H(0, 0) ∼= 0. In both the above cases we instead have
H(0, 0) ∼= 1. The Implicit Species Theorem only gives sufficient, but not necessary,
conditions for well-foundedness; we would like to have a different theorem that tells us
when equations such those governing L and B are well-founded. Pivoteau et al. [2012]
prove quite a general theorem which is applicable to this case, and is also applicable
to mutually recursive systems. Its very generality somewhat obscures the essential
ideas, however, so we give a “baby” version of the theorem here.

The basic idea can be seen by considering the case of L = 1 + X · L. Decompose L
as L = 1 + L+, so L+ = X · L ∼= X · (1 + L+). Then H(X,Y) = X · (1 + Y) does satisfy
the premises of the Implicit Species Theorem, so L+ is well-defined, and hence so is
L = 1 + L+. This approach is used, implicitly and in an ad-hoc manner, by Bergeron

157

et al. [1998]; see, for example, Example 3.2.3 on p. 195. It also appears in a sketchy
form in my Haskell Symposium paper [Yorgey, 2010].

Theorem 5.4.3 (Implicit Species Theorem II). LetH(X,Y) be a two-sort species
satisfying

H(0,Y) ∼= n,

where n ∈ N represents the species 1 + · · ·+ 1︸ ︷︷ ︸
n

with n shapes of size 0. Then there

exists a species F , unique up to isomorphism, satisfying

F ∼= H(X, F)

with F (0) ∼= n.

Proof. Since H(0,Y) ∼= n, there is some two-sort species H+ such that H can be
uniquely decomposed as

H(X,Y) ∼= n+H+(X,Y)

(this follows from an analogue of the molecular decomposition theorem for multisort
species). Note that H+(0,Y) ∼= 0 and ∂H/∂Y = ∂H+/∂Y.

Moreover, H(0,Y) ∼= n means that, other than the constant term n, every term
of the molecular decomposition of H must contain a factor of X. In other words,
H+(X,Y) ∼= X · G(X,Y) for some species G. Thus we have ∂H

∂Y
(X,Y) = X · ∂G

∂Y
(X,Y),

and in particular ∂H
∂Y

(0,Y) ∼= 0 as well.
Now define

Hn+(X,Y) := H+(X, n+ Y).

Note that
∂Hn+

∂Y
(X,Y) =

∂H+

∂Y
(X, n+ Y) =

∂H
∂Y

(X, n+ Y)

(the first equality follows from the chain rule for differentiation). Thus

∂Hn+

∂Y
(0, 0) =

∂H
∂Y

(0, n) = 0.

We also have
Hn+(0, 0) = H+(0, n) ∼= 0.

Thus, Hn+ satisfies the criteria for the Implicit Species Theorem, and we conclude
there uniquely exists a species F+ satisfying F+

∼= Hn+(X, F+), with F+(0) ∼= 0.

158

Finally, let F := n+ F+, in which case

F = n+ F+

∼= n+Hn+(X, F+)

= n+H+(X, n+ F+)
∼= H(X, n+ F+)

= H(X, F).

So F = n + F+ is a solution to F = H(X, F). The uniqueness of F follows from
the uniqueness of F+: if F1 and F2 are both solutions to F = H(X, F), then they
both decompose as Fi = n + F+

i , and the F+
i both satisfy F+

i = Hn+(X, F+
i); hence

F+
1
∼= F+

2 but then F1
∼= F2. SDG

Remark. The condition H(0,Y) ∼= n, as opposed to the weaker condition H(0, 0) ∼= n,
is critical. For example, consider the implicit equation

Q = 1 + X +Q2.

In this case H(X,Y) = 1 + X + Y2 satisfies ∂H
∂Y

(0, 0) ∼= 0 and H(0, 0) ∼= 1, but
H(0,Y) ∼= 1 + Y2 6∼= n. In fact, Q is ill-defined: by always picking the Q2 branch and
never X, and putting 1 at the leaves, one can construct infinitely many trees of size
0.

5.5 L-species

Consider the category L of linear orders and order-preserving bijections (discussed
previously in §2.4.3). An L-species is defined as a functor L → Set. The theory
of L-species is large and fascinating; for example, it allows one to solve differential
equations over species, and to define a notion of intergration dual to differentiation.
More practically, it allows modelling data structures with ordering constraints, such
as binary search trees and heaps. Unfortunately there is not time or space to include
more on the theory here. For now, we simply note that (L ⇒ Set) has many of the
required properties:

• L is indeed monoidal; in fact, there are many interesting choices regarding how
to combine linear orders.

• L is clearly a groupoid, locally small, and enriched over Set.

• Set is cocomplete and hence has coends over L.

• (L⇒ Set) is enriched over itself, for reasons similar to (B⇒ Set).

• Since objects in L are finite sets, the indexed partitional product GK can be
defined in exactly the same way as in the case of B⇒ Set.

159

5.6 Other species variants

Many other examples of species variants appear in the literature. For example:

• Vec-valued species, i.e. functors B → Vec, which send finite sets of labels
to vector spaces of shapes. Joyal had these in mind from the beginning [Joyal,
1986], and they play a central role in more recent work as well (see, for example,
Aguiar and Mahajan [2010]), though I do not yet have a good intuition for them.

• Cat-valued species, i.e. functors B→ Cat which send finite sets of labels to cat-
egories of shapes. Intriguingly, in the case of groupoids in particular, a suitable
notion of cardinality/Euler characteristic can be defined for categories [Baez
and Dolan, 2000], allowing Cat-valued species to be seen as a categorification
of generating functions with positive rational coefficients.

• Fiore et al. [2008] define a generalized notion of species, parameterized over
arbitrary small categories A and B, as functors in the category

BA⇒ (Bop ⇒ Set).

BA is a generalization of B such that B1 ∼= B; the objects are tuples of objects
from A, labelled by the elements of some finite set from B, and the morphisms
permute the labelled A-objects according to some bijection on the finite set ele-
ments. They go on to show that this functor category has all the same important
properties as B⇒ Set.

• Bergeron et al. [1998, §2.3] define a notion of weighted species, where each shape
is assigned a weight from some polynomial ring of weights W. It seems that it
should be possible to fit weighted species into this framework as well, by con-
sidering a slice category S/A. We can interpret objects of S/A as objects of
S paired with a weighting; morphisms in S/A are thus weight-preserving mor-
phisms of S. Traditional weighted species would then correspond to functors
B⇒ (Set/A) for some polynomial ring A; more generally, one can add weight-
ing to any species variant L⇒ S by passing to L⇒ (S/A) for some appropriate
choice of A ∈ S. Verifying this construction, in particular the properties of A
which give rise to the appropriate species operations on weighted species, is left
to future work.

In each case, one can verify the required properties and automatically obtain
definitions of the various operations.

160

Chapter 6

Labelled structures

Now that we have a foundation for describing labelled shapes, the next step is to
extend them into full-blown data structures by adjoining mappings from labels to
data. For example, Figure 6.1 illustrates an example of a labelled shape together with
a mapping from the labels to data values. However, this must be done in a princi-
pled way which allows deriving properties of labelled structures from corresponding
properties of labelled shapes. This chapter begins with an overview of Kan extensions
(§6.1) and analytic functors (§6.2), which provide the theoretical basis for extending
labelled shapes to labelled structures. It then continues to briefly discuss introduction
and elimination forms for labelled structures, and outline some directions for future
work.

6.1 Kan extensions

The definition of analytic functors, given in §6.2, makes central use of the notion of
a (left) Kan extension. This section defines Kan extensions and provides some useful
intuition for understanding them in this context. For more details, see Mac Lane

'!'7
's'6
'e'5
'i'4
'c'3
'e'2
'p'1
's'0

×
7

6

5

4

3

2

1

0

=
'!'

's'

'e'

'i'

'c'

'e'

'p'

's'

Figure 6.1: Data structure = shape + data

161

[1998, Chapter X]; for some good intuition with a computational bent, see Hinze
[2012].

Definition 6.1.1. Given functors F : C→ D and J : C→ E, the left Kan extension
of F along J is a functor E → D, written1 J\F , and characterized by the natural
isomorphism

∀G : E→ D. (J\F •−→ G) ∼= (F
•−→ G ◦ J). (6.1.1)

(Note that the left-hand side consists of natural transformations between functors
E→ D, whereas the right-hand side are between functors C→ D.) If this isomorphism
exists for all F , then we may say even more succinctly that the left Kan extension
functor J\− is left adjoint to the precomposition functor − ◦ J .

The situation can be pictured as shown below:

C
F

��

J
��

E
J\F

// D

Intuitively, if J : C → E is thought of as an “embedding” of C into E, then J\F
can be thought of as a way of “extending” the domain of F from C to E in a way
compatible with J . If we substitute J\F for G in equation (6.1.1) and take the image
of idJ\F , we obtain η : F → (J\F) ◦ J , a natural transformation sending F to the
embedding J followed by the extension J\F . Intuitively, the existence of η guarantees
that J\F has to “act like” F on the image of C under J . Of course, J\F must also
be defined and functorial on all of E, not just on the image of C. These facts together
justify thinking of J\F as an “extension” of F . Note also that substituting G ◦ J
for F in equation (6.1.1) and taking the image of idG◦J under the inverse yields
ε : J\(G ◦ J)→ G, which can be thought of as a computation or reduction rule.

The above gives an abstract characterization of left Kan extensions; under suitable
conditions we can explicitly construct them.

Proposition 6.1.2. When D has coends over C and D has all coproducts, J\F can
be constructed explicitly as a coend:

(J\F) E = ∃C. (J C ⇒ E) · F C. (6.1.2)

1J\F is traditionally notated LanJ F . Inspired by the corresponding notion in relational alge-
bra, Roland Backhouse suggested the notation F/J for the right Kan extension of F along J , which
was adopted by Hinze [2012]. This notation is a bit more perspicuous than the traditional notation
RanJ F , especially with respect to the accompanying computation (β) and reflection (η) laws. Un-
fortunately, there is not quite a satisfactory parallel in the case of left Kan extensions. In relational
algebra, the notations A/P and P\A are used for the right adjoints to pre- and post-composition, re-
spectively; whereas we want notations for the left and right adjoints of precomposition. I nevertheless
adopt the notation J\F for left Kan extensions, and hope this does not cause confusion.

162

Note that · denotes a copower; in this particular case, (J C → E) · F C denotes an
indexed coproduct, i.e. the collection of pairs of a morphism in (J C ⇒ E) and an
object F C.

As a Haskell type, this construction corresponds to

data Lan j f a where
Lan :: (f c, j c → a)→ Lan j f a

Remark. Giving the pair in the order (j c → a, f c) would correspond more closely to
the abstract definition above; however, the given order makes some of the subsequent
code a bit nicer.

The kan-extensions package [Kmett, a] contains a similar definition. Of course,
this type is quite a bit less general than the abstract definition given above—in
particular, it instantiates C, D, and E all to Hask. However, it is still quite useful
for gaining intuition. Note that c is existentially quantified; recall that in Haskell this
corresponds to a coend. Note also that the copower (which in general relates two
different categories) turns into simple pairing.

We now turn to a proof of Proposition 6.1.2.

Proof. We must show (J\F •−→ G) ∼= (F
•−→ G ◦ J).

J\F •−→ G
≡ { definition }

(∃C. (J C → −) · F C)
•−→ G

∼= { natural transformations are ends }
∀E. (∃C. (J C → E) · F C)→ G E

∼= { (− → X) turns colimits into limits }
∀E. ∀C. ((J C → E) · F C → G E)

∼= { currying }
∀E. ∀C. (J C → E)→ (F C → G E)

∼= { Yoneda }
∀C. F C → G (J C)

∼= { natural transformations are ends }
F

•−→ G ◦ J
SDG

Instead of merely showing the existence of an isomorphism, the above proof can
in fact be interpreted as constructing a specific one: each step has some constructive
justification, and the final isomorphism is the composition of all the steps. However,
instead of formally expounding this isomorphism, it is useful to carry out the con-
struction in Haskell, using the type Lan defined above. This brings out the essential

163

lanAdjoint :: Functor g ⇒ (∀c.f c → g (j c))→ (∀a.Lan j f a → g a)
lanAdjoint h = homL (uncurry (yoneda ′ h))

where
— Turn a forall outside an arrow into an existential to the left
— of the arrow
homL :: (∀a c.(f c, j c → a)→ g a)→ (∀a.Lan j f a → g a)
homL h (Lan (fc, jc a)) = h (fc, jc a)

— One direction of the Yoneda lemma.
yoneda :: Functor f ⇒ f c → (∀a.(c → a)→ f a)
yoneda fc h = fmap h fc

— A particular instantiation of yoneda. This needs to be
— declared and given a type signature, since there are higher-
— rank types involved which GHC is not able to infer.
yoneda ′ :: Functor g

⇒ (∀c.f c → g (j c))
→ (∀c.f c → (∀a.(j c → a)→ g a))

yoneda ′ h fc = yoneda (h fc)

Figure 6.2: (One half of) “proof” of Proposition 6.1.2 in Haskell

components of the proof without getting too bogged down in abstraction. The code
corresponding to the backwards direction of the proof is shown in Figure 6.2 (note
that it requires the GADTs and RankNTypes extensions).2 The code for the forward
direction is similar, and it is the backwards direction which will be of particular use
later.

6.2 Analytic functors

We are now ready to consider Joyal’s definition of analytic functors [Joyal, 1986].
Analytic functors, of type Set → Set, are those which arise as left Kan extensions
of species. They can also intuitively be characterized as those functors Set → Set
which “have a Taylor expansion”. This will be made more precise in §6.2.2, although
this latter definition is less immediately useful in a generalized setting.

2As evidenced by the kan-extensions package [Kmett, a], the implementation of this construc-
tive proof in Haskell can be considerably simplified, but at the expense of obscuring the connection
to the original abstract proof given above.

164

6.2.1 Definition and intuition

Definition 6.2.1 (Joyal). Given a species F : B ⇒ Set, the analytic functor F̂
corresponding to F is given by ι\F , the left Kan extension of F along the inclusion
functor ι : B ↪→ Set. A functor Set→ Set is analytic when it arises in this way from
some species.

B
F

##

_�

ι
��

Set
F̂

// Set

We can think of F̂ as the polymorphic “data type” arising from the species F . The
construction in Proposition 6.1.2 tells us exactly what structures of such a data type
look like:

F̂ A = ∃L. (ιL→ A)× F L.

We call inhabitants of F̂ A labelled structures. That is, given a set A, a labelled
structure of type F̂ A consists of an L-labelled F -shape together with a function (i.e. a
morphism in Set) from ιL to A. The coend means that the choice of a particular label
set L does not matter: any two values f : (ιL→ A)× F L and g : (ιL′ → A)× F L′

are considered equal if there is some bijection σ : L ∼−→ L′ which sends f to g.
Moreover, the natural isomorphism (6.1.1) in this case becomes

(F̂
•−→ G) ∼= (F

•−→ Gι),

that is, the natural maps (i.e. parametrically polymorphic functions) out of F̂ are
in one-to-one correspondence with species morphisms out of F . The isomorphism
constructed in Figure 6.2 can give us some insight into the computational content
of this correspondence. We identify both B and Set with Hask—formally dubious
but close enough for intuition—and thus the inclusion functor ι : B → Set becomes
the identity. Let h :: ∀c.f c → g c be an arbitrary natural transformation from f
to g = g ◦ ι, which should be thought of as a morphism between species, that is,
between functors B → Set. The lanAdjoint function turns such species morphisms
into polymorphic functions (that is, natural transformations between Set → Set
functors) from Lan ι f a to g a. In particular, let Lan (sp,m) be a value of type
Lan ι f a, containing, for some label type c, a shape sp :f c and a mapping m :ι c → a.
Then lanAdjoint h (Lan (sp,m)) has type g a, and we can carry out the following
simplication just by unfolding definitions:

lanAdjoint h (Lan (sp,m))
= { definition of lanAdjoint }

homL (uncurry (yoneda ′ h)) (Lan (sp,m))
= { definition of homL }

uncurry (yoneda ′ h) (sp,m)

165

= { definition of uncurry }
yoneda ′ h sp m

= { definition of yoneda ′ }
yoneda (h sp) m

= { definition of yoneda }
fmap m (h sp).

This can be interpreted as follows: given the species morphism h out of the species
F , it is turned into a function out of the corresponding analytic functor F̂ by ap-
plying it to the underlying shape, and then functorially applying the associated data
mapping. Note in particular that lanAdjoint is an isomorphism, which means that
every polymorphic function out of an analytic functor arises in this way. That is,
every polymorphic function out of F̂ A is “just a reshaping”: it is equivalent to a pro-
cess consisting of splitting a labelled structure of type F̂ A into a labelled shape and
a mapping from labels to data, followed by a “reshaping”—an application of some
species morphism to the shape—and concluding with re-combining the new shape
with the data mapping.

Such a reshaping only has access to the labelled shape, and not to the values of
type A, so it obviously cannot depend on them. However, this is not surprising, since
this property is already implied by naturality. More interesting is the fact that the set
of labels must be finite. This means, intuitively, that functors corresponding to infinite
data structures are not analytic. It is not possible to represent all possible natural
maps out of an infinite data structure by natural maps out of structures containing
only a finite number of labels. This is proved more formally in §6.2.3.

Analytic functors have a close connection to the shapely types of Jay and Cock-
ett [1994]. Shapely types essentially correspond to analytic functors over L-species;
shapely types are those which decompose into a shape and a list of data, which can
be thought of as a mapping from a linearly ordered set of labels to data.

6.2.2 Analytic functors and generating functions

Joyal [1986] showed that analytic functors can also be characterized as those which
“have Taylor expansions” (in a suitable sense). Passing from B to P, suppose we have

a species F : P→ Set; then the analytic functor F̂ is given by

F̂ A = ∃(n : N). (ιn→ A)× F n,

where ι : P → Set in this case sends the natural number n to the set [n]. Note

that functions [n] → A are in bijection with the n-fold product An, so F̂ A may
equivalently be expressed as

F̂ A ∼= ∃(n : N). An × F n ∼= ∃(n : N). F n× An.

166

The coend, in this case, is a quotient by permutations on [n], which act on F n ×
An by permuting the elements of the n-fold product. So each value of the coend is
an equivalence class of n! pairs, one for each possible permutation of An. We may
therefore suggestively (if informally) write

F̂ A ≈
∑
n:N

F n× An

n!

which very strongly resembles the exponential generating function associated to the
species F ,

F (x) =
∑
n>0

|F n| × xn

n!
.

Of course, the resemblance is no accident! This gives another glimpse of the sense in
which species (and their associated analytic functors) are said to be a categorification
of such generating functions.

6.2.3 Analytic functors and finiteness

Joyal [1986] also gave yet another characterization of analytic functors, namely, those
which preserve filtered colimits, cofiltered limits, and weak pullbacks. It is instructive
to use this characterization as a lens to consider some examples of functors which are
not analytic.

Definition 6.2.2. A filtered category C [Adámek et al., 2002] is one which “has all
finite cocones”, that is, for any finite collection of objects and morphisms in C, there
is some object C ∈ C with morphisms from all the objects in the collection to C,
such that all the relevant triangles commute.

Equivalently, and more simply, a filtered category is one for which

• there exists at least one object;

• any two objects C1, C2 ∈ C have an “upper bound”, that is, an object C3 with
morphisms

C1
// C3 C2
oo ;

• and finally, any two parallel morphisms C1

f
//

g
// C2 also have an “upper bound”,

that is, another morphism

C1

f
//

g
// C2

h // C3

such that f ; h = g ; h.

167

These binary upper bound operations on objects and morphisms may be used to
inductively “build up” cocones for arbitrary diagrams in C.

This can be seen as a “categorification” of the notion of a directed set (also known
as a filtered set), a preorder in which any two elements have an upper bound. Cat-
egories can be seen as generalizations of preorders in which multiple morphisms are
allowed between each pair of objects, so the above definition has to extend the idea of
pairwise upper bounds to apply to parallel morphisms as well as objects; in a preorder
there are no parallel morphisms so this does not come up.

Example. Any category with a terminal object is filtered: the terminal object may
be taken as the upper bound of any two objects, and the unique morphism to the
terminal object as the upper bound of any two parallel morphisms.

Example. The poset (N,6), considered as a category whose objects are natural num-
bers, with morphisms m 6 n, is a filtered category. The upper bound of any two
objects is their maximum, and there are no parallel morphisms to consider.

0 // 1 // 2 // 3 // . . .

Note that filteredness only requires that every finite collection of objects have an
upper bound; in particular, in this example it is not true of infinite collections of
objects. For example, the set of all even numbers has no upper bound in N.

Example. Consider the category FinN⊆ whose objects are finite subsets of N and
whose morphisms are inclusion maps. That is, whenever S ⊆ T there is a single
morphism ιST : S → T defined by ιST (s) = s. Since this is a nonempty preorder, to
see that FinN⊆ is filtered it suffices to note that any two finite sets S and T have
S ∪ T as an upper bound.

Example. Filtered categories can also be seen as a generalization of finitely cocomplete
categories, i.e. categories having all finite colimits. In particular, categories having
all finite colimits can be characterized as those having an initial object, all binary
coproducts, and all coequalizers: these are exactly parallel to the three criteria given
above for filtered categories, with an extra “universal property” corresponding to each
(for example, the binary coproduct of two objects is an upper bound along with a
universal property).

Therefore, any (finitely) cocomplete category is automatically filtered: for exam-
ple, Set, Grp, and Vec.

Recall that a diagram in C is a functor I → C from some “index category” I,
which determines the “shape” of diagrams in C.

Definition 6.2.3. A filtered diagram in C is a functor I → C from a filtered index
category I. A filtered colimit is a colimit of a filtered diagram.

168

That is, a filtered diagram in C is a diagram that “looks like” a filtered category
“sitting inside” C. A filtered colimit is then just a normal colimit which happens to
be taken over a filtered diagram.

Example. Let F : C → C be an endofunctor on the category C. Suppose C contains
an initial object 0, and let ! denote the unique morphism 0 → C. Then consider the
diagram

0 ! // F0 F ! // F 20 F 2! // F 30 // . . .

The colimit of this diagram is the least fixed point µF , and is a filtered colimit since
the diagram has the filtered poset (N,6) as its index category.

Example. Pushouts are an example of colimits which are not filtered, since pushouts
are colimits over a span X Zoo // Y , which is not filtered (X and Y do not
necessarily have an upper bound).

Example. Recall the filtered poset FinN⊆ introduced earlier, consisting of finite sub-
sets of N and inclusion maps. The inclusion functor FinN⊆ ↪→ Set allows viewing
FinN⊆ as a diagram in Set, and we consider the (filtered) colimit of this diagram,
which must consist of some set S along with maps from all the finite subsets of N into
S, which commute with the inclusion maps among the finite subsets of N. In fact,
it suffices to take N itself, together with the inclusion maps from each finite subset
of N into N. Intuitively, N arises here as the disjoint union of all finite subsets of N,
quotiented by the relationships induced by all the inclusion maps—which collapses
the disjointness, resulting in a simple union of all finite subsets.

To see that this is universal, suppose we have a set X with maps mS : S → X for
each finite S ⊂ N, such that the mS all commute with inclusion maps between the
finite subsets of N. Define θ : N→ X by θ(n) = m{n}(n). We must show that the mS

all factor through θ.
S

mS

ιS
��

{k}oo

m{k}
��

N
θ
// X

Given some S ⊂ N and some k ∈ S, we have θ(ιS(k)) = θ(k) = m{k}(k); but this is
indeed equal to mS(k), since there exists an inclusion map {k} → S, and we assumed
the mS commute with inclusion maps.

Now consider the functor F := (−)N : Set → Set, which sends the set A to the
set AN of functions from N to A [Trimble, 2014]. The claim is that F is not analytic,
and in particular that it does not preserve the filtered colimit of FinN⊆, discussed
above. As we will see, the “problem” is that F corresponds to an infinite data type,
i.e. one which can contain infinitely many A values. In particular, F corresponds to
the data type of infinite streams : a function N→ A can be thought of as an infinite

169

stream of A values, where the value of the function at n gives the value of A located
at position n in the stream.

We also consider how F acts on inclusion maps. The action of F on morphisms
is given by postcomposition, so F sends the inclusion ι : S ↪→ T to ι ◦ − : SN → TN,
which is also an inclusion map: it sends the stream s : N → S to the stream ι ◦ s :
N → T , consisting of the application of ι to every element in s. That is, ι ◦ − does
not actually modify any values of a stream, but simply codifies the observation that
whenever S ⊆ T , a stream containing only values from S may also be thought of as
a stream containing only values from T (which simply happens not to include any
values from T − S).

We saw above that the colimit of FinN⊆, considered as a diagram in Set, is N
(together with the obvious inclusion maps to N from each finite subset). F sends N
to NN, the type of infinite streams of natural numbers. F also sends each inclusion
map S ↪→ N to the inclusion SN ↪→ NN, which allows a stream of S values to be
“upgraded” to a stream of natural numbers.

Now consider where F sends the diagram FinN⊆. F sends each finite set S ⊂ N
to the set of infinite streams of S values, SN, and it sends each inclusion S ↪→ T to
the inclusion SN ↪→ TN. However, the colimit of this new diagram F (FinN⊆) is not
NN, the set of streams of natural numbers, but instead the set of finitely supported
streams of natural numbers, that is, the set of all streams which contain only finitely
many distinct elements. Thus F (colim FinN⊆) � colim(F FinN⊆), and we conclude
that F is not analytic since it does not preserve filtered colimits.

Another example3 is given by the covariant power set functor P : Set → Set,
which sends each set A to its power set P (A), the set of all subsets of A, and sends
each function f : A→ B to the function P (f) : P (A)→ P (B) which gives the image
of a subset of A under f . P (N) is the set of all (finite and infinite) subsets of N, but
colimP (FinN⊆) is the set of all finite subsets of N. Note, however, that the covariant
finite powerset functor FP : Set → Set, which sends each set A to the set of all its
finite subsets, is analytic; it corresponds to the species E · E.

6.3 An attempt at generalized functor composi-

tion

Recall from §4.4 that if species are taken to be functors B→ B, then one can define
the functor composition G � F to be the literal composition of G and F , that is,
(G � F) L = G (F L). However, if species are taken as functors B → Set it is not
clear how to generalize this idea. Given the idea of analytic functors, we are ready to
consider one possible idea—which unfortunately does not work.

It seems we must begin by restricting ourselves to functors F,G : B → FinSet;
we cannot use infinite sets of shapes as label sets. In that case, as observed previously,

3Also due to Trimble [2014].

170

functors B→ FinSet are essentially equivalent to functors B→ B, so in fact defining
functor composition for species B → FinSet is not difficult. However, it still does
not give us any idea of how to generalize to (L,S)-species.

There is another possibility: given some embedding functor ι : L→ S (with some
mild restrictions), there is a monoidal structure on L⇒ S, given by G•F = F ◦(ι\G),
that is,

L

ι
��

G

L
F
// S

ι\G
// S

[Altenkirch et al., 2010]. Unfortunately, if we examine the special case of B→ FinSet,
we can see that this monoidal structure is not the same as functor composition. To
see the difference, suppose G : B → FinSet is some species all of whose shapes
contain each label exactly once. Note that ι\G is by definition Ĝ, the analytic functor

corresponding to G. Therefore, (Ĝ◦F)-shapes on L consist of G-structures containing
(F L)-shapes as data. Note that any particular (F L)-shape can occur multiple times
or none at all. In contrast, a (G� F)-shape contains every possible F -shape exactly
once.

6.4 Introduction and elimination forms for labelled

structures

Deriving and fully working out introduction forms for analytic functors and labelled
structures remains future work. However, much of the work has already been done.
For example, Joyal [1986] shows that analytic functors are closed under sums, prod-

ucts, composition, and least fixed points; moreover, the mapping F 7→ F̂ from species
to their corresponding analytic functors is homomorphic with respect to these oper-
ations. For example, one has

̂(F +G) = F̂ + Ĝ

̂(F ·G) = F̂ × Ĝ
̂(F ◦G) = F̂ ◦ Ĝ

1̂ = ∆1

X̂ = id

(for proof, see Joyal [1986]). This means that, for example, in order to introduce a
labelled structure of shape F · G, one simply gives a pair of a labelled F -structure
and a labelled G-structure; this should come as no surprise.

Now consider how to eliminate labelled structures. In particular, given a labelled

171

structure type F̂ A, consider a morphism F̂ A→ B, for some arbitrary object B. We
compute as follows, noting that these computations apply equally in (B ⇒ Set) or
(B ⇒ S):

F̂ A→ B
= { definition }

(∃L. F L× (ι L→ A))→ B
∼= { (− → B) turns colimits into limits }
∀L. (F L× (ι L→ A))→ B

∼= { currying }
∀L. F L→ ((ιL→ A)→ B)

∼= { ends are natural transformations }
F

•−→ ((ι − → A)→ B)

Note that ((ι − → A) → B) is a functor of type B → Set, that is, a species,
which we will abbreviate BA− . Hence the above derivation amounts to saying that
a function (F̂ A → B) eliminating a labelled structure is equivalent to a species
morphism F → BA− . We can therefore characterize labelled structure eliminators in
terms of the species eliminators described in §4.7.

6.4.1 Generalized analytic functors

In general, suppose we have a functor F : L→ S, as well as a functor ι : L→ S. We
can define

F̂ := ∃L. (ι L⇒ A) · F L

as long as

• S is copowered over Set, i.e. has all coproducts, and

• S has coends over L.

As a particular example, the definition of analytic functors ports almost unchanged
into homotopy type theory: we merely replace the set-theoretic categories B and Set
with the homotopy-theoretic B and S, respectively, yielding

F̂ A = ∃L. (ι L⇒S A)× F L,

where ι : B → S is the evident injection which acts on morphisms via transport. Re-
calling that coends in HoTT are just Σ-types, and that morphisms in S are functions,
we have

F̂ A =
∑
L:B

(ι L→ A)× F L.

The following section gives another example, of analytic functors over partial and
copartial species.

172

(ιL→ A)× F K

id×F σ

��

(ισ→A)×id

��

(ιL→ A)× F L

��

(ιK → A)× F K

��

∃L. (ιL→ A)× F L

Figure 6.3: The commuting condition for analytic functors over copartial species

6.5 Analytic functors for partial and copartial species

A variant of labelled structures that one might consider is one which “takes the coend
off”, exposing the labels in the type:

〈F 〉L A := (ιL→ A)× F L.

We have seen that introduction and elimination forms for labelled structures are
straightforward, for example, eliminating ̂(F ·G) A ∼= (F̂ × Ĝ) A ∼= F̂ A = Ĝ A just
amounts to eliminating a pair. However, eliminating 〈F 〉L A is not so straightforward;
in particular we do not have 〈F ·G〉L A ∼= 〈F 〉L A× 〈G〉L A, since the labels L need
to be partitioned between the two shapes.

However, we can recover something along these lines using copartial species (§5.2);
the idea is that 〈F 〉L A will contain a shape on some subset of the labels L. One way
to think of this is as having some large “shared memory” indexed by L, and a labelled
structure 〈F 〉L A gives us a “view” onto some (but not necessarily all) of the data in
memory. Thus, it is possible to decompose a product as 〈F ·G〉L A→ 〈F 〉L A×〈G〉L A
(note this is not an isomorphism), breaking an F · G structure into two separate
shapes referencing data contained in the same shared memory. Aside from allowing
us to express an eliminator for such labelled products, from an operational point
of view, this may also be exactly what we want when dealing with data structures
whose memory allocation really matters: doing a decomposition operation should
not allocate any new storage, but simply yield new shapes with labels pointing into
existing storage.

More formally, consider constructing analytic functors over copartial species B⊆ ⇒
S. There is a natural injection ι : B⊆ → S, which we can use to define such analytic

functors via the usual Kan extension formula, F̂ := ∃L. (ι L ⇒ A) · F L. The
commuting condition for the coend is shown in Figure 6.3. Here σ : K ⊆ L is a
copartial bijection from K into L. Since σ : K ⊆ L, the top of the diagram represents
a labelled shape (of type F K) with its data “living inside” some larger shared memory

173

labelled by L. Following the right-hand arrow amounts to explicitly expanding the
shape with the extra labels (e.g. throwing the extra labels into the “catch-all” set);
following the left-hand arrow amounts to throwing away the extra data which is not
explicitly referenced by the F -shape. According to the diagram, these must both
inject into the coend in a way that renders them indistinguishable: intuitively, this
means that if we have a shape with data living in a larger shared memory, we cannot
observe anything about the data values not explicitly referenced by the shape.

We can also consider analytic functors over partial species in Bop
⊆ ⇒ S⇀, using the

natural inclusion functor ι : Bop
⊆ → S⇀. The commutative diagram for the coend looks

almost identical to the one in Figure 6.3, but is interpreted somewhat differently. In
particular, note that the arrows now represent partial functions. In addition, σ : K ⊇
L is a constructive witness that K is a superset of L. Thus, (ιL → A) × F K is a
shape with labels taken from K along with a partial mapping from only some of those
labels to data values. Following the right-hand arrow amounts to taking a subshape
of F corresponding to the labels that do map to data; following the left-hand arrow
amounts to expanding the domain of the mapping with extra labels for which the
mapping is undefined.

More work is needed to flesh out the details, but it seems that this may allow us
to model structures where we do not wish to store data associated with every label.
For example, X · E may represent a pointed set, but it may also represent the species
of “elements”, where we really only care about the data associated with the label of
X, and do not wish to associate data to all the labels contained in the set.

174

Chapter 7

Conclusion and future work

This dissertation has laid the theoretical groundwork to pursue applications of com-
binatorial species (and variants thereof) to algebraic data types in functional pro-
gramming languages. It is too early to say with confidence what sorts of applications
there might be, though the future work laid out below hints at some ideas.

Two aspects of this work have turned out to be particularly surprising and grat-
ifying to me. The first is the host of nontrivial issues that arise when attempting to
formalize species in a constructive type theory—and the way that homotopy type
theory is able to neatly dispatch them all. I hope I have successfully made the case
that HoTT is the right framework in which to carry out this work; in any case it is a
lot of fun to see such a recent and groundbreaking theory put to productive work in a
different area of mathematics (namely, combinatorics). The second gratifying aspect
of this work is the way that analytic functors neatly encapsulate the idea of labelled
shapes associated with a mapping from labels to data. Indeed, Jacques and I had the
basic idea of associating shapes and mappings for a long time before realizing that
what we were thinking of were “just” analytic functors.

Although this dissertation merely hints at practical applications, I feel that build-
ing on the foundations of this work, practical applications will not be far behind. In
general, there is no shortage of future work! This dissertation has just scratched the
surface of what is possible, and indeed, some of my initial conceptions of what my
thesis would contain seem to actually constitute a viable five- or ten-year research
program. I mention here some of the most promising avenues for continued work in
this area.

• This dissertation discussed exponential and ordinary generating functions, but
omitted cycle index series, which are a generalization of both (and which are
necessary for computing, e.g., ogfs of compositions). For that matter, even ogfs
were not discussed much, but correspond to “unlabelled” structures, which may
often be what one actually wants to work with. My gut sense is that there is quite
a lot more that could be said about computational interpretation of generating
functions, and that this may have very practical applications, for example, in

175

the enumeration and random generation of data structures.

• As mentioned in the discussion of Conjecture 3.3.5, it seems promising to trans-
late the theory of molecular and atomic species into homotopy type theory,
ideally using Coq or Agda to formalize the development. My sense is that this
will shed additional light on the theory, and may have some practical applica-
tions as well.

• It seems there is something interesting that could be said about recursively de-
fined (B⇒ Set)-species, where infinite families of same-size shapes are allowed.
Some of the criteria for the implicit species theorems presented in §5.4.1 work
simply to prevent such infinite families, and hence are not needed in such a
setting. It would be interesting to explore minimal criteria for analogues of the
implicit species theorems in more generalized settings.

• Although the introduction mentions generic programming, the remainder of the
dissertation has little to say on the topic, but there are certainly interesting con-
nections to be made. In a practical vein, using generic programming, it should
be possible to create tools that allow algebraic data types to be manipulated
via generic “views” as species.

• It seems that there ought to be some sort of connection between species and
linear logic. In general, labels are “treated linearly”; partitional product feels
analogous to multiplicative conjunction, Cartesian product to additive conjunc-
tion, and species sum to additive disjunction. This suggests looking for a species
operation analogous to multiplicative disjunction, although I have not been able
to make sense of such an operation1. It seems worthwhile to investigate the pos-
sibility of a real, deeper connection between species and linear logic.

• §6.5 considered a variant of F̂A which “removed the coend”, exposing the labels
in the type:

〈F 〉L A := (ιL→ A)× F L.

It is still not clear, however, whether there is any benefit to being able to
explicitly talk about the label type in this way. Coming up with a more precise
story about such “exposed” labelled structures—or showing conclusively why
one does not want to work with them—would be an important next step.

1Much like multiplicative disjunction itself.

176

Appendix A

Lifting monoids

This chapter contains a detailed proof showing how monoids (and many other struc-
tures of interest) can be lifted from a category S to a functor category L⇒ S. The
high-level ideas of this construction seem to be “folklore”, but I have been unable to
find any detailed published account, so it seemed good to include some proofs here
for completeness. Unfortunately, the proof presented here is still incomplete; as future
work I hope to completely understand the proof in detail.

We must first develop some technical machinery regarding functor categories. In
particular, we show how to lift objects, functors, and natural transformations based
on the category S into related ones based on the functor category SL.

Lemma A.1. An object D ∈ D lifts to an object (i.e. a functor) DC ∈ DC, defined
as the constant functor ∆D.

Lemma A.2. Any functor F : D → E lifts to a functor FC : DC → EC given by
postcomposition with F . That is, FC(G) = F ◦G = FG, and FC(α) = Fα.

Proof. Fα denotes the “right whiskering” of α by F ,

C
G
&&

H

88�� α D
F // E.

FC preserves identities since

C G // D F // E

177

can be seen as both F idG and idFG, and it preserves composition since

C
���� α
DD

�� β
// D F // E =

C
���� α
// D F // E

C DD
�� β
// D

F
// E

by the interchange law for horizontal and vertical composition. SDG

Natural transformations lift in the same way:

Lemma A.3. Given functors F,G : D→ E, any natural transformation α : F
•−→ G

lifts to a natural transformation αC : FC
•−→ GC : DC → EC given by postcomposition

with α. That is, the component of αC at H : C → D is αCH = αH. Moreover, if α is
an isomorphism then so is αC.

Proof. Here αH denotes the “left whiskering” of α by H,

C H // D
F
''

G

77�� α E.

Note that αCH should be a morphism FCH −→ GCH in EC, that is, a natural trans-

formation FH
•−→ GH, so αH has the right type. The naturality square for αC

is

FH
αC
H //

Fβ
��

GH

Gβ
��

FJ
αC
J

// GJ

which commutes by naturality of α: at any particular C ∈ C the above diagram
reduces to:

FHC
αHC //

FβC
��

GHC

GβC
��

FJC αJC

// GJC

If α is an isomorphism, then (α−1)C is the inverse of αC: for any H, α−1H · αH =

178

(α−1 · α)H = idFH .

C H // D

F

##�� α
//
;;

F

�� α−1
E = C H // D F // E

SDG

Finally, we need to know that laws—expressed as commutative diagrams—also
lift appropriately from D to DC. For example, if we lift the functor and natural
transformations defining a monoid in D, we need to know that the resulting lifted
functor and lifted natural transformations still define a valid monoid in DC.

The first step is to understand how to appropriately encode laws as categorical
objects. Consider a typical commutative diagram, such as the following diagram ex-
pressing the coherence of the associator for a monoidal category. The parameters to all
the instances of α have been written out explicitly, to make the subsequent discussion
clearer, although in common practice these would be left implicit.

((A⊕B)⊕ C)⊕D
αA,B,C⊕idD

tt

αA⊕B,C,D

**

(A⊕ (B ⊕ C))⊕D
αA,B⊕C,D

��

(A⊕B)⊕ (C ⊕D)

αA,B,C⊕D

��

A⊕ ((B ⊕ C)⊕D)
idA⊕αB,C,D

// A⊕ (B ⊕ (C ⊕D))

There are two important points to note. The first is that any commutative diagram
has a particular shape and can be represented as a functor from an “index category”
representing the shape (in this case, a category having five objects and morphisms
forming a pentagon, along with the required composites) into the category in which
the diagram is supposed to live. Such a functor will pick out certain objects and
morphisms of the right “shape” in the target category, and the functor laws will
ensure that the target diagram commutes in the same ways as the index category.
(This much should be familiar to anyone who has studied abstract limits and colimits.)
The second point is that this diagram, like many such diagrams, is really supposed
to hold for all objects A, B, C, D. So instead of thinking of this diagram as living in
a category C, where the vertices of the diagram are objects of C and the edges are
morphisms, we can think of it as living in C4 ⇒ C, where the vertices are functors
C4 → C (for example, the top vertex is the functor which takes the quadruple of
objects (A,B,C,D) and sends them to the object ((A⊕B)⊕C)⊕D), and the edges
are natural transformations.

All told, then, we can think of a typical diagram D in C as a functor D : J →
(CA ⇒ C), where A is some (discrete) category recording the arity of the diagram.

179

Lemma A.4. Any diagram D : J → (CA ⇒ C) in C lifts to a diagram DD : J →
((CD)A ⇒ CD) in CD.

Proof. This amounts to implementing a higher-order function with the type

(J → (A→ C)→ C)→ J → (A→ D→ C)→ D→ C

which can be easily done as follows:

Φ D j g d = D j (λa. g a d).

Of course there are some technical conditions to check, but they all fall out easily. SDG

At this point there is a gap in the proof. To know that this lifting does the right
thing, one must show that the lifted diagram defined above is “about” (i.e. has as
its vertices and edges) the lifted versions of the vertices and edges of the original
diagram. Even this is still not quite enough; to really know that the lifted diagram
“says the same thing” as the unlifted diagram, we need to show not just that the
vertices and edges of the lifted diagram are lifted versions of the original diagram’s
vertices and edges, but that these lifted vertices and edges are themselves composed of
lifted versions of the components of the originals. For example, we want to ensure that
the lifting of the example diagram shown above still expresses coherence of the lifted
associator with respect to the lifted tensor product. It is not enough to have vertices
like (((A⊕B)⊕C)⊕D)D; we must show this is the same as ((AD⊕DBD)⊕DCD)⊕DDD,
so that it says something about the lifted tensor product ⊕D.

The basic idea would be to write down a formal syntax for the functors and
natural transformations that may constitute a diagram, and show that the lifting of
an expression is the same as the original expression with its atomic elements each
replaced by their lifting.

Assuming this result for now, we can go on to show how monoids lift into a functor
category.

Theorem A.5. Any monoidal structure (⊗, I, α, λ, ρ) on a category S lifts pointwise
to a monoidal structure (⊗L, IL, αL, λL, ρL) on the functor category L⇒ S.

Proof. Immediate from Propositions A.1, A.2, and A.3, and our assumed result that
diagrams lift to diagrams which “say the same thing” as the original, but say it
“about” lifted things. SDG

In Proposition 4.1.7 it was claimed that this lifting preserves products, coproducts,
symmetry, and distributivity. We can already show that symmetry and distributivity
are preserved:

Proposition A.6. The lifting defined in Theorem A.5 preserves symmetry.

180

Proof. Symmetry is given by a natural isomorphism ∀XY. X ⊗ Y ' Y ⊗X. By our
previous assumption, this lifts to a natural isomorphism ∀FG. F ⊗L G ' G⊗L F . SDG

Proposition A.7. The lifting defined in Theorem A.5 preserves distributivity.

Proof. In any category with all products and coproducts, there is a natural trans-
formation ∀XY Z. X × Y +X × Z → X × (Y + Z), given by 〈[π1, π1], [π2, π2]〉. The
category is distributive if this is an isomorphism. Again by our assumption about
lifting, such an isomorphism lifts to another natural isomorphism

∀FGH. (F ×L G) +L (F ×L H)→ F ×L (G+L H). SDG

To show that products and coproducts are preserved requires first showing that
lifting preserves adjunctions.

Lemma A.8. Let F : D→ E and G : D← E be functors. If F a G, then FC a GC.

Proof. Since F a G, assume we have γA,B : E(FA,B) ∼= D(A,GB). To show FC a GC,
we must define a natural isomorphism γCH,J : EC(F ◦ H, J) ∼= DC(H,G ◦ J). Given

φ ∈ EC(FH, J), that is, φ : FH
•−→ J : C→ E, and an object C ∈ C, define

γCH,J(φ)C = γHC,JC(φC).

Note that γHC,JC : E(FHC, JC) ∼= D(HC,GJC), so it sends φC : FHC → JC to a
morphism HC → GJC, as required.

From the fact that γ is an isomorphism it thus follows directly that γC is an
isomorphism as well. Naturality of γC also follows straightforwardly from naturality
of γ. For a more detailed proof, see Hinze [2012, pp. 17–18]. SDG

Proposition A.9. The lifting defined in Theorem A.5 preserves coproducts and prod-
ucts.

Proof. Consider a category S with coproducts, given by a bifunctor + : S×S→ S.
Lifting yields a functor +L : (S×S)L → SL. Note that (S×S)L ∼= SL×SL, so we
may consider +L as a bifunctor SL ×SL → SL.

There is a priori no guarantee that +L has any special properties, but it turns
out that +L is a coproduct on SL, which we demonstrate as follows. The key idea is
that the property of being a coproduct can be described in terms of an adjunction:
in particular, + is a coproduct if and only if it is left adjoint to the diagonal functor
∆ : S → S × S.1 Since lifting preserves adjunctions (Lemma A.8), we must have
+L a ∆L. But note we have ∆L : SL → (S×S)L ∼= SL×SL, with ∆L(F) = ∆◦F ∼=
(F, F), so in fact ∆L is the diagonal functor on SL. Hence +L, being left adjoint to
the diagonal functor, is indeed a coproduct on SL.

Of course, this dualizes to products as well, which are characterized by being right
adjoint to the diagonal functor. SDG

1Proving this standard fact takes a bit of work but mostly just involves unfolding definitions,
and is left as a nice exercise for the interested reader.

181

Bibliography

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In
Andrew Gordon, editor, Proceedings of FOSSACS 2003, number 2620 in Lecture
Notes in Computer Science, pages 23–38. Springer-Verlag, 2003a.

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives
of Containers. In Typed Lambda Calculi and Applications, TLCA, volume 2701 of
LNCS. Springer-Verlag, 2003b.

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Construct-
ing Polymorphic Programs with Quotient Types. In 7th International Conference
on Mathematics of Program Construction (MPC 2004), volume 3125 of LNCS.
Springer-Verlag, 2004.

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers - constructing
strictly positive types. Theoretical Computer Science, 342:3–27, September 2005.
Applied Semantics: Selected Topics.

Jǐr̀ı Adámek, Francis Borceux, Stephen Lack, and Jǐr̀ı Rosický. A classification of
accessible categories. Journal of Pure and Applied Algebra, 175(1):7–30, 2002.

Marcelo Aguiar and Swapneel A. Mahajan. Monoidal Functors, Species and Hopf
Algebras. CRM monograph series / Centre de recherches mathématiques, Montréal.
American Mathematical Society, 2010. ISBN 9780821847763.

Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms
using generalized inductive types. In Computer Science Logic, pages 453–468.
Springer, 1999.

Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be
endofunctors. In Foundations of Software Science and Computational Structures,
pages 297–311. Springer, 2010.

Carlo Angiuli, Ed Morehouse, Daniel R. Licata, and Robert Harper. Homotopical
patch theory. In Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’14, New York, NY, USA, 2014. ACM.

Steve Awodey. Category theory, volume 49. Oxford University Press, 2006.

182

Robert W Baddeley, Cheryl E Praeger, and Csaba Schneider. Transitive simple sub-
groups of wreath products in product action. Journal of the Australian Mathemat-
ical Society, 77(01):55–72, 2004.

John Baez. From the Yoneda lemma to categorical physics, September 1999. http:

//www.lepp.cornell.edu/spr/1999-09/msg0017972.html.

John C Baez and James Dolan. From finite sets to feynman diagrams. arXiv preprint
math/0004133, 2000.

Michael Barr and Charles Wells. Category theory for computing science, volume 10.
Prentice Hall New York, 1990.

François Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial species and
tree-like structures. Number 67 in Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge, 1998.

Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical
sets. Preprint, 2014.

Simon Byrne. On groupoids and stuff. Master’s thesis, Macquarie University, 2006.

Mario Cáccamo and Glynn Winskel. A higher-order calculus for categories. Springer,
2001.

Jacques Carette and Gordon Uszkay. Species: making analytic functors practical for
functional programming. Available at http://www.cas.mcmaster.ca/~carette/

species/, 2008.

Pierre Cartier and Dominique Foata. Problemes combinatoires de commutation et
réarrangements. Springer, 1969.

James Cheney and Ralf Hinze. A lightweight implementation of generics and dynam-
ics. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, Haskell
’02, pages 90–104, New York, NY, USA, 2002. ACM. ISBN 1-58113-605-6.
doi:10.1145/581690.581698.

Eugenia Cheng and Simon Willerton. Ends 2. YouTube, January 2014a. URL
http://youtu.be/gyc86NFT0Sw.

Eugenia Cheng and Simon Willerton. Ends 3. YouTube, January 2014b. URL
http://youtu.be/TfSUxhCNZZ0.

Dæv Clarke, Ralf Hinze, Johan Theodoor Jeuring, Andres Löh, and Jan de Wit. The
generic Haskell user’s guide. Technical Report UU-CS-2002-047, Utrecht University,
2002.

183

http://www.lepp.cornell.edu/spr/1999-09/msg0017972.html
http://www.lepp.cornell.edu/spr/1999-09/msg0017972.html
http://www.cas.mcmaster.ca/~carette/species/
http://www.cas.mcmaster.ca/~carette/species/
http://dx.doi.org/10.1145/581690.581698
http://youtu.be/gyc86NFT0Sw
http://youtu.be/TfSUxhCNZZ0

Brian Day. On closed categories of functors. In Reports of the Midwest Category
Seminar IV, pages 1–38. Springer, 1970.

Hélène Décoste, Gilbert Labelle, and Pierre Leroux. The functorial composition of
species, a forgotten operation. Discrete mathematics, 99(1):31–48, 1992.

Radu Diaconescu. Axiom of choice and complementation. Proceedings of the American
Mathematical Society, 51(1):176–178, 1975.

Gilles Dowek. Principles of Programming Languages. Springer, 2009.

Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Random
sampling from boltzmann principles. In Peter Widmayer, Stephan Eidenbenz, Fran-
cisco Triguero, Rafael Morales, Ricardo Conejo, and Matthew Hennessy, editors,
Automata, Languages and Programming, volume 2380 of Lecture Notes in Computer
Science, pages 776–776. Springer Berlin / Heidelberg, 2002. ISBN 978-3-540-43864-
9.

Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann
samplers for the random generation of combinatorial structures. Combinatorics,
Probability and Computing, 13:577–625, 2004. doi:10.1017/S0963548304006315.

Anton Fetisov. Answer to “intuition for coends”. MathOverflow, November 2011.
URL: http://mathoverflow.net/a/80719/856 (visited on 2014-08-13).

Marcelo Fiore, Nicola Gambino, Martin Hyland, and Glynn Winskel. The cartesian
closed bicategory of generalised species of structures. J. London Math. Soc., 77(1):
203–220, 2008. doi:10.1112/jlms/jdm096. URL http://jlms.oxfordjournals.

org/cgi/content/abstract/77/1/203.

Marcelo P Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable
binding. 2003.

Philippe Flajolet and Bruno Salvy. Computer algebra libraries for combina-
torial structures. Journal of Symbolic Computation, 20(5-6):653–671, 1995.
doi:10.1006/jsco.1995.1070.

Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Lambda-upsilon-omega: The
1989 cookbook. Technical Report 1073, Institut National de Recherche en In-
formatique et en Automatique, August 1989. URL http://www.inria.fr/rrrt/

rr-1073.html. 116 pages.

Philippe Flajolet, Éric Fusy, Carine Pivoteau, et al. Boltzmann sampling of unlabeled
structures. ANALCO, 7:201–211, 2007.

184

http://dx.doi.org/10.1017/S0963548304006315
http://mathoverflow.net/a/80719/856
http://dx.doi.org/10.1112/jlms/jdm096
http://jlms.oxfordjournals.org/cgi/content/abstract/77/1/203
http://jlms.oxfordjournals.org/cgi/content/abstract/77/1/203
http://dx.doi.org/10.1006/jsco.1995.1070
http://www.inria.fr/rrrt/rr-1073.html
http://www.inria.fr/rrrt/rr-1073.html

Jeremy Gibbons. Calculating functional programs. In Roland Backhouse, Roy Crole,
and Jeremy Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathemat-
ics of Program Construction, volume 2297 of Lecture Notes in Computer Science,
pages 148–203. Springer-Verlag, 2002. URL http://www.comlab.ox.ac.uk/oucl/

work/jeremy.gibbons/publications/acmmpc-calcfp.pdf.

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to defor-
estation. In Proceedings of the conference on Functional programming languages
and computer architecture, FPCA ’93, pages 223–232, New York, NY, USA, 1993.
ACM. ISBN 0-89791-595-X. doi:10.1145/165180.165214.

Andy Gill. Type-safe observable sharing in haskell. In Proceedings of the 2nd ACM
SIGPLAN symposium on Haskell, Haskell ’09, pages 117–128, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-508-6. doi:10.1145/1596638.1596653.

Nelson Goodman and John Myhill. Choice implies excluded middle. Mathematical
Logic Quarterly, 24(25-30):461–461, 1978.

Basil Gordon. Sieve-equivalence and explicit bijections. Journal of Combinatorial
Theory, Series A, 34(1):90–93, 1983.

Katarzyna Grygiel and Pierre Lescanne. Counting and generating lambda terms.
Journal of Functional Programming, 23(05):594–628, 2013.

Ralf Hinze. A new approach to generic functional programming. In Proceedings
of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’00, pages 119–132, New York, NY, USA, 2000. ACM. ISBN
1-58113-125-9. doi:10.1145/325694.325709.

Ralf Hinze. Kan extensions for program optimisation or: Art and Dan explain an old
trick. In Mathematics of Program Construction, pages 324–362. Springer, 2012.

Ralf Hinze and Daniel WH James. Reason isomorphically! In Proceedings of the 6th
ACM SIGPLAN workshop on Generic programming, pages 85–96. ACM, 2010.

Gérard Huet. Functional pearl: The zipper. J. Functional Programming, 7:7–5, 1997.

Patrik Jansson and Johan Jeuring. Polyp—a polytypic programming language exten-
sion. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’97, pages 470–482, New York, NY, USA, 1997.
ACM. ISBN 0-89791-853-3. doi:10.1145/263699.263763.

Mauro Jaskelioff and Russell O’Connor. A representation theorem for second-order
functionals. arXiv preprint arXiv:1402.1699, 2014.

185

http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/acmmpc-calcfp.pdf
http://www.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/acmmpc-calcfp.pdf
http://dx.doi.org/10.1145/165180.165214
http://dx.doi.org/10.1145/1596638.1596653
http://dx.doi.org/10.1145/325694.325709
http://dx.doi.org/10.1145/263699.263763

C. Barry Jay and J. Robin B. Cockett. Shapely types and shape polymorphism. In
ESOP ’94: Proceedings of the 5th European Symposium on Programming, pages
302–316, London, UK, 1994. Springer-Verlag. ISBN 3-540-57880-3.

Warren P Johnson. The curious history of Faà di Bruno’s formula. American Math-
ematical Monthly, pages 217–234, 2002.

André Joyal. Une théorie combinatoire des Séries formelles. Advances in Mathematics,
42(1):1–82, 1981.

André Joyal. Foncteurs analytiques et espèces de structures. In Gilbert Labelle and
Pierre Leroux, editors, Combinatoire Énumérative, volume 1234 of Lecture Notes
in Mathematics, pages 126–159. Springer Berlin Heidelberg, 1986. ISBN 978-3-540-
17207-9. doi:10.1007/BFb0072514.

André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in Math-
ematics, 88(1):55–112, 1991.

G Max Kelly. On the operads of J. P. May. Repr. Theory Appl. Categ, 13:1–13, 2005.

Edward Kmett. The kan-extensions package, a. URL http://hackage.haskell.

org/package/kan-extensions.

Edward Kmett. The lens package, b. URL http://hackage.haskell.org/

package/lens.

Edward Kmett. Kan Extensions III: As Ends and Coends, May 2008. http://

comonad.com/reader/2008/kan-extension-iii/.

Edward Kmett. Free Monads for Less (Part 2 of 3): Yoneda, June 2011. http:

//comonad.com/reader/2011/free-monads-for-less-2/.

Donald E Knuth. Sorting and Searching (The Art of Computer Programming volume
3), 1973.

Joachim Kock. Data types with symmetries and polynomial functors over groupoids.
In Proceedings of the 28th Conference on the Mathematical Foundations of Pro-
gramming Semantics (Bath, 2012), 2012.

Gilbert Labelle and Cédric Lamathe. General combinatorial differential operators.
Séminaire Lotharingien de Combinatoire, 61(B61Ag):24pp, 2009.

Jacques Labelle. Quelques especes sur les ensembles de petite cardinalité. Ann. Sc.
Math. Québec, 9(1):31–58, 1985.

Stephen Lack and Ross Street. Combinatorial categorical equivalences. arXiv preprint
arXiv:1402.7151, 2014.

186

http://dx.doi.org/10.1007/BFb0072514
http://hackage.haskell.org/package/kan-extensions
http://hackage.haskell.org/package/kan-extensions
http://hackage.haskell.org/package/lens
http://hackage.haskell.org/package/lens
http://comonad.com/reader/2008/kan-extension-iii/
http://comonad.com/reader/2008/kan-extension-iii/
http://comonad.com/reader/2011/free-monads-for-less-2/
http://comonad.com/reader/2011/free-monads-for-less-2/

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical de-
sign pattern for generic programming. In Proceedings of the 2003 ACM SIG-
PLAN international workshop on Types in languages design and implementation,
TLDI ’03, pages 26–37, New York, NY, USA, 2003. ACM. ISBN 1-58113-649-8.
doi:10.1145/604174.604179.

F William Lawvere and Stephen Hoel Schanuel. Conceptual mathematics: a first
introduction to categories. Cambridge University Press, 2009.

Pierre Lescanne. On counting untyped lambda terms. Theoretical Computer Science,
474:80–97, 2013.

Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer,
1998.

Manuel Maia and Miguel Méndez. On the arithmetic product of combinatorial
species. Discrete Mathematics, 308(23):5407 – 5427, 2008. ISSN 0012-365X.
doi:10.1016/j.disc.2007.09.062.

Michael Makkai. First order logic with dependent sorts, with applications to category
theory. Preprint: http://www. math. mcgill. ca/makkai, 1995.

Michael Makkai. Avoiding the axiom of choice in general category theory. Journal of
Pure and Applied Algebra, 108(2):109–173, 1996.

Michael Makkai. Towards a categorical foundation of mathematics. In Logic Collo-
quium’95, pages 153–190. Springer, 1998.

Simon Marlow. Haskell 2010 Language Report, 2010.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. Studies in Logic
and the Foundations of Mathematics, 80:73–118, 1975.

Per Martin-Löf. Constructive mathematics and computer programming. Studies in
Logic and the Foundations of Mathematics, 104:153–175, 1982.

Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 17. Bibliopo-
lis Naples, 1984.

Conor McBride. The Derivative of a Regular Type is its Type of One-Hole Contexts.
Available at http://www.cs.nott.ac.uk/~ctm/diff.ps.gz, 2001.

Conor McBride. Clowns to the left of me, jokers to the right (pearl): dissecting data
structures. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 287–295, San Francisco, California,
USA, 2008. ACM. ISBN 978-1-59593-689-9. doi:10.1145/1328438.1328474.

187

http://dx.doi.org/10.1145/604174.604179
http://dx.doi.org/10.1016/j.disc.2007.09.062
http://www.cs.nott.ac.uk/~ctm/diff.ps.gz
http://dx.doi.org/10.1145/1328438.1328474

Conor McBride. Answer to “writing cojoin or cobind for n-dimensional grid type”.
StackOverflow, 2012. URL: http://stackoverflow.com/a/13100857/305559

(visited on 2014-09-21).

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In John Hughes, editor, Functional
Programming Languages and Computer Architecture, volume 523 of Lecture Notes
in Computer Science, pages 124–144. Springer Berlin / Heidelberg, 1991. ISBN
978-3-540-54396-1. doi:10.1007/3540543961 7.

Mat́ıas Menni. Combinatorial functional and differential equations applied
to differential posets. Discrete Mathematics, 308(10):1864–1888, May 2008.
doi:10.1016/j.disc.2007.04.035.

Peter Morris and Thorsten Altenkirch. Indexed containers. In Twenty-Fourth IEEE
Symposium in Logic in Computer Science (LICS 2009), 2009.

The nLab. Finite sets, 2013. URL http://ncatlab.org/nlab/show/finite+set.

The nLab. The axiom of choice, 2014a. URL http://ncatlab.org/nlab/show/

axiom+of+choice.

The nLab. Clique, 2014b. URL http://ncatlab.org/nlab/show/clique.

The nLab. Equivalence of categories, 2014c. URL http://ncatlab.org/nlab/show/

equivalence+of+categories.

The nLab. Equivalence of categories (weak equivalence), 2014d. URL http:

//ncatlab.org/nlab/show/equivalence+of+categories#WeakEquivalence.

The nLab. Principle of equivalence, 2014e. URL http://ncatlab.org/nlab/show/

principle+of+equivalence.

Ulf Norell. Towards a practical programming language based on dependent type the-
ory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007.

Benjamin C Pierce. Basic category theory for computer scientists. MIT press, 1991.

Dan Piponi. Reverse Engineering Machines with the Yoneda Lemma, November 2006.
http://blog.sigfpe.com/2006/11/yoneda-lemma.html.

Dan Piponi. Constraining Types with Regular Expressions, August 2010a. http:

//blog.sigfpe.com/2010/08/constraining-types-with-regular.html.

Dan Piponi. Divided Differences and the Tomography of Types, August 2010b. http:
//blog.sigfpe.com/2010/08/divided-differences-and-tomography-of.

html.

188

http://stackoverflow.com/a/13100857/305559
http://dx.doi.org/10.1007/3540543961_7
http://dx.doi.org/10.1016/j.disc.2007.04.035
http://ncatlab.org/nlab/show/finite+set
http://ncatlab.org/nlab/show/axiom+of+choice
http://ncatlab.org/nlab/show/axiom+of+choice
http://ncatlab.org/nlab/show/clique
http://ncatlab.org/nlab/show/equivalence+of+categories
http://ncatlab.org/nlab/show/equivalence+of+categories
http://ncatlab.org/nlab/show/equivalence+of+categories#WeakEquivalence
http://ncatlab.org/nlab/show/equivalence+of+categories#WeakEquivalence
http://ncatlab.org/nlab/show/principle+of+equivalence
http://ncatlab.org/nlab/show/principle+of+equivalence
http://blog.sigfpe.com/2006/11/yoneda-lemma.html
http://blog.sigfpe.com/2010/08/constraining-types-with-regular.html
http://blog.sigfpe.com/2010/08/constraining-types-with-regular.html
http://blog.sigfpe.com/2010/08/divided-differences-and-tomography-of.html
http://blog.sigfpe.com/2010/08/divided-differences-and-tomography-of.html
http://blog.sigfpe.com/2010/08/divided-differences-and-tomography-of.html

Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinatorial struc-
tures: Well-founded systems and newton iterations. J. Comb. Theory, Ser. A, 119
(8):1711–1773, 2012. doi:10.1016/j.jcta.2012.05.007.

John C Reynolds. Types, abstraction and parametric polymorphism. 1983.

Olivier Roussel and Michele Soria. Boltzmann sampling of ordered structures. Elec-
tronic Notes in Discrete Mathematics, 35:305–310, 2009.

William R. Schmitt. Hopf algebras of combinatorial structures. Canadian Journal of
Mathematics, pages 412–428, 1993.

Mike Shulman. Answer to “exponentials in functor categories”. MathOverflow. URL:
http://mathoverflow.net/a/104178 (visited on 2014-08-06).

Mike Stay. Q, Jokers, and Clowns, August 2014. http://reperiendi.wordpress.

com/2014/08/05/q-jokers-and-clowns/.

Ross Street. Monoidal categories in, and linking, geometry and algebra. Bulletin of
the Belgian Mathematical Society-Simon Stevin, 19(5), 2012.

Todd Trimble. Answer to “Examples of functors Set → Set which are not ana-
lytic”. MathOverflow, 2014. URL: http://mathoverflow.net/a/171456 (visited
on 2014-06-10).

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

Vladimir Voevodsky. Foundations/formalization of mathematics and homotopy the-
ory. URL http://video.ias.edu/node/68. talk at the Instutute for Advanced
Study.

Philip Wadler. Deforestation: transforming programs to eliminate trees. Theor.
Comput. Sci., 73:231–248, January 1988. ISSN 0304-3975. doi:10.1016/0304-
3975(90)90147-A.

Philip Wadler. Theorems for free! In Proceedings of the fourth international conference
on Functional programming languages and computer architecture, pages 347–359.
ACM, 1989.

Stan Wagon. The Banach-Tarski Paradox, volume 24. Cambridge University Press,
1993.

Stephanie Weirich. Type-safe run-time polytypic programming. 16(10):681–710,
November 2006a.

189

http://dx.doi.org/10.1016/j.jcta.2012.05.007
http://mathoverflow.net/a/104178
http://reperiendi.wordpress.com/2014/08/05/q-jokers-and-clowns/
http://reperiendi.wordpress.com/2014/08/05/q-jokers-and-clowns/
http://mathoverflow.net/a/171456
http://homotopytypetheory.org/book
http://video.ias.edu/node/68
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/0304-3975(90)90147-A

Stephanie Weirich. RepLib: A library for derivable type classes. In Haskell Workshop,
pages 1–12, Portland, OR, USA, September 2006b.

Herbert S. Wilf. Generatingfunctionology. Academic Press, 1990.

Yeong-Nan Yeh. On the combinatorial species of Joyal. PhD thesis, State University
of New York at Buffalo, 1985.

Yeong-Nan Yeh. The calculus of virtual species and K-species. In Gilbert Labelle and
Pierre Leroux, editors, Combinatoire énumérative, volume 1234 of Lecture Notes in
Mathematics, pages 351–369. Springer Berlin Heidelberg, 1986. ISBN 978-3-540-
17207-9. doi:10.1007/BFb0072525.

Brent A. Yorgey. Species and Functors and Types, Oh My! In Proceedings of the
third ACM Haskell symposium on Haskell, Haskell ’10, pages 147–158, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0252-4. doi:10.1145/1863523.1863542.

Brent A Yorgey. Monoids: Theme and Variations (Functional Pearl). In ACM SIG-
PLAN Notices, volume 47, pages 105–116. ACM, 2012.

190

http://dx.doi.org/10.1007/BFb0072525
http://dx.doi.org/10.1145/1863523.1863542

	0 Introduction
	1 Preliminaries
	1.1 Metavariable conventions and notation
	1.2 Set theory
	1.3 Homotopy type theory
	1.3.1 Terms and types
	1.3.2 Equality
	1.3.3 Path induction
	1.3.4 Equivalence and univalence
	1.3.5 Propositions, sets, and n-types
	1.3.6 Higher inductive types
	1.3.7 Truncation
	1.3.8 Why HoTT?

	1.4 Category theory
	1.4.1 Category theory fundamentals
	1.4.2 Monoidal categories
	1.4.3 Ends and coends
	1.4.4 The Yoneda lemma
	1.4.5 Groupoids

	2 Equality and Finiteness
	2.1 The axiom of choice (and how to avoid it)
	2.1.1 The axiom of choice and constructive mathematics
	2.1.2 Unique isomorphism and generalized ``the''
	2.1.3 AC and equivalence of categories
	2.1.4 Cliques
	2.1.5 Anafunctors

	2.2 Category theory in HoTT
	2.2.1 Monoidal categories in HoTT
	2.2.2 Coends in HoTT

	2.3 Finiteness in set theory
	2.4 Finiteness in HoTT
	2.4.1 Preliminaries
	2.4.2 Cardinal-finiteness
	2.4.3 Manifestly finite sets and linear orders
	2.4.4 Equivalence of P and B

	2.5 Conclusion

	3 Combinatorial species
	3.1 Intuition and examples
	3.2 Definitions
	3.2.1 Species as functors
	3.2.2 Cardinality restriction
	3.2.3 The category of species
	3.2.4 Species in HoTT

	3.3 Isomorphism and equipotence
	3.3.1 Species isomorphism
	3.3.2 Shape isomorphism and unlabelled species
	3.3.3 Equipotence

	3.4 Generating functions
	3.5 Conclusion

	4 Generalized species and species operations
	4.1 Lifted monoids: sum and Cartesian product
	4.1.1 Species sum
	4.1.2 Cartesian/Hadamard product
	4.1.3 Lifting monoids
	4.1.4 Internal Hom for Cartesian product

	4.2 Partitional product and Day convolution
	4.2.1 Partitional/Cauchy product
	4.2.2 Arithmetic/rectangular product
	4.2.3 Day convolution

	4.3 Composition
	4.3.1 Definition and examples
	4.3.2 Generalized composition
	4.3.3 Internal Hom for composition

	4.4 Functor composition
	4.5 Differentiation
	4.5.1 Differentiation in BSet
	4.5.2 Up and down operators
	4.5.3 Pointing
	4.5.4 Higher derivatives
	4.5.5 Internal Hom for partitional and arithmetic product

	4.6 Regular, molecular and atomic species
	4.7 Species eliminators

	5 Species variants
	5.1 Generalized species properties
	5.2 Copartial species
	5.2.1 Copartial bijections
	5.2.2 Finite copartial bijections
	5.2.3 Copartial species

	5.3 Partial species
	5.4 Multisort species
	5.4.1 Recursive species

	5.5 L-species
	5.6 Other species variants

	6 Labelled structures
	6.1 Kan extensions
	6.2 Analytic functors
	6.2.1 Definition and intuition
	6.2.2 Analytic functors and generating functions
	6.2.3 Analytic functors and finiteness

	6.3 An attempt at generalized functor composition
	6.4 Introduction and elimination forms for labelled structures
	6.4.1 Generalized analytic functors

	6.5 Analytic functors for partial and copartial species

	7 Conclusion and future work
	A Lifting monoids
	Bibliography

