Programming with Types

Run-time type
analysis and the
foundations of
program reflection

Stephanie Weirich
Cornell University

Reflection
]

e A style of programming that supports the
run-time discovery of program information.

- “What does this code do?”
- “How is this data structured?”
e Running program provides information
about itself.
— self-descriptive computation.
- self-descriptive data.

8/24/06

Applications of reflection
—

Runtime systems: garbage collection,
serialization, structural equality, cloning, hashing,
checkpointing, dynamic loading

Code monitoring tools: debuggers, profilers

Component frameworks: software composition
tools, code browsers

Adaptation: stub generators, proxies

Algorithms: iterators, visitor patterns, pattern
matching, unification

8/24/06

Primitive notions of reflection
]

e \What is the fundamental enabling mechanism to
support reflection?

- Run-time examination of type or class.

e Not dynamic dispatch in OO languages.

- Have to declare an instance for every new class declared.
Easy but tedious.

- Simple apps hard-wired in Java.
e Not instanceof operator in OO languages.

— It requires a closed world.
e Need to know the name of the class a priori.
e Need to know what that name means.

8/24/06

Structural Reflection
]

e Need to know about the structure of the
data to implement these operations once
and for all.

e Java Reflection API

- Classes to describe the type structure of Java
Class, Field, Method, Array,...

- Methods to provide access to these classes at
run time: Object.getClass, Class.getFields,
Field.getType ...

8/24/06

String serialize(Object 0) {
String result = “[”;
Fields[] f = o.getClass().getFields();
for (int i=0; i<f.length; i++) {
Class fc = f]i].getType();
if (fc.isPrimitive()) {
if (fc == Integer.TYPE) {
result += serializeInt((Integer) fli].get(0));
} else if (fc == Boolean. TYPE) {
result += serializeBoolean((Boolean) f]i].get(0));
} elseif ...
} else { result += serialize(f[i].get(0)); }
J

return result + «]” ;

Not integrated with type system
.

e Can’t catch bugs statically.
if (fc == Integer.TYPE)
result += serializeBoolean((Boolean) f]i].get(0));

e Need redundant tests of type information.
if (fc == Integer.TYPE)
result += serializelnt((Integer) f[i].get(0));

e All objects must have attached type information.
o.getClass();
(Integer)o;

8/24/06

Separating types from data
-

e Implementation must store type information with
each data value.
-~ Necessary for getClass and runtime casts.

e Can't express the run-time behavior of type
information.
-~ Hinders optimization in typed low-level languages.

e Prevents type abstraction in high-level
languages.

- Impossible to hide the implementation of an abstract
data-type.

-~ Necessary for modularity and representation
iIndependence.

8/24/06

Foundational study of reflection
—

e |t is not clear how to smoothly integrate these
dynamic mechanisms into a statically typed
language.

e An ideal framework...

— Must be connected with the type system.
- Must be able to express optimizations.

- Must allow type abstraction.
- Must extend to advanced type systems.

8/24/06

My Work
R

e Examination of the foundational mechanisms for
reflection.
— Done in the context of typed lambda calculi

e Contributions in this area:

— An accurate connection between run-time type information
and types [Crary, Weirich, Morrisett 98].

— A core reflection language with the flexibility to describe a
variety of type systems [Crary & Weirich 99].

-~ An encoding of these languages into a language without
specialized reflection mechanisms [Weirich 01].

— An extension of reflection that encompasses type
constructors and quantified types [Weirich 02].

8/24/06

Formalizing reflection
S

e A standard typed lambda calculus plus an abstract
datatype (ADT) to represent type information.

T::= int|string |71 2 12|11’ 12 |any || rep
e:nx=0[1]|“f00”]|...|x|Ax:T.e]|el (e2) <el

| (T? e t)’pe(.)f(e) of

Rin | Some way to |g

| Rarrow(e hide the

| tcase e of _ —
Rint) ... A convenient way
Rstring) .. and a to get thel type of a
Rarrow(x.y) Johecked cast vaiue —
Ppair(x,y)) .--to recover it rmsJ

8/24/06

Comparison with Java Reflection
c—

Idealized Language

any

rep

Rint
Rstring
typeof(e)
(1)e

Java Reflection API
Object
Class/Field/Method
Integer. TYPE
String.getClass();
e.getClass();
(classname)e

8/24/06

Serialization
I

serialize has type: any = string

serialize (x) =

tcase (typeof(x)) of
Rint) int2string((int) x)
Rstring) “\” + (string) x + “\”*”

Rpair(w,z))
“(“ + serialize((any’any) x.1) +%,”
+ serialize((any’any) x.2) + “)”
Rarrow(w,z)) “<function>"

8/24/06

Serialize without typeof
c -

New type of serialize ;. rep’ any - string

serialize (xrep, x) =
tcase (xrep) of
Rint) int2string((int) x)
Rstring) “\é» + (string) x + “\””
Rpair(w,z))
“(“ + serialize(w, (any’any) x.1) + *“,”
+ serialize(z, (any’any) x.2) + ¢)”
Rarrow(w,z)) “<function>"

8/24/06

Accurate reflection
oo

e Connect types and their representations.

e A term has the type rep(7) if it represents .
Rint : rep(int)
Rstring: rep(string)
Rpair(el,e2) : rep(tl ' 12) (if el:rep(tl) and e2:rep(t2))
Rarrow(el,e2) : rep(tl = t2) (ifel:rep(tl) and e2:rep(t2))
e T[ype variables express the connection.

- X:0, y:rep(a)

[Crary,Weirich,Morrisett 98]

8/24/06

Type Analysis
.

e The analysis term refines the type
information.

tcase (x: rep(a)) of

Rint) ... ais int

Rstring) ... 0.is string
Rpair(el, e2)) ... 0 is a pair type
Rarrow(el,e2))... ais a function type

8/24/06

Serialize without casts
]

e serialize has type : 8a. rep(a) ' o = string
serialize (x:rep(w), y:0) =
tcase x of

Rint) int2string(y)

Rstring) “\“” +y+«“\””

Rpair(w,z)) “(” + serialize(w,y.1) + «,”

+ serialize(z, y.2) +)”
Rarrow(w,z)) “<function>”

8/24/06

Benefits of this approach
—

e Can express low-level operation.

- Rep types used to add dynamic loading to
Typed Assembly Language (TAL).

[Hicks, Weirich, Crary 2000]
e Can optimize use of analysis.
— foo (x:array o, y:rep(a)) = tcaseyof...
e Preserves type abstraction.
- can’t determine a without rep(a)

8/24/06

Scaling to more expressivity
c -

e Current type systems are much more sophisticated.

Objects/Classes [Java, C++, C#, OCaml, ... |

First-class polymorphic/abstract types [Haskell, Cyclone,
Vault, CLU, ...]

Higher-order type constructors [ML, Haskell, ...]

Region types [Cyclone, Vault, Tofte&Talpin, Gay&Aiken, ...]
Security types [JIF, MLIF, PCC, CCured, Cqual, Walker, ...]
Bounding time/space usage [Crary&\Weirich]

Using resources correctly [Igarashi & Kobayashi, ... |
Dependent types [Cayenne, Xi, Shao et al., ...]

e Scaling structural type analysis to these systems in
this framework is a challenge.

8/24/06

But we want to...
S

e These type systems are getting very good
at describing the behavior of programs.

- The goal of advanced type systems is to verify
expressive program properties.
e Analyzing these types at run-time provides
a foundation for Behavioral Reflection.

- Example: if the type system tracks the running
time of each method, a real-time scheduler may
use this information.

8/24/06

Rest of Talk
]

e | will talk about how to extend type analysis
to advanced type systems.

e Two crucial issues:
- Type constructors
—- Types with binding structure

e These constructs are foundational to many
current type systems.

8/24/06

A simplification
S

For ease of exposition, use types as their
run-time representations.

- Wherever Rint appears use int.

- Polymorphic functions have explicit run-time
type arguments.

serialize(x : rep(a), y:a) vs. serialize|a](y:a)
- Argument to tcase is a type instead of a term.

tcase x of VS. tcase o of
Rint) ... int)

[Harper & Morrisett 95]

8/24/06

Serialization
I

serialize|o| (x:a) =
tcase a of
int) int2string(x)
string) “*“” + x + «\””
B’y) + serialize[p](x.1) + ,”
+ serialize[y](x.2) + *)”
B—v) “<function>”

8/24/06

Type constructors
S

e Types indexed by other types.

e Useful to describe parameterized data
structures.

— head :8a. list a 2 «
— tail :8a. list a 2 list o
— add :8a. (a'list o) = list o

e Don't have to cast the type of elements
removed from data structures.

8/24/06

Type functions
S

e Type constructors are functions from types
to types.

e Expressed in the type syntax like lambda-
calculus functions.

Ti= .|t |TyT, | @
e Example:
Quad=ia. (a'a)'(a'a)

e Static language for reasoning about the
relationship between types.

8/24/06

Types with binding structure
S

e Parametric polymorphism hides the types of
inputs to functions.
8a. rep(a) ' a = string
e Other examples:

- Existential types (Ja . t) hide the actual type of
stored data.

— Recursive types (pa. t) describe data structures
that may refer to themselves (such as lists).

- Self quantifiers (self a. T) encode objects.

8/24/06

Problems with these types
.

e tcase is based on the fact that the closed,
simple types are inductive.

T ::=int | string |t1 2 12 |11 ' T2
e Analysis is an iteration over the type
structure.

e With quantified types, the structure is not so
simple.
T::=.../80.7T |«

8/24/06

Example

tcase o of

int)...
string) ...

B—=>7)

B'y)...

8a.??) ...

Here B and y are O
bound to the
subcomponents of the
type, so they may be

analyzed. -

\ Can’t abstract the
body of the type here,
because of free

occurrences of .

p 7

8/24/06

Higher-order abstract syntax
-

e Use type constructors to represent polymorphic
types.

So.0 20 vs.8hao.a>a)

e In branch for 8, we can abstract that constructor.
tcase 8(Aa.a = a)of
int) ...
p>7v) ..
80) ...// 6 isboundto (Aa.a > a)
e Have to apply 0 to some type in order to analyze it.

This works well for some examples.
[Pfenning&Elliot][Trifonov et al.]

8/24/06

But not for all
]

serializeType|a] =
tcase o of
illt) “int”

B'y) “(“ +serializeType[p] +*“ *”
+ serializeType|[y] + ¢“)”

B—>v)““ +serializeType[B] +*“->"
+ serializeType|[y] + ¢“)”

8p)22

8/24/06

Two solutions with one stone
-

If we can analyze type constructors in a
principled way, then we can analyze
quantified types in a principled way.

8/24/06

Type equivalence
S

e For type checking, we must be able to
determine when two types are semantically
equal.

— to call a function we must make sure that its
argument has the right type.

e Reference algorithm: fully apply all type
functions inside the two types and compare
the results.

(A a.a’ a) (int) =? (A B. B "int) (int)
int’ int =? int’ int

8/24/06

Constraint on type analysis
-

e \When we analyze this type language we must
respect type equivalence.

tcase [(Ao. o ' int) int]...
must produce the same result as
tcase [int ' int]...

e Type functions, applications, and variables must be
“transparant” to analysis.

e Otherwise, execution of program depends on
implementation of type checker.

8/24/06

Generic/Polytypic programming
c—

e Provides a general way to generate operations over
parameterized data-structures.
- [Moggi & Jay][Jannson & Juering][Hinze]
- Example: gmap<list> applies a function f to all of the a’s
in list a.

— This is a compile-time specialization. No type information
IS analyzed at run-time.

e A polytypic definition must also respect type
equality.

~ foo < (ho.a'int)int> = foo <int'int>

8/24/06

Basic idea
]

e Create an interpretation of the type
language with the term language.

- Map type functions to term functions.
- Map type variables to term variables.

- Map type applications to term
applications.

- Map type constants to (almost) anything.

e \Ve can use this idea at run-time to analyze
type constructors and quantified types.

8/24/06

Type Language
-

ta=a e variable
Ad. T e function
T, T, e application
int | string e constants
>1"|8

 The type int ' int is the constant ' applied to
int twice.

* The type 8a . a =a is the constant 8 applied
to the type constructor (Aa . a = a).

8/24/06

Interpreter
S

Instead of tcase, define analysis term:
tinterp[n] ©

e To interpret this language we need an
environment to keep track of the variables.

e This environment will also have mappings
for all of the constants.

8/24/06

Operational semantics of tinterp
c—

e Type constants are retrieved from the environment

tinterp
tinterp

tinterp
tinterp

n
n
tinterp[n|
n
n

int = 11(int)
string =» n(string)

- 2 ()
’ =2 1()
8 = 1(8)

e Type variables are retrieved from the environment

tinterp[n] « = ()

8/24/06

Type functions
S

e Type functions are mapped to term
functions.

e \When we reach a type function, we add a
new mapping to the environment.

tinterp[n] (Aha.t) =
A x. tinterp[n+{a)x}] ()

H_J

Execution extends

environment, mapping @ to x.
8/24/06

Application
S

e [ype application is interpreted as term
application

tinterp[n] (t; T,)
> (tinterp[n] t,) (tinterp[n] 1,)

The
interpretation of

T4 IS a function
g

8/24/06

Example
S

serializeType[t] = tinterp [n] T
wheren = {
int) “int”
string) “string”
’) A x:string. A y:string.
6‘(99 _|_ X _|_ 669 _|_ y _|_ 6‘)99
-) A Xx:string. A y:string.
6‘(99 _|_ X _|_ 6‘_>99 _|_ y _|_ 6‘)99
8) A x:string—>string.
let v=gensym () in
“(all " 4y %4 (X V) + “)99

8/24/06

Example execution
S

serializeType[int'int]

> (tinterp|n] ') (tinterp[n] int) (tinterp[n] int)

> (A x:string. A y:string. “(”+ x +“*”+ y +)”)
(tinterp[n] int) (tinterp[n] int)

> (A x:string. A y:string. “(”+ x +“*”+ y +)”)
“int” “int”

9 66(” _|_ “int” _|_ 1% 2 _I_ “int” _|_ 66)”

> “(int*int)”

8/24/06

Example
S

serializeType[t] = tinterp [n] T
wheren = {
int) “int”
string) “string”
’) A x:string. A y:string.
6‘(99 _|_ X _|_ 669 _|_ y _|_ 6‘)99
-) A Xx:string. A y:string.
6‘(99 _|_ X _|_ 6‘_>99 _|_ y _|_ 6‘)99
8) A x:string—>string.
let v=gensym () in
“(all " 4y %4 (X V) + “)99

8/24/06

Not the whole story
S

e More complicated examples require a
generalization of this framework.

- Must allow the type of each mapping in the
environment to depend on the analyzed type.

- Requires maintenance of additional type
substitutions to do so in a type-safe way.

- This language is type sound.

e Detalls appear In:

Stephanie Weirich. Higher-Order Intensional Type
Analysis. In European Symposium on
Programming (ESOP ‘02).

8/24/06

Conclusion
I

e Reflection is analyzing the structure of
abstract types.

e Branching on type structure doesn’t scale
well to sophisticated and expressive type
systems.

e A better solution is to interpret the compile-
time language at run-time.

8/24/06

Future work
S

e Type-based reflection

— Reconciliation of structural and name-based
analysis.

e Multi-level programming
- Extensible programming languages.
- Domain-specific languages.

e Program verification

- Sophisticated type systems allow the
representation and verification of many
program properties.

8/24/06

