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Reflection

 A style of programming that supports the
run-time discovery of program information.
– “What does this code do?”
– “How is this data structured?”

 Running program provides information
about itself.
– self-descriptive computation.
– self-descriptive data.
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Applications of reflection

 Runtime systems: garbage collection,
serialization, structural equality, cloning, hashing,
checkpointing, dynamic loading

 Code monitoring tools: debuggers, profilers
 Component frameworks: software composition

tools, code browsers
 Adaptation: stub generators, proxies
 Algorithms: iterators, visitor patterns, pattern

matching, unification
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Primitive notions of reflection

 What is the fundamental enabling mechanism to
support reflection?
– Run-time examination of type or class.

 Not dynamic dispatch in OO languages.
– Have to declare an instance for every new class declared.

Easy but tedious.
– Simple apps hard-wired in Java.

 Not instanceof operator in OO languages.
– It requires a closed world.

 Need to know the name of the class a priori.
 Need to know what that name means.
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Structural Reflection

 Need to know about the structure of the
data to implement these operations once
and for all.

 Java Reflection API
– Classes to describe the type structure of Java

Class, Field, Method, Array,…
– Methods to provide access to these classes at

run time: Object.getClass, Class.getFields,
Field.getType …



String serialize( Object o ) {
String result = “[”;
Fields[] f = o.getClass( ).getFields( );
for ( int i=0; i<f.length; i++ ) {

Class fc = f[i].getType( );
if ( fc.isPrimitive( ) ) {

if ( fc == Integer.TYPE ) {
result += serializeInt((Integer) f[i].get( o ) );

} else if ( fc == Boolean.TYPE ) {
result += serializeBoolean((Boolean) f[i].get( o ) );

}  else if …
} else { result += serialize( f[i].get( o ) );  }

}
return result + “]” ;

}
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Not integrated with type system

 Can’t catch bugs statically.
if ( fc == Integer.TYPE )
     result += serializeBoolean( (Boolean) f[i].get( o ) );

 Need redundant tests of type information.
  if ( fc == Integer.TYPE )

     result += serializeInt( (Integer) f[i].get( o ) );

 All objects must have attached type information.
o.getClass( );
(Integer)o;
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Separating types from data

 Implementation must store type information with
each data value.

– Necessary for getClass and runtime casts.

 Can’t express the run-time behavior of type
information.

– Hinders optimization in typed low-level languages.

 Prevents type abstraction in high-level
languages.

– Impossible to hide the implementation of an abstract
data-type.

– Necessary for modularity and representation
independence.



8/24/069

Foundational study of reflection

 It is not clear how to smoothly integrate these
dynamic mechanisms into a statically typed
language.

 An ideal framework…
– Must be connected with the type system.
– Must be able to express optimizations.
– Must allow type abstraction.
– Must extend to advanced type systems.
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My Work

 Examination of the foundational mechanisms for
reflection.

– Done in the context of typed lambda calculi

 Contributions in this area:
– An accurate connection between run-time type information

and types [Crary, Weirich, Morrisett 98].
– A core reflection language with the flexibility to describe a

variety of type systems [Crary & Weirich 99].
– An encoding of these languages into a language without

specialized reflection mechanisms [Weirich 01].
– An extension of reflection that encompasses type

constructors and quantified types [Weirich 02].
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 A standard typed lambda calculus plus an abstract
datatype (ADT) to represent type information.

τ :: =  int | string | τ1  τ2 | τ1 ′ τ2
e :: =  0 | 1 | “foo” | … | x | λ x:τ. e | e1 (e2) | <e1,e2> | e.1 | e.2

Formalizing reflection

Terms that
describe the

type structure

The type of
these terms

A way to
branch on
the terms.

and a
checked cast
to recover it

Some way to
hide the

run-time typeA convenient way
to get the type of a

value

| Rint | Rstring
| Rarrow(e1,e2) | Rpair(e1,e2)
| tcase e of
     Rint ) …
     Rstring ) …
     Rarrow(x,y) ) …
     Ppair(x,y) ) …

| rep | any

| (τ) e | typeof(e) 
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Comparison with Java Reflection

Idealized Language
 any
 rep
 Rint
 Rstring
 typeof(e)
 (τ)e

Java Reflection API
 Object
 Class/Field/Method
 Integer.TYPE
 String.getClass();
 e.getClass();
 (classname)e
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Serialization

serialize has type:  any  string

serialize (x)  =
tcase ( typeof(x) ) of

Rint ) int2string( (int) x )
Rstring ) “\“” + (string) x + “\””
Rpair(w,z) )
      “(“ + serialize( (any′any) x.1 ) + “,”
            + serialize( (any′any) x.2 ) + “)”
Rarrow(w,z) ) “<function>”
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Serialize without typeof

New type of serialize :  rep ′ any   string

serialize (xrep, x )  =
tcase ( xrep ) of

Rint ) int2string( (int) x )
Rstring ) “\“” + (string) x + “\””
Rpair(w,z) )
      “(“ + serialize( w, (any′any) x.1 ) + “,”
            + serialize( z,  (any′any) x.2 ) + “)”
Rarrow(w,z) ) “<function>”



8/24/0615

Accurate reflection

 Connect types and their representations.
 A term has the type rep(τ) if it represents τ.

                 Rint : rep(int)
            Rstring: rep(string)
   Rpair(e1,e2) : rep(τ1 ′ τ2) ( if e1:rep(τ1) and e2:rep(τ2) )
Rarrow(e1,e2) : rep(τ1  τ2) ( if e1:rep(τ1) and e2:rep(τ2) )

 Type variables express the connection.
– x : α,  y : rep(α)

[Crary,Weirich,Morrisett 98]
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Type Analysis

 The analysis term refines the type
information.

tcase  (x : rep(α))  of
Rint ) … α is int
Rstring ) … α is string
Rpair(e1, e2) ) … α is a pair type
Rarrow(e1,e2) ) … α is a function type
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Serialize without casts

 serialize has type : 8α. rep(α) ′ α  string
serialize (x:rep(α), y:α) =

tcase x of
Rint ) int2string(y) 
Rstring )  “\“” + y + “\””
Rpair(w,z) ) “(” + serialize(w,y.1) + “,”

 + serialize(z, y.2)  + “)”
Rarrow(w,z) )  “<function>”
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Benefits of this approach

 Can express low-level operation.
– Rep types used to add dynamic loading to

Typed Assembly Language (TAL).
[Hicks, Weirich, Crary 2000]

 Can optimize use of analysis.
– foo (x:array α, y:rep(α)) =  tcase y of …

 Preserves type abstraction.
– can’t determine α without rep(α)
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Scaling to more expressivity

 Current type systems are much more sophisticated.
– Objects/Classes [Java, C++, C#, OCaml, ... ]
– First-class polymorphic/abstract types [Haskell, Cyclone,

Vault, CLU, … ]
– Higher-order type constructors [ML, Haskell, …]
– Region types [Cyclone, Vault, Tofte&Talpin, Gay&Aiken, …]
– Security types [JIF, MLIF, PCC, CCured, Cqual, Walker, …]
– Bounding time/space usage [Crary&Weirich]
– Using resources correctly [Igarashi & Kobayashi, … ]
– Dependent types [Cayenne, Xi, Shao et al., …]

 Scaling structural type analysis to these systems in
this framework is a challenge.
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But we want to…

 These type systems are getting very good
at describing the behavior of programs.
– The goal of advanced type systems is to verify

expressive program properties.
 Analyzing these types at run-time provides

a foundation for Behavioral Reflection.
– Example: if the type system tracks the running

time of each method, a real-time scheduler may
use this information.
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Rest of Talk

 I will talk about how to extend type analysis
to advanced type systems.

 Two crucial issues:
– Type constructors
– Types with binding structure

 These constructs are foundational to many
current type systems.
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A simplification

For ease of exposition, use types as their
run-time representations.

– Wherever Rint appears use int.
– Polymorphic functions have explicit run-time

type arguments.
serialize(x : rep(α), y:α)  vs.  serialize[α](y:α)

– Argument to tcase is a type instead of a term.
tcase x of vs. tcase α of
  Rint ) …      int ) ….

[Harper & Morrisett 95]
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Serialization

serialize[α] (x:α) =
tcase α of

int ) int2string(x) 
string)  “\“” + x + “\””
β ′ γ ) “(” + serialize[β](x.1) + “,”

  + serialize[γ](x.2)  + “)”
β  γ )  “<function>”
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Type constructors

 Types indexed by other types.
 Useful to describe parameterized data

structures.
– head :8α. list α  α
– tail :8α. list α  list α
– add :8α. (α ′ list α)  list α

 Don’t have to cast the type of elements
removed from data structures.
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Type functions

 Type constructors are functions from types
to types.

 Expressed in the type syntax like lambda-
calculus functions.

τ ::=  … | λα .τ  | τ1 τ2 | α
 Example:

Quad = λα.  ( α ′ α ) ′ ( α ′ α )
 Static language for reasoning about the

relationship between types.
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Types with binding structure

 Parametric polymorphism hides the types of
inputs to functions.

8α. rep(α) ′ α  string
 Other examples:

– Existential types (∃α . τ) hide the actual type of
stored data.

– Recursive types (µα. τ) describe data structures
that may refer to themselves (such as lists).

– Self quantifiers (self α. τ) encode objects.
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Problems with these types

 tcase is based on the fact that the closed,
simple types are inductive.
τ ::= int | string | τ1  τ2 | τ1 ′ τ2

 Analysis is an iteration over the type
structure.

 With quantified types, the structure is not so
simple.
τ ::= …| 8α. τ  | α
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Example

tcase α  of
int ) …
string ) …
β  γ )  …
β ′ γ ) …
8α.?? ) … Can’t abstract the

body of the type here,
because of free

occurrences of α.

Here β and γ are
bound to the

subcomponents of the
type, so they may be

analyzed.
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Higher-order abstract syntax

 Use type constructors to represent polymorphic
types.

8α . α   α   vs. 8(λ α . α  α )
 In branch for 8, we can abstract that constructor.

tcase  8(λ α . α  α ) of
int )  …
β  γ  )  …
8δ )  … // δ  is bound to (λ α . α  α )

 Have to apply δ to some type in order to analyze it.
This works well for some examples.
[Pfenning&Elliot][Trifonov et al.]
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But not for all

serializeType[α] =
tcase α of

int ) “int”
β ′ γ )  “(“ + serializeType[β] + “ * ”

+ serializeType[γ] + “)”
β  γ ) “(“ + serializeType[β] + “ -> ”

+ serializeType[γ] + “)”
8β ) ???
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Two solutions with one stone

If we can analyze type constructors in a
principled way, then we can analyze
quantified types in a principled way.
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Type equivalence

 For type checking, we must be able to
determine when two types are semantically
equal.
– to call a function we must make sure that its

argument has the right type.
 Reference algorithm: fully apply all type

functions inside the two types and compare
the results.

(λ α. α ′ α) (int) =? (λ β. β ′int) (int)
int′ int =? int ′ int
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Constraint on type analysis

 When we analyze this type language we must
respect type equivalence.

tcase [(λα. α ′ int) int]…
must produce the same result as

tcase [ int ′ int ]…

 Type functions, applications, and variables must be
“transparant” to analysis.

 Otherwise, execution of program depends on
implementation of type checker.
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Generic/Polytypic programming

 Provides a general way to generate operations over
parameterized data-structures.

– [Moggi & Jay][Jannson & Juering][Hinze]
– Example: gmap<list> applies a function f to all of the α’s

in list α.
– This is a compile-time specialization. No type information

is analyzed at run-time.

 A polytypic definition must also respect type
equality.

– foo < (λα. α ′ int) int >  = foo < int ′ int >
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Basic idea

 Create an interpretation of the type
language with the term language.
– Map type functions to term functions.
– Map type variables to term variables.
– Map type applications to term

applications.
– Map type constants to (almost) anything.

 We can use this idea at run-time to analyze
type constructors and quantified types.
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Type Language

t ::= α
| λα. τ
| τ1 τ2
| int | string
|  | ′ | 8

 variable
 function
 application
 constants

• The type int ′ int is the constant ′ applied to
int twice.

• The type 8α . α α  is the constant 8 applied
to the type constructor (λα . α α ).
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Interpreter

Instead of tcase, define analysis term:
tinterp[η] τ

 To interpret this language we need an
environment to keep track of the variables.

 This environment will also have mappings
for all of the constants.
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Operational semantics of tinterp

 Type constants are retrieved from the environment
tinterp[η]  int  η(int)
tinterp[η]  string  η(string)
tinterp[η]    η()
tinterp[η]  ′  η(′)
tinterp[η]  8  η(8)

 Type variables are retrieved from the environment
tinterp[η] α  η(α)
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Type functions

 Type functions are mapped to term
functions.

 When we reach a type function, we add a
new mapping to the environment.

tinterp[η] (λα.τ)  
     λ x.  tinterp[ η+{α)x}] ( τ )

Execution extends 
environment, mapping α to x.
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Application

 Type application is interpreted as term
application

tinterp[η] (τ1 τ2)
  (tinterp[η] τ1) (tinterp[η] τ2)

The
interpretation of
τ1 is a function
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Example

serializeType[τ] = tinterp [η] τ
where η =  {

int  ) “int”
string ) “string”
′   )  λ x:string. λ y:string.

“(” + x + “*” + y + “)”
   )  λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8  )  λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}
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Example execution

serializeType[int′int]
  (tinterp[η] ′) (tinterp[η] int) (tinterp[η] int)
  (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

(tinterp[η] int) (tinterp[η] int)
  (λ x:string. λ y:string. “(”+ x +“*”+ y +“)”)

“int” “int”
  “(” + “int” + “*” + “int” + “)”
  “(int*int)”
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Example

serializeType[τ] = tinterp [η] τ
where η =  {

int  ) “int”
string ) “string”
′   )  λ x:string. λ y:string.

“(” + x + “*” + y + “)”
   )  λ x:string. λ y:string.

“(” + x + “->” + y + “)”
8  )  λ x:stringstring.

let v = gensym () in
“(all ” + v + “.” + (x v) + “)”

}
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Not the whole story

 More complicated examples require a
generalization of this framework.
– Must allow the type of each mapping in the

environment to depend on the analyzed type.
– Requires maintenance of additional type

substitutions to do so in a type-safe way.
– This language is type sound.

 Details appear in:
Stephanie Weirich. Higher-Order Intensional Type

Analysis. In European Symposium on
Programming (ESOP ‘02).
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Conclusion

 Reflection is analyzing the structure of
abstract types.

 Branching on type structure doesn’t scale
well to sophisticated and expressive type
systems.

 A better solution is to interpret the compile-
time language at run-time.
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Future work

 Type-based reflection
– Reconciliation of structural and name-based

analysis.
 Multi-level programming

– Extensible programming languages.
– Domain-specific languages.

 Program verification
– Sophisticated type systems allow the

representation and verification of many
program properties.




