
Programming with Types

Stephanie Weirich
Cornell University

Run-time type
analysis and the
foundations of
program reflection

8/24/062

Reflection

 A style of programming that supports the
run-time discovery of program information.
– “What does this code do?”
– “How is this data structured?”

 Running program provides information
about itself.
– self-descriptive computation.
– self-descriptive data.

8/24/063

Applications of reflection

 Runtime systems: garbage collection,
serialization, structural equality, cloning, hashing,
checkpointing, dynamic loading

 Code monitoring tools: debuggers, profilers
 Component frameworks: software composition

tools, code browsers
 Adaptation: stub generators, proxies
 Algorithms: iterators, visitor patterns, pattern

matching, unification

8/24/064

Primitive notions of reflection

 What is the fundamental enabling mechanism to
support reflection?
– Run-time examination of type or class.

 Not dynamic dispatch in OO languages.
– Have to declare an instance for every new class declared.

Easy but tedious.
– Simple apps hard-wired in Java.

 Not instanceof operator in OO languages.
– It requires a closed world.

 Need to know the name of the class a priori.
 Need to know what that name means.

8/24/065

Structural Reflection

 Need to know about the structure of the
data to implement these operations once
and for all.

 Java Reflection API
– Classes to describe the type structure of Java

Class, Field, Method, Array,…
– Methods to provide access to these classes at

run time: Object.getClass, Class.getFields,
Field.getType …

String serialize(Object o) {
String result = “[”;
Fields[] f = o.getClass().getFields();
for (int i=0; i<f.length; i++) {

Class fc = f[i].getType();
if (fc.isPrimitive()) {

if (fc == Integer.TYPE) {
result += serializeInt((Integer) f[i].get(o));

} else if (fc == Boolean.TYPE) {
result += serializeBoolean((Boolean) f[i].get(o));

} else if …
} else { result += serialize(f[i].get(o)); }

}
return result + “]” ;

}

8/24/067

Not integrated with type system

 Can’t catch bugs statically.
if (fc == Integer.TYPE)
 result += serializeBoolean((Boolean) f[i].get(o));

 Need redundant tests of type information.
 if (fc == Integer.TYPE)

 result += serializeInt((Integer) f[i].get(o));

 All objects must have attached type information.
o.getClass();
(Integer)o;

8/24/068

Separating types from data

 Implementation must store type information with
each data value.

– Necessary for getClass and runtime casts.

 Can’t express the run-time behavior of type
information.

– Hinders optimization in typed low-level languages.

 Prevents type abstraction in high-level
languages.

– Impossible to hide the implementation of an abstract
data-type.

– Necessary for modularity and representation
independence.

8/24/069

Foundational study of reflection

 It is not clear how to smoothly integrate these
dynamic mechanisms into a statically typed
language.

 An ideal framework…
– Must be connected with the type system.
– Must be able to express optimizations.
– Must allow type abstraction.
– Must extend to advanced type systems.

8/24/0610

My Work

 Examination of the foundational mechanisms for
reflection.

– Done in the context of typed lambda calculi

 Contributions in this area:
– An accurate connection between run-time type information

and types [Crary, Weirich, Morrisett 98].
– A core reflection language with the flexibility to describe a

variety of type systems [Crary & Weirich 99].
– An encoding of these languages into a language without

specialized reflection mechanisms [Weirich 01].
– An extension of reflection that encompasses type

constructors and quantified types [Weirich 02].

8/24/0611

 A standard typed lambda calculus plus an abstract
datatype (ADT) to represent type information.

τ :: = int | string | τ1  τ2 | τ1 ′ τ2
e :: = 0 | 1 | “foo” | … | x | λ x:τ. e | e1 (e2) | <e1,e2> | e.1 | e.2

Formalizing reflection

Terms that
describe the

type structure

The type of
these terms

A way to
branch on
the terms.

and a
checked cast
to recover it

Some way to
hide the

run-time typeA convenient way
to get the type of a

value

| Rint | Rstring
| Rarrow(e1,e2) | Rpair(e1,e2)
| tcase e of
 Rint) …
 Rstring) …
 Rarrow(x,y)) …
 Ppair(x,y)) …

| rep | any

| (τ) e | typeof(e)

8/24/0612

Comparison with Java Reflection

Idealized Language
 any
 rep
 Rint
 Rstring
 typeof(e)
 (τ)e

Java Reflection API
 Object
 Class/Field/Method
 Integer.TYPE
 String.getClass();
 e.getClass();
 (classname)e

8/24/0613

Serialization

serialize has type: any  string

serialize (x) =
tcase (typeof(x)) of

Rint) int2string((int) x)
Rstring) “\“” + (string) x + “\””
Rpair(w,z))
 “(“ + serialize((any′any) x.1) + “,”
 + serialize((any′any) x.2) + “)”
Rarrow(w,z)) “<function>”

8/24/0614

Serialize without typeof

New type of serialize : rep ′ any  string

serialize (xrep, x) =
tcase (xrep) of

Rint) int2string((int) x)
Rstring) “\“” + (string) x + “\””
Rpair(w,z))
 “(“ + serialize(w, (any′any) x.1) + “,”
 + serialize(z, (any′any) x.2) + “)”
Rarrow(w,z)) “<function>”

8/24/0615

Accurate reflection

 Connect types and their representations.
 A term has the type rep(τ) if it represents τ.

 Rint : rep(int)
 Rstring: rep(string)
 Rpair(e1,e2) : rep(τ1 ′ τ2) (if e1:rep(τ1) and e2:rep(τ2))
Rarrow(e1,e2) : rep(τ1  τ2) (if e1:rep(τ1) and e2:rep(τ2))

 Type variables express the connection.
– x : α, y : rep(α)

[Crary,Weirich,Morrisett 98]

8/24/0616

Type Analysis

 The analysis term refines the type
information.

tcase (x : rep(α)) of
Rint) … α is int
Rstring) … α is string
Rpair(e1, e2)) … α is a pair type
Rarrow(e1,e2)) … α is a function type

8/24/0617

Serialize without casts

 serialize has type : 8α. rep(α) ′ α  string
serialize (x:rep(α), y:α) =

tcase x of
Rint) int2string(y)
Rstring) “\“” + y + “\””
Rpair(w,z)) “(” + serialize(w,y.1) + “,”

 + serialize(z, y.2) + “)”
Rarrow(w,z)) “<function>”

8/24/0618

Benefits of this approach

 Can express low-level operation.
– Rep types used to add dynamic loading to

Typed Assembly Language (TAL).
[Hicks, Weirich, Crary 2000]

 Can optimize use of analysis.
– foo (x:array α, y:rep(α)) = tcase y of …

 Preserves type abstraction.
– can’t determine α without rep(α)

8/24/0619

Scaling to more expressivity

 Current type systems are much more sophisticated.
– Objects/Classes [Java, C++, C#, OCaml, ...]
– First-class polymorphic/abstract types [Haskell, Cyclone,

Vault, CLU, …]
– Higher-order type constructors [ML, Haskell, …]
– Region types [Cyclone, Vault, Tofte&Talpin, Gay&Aiken, …]
– Security types [JIF, MLIF, PCC, CCured, Cqual, Walker, …]
– Bounding time/space usage [Crary&Weirich]
– Using resources correctly [Igarashi & Kobayashi, …]
– Dependent types [Cayenne, Xi, Shao et al., …]

 Scaling structural type analysis to these systems in
this framework is a challenge.

8/24/0620

But we want to…

 These type systems are getting very good
at describing the behavior of programs.
– The goal of advanced type systems is to verify

expressive program properties.
 Analyzing these types at run-time provides

a foundation for Behavioral Reflection.
– Example: if the type system tracks the running

time of each method, a real-time scheduler may
use this information.

8/24/0621

Rest of Talk

 I will talk about how to extend type analysis
to advanced type systems.

 Two crucial issues:
– Type constructors
– Types with binding structure

 These constructs are foundational to many
current type systems.

8/24/0622

A simplification

For ease of exposition, use types as their
run-time representations.

– Wherever Rint appears use int.
– Polymorphic functions have explicit run-time

type arguments.
serialize(x : rep(α), y:α) vs. serialize[α](y:α)

– Argument to tcase is a type instead of a term.
tcase x of vs. tcase α of
 Rint) … int) ….

[Harper & Morrisett 95]

8/24/0623

Serialization

serialize[α] (x:α) =
tcase α of

int) int2string(x)
string) “\“” + x + “\””
β ′ γ) “(” + serialize[β](x.1) + “,”

 + serialize[γ](x.2) + “)”
β  γ) “<function>”

8/24/0624

Type constructors

 Types indexed by other types.
 Useful to describe parameterized data

structures.
– head :8α. list α  α
– tail :8α. list α  list α
– add :8α. (α ′ list α)  list α

 Don’t have to cast the type of elements
removed from data structures.

8/24/0625

Type functions

 Type constructors are functions from types
to types.

 Expressed in the type syntax like lambda-
calculus functions.

τ ::= … | λα .τ | τ1 τ2 | α
 Example:

Quad = λα. (α ′ α) ′ (α ′ α)
 Static language for reasoning about the

relationship between types.

8/24/0626

Types with binding structure

 Parametric polymorphism hides the types of
inputs to functions.

8α. rep(α) ′ α  string
 Other examples:

– Existential types (∃α . τ) hide the actual type of
stored data.

– Recursive types (µα. τ) describe data structures
that may refer to themselves (such as lists).

– Self quantifiers (self α. τ) encode objects.

8/24/0627

Problems with these types

 tcase is based on the fact that the closed,
simple types are inductive.
τ ::= int | string | τ1  τ2 | τ1 ′ τ2

 Analysis is an iteration over the type
structure.

 With quantified types, the structure is not so
simple.
τ ::= …| 8α. τ | α

8/24/0628

Example

tcase α of
int) …
string) …
β  γ) …
β ′ γ) …
8α.??) … Can’t abstract the

body of the type here,
because of free

occurrences of α.

Here β and γ are
bound to the

subcomponents of the
type, so they may be

analyzed.

8/24/0629

Higher-order abstract syntax

 Use type constructors to represent polymorphic
types.

8α . α  α vs. 8(λ α . α  α)
 In branch for 8, we can abstract that constructor.

tcase 8(λ α . α  α) of
int) …
β  γ) …
8δ) … // δ is bound to (λ α . α  α)

 Have to apply δ to some type in order to analyze it.
This works well for some examples.
[Pfenning&Elliot][Trifonov et al.]

8/24/0630

But not for all

serializeType[α] =
tcase α of

int) “int”
β ′ γ) “(“ + serializeType[β] + “ * ”

+ serializeType[γ] + “)”
β  γ) “(“ + serializeType[β] + “ -> ”

+ serializeType[γ] + “)”
8β) ???

8/24/0631

Two solutions with one stone

If we can analyze type constructors in a
principled way, then we can analyze
quantified types in a principled way.

8/24/0632

Type equivalence

 For type checking, we must be able to
determine when two types are semantically
equal.
– to call a function we must make sure that its

argument has the right type.
 Reference algorithm: fully apply all type

functions inside the two types and compare
the results.

(λ α. α ′ α) (int) =? (λ β. β ′int) (int)
int′ int =? int ′ int

8/24/0633

Constraint on type analysis

 When we analyze this type language we must
respect type equivalence.

tcase [(λα. α ′ int) int]…
must produce the same result as

tcase [int ′ int]…

 Type functions, applications, and variables must be
“transparant” to analysis.

 Otherwise, execution of program depends on
implementation of type checker.

8/24/0634

Generic/Polytypic programming

 Provides a general way to generate operations over
parameterized data-structures.

– [Moggi & Jay][Jannson & Juering][Hinze]
– Example: gmap<list> applies a function f to all of the α’s

in list α.
– This is a compile-time specialization. No type information

is analyzed at run-time.

 A polytypic definition must also respect type
equality.

– foo < (λα. α ′ int) int > = foo < int ′ int >

8/24/0635

Basic idea

 Create an interpretation of the type
language with the term language.
– Map type functions to term functions.
– Map type variables to term variables.
– Map type applications to term

applications.
– Map type constants to (almost) anything.

 We can use this idea at run-time to analyze
type constructors and quantified types.

8/24/0636

Type Language

t ::= α
| λα. τ
| τ1 τ2
| int | string
|  | ′ | 8

 variable
 function
 application
 constants

• The type int ′ int is the constant ′ applied to
int twice.

• The type 8α . α α is the constant 8 applied
to the type constructor (λα . α α).

8/24/0637

Interpreter

Instead of tcase, define analysis term:
tinterp[η] τ

 To interpret this language we need an
environment to keep track of the variables.

 This environment will also have mappings
for all of the constants.

8/24/0638

Operational semantics of tinterp

 Type constants are retrieved from the environment
tinterp[η] int  η(int)
tinterp[η] string  η(string)
tinterp[η]   η()
tinterp[η] ′  η(′)
tinterp[η] 8  η(8)

 Type variables are retrieved from the environment
tinterp[η] α  η(α)

8/24/0639

Type functions

 Type functions are mapped to term
functions.

 When we reach a type function, we add a
new mapping to the environment.

tinterp[η] (λα.τ) 
 λ x. tinterp[η+{α)x}] (τ)

Execution extends
environment, mapping α to x.

8/24/0640

Application

 Type application is interpreted as term
application

tinterp[η] (τ1 τ2)
  (tinterp[η] τ1) (tinterp[η] τ2)

The
interpretation of
τ1 is a function

8/24/0641

Example

serializeType[τ] = tinterp [η] τ
where η = {

int) “int”
string) “string”
′) λ x:string. λ y:string.

“(” + x + “*” + y + “)”
) λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8) λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}

8/24/0642

Example execution

serializeType[int′int]
 (tinterp[η] ′) (tinterp[η] int) (tinterp[η] int)
 (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

(tinterp[η] int) (tinterp[η] int)
 (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

“int” “int”
 “(” + “int” + “*” + “int” + “)”
 “(int*int)”

8/24/0643

Example

serializeType[τ] = tinterp [η] τ
where η = {

int) “int”
string) “string”
′) λ x:string. λ y:string.

“(” + x + “*” + y + “)”
) λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8) λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}

8/24/0644

Not the whole story

 More complicated examples require a
generalization of this framework.
– Must allow the type of each mapping in the

environment to depend on the analyzed type.
– Requires maintenance of additional type

substitutions to do so in a type-safe way.
– This language is type sound.

 Details appear in:
Stephanie Weirich. Higher-Order Intensional Type

Analysis. In European Symposium on
Programming (ESOP ‘02).

8/24/0645

Conclusion

 Reflection is analyzing the structure of
abstract types.

 Branching on type structure doesn’t scale
well to sophisticated and expressive type
systems.

 A better solution is to interpret the compile-
time language at run-time.

8/24/0646

Future work

 Type-based reflection
– Reconciliation of structural and name-based

analysis.
 Multi-level programming

– Extensible programming languages.
– Domain-specific languages.

 Program verification
– Sophisticated type systems allow the

representation and verification of many
program properties.

