Unifying Nominal and Structural Ad-Hoc Polymorphism

Stephanie Weirich University of Pennsylvania Joint work with Geoff Washburn

Ad-hoc polymorphism

Define operations that can be used for many types of data # Different from Subtype polymorphism (Java) Parametric polymorphism (ML) # Behavior of operation depends on the type of the data Example: polymorphic equality eq : $\forall \alpha. (\alpha' \alpha) \rightarrow bool$ Call those operations polytypic

Ad hoc polymorphism

Appears in *many* different forms:

- Overloading
- Haskell type classes
- Instanceof/dynamic dispatch
- Run-time type analysis
- Generic/polytypic programming
- # Many distinctions between these forms
 - Compile-time vs. run-time resolution
 - Types vs. type operators

🗧 Nominal vs. structural

Nominal style

```
** Poster child: overloading
eq(x:int, y:int) = (x == y)
eq(x:bool, y:bool) =
if x then y else not(y)
eq(x: \alpha'\beta, y: \alpha'\beta) =
eq(x.1,y.1) && eq(x.2,y.2)
```

Don't have to cover all types
type checker uses def to ensure that there is an appropriate instance for each call site.
Can't treat eq as first-class function.

Structural style

Use a "case" term to branch on the structure of types

```
eq : \forall \alpha. (\alpha' \alpha) \rightarrow bool

eq[\alpha:T] =

typecase \alpha of

int ) \lambda(x:int, y:int). (x == y)

bool ) \lambda(x:bool,y:bool).

if x then y else not(y)

(\beta'\gamma) ) \lambda(x: \beta'\gamma, y: \beta'\gamma).

eq[\beta](x.1,y.1) && eq[\gamma](x.2,y.2)

(\beta \rightarrow \gamma) ) error "Can't compare functions"
```

Nominal vs. Structural

Nominal style is "open"

- Can have as many or as few branches as we wish.
- New branches can be added later (even other modules).

Structural style is "closed"

- Must have a case for all forms of types when operation is defined.
- Use exceptions/error values for types that are not in the domain.
- With user-defined (aka applicationspecific) types, these two forms are radically different.

User-defined types

Application-specific types aid software development

- A PhoneNumber is different than an Age even though both are integers.
- Type checker distinguishes between them at compile time
- # Examples:
 - class names in Java
 - newtypes in Haskell
 - generative datatypes in ML

Modeling user-defined types

Define new label (a type isomorphism)
new type Age = int

Coercion functions in[Age] : int \rightarrow Age out[Age] : Age \rightarrow int

☆ (in[Age] 29) + 1

With polytypism?

Nominal style--add a new branch eq(x:Age, y:Age) =let xi = out[Age] xlet yi = out[Age] yif xi > 30 && yi > 30 then true else xi == yi# ... but, each new type must define new branches for all polytypic ops. newtype Phone = int eq(x:Phone,y:Phone) = eq (out[Phone] x, out[Phone] y)

Structural Style

- #Not extensible
- # But, polytypic ops already available to all types
 - Language implicitly coerces

```
let x = in[Age] 53
```

eq(x,21)

Breaks distinction between Age and int
 Can't have a special case for Age.
 Which style is better?

Best of both worlds

- # Idea: Combine both styles in one language, let the user choose.
- # A language where we can write polytypic ops that
 - Have a partial domain (static detection of wrong arguments)
 - Are first-class (based on typecase)
 - May distinguish user-defined types from their definitions
 - May easily convert to underlying type
 - May be extensible (for flexibility)
 - May not be extensible (for closed-world reasoning)

Caveat

- # This language is not yet ready for humans!
 - **Explicit** polymorphism.
 - Writing polytypic operations is highly idiomatic.

#Next step is to design an appropriate source language/elaboration tool.

Type isomorphisms

- **#** Syntax: new type $1:T = \tau$ in e
 - Scope of new label limited to e
 - Inside e use in[1] and out[1] to witness the isomorphism
- ★ Also labels for type operators: new type l': T → T = list in e in[l'] : ∀α. list α → l' α out[l']: ∀α. l' α → list α

User control of coercions

Don't automatically coerce types.

- User may want to use a specialized branch.
- When specialized branch is unnecessary, make it easy to coerce types

And efficient too!

- Especially when user-defined type is buried inside another data structure.
- Example: Coerce a value of type

Age ' int **to** int ' int

without destructing/rebuilding product

Higher-order coercions

Coerce part of a type # If 1 is isomorphic to τ ' **If** $e : \tau(1)$ then $\{e : \tau\}^{-1}$ has type $\tau(\tau')$ **If** $e : \tau(\tau')$ then $\{e : \tau\}^+$ has type $\tau(1)$ # Example x : (Age ' int) = ($\lambda \alpha$:T. α 'int) Age $\{e: \lambda \alpha: T. \alpha' int\}_{Age} : (int ' int)$ # A bit more complicated for type operators

Operational Semantics

- # Coercions don't *do* anything at runtime, just change the types.
- # Annotation determines execution.

 ${i:\lambda\alpha.int}^+ \otimes i$

- $\{ (v_1, v_2) : \lambda \alpha . \tau_1' \tau_2 \}_{1}^{+} \otimes (\{ v_1 : \lambda \alpha . \tau_1 \}_{1}^{+}, \{ v_2 : \lambda \alpha . \tau_2 \}_{1}^{+})$ $\{ (\lambda x : \tau . e) : \lambda \alpha . \tau_1 \rightarrow \tau_2 \}_{1}^{+}$
 - $\otimes \lambda x: \tau_1[1/\alpha]. \{ e[\{x:\lambda\alpha.\tau_1\}^-]/x]: \lambda\alpha.\tau_2\}^+_1$

 $\{v:\lambda\alpha.\alpha\}^+_{l}\otimes in[l] v$

Reminiscent of *colored brackets* [GMZ00]

Special cases for new types

If a new name is in scope, can add a branch for it in typecase $eq[\alpha:T] = typecase \alpha of$ int) λ (x:int,y:int). (x==y) Age) λ (x:Age,y:Age). let xi = out[Age] xlet yi = out[Age] yif xi > 30 && yi > 30 then true else xi == yi# eq[Age] (in[Age] 31, in[Age] 45) = true# eq[int] (31, 45) = false

What if there isn't a branch?

new type 1 = int in eq[1] (in[1] 3, in[1] 6) shouldn't type check because no branch for 1 in eq.

Solution: Make type of polytypic functions describe what types they can handle.

Restricted polymorphism

Polymorphic functions restricted by a set of labels.

eq : $\forall \alpha$:T|{int,',bool,Age}...

eq [α :T|{int,',bool,Age}] = ...

Can instantiate f only with types formed by the above constants.
eq [(int'bool) 'Age] is ok
eq [Phone ' int] is not
eq [int → bool] is not

Restricted polymorphism

Typecase must have a branch for every label that could occur in its argument. eq[α:T]{int, ',bool,Age}] $(x:\alpha,y:\alpha) =$ typecase α of int)... $(\beta'\gamma)$) $\lambda(x; \beta'\gamma, y; \beta'\gamma).$ $eq[\beta](x.1,y.1) \&\& eq[\gamma](x.2,y.2)$ bool)... Age) ... # What about recursive calls for β and γ ?

Product branch

```
# Use restricted polymorphism for those
   variables too.
let L = {Int, ', Bool, Age}
eq[\alpha:T|L](x:\alpha,y:\alpha) =
   typecase \alpha of
       Int
        (\beta:T|L)'(\gamma:T|L)) \lambda(x:\beta'\gamma, y:\beta'\gamma).
          eq[\beta](x.1,y.1) \&\& eq[\gamma](x.2,y.2)
        Bool)
       Age
```

Universal set

- # Set T is set of all labels
- $\# f [\alpha:T|T] \dots$
 - ${\ensuremath{\,^{\bullet}}}\xspace$ f can be applied to any type
 - eq[α] doesn't typecheck
 - a cannot be analyzed, because no typecase can cover all branches.
 - **•** No type containing α can be analyzed either.
 - Cheap way to add parametric polymorphism.

Extensibility

How can we make a polytypic operation *extensible* to new types?

Make branches for typecase firstclass
new type 1 = int in
eq[1] { 1) λ(x:1,y:1). ... } (in[1] 3, in[1] 6)

First-class maps

#New expression forms:

■ Ø empty map ■ $\{1\}e\}$ singleton map ■ $e_1 \cup e_2$ map join

Type of map must describe the branches to typecase

Type of typecase branches

Branches in eq follow a pattern: \dagger int branch: int ' int \rightarrow bool = $(\lambda \alpha. \alpha' \alpha \rightarrow bool)$ int **bool branch:** bool ' bool \rightarrow bool = $(\lambda \alpha. \alpha' \alpha \rightarrow bool) bool$ **The Age branch:** Age ' Age \rightarrow bool = $(\lambda \alpha. \alpha' \alpha \rightarrow bool)$ Age Product branch: $\forall \beta: T | L. \forall \gamma: T | L. (\beta' \gamma) ' (\beta' \gamma) \rightarrow bool$ = $\forall \beta: T | L. \forall \gamma: T | L. ((\lambda \alpha, \alpha' \alpha \rightarrow bool) (\beta' \gamma))$

Type Operators

In general: type of branch for label 1 with kind k is $\tau'\eta$ 1:k | L_l \models (λα.α 'α → bool) η int : T | L ι = int 'int → bool t (λα.α 'α → bool) η ' : T →T →T | L ι $= \forall \beta: T | L. \forall \gamma: T | L. (\beta' \gamma) ' (\beta' \gamma) \rightarrow bool$ # Expand this type: $\tau'\eta\tau:T \mid L\iota = \tau' \tau$ $\tau'\eta\tau:k_1 \rightarrow k_2 \mid L\iota = \forall \alpha:k_1 \mid L. \tau'\eta\tau \alpha:k_2 \mid L\iota$

Type of typecase

- # typecase $\tau \{ l_1 \} e_1, ..., l_n \}$ has type $\tau' \tau$ when
 - \models τ has kind T using labels from L \models for all l_i of kind k_i in L,

 \boldsymbol{e}_i has type $\tau `\eta \boldsymbol{l}_i {:} \boldsymbol{k}_i ~|~ L\iota$

- Type of first-class label map must include
 - What labels are in domain
 - **what** τ ' and L are for the branches

Other map formers

empty map \varnothing has type $\checkmark \varnothing, \tau', L \diamondsuit$ For arbitrary τ', L

$e_1 \cup e_2$ has type $\mathcal{O}L_1 \cup L_2$, τ ', L \mathcal{O} when = e1 has type $\mathcal{O}L_1$, τ ', L \mathcal{O} = e2 has type $\mathcal{O}L_2$, τ ', L \mathcal{O}

Union is non-disjoint

 $f [\alpha : T | \{ int \}]$ (x : $(x; \tau), \tau', L =$ typecase α ({int) 2} $\cup x$)

Can overwrite existing mappings: f [int] {int) 4} = 4 # Reversing order prevents overwrite: typecase α (x ∪ {int) 2})

Not flexible enough

★ Must specify the domain of the map.
eq: ∀α:T|L. $f(int), \tau', L f(a' a) \rightarrow bool$ ★ Can't add branches for new labels
new type 1 :T = int in
eq [1] { 1) λ(x:1,y:1). ... } (in[1] 3, in[1] 6)

* Need to be able to abstract over maps with any domain --- label set polymorphism

Label-Set polymorphism

- # Quantify over label set used in an expression.
- # Use label-set variable in map type and type argument restriction.

eq [s:LS] [α :T | s \cup {int,bool,}]

$$(x: \mathbf{}, \tau', s \cup {int, bool}) =$$

typecase α

 $x \cup \{ \text{ int })..., \text{bool }) \dots \}$

call with:

eq [{1}] { 1) ... } [1] (in[1] 3, in[1] 6)

Open vs. closed polytypic ops

Closed version of eq has type $\forall \alpha: T | L. \tau' \alpha$ where $L = \{ \text{ int, bool, ', Age} \}$ $\tau' = \lambda \alpha. (\alpha' \alpha) \rightarrow \text{bool}$

Open version of eq has type $\forall s:LS. \forall \alpha:T|s \cup L. \clubsuit s, \tau', s \cup L \clubsuit \tau' \alpha$

What is the difference?

Open ops calling other ops

important : \forall s:LS. $\forall \alpha$:T|s. \diamondsuit , $\lambda\beta$. $\beta \rightarrow$ bool, s $\diamondsuit \rightarrow \alpha \rightarrow$ bool

```
print[s:LS][a:T|s]
  (mp : \mathbf{Q}, (\lambda\beta. \beta \rightarrow string), s \mathbf{Q} mi : \mathbf{Q}, \lambda\beta. \beta \rightarrow bool, s \mathbf{Q} =
     typecase \alpha of
         (\beta:T|s' \gamma:T|s)
            \lambda(x:\beta' \gamma).
                write("(");
                if important[s][\beta] mi (x.1)
                then print[s][\beta] (x.1) (mp,mi)
                else write("...");
                write(",");
                if important [s][\gamma] mi (x.2) then ...
```

Fully-reflexive analysis

Analyzing label sets

setcase

- Analyzes structure of label sets
- Determines if the normal form is empty, a single label, or the union of two sets.
- Requires label and kind polymorphism

#lindex

- returns the "index" (an integer) of a particular label
- lets user distinguish between generated labels

Extensions

Default branch for typecase Destroys parametricity # Record/variant types Label maps instead of label sets # Type-level type analysis First-class maps at the type level # Combine with module system/distributed calculus

Key ideas (Summary)

Branches in typecase for new types

- Typecase does not need to be exhaustive
- Restrict type polymorphism by a set of labels
- Only instantiate with types formed from those labels
- Ensures typecase has a branch for each arg

New branches at run time

- Label-set polymorphism makes polytypic ops extensible
- # Expressive type isomorphisms
 - User can easily convert between types
 - Distinction isn't lost between them

Conclusion

- # Can combine features of nominal analysis and structural analysis in the same system.
- # Gives us a new look at the trade-offs between the two systems.

See paper at
http://www.cis.upenn.edu/~sweirich/