POPL
mark

A POPLmark retrospective

Using proof assistants in programming language research

Stephanie Weirich
University of Pennsylvania




The POPLmark Challenge

* A set of challenge problems meant to
demonstrate the effectiveness of proof
assistants in programming language research

e |ssued at TPHOLs 2005

* Brian Aydemir, Aaron Bohannon, Matthew
Fairbairn, J. Nathan Foster, Benjamin Pierce,
Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, Stephanie Weirich and Steve
/Zdancewic




Why?

* A little PL research history...

* Since early 90s, trend in programming

language research towards syntactic
methods




A SYNTACTIC APPROACH TO TYPE SOUNDNESS

Andrew K. Wright* Matthias Felleisen™

Department of Computer Science
Rice University
Houston, TX 77251-1892

June 18, 1992

Rice Technical Report TR91-160
To appear in: Information and Computation

Abstract

We present a new approach to proving type soundness for Hindley/Milner-style
polymorphic type systems. The keys to our approach are (1) an adaptation of subject
reduction theorems from combinatory logic to programming languages, and (2) the use
of rewriting techniques for the specification of the language semantics. The approach
easily extends from polymorphic functional languages to imperative languages that
provide references, exceptions, continuations, and similar features. We illustrate the
technique with a type soundness theorem for the core of STANDARD ML, which includes
the first type soundness proof for polymorphic exceptions and continuations.




Define the syntax and type system of a simple
language (STLC + unit)

UNIT
' F unit : Unit

(z:7) €T
'z :7

'z e : 7

VAR

ABS

I' H Az:my.e : 71 — T

I'Fe :1p — T
I'Fe:mn

F|—8162:T2




Now what is the semantics?

Denotational semantics: maps programs to mathematical
objects, such as functions

Operational semantics: describes how programs rewrite to
values




Type soundness

'Well-typed programs don't go wrong':

Theorem 1 (Type Soundness) If- - e : Tand e
terminates, then there is some v such that e —™ .

i.e. all evaluation either diverges or produces a
valid final configuration.




Syntactic Soundness Proof

Lemma 2 (Preservation) If- - e : Tand e — ¢’ then
-+ e T

Lemma 3 (Substitution) IfI",z:7" + e : 7 and
I'Fée 7 thenT - {e/x}e: T

Lemma 4 (Progress) If - - e : 7 and e is not a value,
then there exists an e’ such that e — ¢€’.

Lemma 5 (Canonical Forms)
1. If - = v : Unit then v must be unit.

2. If- = v : 71 — T then v must be A\z:Ty.e.

All of these lemmas proved by simple techniques
(induction or inversion).




Why this technique?
e Low demands on the semanticists

— Requires an 'operational’ view of program
execution

— Easy to define because it resembles how the
machine actually executes

— Requires little mathematical machinery
e "Just" inductive datatypes, alpha-conversion

* Proofs (of easy results) are easy

— Series of straightforward inductions
— Same form of lemmas each time

— Cleverness is in setting up the type system the right
way so that the usual properties work out




Covers many language features

transactional memory

nontermination

exceptions

continuations

dependent types aspects




A SYNTACTIC APPROACH TO TYPE SOUNDNESS

Andrew K. Wright™ Matthias Felleisen™

Department of Computer Science
Rice University
Houston, TX 77251-1892

June 18, 1992

Rice Technical Report TR91-160
To appear in: Information and Computation

Abstract

We present a new approach to proving type soundness for Hindley/Milner-style
polymorphic type systems. The keys to our approach are (1) an adaptation of subject
reduction theorems from combinatory logic to programming languages, and (2) the use
of rewriting techniques for the specification of the language semantics. The approach
easily extends from polymorphic functional languages to imperative languages that
provide references. exceptions, continuations. and similar features. We illustrate the

technique with a type soundness theorem for the core of STANDARD ML, which includes

the first type soundness proot for polymorphic exceptions and continuations.




What is wrong this method?

* Although the math is simple, there can be
many cases

e Syntactic methods mean intuition can fail

* Easy to get something wrong in the details,
especially in the combination of features




To: sml-list@cs.cmu.edu
From: Harper and Lillibridge
Sent:

Subject: Subject:

The Standard ML of New Jersey
implementation of callcc is not type
safe, as the following counterexample
illustrates:..

The counterexample does contradict a
claim by Felleisen and Wright to the
effect that the type system is sound;
it i1s my understanding that they have
repaired the proof by restricting the
language.




In good company

To: Types List
From: Alan Jeffrey
Sent:

Subject.:

The core of the type checking system was
shown to be safe.. but the

was not
subjected to formal proof. In fact, it is
unsound .. This problem has been wverified
by the JSR14 committee, who are working
on a revised language specification..




Again and again

From: Xavier Leroy

Sent:
To: John Prevost

Cc: Caml-1list

Subject: Re:
involving new

polymorphism (crash)
Yes, this 1s a serious bug with

Expect a 3.06 release as soon as
it 1s fixed.




It happens to the best of us...

From: Dimitrios Vytiniotis
Subject:

Date:
To: Stephanie Weirich
Cc: Simon Peyton Jones

As I was typing up the proofs I discovered
that

... this might affect the whole
paper ...Stephanie can we meet if you are
around? (otherwise tomorrow ...) :-( ...

-d




Syntactic methods continue
to be popular

* Foundation for
programming
Types and
|anguage StUdy Programming

Languages

e But it can be too
much of a good
thing...

Benjamin C. Pierce




The State of the Art

Chen and Tarditj,

A Simple Typed Intermediate Language for Object-
Oriented Languages,

Principles of Programming Languages (POPL), 2005

We have proved the soundness of LILc, in the style of
134], and the decidability of type checking. Full proofs are
in the technical report.

THEOREM 1  (PRESERVATION). If ¥ F P : 7 and P
P’, then 3% such that ¥’ + P’ : 7.

THEOREM 2  (PROGRESS). If X F P : 1, then either the
main expression in P is a value, or 3P’ such that P — P’.

Proof sket€h: by standard induction over the typing rules.

7/20/0/ 18




30 e T o Yivs{n... .. tn) — 7 flos =ap <€ uy, ..., Oy < Uy ) and O F H X thence is a label
and H(v) = fir g{tvs’ Wz : 7). Xn:Th) i = e and tus' =g € ..., Q< .

4. If O e NIk v Ja & . 7, then v = pack 7 as o < 7} in {1/ - 7). ¢ Lemmas 13 and 14 0:e: X" Fe; - 1, V1 < § < n. By
5. 1f0:e X F v Tay(r), then v = tag(C) for some C.

ALY TR . VW0<i<n-—1 Bysuband ©:AF 7, <7

AN T ET.

» Y ’ — —_ ) — ) 0 . i ! » '
values, H' = H, £~ {f] =€l,...,dn = c.,.,} where s a fresh 1], T = 7 with subderivations ©; A: X: T E ¢ : array(r) and 6;
[ =T. Eache: (V1 < ¢ < nl isa value with no free variables.
anma 16 If rule ev_call applll,-.i. then (1) e is a label and Hie) = fix g < tvs" > (1) - ..., Ty i 8g) 8=y ) and ©: A 5T = ez nt. By subseript.

LLx. . e NPT | . where tes’ = oy < wf. ... g . (2) all e, .., ave values, (3) H' = H.(4) V' =V, 9= er =
8 If O XiTF v :ant, then v is an integer. - B.‘ the el 2n = enoand (5) E' = ealo]. By inversion of value Lemma 52, (1) let 1) = Ve < uf,.... am < = v with subderivations ;AN E ¢
(-)_:'}- 1 uﬁ,_.(s; ..... sn) — 5. then X(¢) = 7f and O:e b 77 < 75 and (2) O:tws": Xig - 7).x1 181, Inisn b < yroand BAN T Ee ;1.
thons 6.5 7 g e oot 30 0 o < S LS SO T E ey -, ST
heorem 57 If freetes(E) =0, and O F H - X, and O:XF VT and Q.. X:I'= E . T, then either E is {kl = gy Lemma 51 ©:0:X0g : tyjlo].ar : sifo].osafo] = B sfo] X has no free type variables, thesefore, 7 AT Fey: 7. By assignA. ©: A X I'F
value, or E can evaluate one step, that s, 3H', V' and E' such that (H-V; E)— (H: V", E"). 20 has no free type variables and vf[a] = rf. By the property that type substitution preserves subtyping nbhderivations 9. A XTI F ey @ . 9. A -
l“lﬂ ',l- "1 IA.III"HI 15 ¢ . T o : B

6. IfO:e: X T F v Tag(C), then v = tay(C).
7 Af0: 0N Tk v C, then v = C(') for some value o'.

Proof: by inspection on expression typing rules, heap value rules and subtyping inversion Lemma 41, O

Proof: by induction on expression typing rules.

Case int, Case label, Case tag: all the expressions are values already.

Case var: F = .

By @: X F VT, domamn(l') = domain(V). From x € domain(I'). we know x € domain(V). Let H' = H. Fey:r
=V and E' = V(x). By evovar (H V. E)— (H V. E"). md H =

Case error: E = ervor|r]: by eveerror, E steps to itself.

By induction hypothesis, each subexpression ¢, either is a value or can evaluate one step. If
are values, by evoarray E can evaluate one step. Otherwise, Je; such that ¢, can evaluat
€., ey are all values. By the congruence rule, E can evaluate one step.

Case subscript E = ¢e2] with subderivations B:e: X:T'F ¢y s array(r) and G: e X'

Cr with

+1 = W : ) 't ' =is, either @) 5 a value '] can ev s one step. S '8 3.
Case object: E = C(¢) with subderivation 8;e:5:T ¢ - R(C). =1 - and O:e: % By mduction hypothesis, cither ¢} s d.\dll.Il or ) can m.' .sluah. one step. So does e
By induction hypothesis, either ¢ is a value or 3H'. V' and ¢’ such that (H; Vie) — (H:V:e'). Heis = by 80 £ gt e If ey and e2 are both values. by canonical form Lemma 56, ¢} is a label and H{v) = [,
calue, then E is a value. Otherwise, let E' = C(e'). By the congruence rule, (H:V: E) — (H: V. E'). 17 by f.',[f:—ft';"ﬂl:n e2 b5 an integer. The runtime array bounds check guarantees that the index ez 18 within
= ¢ . s
Case c2r_c: E = c¢2r(e) with subderivation 6: e 'I‘ '_.,' o &5 ) ) o E gy and O 0 < g < — 1. By ev_sub F can evaluate one step.
By induction hypothesis, either ¢ s a value or SH'. V' and ¢ such that (H:Vie) — (H: V) If e Case ifl - -
a value, then by Lemma 56 ¢ = C(v). Let E' = v. By eve2r (H:V:E) — (H:V"; E'). Otherwise let 'O e Tog(r). ¢ If €1 or ez can evaluate one step. by the congruence rule E can evaluate one step.
‘= e2e(¢’). By the congruence rle (H:V:E) — (H: V" E). = array[ o evdm Case assignA E = ¢j|e2] := e5 in ey with subderivations O: e: X" = ¢y - arrav(r). B.e
Case c2r_tv: not applicable because by Lemma 17, the subderivation ©::X:TF ¢ : o is invalid. and (5) E o ¥ L
. R . By tag 0. and 9. e X 'k eg - 7
Case record: E = new|r|{li =e1.. .. Iy = e} with subderivations ©:e; XUk e o W1 <0 < e and O:a = . . . . .
By induction hypothesis, each subexpression e, either is a value or can evaluate one more step. e values, Because fre By induction hypothesis, cither ) s a value or ¢) can evaluate one step. So do ez and «;
If all ¢, are values, then let H' = H 8o Iy = o1 0y = eq} ({35 a fresh label), V) = Voand E' = ¢ ray and Aso v o If all v1. e2 and ez are values. by canonical form Lemma 56, ¢y is a label and H(v) =
cevarecord (H: V. E)— (H V. E"). . > p - w on 1 it Wi
If Je¢ such (that € _]., .(._, are \'u:uu.-.; and IH' V', ¢! such that (H:Vie) — (H:V':e) If €41 or ez can evaluate one step, then by the congruence rule E can evaluate one step. guarantees that the index €z 18 within
wlrl{h =er... i =el. ... Iy =en}. By the (:uugm«nc:.- wle, (H: V. E)— (H V' E). ) Case ifTagtv: E = iEqTag" (e, e2) then ey else ez with subderivation ©: e X:T'F eq - Tag(4). ep.
Case fleld: E = e.I; with subderivation ©:&;X:T'F e : {I{' :n... 18 cra}and 1< i<pn Yot applicable because the subderivation - sl "‘ Lamma 17. \:'m:uu- rule E can evaluate one step.
By induction hypothesis, either ¢ is a value or ¢ can evaluate one step. Case sub: K = ¢ with subderivation ;4 Z;T'F ¢ o , P:e:Y:I'ke L:
If e is & value, by canonical form Lemma 56, e is a label and H(e) = {h = n L= By induction hypothesis, cither ¢ 18 a valuu or e can cmlual« one step. That is. either E s a value or £ L l ) If .
CCH V=V oand E = o, By evield (H. V- E) e (H' V. B, can evaluate one step. 0 an evaluate one stup. e 18 a value.
LR L e (0 Tl . = &' v 3 Nee n . =] 3 pu ] * Sle
P T 3T AT o N . o ) ro. v rogress X 7, then eather the mam expression i P s a value, or such that ! ! ! !
'u;'H '\ ¢ such that (H:; Vie) — (H:V7:¢/). then let E' = o', and by the congruencerule | o 00 N HEF P A her U i P i N AP such 2A rule, E can evaluate one step.
’l;x"tiEllvlc ses, we state only which evaluation rule to apply. but omit the new H', V' ¢ ittt Q;O:E;chfl :r(r).
1 e yesl Cases, o state only 5t L evalua 1 ] i Y. D £ 1 e new ¥ &) r
L ' - ; an evaluate one step. Bveo. X -V . T
Case assignR E = ¢,.0, = ¢; in ey with subderivations 9. e: 3. T« ¢ {!f" I ST l‘“ * Theorem 59 LILc is Sound. Well-typed LILe programs do not get stuck. ) ) P J ) )
}and O:e: XTIk ey 7, vy 18 a value. by evoassign E ocan eva
By induction hypothesis, either ¢4 is a value or ¢ can evaluate one step. Similarly. either o Proof: by progress and preservation. O  step.
e can evaluate one step. ivati o YVTF ¢ Yo
Ifboth ) and e; are values. then by canonical form Lemma 56 ¢y s alabel and H(e)) = {1, = v..... i = o~ - -~ - - lerivations €. X.T € Wit 5(71 o
..} and by evoassignR E can evaluate one step. From B: e A QeX:I'~e,:1n [a] Y1<i<n whereo =1.,.... fon TS,
If either ¢y or ey can evaluate one step. by the congruence rull E can evaluate one step. th subder ™ by induction hypothesis, either ¢ is a value or ¢ can evaluate one step. So does eacl
Case array E = newleg. .. ey-1)7 with subderivations G:e: Xl ke v W< i <n—1 Lemma 56 [
L Ife v1 S 1 ‘_: n.
H =H. ~,7 Ifall e and ey, ..., ey, are values, then by canonical form Lemma 56, ¢ 1s a label and H(e) =
. u;s; recora: :.: HeW[TI{l = e MR B = k.0 CNf T. Y YH W, Ll .4 A 7T ot ol . WE nave o 1‘.’, ceeoXm T:.] . 7' = €m. By ev_ecall. E can evaluate one Sllfp.
X Trhe, iVl <i<n. .
If the congruence rule applies, then 3 €9; ®: ;T ¢) 1 7, we have . X V' . TV, If ¢ or any of ¢, can evaluate one step, by the congruence rule E can evaluate one step.
(H: V7l and B = {”w Lo Case assign F = r = ¢ inve. T = v with subderivations Case pack: E = pack 7 as a < 7, in (¢ : 7') with subderivation 9: e:X:T'F ¢ - ¢'r/al.
Lemma 27 promises. Aot €3; @23 T =g o v By induction hypothesis, either ¢ ks a value or ¢ can evaluate one step. If ¢ 5 a valoe, the

Proof. by in Theorem 48 17 If ev_assign applies. then (1) V = Viir = v. V2, (2) H' = H If ¢ can evaluate one step, then by the congruence rule E can evaluate one step.
o, S 2 progt To awia Let £ Y =Yand [ =T. By Q:e:X:T'F ¢y : I'(z). we have 9. ¥ Case open: E = (o, x) = open(ey) in ¢2 with subderivation 9 e: X: T F ey : 33 & 7, ¢

[llB»:l--]dTu et 'fm L Be X [" FECT. By induction hypothesis, cither ¢ 18 a value or ey can evaluate one step. If ¢y 15 a value, the

[OlHowe Y | . .

- Case call: E = efti.....tw|(er.....en). T = rlo] with sub form Lemma 56. ¢) = pack m as 7 < 7, in (v : '), By eveopen E can evaluate one step. If,
E  Sound ies(r.. ... Tn) — 7 and tvs = ay & wuy,..., Om € . 900 one step, then by the congruence rule £ can evaluate one step.

e o I tenl . e a1l < i< . O et < ol Case ifParent: F = ifParentf{e) then bind (e, 21 in o0 else ¢ with subderivation ©:-e: Y-



Personal Experience

TR length Heroic grad student

JFP 07 83 pages Dimitrios

ICFP 06 59 pages Dimitrios

ICFP 06 58 pages Dimitrios

ICFP 05 60 pages Geoff, Dan

LICS 05 60 pages Geoff

TLDI 04 51 pages Geoff, Dimitrios

WOOD 04 49 pages Liang
ICFP 03 61 pages Geoff




Why write-only TRs?

Proofs optimized for conveying
understanding

VS.
Proofs optimized for conveying certainty

i.e. we believe this is true because we actually worked out the
details. And you can check our details if you have the patience

Who has more patience than a machine?

Existing research community of logics for expressing such proofs
and tools for checking them




Some were already doing this...

Leroy’s verified C compiler
Nipkow et al’s formalization of a large part of Java
Appel et al’s Foundational Proof-Carrying Code project

Crary et al’s machine-checked development of a typed
assembly language

Harper et al’s formalization of Standard ML
Sewell et al’s formalization of TCP/IP

Etc., etc.




...but no common knowledge

What proof assistant to use?
How to get started? Manuals? Tutorials?
Libraries?

Existing developments?

The POPLmark challenge was a community and
infrastructure building project




THE CHALLENGE, SPECIFICALLY

Metatheory of System F-sub




Challenge 1:
Transitivity of subtyping

ITES<Qandl'FQ<T,thenl' +S<T.

* Transitivity must be proven simultaneously
with narrowing, which states:

IfI,X<QI'FS<TandI +P<Q,
then, X <P I'"FS<T.

 What's tested here: Non-trivial inductive
proofs, isolating elements of the context




Challenge 2: Type safety

I.IfTre:Tande — e, thenl'Fe':T.

2. IfT'vre: T, then either e is a value or else e — e’
for some e’

* Extended language with records and pattern matching

* What's tested here: Reasoning about syntax with
variable numbers of components

— Record patterns may bind arbitrarily many variables
— Record values may contain an arbitrary number of fields




Challenge 3: "Animation”

1. Given e and e', decide if e — €.
2. Given e and e', decide if e —>% e ».

3. Given e, find e' such that e — e'.

 What's tested here: the ability to explore a
language's properties on particular examples

e Solutions for (1) and (2) can check an interpreter
e Solution for (3) is an interpreter




Evaluation criteria

* Readers:
— Adequacy of the encoding: Is it correct?

— Obviousness of the encoding: How difficult is it to
understand adequacy?

* Writers:
— Clutter, inconvenience introduced by the technology
— Effort required beyond a paper proof, even for experts
e Cost of entry:

— Quality of documentation
— Maturity of technology




What happened next?




POPLmark results

e Lots of interest!

e 15 submitted solutions recorded on wiki
— 7 tools used (Coq, Isabelle/HOL, Twelf, ATS,
Matita, Abella, Alpha-Prolog)

e Other solutions discussed elsewhere (ACL2,
MetaPRL, Nominal-Isabelle)




"POPLmark tarpit”

e Techniques for representing variable binding
caused the most heated discussion

— 7 different techniques used in 15 solutions
— Hit a pre-existing, active research area

e Our own efforts to understand this issue resulted
in new research results

— Engineering Formal Metatheory, POPL 08
Aydemir, Chargueraud, Pierce, Pollack, Weirich

e Other parts of the challenge relatively ignored

— Many did not complete full challenge with records or
animation




Community development

 We worked hard to promote the use of proof assistants
among PL researchers...

— Organized workshops (4 instances of WMM so far)
— Developed tutorial material

— Developed a library for PL reasoning

— Distributed all of our own developments

— Integrated proof assistant use into our graduate PL course




Had to pick something...

* Devoted our efforts to Coq Proof Assistant
— Wanted a general purpose logic

— Wanted a mature platform

— Constructive logic, dependent types were
attractive

* Could have chosen others with equal
success

— Exciting new developments in the meantime:
Nominal-Isabelle, Abella, etc.




It started to work...

 More papers with machine checked
appendices start appearing
— Some bootstrapped from our own work

e AURA —Zdancewic et al. ICFP 2007

— Language for reasoning about authorization
— Security-orientation motivates more certainty
— Sophisticated dependent type system

— Metatheory completely developed in Coq

— 12.4k LOC




New tool - Ott: Sewell et al.

A tool should generate many outputs given
a single “naturally written” definition of a language

Language definition
(ASCII)

Infrastructure for writing
papers/specs/talks
(LaTeX)

Infrastructure for

mechanized proofs
(Cog, Isabelle/HOL, Twelf)

Implementation
(Ocaml, Haskell)




Example: lambda terms

metavar atom, x, y, z ::= {{ coq nat }}{{ cog-equality }}

xp, e, f, g g VY go=

X 2 . ovar

\ . s :: abs (+ bind x 1n e +)

el eZ ;e .. app

{e/ x}t e :: :: subst {{ coq subst [[e]] [[x]1] [[e']l] }}

e
I
|
I
I

substitutions
single e x :: subst

defn

(\x.el) e2 --> {e2/x}el

el --> el
:: ctx_app_fun




Example: Typed lambda terms

Definition atom := nat.

Inductive exp : Set :=

| var : atom -> exp

| abs : atom -> typ -> exp -> exp
| app : exp -> exp -> exp.

Inductive reduce : exp -> exp -> Prop := (* defn reduce *)

| ax_app : forall (x:atom) (el2 eZ:exp),
reduce (app (abs x el2) e2) (subst eZ2 x el2 )

| ctx_app_fun : forall (el e_5 el’:exp),
reduce el el' ->

reduce (app el e_5) (app el’ e_5).




Substitution output

Lemma eq_atom: forall (x y : atom), {x = y} + {x <> y}.

Fixpoint list_mem (A:Set) (eq:forall a b:A, {a=b}+{a<>b})
(x:A) (l:1list A) {struct 1} : bool :=

Fixpoint subst (e_6:exp) (x5:atom) (e__7:exp) {struct e__7}
:exp =

match e__7 with

| C(var x) => (if eg_atom x x5 then e_6 else (var x))

| Cabs x e5) => abs x (if list_mem eg_atom x5 (cons x nil)

then e5 else (subst e_6 x5 e5))

| Capp €5 t') => app (subst e_6 x5 e5) (subst e_6 x5 e')

end.




How did the POPLmark challenge impact my
research?




My research methods have changed

| use OTT for all of my type setting
— including parts of this talk
— especially exploratory, development work

| find formalizing the definitions in a paper often helps
my understanding

| sometimes pop open a Coq window to try out some
thoughts

Collaboration is easier this way

— Version control
— Definitions, proof status always up-to-date

New research on variable binding




The issue with variable-binding

* Bound variables must alpha-vary
— ldentify \x.x and \y.y

* Free variables must be 'sufficiently fresh’

— Capture-avoiding substitution e {e'/ x } --- bound
variables in e must not be the same as the free
variables in e’

"Barandregt Variable Convention"




Locally nameless rep

POPL 08 paper advocated two ideas for variable
oinding
L ocally nameless representation (old idea)

— Separate bound and free variables

— Use numbers for bound variables (unique
representation of alpha-equivalent terms) and strings
for free variables

e Cofinite quantification (new idea)

— Premise of judgments quantifies over all variables
except for some finite set

— Strong induction principle




POPLmark challenge in Coq

Locally nameless
definitions:
OTT can generate
these

Lemmas for &5
substitution
weakening

In judgment

Lemmas
about free
variable and
substitution
functions




Other experiences

Rossberg, Russo, Dreyer. F-ing modules.
TLDI 2010

13k line Coq development
Used locally nameless approach

400 out of 550 lemmas were tedious
"infrastructure" results




LNgen — Work in Progress

Brian Aydemir and Stephanie Weirich.
LNgen: Tool Support for Locally Nameless
representations.

Works with OTT tool

Generates and proves 'infrastructure' lemmas
based on locally nameless representation

Example lemma: if fv(t) =0then[x |->u]t=t




Example: STLC development

e Ott (locally nameless backend) — 134 lines
— 5 inductive definitions (typ, exp, lc, typing, step)
— 3 functions (open, fv, subst)
— 1 tactic (to collect all free vars in a proof)

* Lngen —1533 lines

— 3 functions (close, size_typ, size_exp)
— 2 inductive definitions (degree, Ic_set)
= YAENINES

— 2 tactics, 90 Hints

* Hand proofs — 108 lines

— 8 lemmas (4 adeqgacy, weakening, subst,
preservation, progress)




What are those 47 lemmas




Why proof generation is ok

Code generators (rightly so) have a bad name
Why is this a reasonable way to do things?

Proof-irrelevance: don't care how a lemma was
proved, only that it was proved
lots of regular structure

— F-omega: substitute types in terms, terms in
terms, types in types

Clear scope: Reasoning restricted to 5
operations

— open, close, subst, fv, Ic

— lemmas concern only these operations and their
interactions with eachother




Case studies

* LNgen provided infrastructure for two POPL 2010
papers
* Greenberg, Weirich, Pierce. Contracts Made

Manifest
— Most proofs by hand (60 page TR)

— Tricky reasoning about parallel reduction done in Coqg.
Replaced 8 dense pages of TR appendix

* Jia, Zhao, Sjoberg, Weirich. Dependent Types and
Program Equivalence
— Varied language for 9 months, doing proofs by hand
— Used LNgen to check results in about 2 weeks




Contracts

terms.v Generated by OTT
infrastructure.v Generated by LNgen
prelim.v

14\VAY,

total




Dependent types

lang.v Generated by OTT
langExtra.v

infrastructure.v Generated by LNgen
iskEq.v

thy.v

thyPP.v

progress.v

reductions.v

isEqSpecification.v

isEgBeta.v
iIsEqC.v
inclusions.v

total




Proofs instead of TRs (mostly)
mlm_

POPL 10 some 60 pages Michael

POPL 10 yes Coq Limin (post-doc),
Jianzhou, Vilhelm

PLPV 10 yes Chris
CCS 09 yes Coq Aaron, Vilhelm

ICFP 08 no Dissertation Dimitrios
POPL 08 Coq Arthur, Brian
MFPS 07 Isabelle/HOL Dimitrios




Where to from here? What next for PL community?




Active research into variable binding

e Justin Cambridge:
— Pitts — Nominal System T [POPL 2010]
— Urban — Nominal Isabelle
— Kennedy, Benton — Strongly typed Coq

* | don't think we have the complete
story yet




Proof engineering

* Proof engineering
— How to make sure that proofs are maintainable?

— Haven't tactical theorem provers failed before?

* | don't know the answer to this problem




Role in Education

* Pierce: new textbook using Coq for grad
students at Penn

* Excellent tool for teaching about proofs by
induction, syntactic approach to programming
language definitions, etc.

e What about discrete math?




Language definition

 What do we need to do to make sure that it is
standard practice to have a machine-checked

language specification?
* Again, heroic efforts exist...
— SML, OCAML (light), Java (light)
e ... but consensus is necessary
— Language designers want accessible specs




Goes for logics too...

From: Hugo Herbelin
Sent: November 2, 2009
To: Coq club

Hi, I have been looking on the web without
success. Is there any paper/tech report
that gives the precise rules of the pCIC as
it is currently implemented in Coq 8.2.
(something like a latex version of Chapter
4 from the reference manual)

There 1s a latex version of the reference manual in the

Cog source archive and a pdf version at
http://cogq.inria.fr/distrib/v8.2pll/files/.

AFAIK there is no other description on paper of the entire
set of features of pCIC in its 8.2 implementation. Note
however that there is a work in progress by Gyesik Lee and
Benjamin Werner on the set-theoretical model of a
formulation of pCIC that is very close to Coqg.




CONCLUSION




Conclusions

* | plan to keep on using proof assistants in my
day to day research







The Success of Typed Languages

It is difficult for programmers to prove
properties about individual programs

Instead, language designers prove properties
about languages that imply properties of all
programs in that language

Example: A scheme programmer must prove
that his program never executes (1 + true)

An ML programmer knows this already.




Fundamental idea: Type safety

* Milner — Well typed programs don't go wrong

* |.e. programs maintain certain invariants
during their execution

* those invariants are described by the type
system

— Functions called with particular forms of
arguments




How to prove type safety?

* Since the early 90s, type safety proved
'syntactically’

* Two key lemmas:

— Preservation: If a program type checks, and it
takes a step, it will still type check

— Progress: If a program type checks and it is not in
an (approved) terminal configuration then it can
take a step




Current state of the art: Ott

* |nput: Language definitions in ASCI|
— Syntax (BNF grammar)
— Binding specifications
— Relations (Typing judgments, operational semantics)

e Qutput: multiple tool definitions
— LaTeX: Typesetting macros

— Proof assistants: Inductive datatypes;
functions for free variables and substitution

* http://www.cl.cam.ac.uk/~pes20/ott/




What did we do?

 Compared submitted solutions with our own
explorations:
— FJ in Coq / Twelf / Isabelle/HOL
— Parametricity theorem in Isabelle/HOL
— Damas-Milner in Nominal-Isabelle

— Created our own solutions to POPLmark challenge
in Coq




