# Generalised Algebraic Data Types

Simon Peyton Jones
Microsoft Research
Geoffrey Washburn
University of Pennsylvania
Stephanie Weirich
University of Pennsylvania

## A typical evaluator

```
data Term = Lit Int
            | Succ Term
             IsZero Term
            | If Term Term Term
data Value = VInt Int | VBool Bool
eval :: Term -> Value
eval (Lit i) = VInt i
eval (Succ t) = case eval t of { VInt i -> VInt (i+1) }
eval (IsZero t) = case eval t of { VInt i -> VBool (i==0) }
eval (If b t1 t2) = case eval b of
                        VBool True -> eval t1
                        VBool False -> eval t2
```

# Richer data types

What if you could define data types with richer return types? Instead of this:

```
data Term where
Lit:: Int -> Term
Succ:: Term -> Term
IsZero:: Term -> Term
If:: Term -> Term -> Term
```

#### we want this:

```
data Term a where
Lit:: Int -> Term Int
Succ:: Term Int -> Term Int
IsZero:: Term Int -> Term Bool
If:: Term Bool -> Term a -> Term a
```

Now (If (Lit 3) ...) is ill-typed.

# Type evaluation

Now you can write a cool typed evaluator

```
eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
```

- You can't construct ill-typed terms
- Evaluator is easier to read and write
- Evaluator is more efficient too

# What are GADTs?

Normal Haskell or ML data types:

gives rise to constructors with types

```
T1 :: T a
T2 :: Bool -> T a
T3 :: a -> a -> T a
```

Return type is always (T a)

## GADTs

#### Generalised Algebraic Data Types (GADTs):

 Single idea: allow arbitrary return type for constructors, provided outermost type constructor is still the type being defined

```
data Term a where
Lit:: Int -> Term Int
Succ:: Term Int -> Term Int
IsZero:: Term Int -> Term Bool
If:: Term Bool -> Term a -> Term a
```

 Programmer gives types of constructors directly

## GADTs have many names

- These things have been around a while, but are recently becoming popular in fp community
- Type theory (early 90's)
  - inductive families of datatypes
- Recent Language design
  - Guarded recursive datatypes (Xi et al.)
  - First-class phantom types (Hinze/Cheney)
  - Equality-qualified types (Sheard et al.)
  - Guarded algebraic datatypes (Simonet/Pottier)

# GADts have many applications

Language description and implementation

eval:: Term a -> a

step :: Config a -> Config a

Subject reduction proof embedded in code for step!

Domain-specific embedded languages

data Mag u where

Pix :: Int -> Mag Pixel

Cm :: Float -> Mag Centimetre

circle :: Mag u -> Region u

union :: Region u -> Region u -> Region u

tranform :: (Mag u -> Mag v) -> Region u -> Region v

# More examples

Generic programming

```
data Rep a where
RInt :: Rep Int
RList :: Rep a -> Rep [a]
```

```
zip :: Rep a -> a -> [Bit]

zip RInt i = zipInt i

zip (RList r) [] = [0]

zip (RList r) (x:xs) = 1 : zip r x ++ zip (RList r) xs
```

Dependent types:

```
cons :: a -> List | a -> List (Succ |) a head :: List (Succ |) a -> a
```

## Just a modest extension?

#### Yes....

- Construction is simple: constructors are just ordinary polymorphic functions
- All the constructors are still declared in one place
- Pattern matching is still strictly based on the value of the constructor; the dynamic semantics can be type-erasing

### Just a modest extension?

 But: Type checking Pattern matching is another matter

```
data Term a where
Lit:: Int -> Term Int
Succ:: Term Int -> Term Int
IsZero:: Term Int -> Term Bool
If:: Term Bool -> Term a -> Term a
```

```
eval :: Term a -> a

eval (Lit i) = i

eval (Succ t) = 1 + eval t

eval (IsZero i) = eval i == 0

eval (If b e1 e2) = if eval b then eval e1 else eval e2
```

- In a case alternative, we may know more about 'a';
   we call this "type refinement"
- Result type is the anti-refinement of the type of each alternative

## Our goal

- Add GADTs to Haskell
- Application of existing ideas -- but some new angles
- All existing Haskell programs still work
- Require some type annotations for pattern matching on GADTs
- But specify precisely what such annotations should be

# Two steps

- Explicitly-typed System F-style language with GADTs
- Implicitly-typed source language (Simon's talk!)

# Explicitly typed GADTs

# Explicitly typed System F

Variables x,y,zConstructors

Type abstraction and application

Terms

$$t,u := x \mid C_{\sigma}$$

Explicitly typed binders

$$\lambda x_{\sigma} \cdot t \mid \Lambda \alpha \cdot t \mid t u \mid t \sigma$$
  
let  $x_{\sigma} = u \text{ in } t$   
case( $\sigma$ ) t of  $\overline{alt}$ 

Patterns

Alternatives alt 
$$:= p \rightarrow t$$

$$p,q ::= C_{\sigma} \overline{\alpha} \overline{x_{\sigma}}$$

Result type of case

Type variables

Type constructors Types

Patterns bind type variables

$$\sigma, \phi, \xi ::= \forall \alpha. \sigma \mid \sigma_1 \rightarrow \sigma_2$$
  
 $\mid T \overline{\sigma} \mid \alpha$ 

Impredicative

### Patterns bind type variables

```
data Term a where
Lit:: Int -> Term Int
Succ:: Term Int -> Term Int
IsZero:: Term Int -> Term Bool
If:: Term Bool -> Term b -> Term b
Pair:: Term b -> Term c -> Term (b,c)
```

# Typing rules

Just exactly what you would expect....

$$\overline{\Gamma, x_{\sigma} \vdash x : \sigma}$$
 VAR  $\overline{\Gamma \vdash C_{\sigma} : \sigma}$  CON

$$\frac{\Gamma \vdash^k \sigma \qquad \Gamma, x_\sigma \vdash t : \sigma'}{\Gamma \vdash (\lambda x_\sigma : t) : (\sigma \to \sigma')} \xrightarrow{\text{TERM-LAM}} \qquad \frac{\Gamma, a \vdash t : \sigma}{\Gamma \vdash (\Lambda a : t) : \forall a . \sigma} \xrightarrow{\text{TYPE-LAM}} \qquad \frac{\Gamma \vdash u : \sigma \qquad \Gamma, x_\sigma \vdash t : \sigma'}{\Gamma \vdash (\text{let } x_\sigma = u \text{ in } t) : \sigma'} \xrightarrow{\text{LET}}$$

$$\frac{\Gamma \vdash t : \sigma' \to \sigma \qquad \Gamma \vdash u : \sigma'}{\Gamma \vdash t u : \sigma} \xrightarrow{\text{TERM-APP}} \qquad \frac{\Gamma \vdash^k \sigma \qquad \Gamma \vdash t : \forall a . \sigma'}{\Gamma \vdash t \sigma : \sigma' [\sigma/a]} \xrightarrow{\text{TYPE-APP}}$$

$$\frac{\Gamma, \mathbf{a} \vdash \mathbf{t} : \sigma}{\Gamma \vdash (\Lambda \mathbf{a} \cdot \mathbf{t}) : \forall \mathbf{a} \cdot \sigma} \text{ TYPE-LAM}$$

$$\frac{\Gamma \vdash^{\mathsf{k}} \sigma \qquad \Gamma \vdash \mathsf{t} : \forall \alpha . \sigma'}{\Gamma \vdash \mathsf{t} \sigma : \sigma'[\sigma/\alpha]} \mathsf{TYPE-APP}$$

$$\frac{\Gamma \vdash u : \sigma \qquad \Gamma, x_{\sigma} \vdash t : \sigma'}{\Gamma \vdash (\text{let } x_{\sigma} = u \text{ in } t) : \sigma'} \text{ LET}$$

# ...even for case expressions

$$\frac{\Gamma \vdash^{k} \sigma \qquad \Gamma \vdash t : \varphi \qquad \Gamma \vdash^{\mathfrak{alt}} \overline{p \rightarrow u} : \varphi \rightarrow \sigma}{\Gamma \vdash (\mathsf{case}(\sigma) \ t \ \mathsf{of} \ \overline{p \rightarrow u}) : \sigma} \overset{\mathsf{CASE}}{\vdash}$$

Auxiliary judgement checks each alternative

#### Case alternatives

c is arity of C t is arity of T

$$\Gamma \vdash^{alt} p \rightarrow t : \sigma_1 \rightarrow \sigma_2$$

Instantiate with fresh type variables

$$(C: \forall \overline{\alpha}. \overline{\sigma}^c \to T \, \overline{\xi}^t) \in \Gamma \qquad \overline{\alpha} \, \# \, dom(\Gamma)$$

$$\underline{\theta \text{ is a partial unifier of } T \, \overline{\xi'}^t \text{ and } T \, \overline{\xi}^t \qquad \theta(\Gamma, \overline{\alpha}, \overline{x} : \overline{\sigma}^c) \vdash \theta(u) : \theta(\sigma)}_{\Gamma \vdash^{\mathbf{alt}} C \, \overline{\alpha} \, \overline{x_{\overline{\sigma}}}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

$$ALT-CON$$

Unify constructor result type with context type

#### Observations:

- Constructing unifier and applying it is equivalent to typing RHS in the presence of the refining constraint
- Unification works fine over polymorphic types

Apply unifier to this alternative

## Partial unifiers

**Definition**.  $\theta$  is a partial unifier of  $\sigma_1$  and  $\sigma_2$  iff for any unifier  $\phi$  of  $\sigma_1$  and  $\sigma_2$  there is a substitution  $\theta'$  such that



### Case alternatives

```
(C: \forall \overline{\alpha}. \overline{\sigma}^c \to T \, \overline{\xi}^t) \in \Gamma \qquad \overline{\alpha} \, \# \, dom(\Gamma)
\underline{\theta \text{ is a partial unifier of } T \, \overline{\xi'}^t \text{ and } T \, \overline{\xi}^t \qquad \theta(\Gamma, \overline{\alpha}, \overline{x} \colon \overline{\sigma}^c) \vdash \theta(u) \colon \theta(\sigma)}_{\Gamma \vdash^{\mathbf{alt}} C \, \overline{\alpha} \, \overline{x_{\sigma}}^c \to u \colon T \, \overline{\xi'}^t \to \sigma}
ALT-CON
```

# A heffalump trap

- This should jolly well be rejected! (Or: forget Haskell and treat all constructors as drawn from some universal data type.)
- Conclusion: the outermost type constructor is special

# Case alternatives

$$\Gamma \vdash^{alt} p \rightarrow t : \sigma_1 \rightarrow \sigma_2$$

$$(C: \forall \overline{\alpha}. \overline{\sigma}^c \to T \, \overline{\xi}^t) \in \Gamma \qquad \overline{\alpha} \, \# \, dom(\Gamma)$$

$$\underline{\theta \text{ is a partial unifier of } T \, \overline{\xi'}^t \text{ and } T \, \overline{\xi}^t \qquad \theta(\Gamma, \overline{\alpha}, \overline{x} \colon \overline{\sigma}^c) \vdash \theta(u) : \theta(\sigma)}_{\Gamma \vdash^{alt} C \, \overline{\alpha} \, \overline{x} \overline{\sigma}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

$$\underline{(C: \forall \overline{\alpha}. \overline{\sigma}^c \to T \, \overline{\xi}^t) \in \Gamma \qquad \overline{\alpha} \, \# \, dom(\Gamma) \qquad T \, \overline{\xi'}^t \text{ and } T \, \overline{\xi}^t \text{ have no unifier}}_{\Gamma \vdash^{alt} C \, \overline{\alpha} \, \overline{x} \overline{\sigma}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

$$\underline{\Gamma \vdash^{alt} C \, \overline{\alpha} \, \overline{x} \overline{\sigma}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

$$\underline{\Gamma \vdash^{alt} C \, \overline{\alpha} \, \overline{x} \overline{\sigma}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

$$\underline{\Gamma \vdash^{alt} C \, \overline{\alpha} \, \overline{x} \overline{\sigma}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

$$\underline{\Gamma \vdash^{alt} C \, \overline{\alpha} \, \overline{x} \overline{\sigma}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

$$\underline{\Gamma \vdash^{alt} C \, \overline{\alpha} \, \overline{x} \overline{\sigma}^c \to u : T \, \overline{\xi'}^t \to \sigma}$$

Failure case needed for subject reduction

# • • Nested patterns

# Nested patterns

Alternatives alt ::= 
$$p \rightarrow t$$
  
Patterns  $p,q$  ::=  $x_{\sigma} \mid C_{\sigma} \overline{a} \overline{p}$   
Constraint  $\pi$  ::=  $\sigma_1 \doteq \sigma_2$   
Constraint lists  $\Pi$  ::=  $\varepsilon \mid \pi, \Pi$ 

$$\frac{\Gamma;\varepsilon;\emptyset\vdash^p\mathfrak{p}:\sigma_1;\Delta;\theta\qquad\theta(\Gamma,\Delta)\vdash\theta(\mathfrak{u}):\theta(\sigma_2)}{\Gamma\vdash^{\alpha}\mathfrak{p}\to\mathfrak{u}:\sigma_1\to\sigma_2}\text{ alt}$$

Patterns 
$$\Gamma; \Delta; \theta \vdash^{p} p : \sigma; \Delta'; \theta'$$

Extend substitution  $\theta$  and bindings  $\Delta$ 

#### Patterns $\Gamma; \Delta; \theta \vdash^{p} p : \sigma; \Delta'; \theta'$

$$\frac{x \# dom(\Delta)}{\Gamma; \Delta; \theta \vdash^{p} x_{\sigma} : \varphi; \Delta, (x : \sigma); \theta} \text{ PVAR}$$

$$(C: \forall \overline{\alpha}. \overline{\sigma}^c \to T \ \overline{\xi}^t) \in \Gamma \quad \overline{\alpha} \# dom(\Gamma, \Delta)$$

$$\theta(\varphi) = T \ \overline{\xi'}^t \quad \theta' = \mathcal{U}(T \ \overline{\xi}^t \doteq T \ \overline{\xi'}^t)$$

$$\Gamma; (\Delta, \overline{\alpha}); \theta' \circ \theta \vdash^{ps} \overline{p} : \overline{\sigma}^c; \Delta''; \theta''$$

$$\Gamma; \Delta; \theta \vdash^p C \ \overline{\alpha} \ \overline{p}^c : \varphi; \Delta''; \theta''$$
PCON

Avoid heffalump trap

Sadly, we cannot require  $\phi$  to be of form T  $\xi$ , as we did before

Thread substitution through subpatterns

## Nested patterns

data Term a where

Lit :: Int -> Term Int

Succ :: Term Int -> Term Int

IsZero :: Term Int -> Term Bool

$$\frac{\Gamma\,;\varepsilon\,;\emptyset \vdash^p p\,:\sigma_1\,;\Delta\,;\theta \qquad \theta(\Gamma,\Delta) \vdash \theta(\mathfrak{u})\,:\theta(\sigma_2)}{\Gamma \vdash^{\mathfrak{a}} p \to \mathfrak{u}\,:\sigma_1 \to \sigma_2} \text{ alt}$$

#### Three possible outcomes:

- Success, producing substitution.
- Failure (θ=⊥): this alternative cannot match
   e.g. \(x::Term Int) -> case x of { IsZero a -> a; ... }
- Type error: the program is rejected
   e.g. case 4 of { True -> 0; ... }

# • • The source language

## The ground rules

- Programmer-supplied type annotations are OK
- Whether or not a program is typeable will depend on type annotations
- The language specification should nail down exactly what type annotations are sufficient (so that if Compiler A accepts the program, then so will Compiler B)
- The language specification should not be a type inference algorithm

# Polymorphic recursion

```
data Tree a = MkTree a (Tree (Tree a))

collect :: Tree a -> [a]

collect (MkTree x t) = x : concatMap collect (collect t)

concatMap :: (a->[b]) \rightarrow [a] \rightarrow [b]
```

# Polymorphic recursion

```
data Tree a = MkTree a (Tree (Tree a))

collect :: Tree a -> [a]

collect a (MkTree x t) = x : concatMap (collect a) (collect (Tree a) t)

concatMap :: (a->[b]) \rightarrow [a] \rightarrow [b]

:: [Tree a]
```

- Hard to infer types from un-annotated program
- Dead easy to do so with annotation
- Express by giving two type rules for letrec f=e:
  - one for un-decorated decl: extend envt with (f::τ)
  - one for annotated decl: extend envt with (f:σ)

# Goal

- The typing rules should exclude too-lightlyannotated programs, so that the remaining programs are "easy" to infer
- Type annotations should propagate, at least in "simple" ways

```
eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
```

Here information propagates from the type signature into the pattern and result types

#### Syntax

#### Type annotations on terms

Source types are part of syntax of programs

Polytypes  $\sigma, \phi ::= \forall \overline{\alpha}.\tau$ Monotypes  $\tau, \upsilon ::= T\overline{\tau} \mid \tau_1 \to \tau_2 \mid \alpha \mid \overline{\tau}$ 

Internal types are stratified into polytypes and monotypes.

All predicative

#### Syntax

Atoms 
$$v := x \mid C$$
Terms 
$$t, u := v \mid \lambda p.t \mid t u \mid t :: ty$$

$$\mid \text{let } x = u \text{ in } t$$

$$\mid \text{letrec } x :: ty = u \text{ in } t$$

$$\mid \text{case } t \text{ of } \overline{p} \rightarrow \overline{t}$$
Patterns 
$$p, q := x \mid C \overline{p}$$
Source types 
$$ty := a \mid ty_1 \rightarrow ty_2 \mid T \overline{ty}$$

$$\mid \text{for all } \overline{a}. ty$$
Polytypes 
$$\sigma, \phi := \forall \overline{\alpha}. \tau$$
Monotypes 
$$\tau, v := T \overline{\tau} \mid \tau_1 \rightarrow \tau_2 \mid \alpha \mid \overline{t}$$

# Exciting new feature: wobbly types

# IDEA 1: Wobbly types

- Simple approach to type-check case expressions:
  - form MGU as specified in rule
  - apply to the environment and RHS
  - type-check RHS
- Problem: in type inference, the types develop gradually, by unification

```
\x. (foo x, case x of
Succ t -> 1
IsZero i -> 1 + True)
```

foo :: Term Int -> Bool

 Type inference guesses (x:a56), then (foo x) forces a56=Term Int, so the IsZero case can't match

### Wobbly types

- We do not want the order in which the type inference algorithm traverses the tree to affect what programs are typeable.
- MAIN IDEA: boxes indicate guess points

$$\frac{\Gamma,(x:\boxed{\tau_1})\vdash t:\tau_2}{\Gamma\vdash(\backslash x.t):(\boxed{\tau_1}\rightarrow\tau_2)}$$

Box indicates a prescient guess by the type system

# Wobbly types: intuition

- Wobbly types correspond precisely to the places where a type inference algorithm allocates a fresh meta variable
- The type system models only the place in the type where the guess is made, not the way in which it is refined by unification

# Effect of wobbly types

- Wobbly types do not affect "normal Damas-Milner" type inference
- Wobbly types do not contribute to a type refining substitution:

Unification 
$$\vdash^{\mathfrak{u}} \Pi \rightsquigarrow \theta$$

## Effect of wobbly types

Wobbly types are impervious to a type-refining substitution

 $\(x:: Term a). \y. case x of { ... }$ 

y will get a boxed type, which will not be refined

### IDEA 2: directionality flag $\delta$

```
eval :: Term a -> a
eval = \x. case x of

Lit i -> i

Succ t-> 1 + eval t
...etc...
```

 We want the type annotation on eval to propagate to the \x.

#### Directionality flags

Local Type
Inference
(Pierce/Turner)

$$\Gamma dash_{igcap} t \colon au$$
 . In environment  $\Gamma$ , term t has type  $au$ 

$$\Gamma \vdash_{\psi} t : \tau \quad \text{In environment $\Gamma$ and supplied } \\ \text{context $\tau$, term $t$ is well-typed}$$

$$\frac{\Gamma,(x:\boxed{\tau_1})\vdash_{\uparrow}t:\tau_2}{\Gamma\vdash_{\uparrow}(\backslash x.t):(\boxed{\tau_1}\to\tau_2)} \qquad \frac{\Gamma,(x:\tau_1)\vdash_{\Downarrow}t:\tau_2}{\Gamma\vdash_{\Downarrow}(\backslash x.t):(\tau_1\to\tau_2)}$$

Guess

No guess

# Typechecking functions



So if f:: Term Int -> Int then in the call (f e), we use checking mode for e

#### Higher rank types

- Directionality flags are used in a very similar way to propagate type annotations for higher rank types.
- Happy days! Re-use of existing technology!
- Shameless plug: "Practical type inference for arbitrary rank types", on my home page http://research.microsoft.com/~simonpj

#### Bore 1: must "look through" wobbles

$$\frac{\Gamma \vdash_{\uparrow} t : \tau \qquad \text{push}(\tau) = \tau_1 \to \tau_2 \qquad \Gamma \vdash_{\Downarrow} u : \tau_1}{\Gamma \vdash_{\delta} t \, u : \tau_2}$$

T might not be an arrow type: it might wobbly!

```
\begin{array}{cccc} & \text{push}(\tau) & :: & \tau \\ & \text{push}(\overline{T}\overline{\tau}) & = & T\overline{\tau} \\ & \text{push}(\overline{\tau_1 \to \tau_2}) & = & \overline{\tau_1} \to \overline{\tau_2} \\ & \text{push}(\overline{\tau}) & = & \text{push}(\overline{\tau}) \end{array}
```

# Bore 2: guess meets check

$$\frac{\Gamma \vdash_{\Uparrow} t : \tau \qquad push(\tau) = \tau_1 \to \tau_2 \qquad \Gamma \vdash_{\Downarrow} u : \tau_1 \qquad \left[ \vdash_{\delta}^{inst\tau} \tau_2 \sim \tau_2' \right]}{\Gamma \vdash_{\delta} t \, u : \tau_2'}$$

- Guessing mode is easy:  $\tau_2 = \tau_2'$
- Checking mode is trickier:  $\tau_2$  might have different boxes than  $\tau'_2$  We want  $strip(\tau_2) = strip(\tau'_2)$

#### Bore 2: guess meets check

$$\frac{\Gamma \vdash_{\Uparrow} t : \tau \qquad \text{push}(\tau) = \tau_1 \to \tau_2 \qquad \Gamma \vdash_{\Downarrow} \mathfrak{u} : \tau_1 \qquad \left[ \begin{matrix} \vdash_{\delta}^{inst\tau} \tau_2 \sim \tau_2' \\ \delta \end{matrix} \right]}{\Gamma \vdash_{\delta} t \, \mathfrak{u} : \tau_2'}$$

$$\vdash^{inst\tau}_{\delta} \tau \sim \tau$$

$$\frac{\text{Inst}\tau}{\vdash_{\uparrow\uparrow}^{inst\tau}\tau \sim \tau} \xrightarrow{INST\tau\uparrow} \frac{\text{strip}(\tau) = \text{strip}(\upsilon)}{\vdash_{\downarrow\downarrow}^{inst\tau}\tau \sim \upsilon} \xrightarrow{INST\tau\downarrow} \frac{\text{strip}(\alpha)}{\vdash_{\downarrow\downarrow}^{inst\tau}\tau \sim \upsilon}$$

$$\frac{\text{strip}(\alpha) = \alpha}{\text{strip}(\tau, \tau)} = \frac{\alpha}{\text{strip}(\tau, \tau)}$$

$$\text{strip}(\tau, \tau) = \frac{\alpha}{\text{strip}(\tau, \tau)} \xrightarrow{\text{strip}(\tau, \tau)} \text{strip}(\tau, \tau)$$

$$\text{strip}(\tau, \tau) = \frac{\alpha}{\text{strip}(\tau, \tau)} = \frac{\alpha}{\text{strip}(\tau, \tau)} \xrightarrow{\text{strip}(\tau, \tau)} \text{strip}(\tau, \tau)$$

# The good news

 Just like before, modulo passing on directionality flags

## Abstraction

 Lambdas use the same auxiliary judgement as case

#### Guess here

$$\frac{\Gamma \vdash^{k}_{\uparrow} \tau_{1} \qquad \Gamma \vdash^{\alpha}_{\uparrow\uparrow} p \rightarrow t : \boxed{\tau_{1}} \rightarrow \tau_{2}}{\Gamma \vdash_{\uparrow\uparrow} \lambda p \cdot t : \boxed{\tau_{1}} \rightarrow \tau_{2}} \text{ ABS} \uparrow$$

$$\frac{\Gamma \vdash_{\Downarrow}^{\alpha} p \rightarrow t : \tau_{1} \rightarrow \tau_{2}}{\Gamma \vdash_{\Downarrow} \lambda p \cdot t : \tau_{1} \rightarrow \tau_{2}} \text{ ABS} \Downarrow$$

#### Case alternatives

Case alternatives 
$$\Gamma \vdash_{\delta}^{\alpha} p \rightarrow u : \tau_1 \rightarrow \tau_2$$

$$\theta_{\uparrow\uparrow}(\tau) = \tau \\
\theta_{\downarrow\downarrow}(\tau) = \theta(\tau)$$

Only refine result type when in checking mode

## Patterns

Patterns  $\Gamma; \Delta; \theta \vdash^{p} p : \tau; \Delta'; \theta'$ 

Bindings and type refinement from "earlier" patters Augmented with bindings and type refinements from p

### Patterns

$$(C: \forall \overline{\alpha}. \overline{\tau}^c \to T \, \overline{\upsilon}^t) \in \Gamma \quad \overline{\alpha} \, \# \, dom(\Gamma, \Delta)$$

$$\boxed{push(\theta(\upsilon')) = T \, \overline{\upsilon''}^t \quad \vdash^u (T \, \overline{\upsilon}^t \doteq T \, \overline{\upsilon''}^t) \leadsto \theta'}$$

$$\Gamma; \Delta, \overline{\alpha}; (\theta' \circ \theta) \vdash^{ps} \overline{p}: \overline{\tau}^c; \Delta''; \theta''$$

$$\Gamma; \Delta; \theta \vdash^p C \, \overline{p}^c: \upsilon'; \Delta''; \theta''$$

$$\vdash^{pcon} Pcon$$

Ensure the pattern type has the right shape

Same as before except...

Perform wobbly unification

# Wobbly unification

Unification 
$$\vdash^{\mathfrak{u}} \Pi \rightsquigarrow \theta$$

- Goal:  $\theta$  makes the best refinement it can using only the rigid parts of  $\Pi$
- A type is "rigid" if it has no wobbly parts.

$$\frac{\theta(\Pi') = \Pi \quad dom(\theta) \# ftv(\Pi)}{\Pi' \text{ is rigid} \quad \theta' \text{ is a most general unifier of } \Pi'} \text{ UNIF}$$

$$\frac{\Pi' \text{ is rigid}}{\sqcap \Pi \leadsto (\theta \circ \theta')|_{ftv(\Pi)}} \text{ UNIF}$$

#### Soundness of the source

- The type system is sound
- Proved by type-directed translation in the core language

THEOREM 4.1. If  $\Gamma \vdash_{\delta} t \leadsto t' : \tau \text{ then } \mathcal{S}(\Gamma) \vdash_{\tau} t' : \mathcal{S}(\tau)$ 

Our typing judgements also do a type-directed translation

Strip boxes

Core-language judgement

## Conclusions

- Wobbly types seem new
- Rigid types mean there is a programmerexplicable "audit trail" back to a programmersupplied annotation
- Resulting type system is somewhat complicated, but much better than "add annotations until the compiler accepts the program"
- Claim: does "what the programmer expects"
- Implementing in GHC now

http://research.microsoft.com/~simonpj

# MGU

$$\Gamma \vdash^{alt} \mathfrak{p} \rightarrow \mathfrak{t} : \varphi \rightarrow \sigma$$

$$\frac{\varphi = \forall \overline{\alpha} \,.\, \overline{\sigma}^c \to T\, \overline{\sigma'}^t \qquad \overline{\alpha} \not\in \Gamma \qquad \theta = MGU(T\, \overline{\xi}^t \doteq T\, \overline{\sigma'}^t) \qquad \theta(\Gamma, \overline{\alpha}, \overline{x_\sigma}^c) \vdash \theta(\mathfrak{u}) \,:\, \theta(\sigma)}{\Gamma \vdash^{\mathfrak{alt}} C_{\Phi} \, \overline{\alpha} \, \overline{x_\sigma}^c \to \mathfrak{u} \,:\, T\, \overline{\xi}^t \to \sigma} \qquad \text{alt-con}$$

- Must θ be the most-general unifier in a sound typing rule?
- Yes and no: It does not have to be a unifier, but it must be "most general".
- $\theta$  is a partial unifier of  $\Pi$  iff for any unifier  $\Phi$  of  $\Pi$ , there is a substitution  $\theta'$  such that:  $\Phi = \theta'$  o  $\theta$