The Trellys Project

Trellys

* A multi-year, multi-institution, coordinated

project to develop the dependently-typed
programming language Trellys

A Community-Based Design process — inspired
by the Haskell Committee in the 1980s

* NSF funded project to coordinate the effort
— Portland State University (Tim Sheard)
— University of lowa (Aaron Stump)

— University of Pennsylvania (Stephanie Weirich)

Letters of Support

Andreas Abel , Munich

Thorsten Altenkirch,
Nottingham

Lennart Augustsson,
Standard Chartered Bank

Bruno Barras, INRIA Saclay
Edwin Brady, St. Andrews
Peter Dybjer, Chalmers

Cormac Flanagan, UC Santa
Cruz

Conor McBride , Strathclyde
Greg Morrisett, Harvard
UIf Norell, Chalmers

Simon Peyton Jones,
Microsoft Research

Frank Pfenning, CMU
Brigitte Pientka, McGill
Philip Wadler, Edinburgh
Hongwei Xi, Boston U.

Goals

* Build tools to support the cost-effective
construction of functionally correct software

systems — A dependently typed programming
language

Why dependent types?

* Verification at the source level, part of the
development process

e Verification is incremental, richer types means
more properties. Pay as you go

* Verification is modular, unrelated changes do
not invalidate proofs

Trellys Platform Architecture

Machine
code

Presentation Elaborator Core

Language language Compiler

Uses explicit
Heuristic-based General purpose, information
strong type & fully explicit, (about staging, Language run-
proof inference, simple type & purity, etc.) time apd
perhaps tailored proof to produce standard libra
to specific domain checking efficient code

Heterogenously typed,

support for integration
with foreign code

Core Language

Focus of initial design effort Fall 2009
Explicitly typed

Call-by-value semantics

Full-spectrum dependency

Explicit erasure annotations

— Equality defined in terms of implicit language

Termination analysis to enforce logical
consistency

Compatible with classical reasoning

Presentation Language

Text based universal language
Programs are written, not extracted
Typing annotations are minimal

Many type casts are inferred in translation to
core

Compilation

* Type-preserving compilation

e Goal: to reflect (observational) equalities deep
into the compilation pipeline

* Programs marked explicitly as erasable are
removed, leading to efficient code

Core Language: Desigh Questions

What sort of termination analysis to use?
— If any!
— Not clear there is a sweet spot

How expressive should we make the logic/language?
— Can we make *:* compatible with termination analysis

Should we separate proofs from programs?

— Is a proof just a terminating, irrelevant expression, or do
we need finer distinctions

What notion of equality should we use for conversion?
— Must be compatible with the operational semantics

Community based effort

Small group of external experts (Simon Peyton
Jones, Wouter Swierstra, Conor McBride, Bruno
Barras) assisting with initial core language design

A wider call for participants to review core-
language effort in the Summer 2010

A open call for participants in a Trellys workshop
in January 2011

Regular meetings throughout duration of project

