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Ad-hoc polymorphism
Define operations that can be used
for many types of data
Different from

Subtype polymorphism (Java)
Parametric polymorphism (ML)

Behavior of operation depends on the
type of the data

Example: polymorphic equality
    eq : ∀α. (α′α) → bool
Call those operations polytypic



Ad hoc polymorphism
Appears in many different forms:

Overloading
Haskell type classes
Instanceof/dynamic dispatch
Run-time type analysis
Generic/polytypic programming

Many distinctions between these forms
Compile-time vs. run-time resolution
Types vs. type operators
Nominal vs. structural



Nominal style
Poster child: overloading

eq(x:int,  y:int) = (x == y)
eq(x:bool, y:bool) =
  if x then y else not(y)
eq(x: α′β, y: α′β) =

eq(x.1,y.1) && eq(x.2,y.2)

Don’t have to cover all types
type checker uses def to ensure that there is
an appropriate instance for each call site.
Can’t treat eq as first-class function.



Structural style

Use a “case” term to branch on the
structure of types

eq : ∀α. (α′α) → bool
eq[α:T] =
  typecase α of

  int ) λ(x:int, y:int). (x == y)
  bool ) λ(x:bool,y:bool).

                           if x then y else not(y)
 (β′γ) ) λ(x: β′γ, y: β′γ).

                          eq[β](x.1,y.1) && eq[γ](x.2,y.2)
     (β → γ) ) error “Can’t compare functions”



Nominal vs. Structural
Nominal style is “open”

Can have as many or as few branches as we
wish.
New branches can be added later (even other
modules).

Structural style is “closed”
Must have a case for all forms of types when
operation is defined.
Use exceptions/error values for types that are
not in the domain.

With user-defined  (aka application-
specific) types, these two forms are
radically different.



User-defined types
Application-specific types aid
software development

A PhoneNumber is different than an
Age even though both are integers.
Type checker distinguishes between
them at compile time

Examples:
class names in Java
newtypes in Haskell
generative datatypes in ML



Modeling user-defined types
Define new label (a type isomorphism)
new type Age = int

Coercion functions
in[Age]  : int →Age
out[Age] : Age → int

Type checker enforces distinction.

  (in[Age] 29)  + 1



With polytypism?
Nominal style--add a new branch
eq(x:Age, y:Age) =

let xi = out[Age] x
          let yi = out[Age] y

      if xi > 30 && yi > 30
      then true else xi == yi
… but, each new type must define new
branches for all polytypic ops.
newtype Phone = int
eq(x:Phone,y:Phone) =
   eq (out[Phone] x, out[Phone] y )



Structural Style
Not extensible
But, polytypic ops already available to
all types

Language implicitly coerces
let x = in[Age] 53

   eq(x,21)
Breaks distinction between Age and int
Can’t have a special case for Age.

Which style is better?



Best of both worlds
Idea: Combine both styles in one language,
let the user choose.
A language where we can write polytypic
ops that

Have a partial domain (static detection of
wrong arguments)
Are first-class (based on typecase)
May distinguish user-defined types from their
definitions
May easily convert to underlying type
May be extensible (for flexibility)
May not be extensible (for closed-world
reasoning)



Caveat
This language is not yet ready for
humans!

Explicit polymorphism.
Writing polytypic operations is highly
idiomatic.

Next step is to design an appropriate
source language/elaboration tool.



Type isomorphisms
Syntax: new type l:T = τ in e

Scope of new label limited to e
Inside e use in[l]  and out[l] to witness
the isomorphism

 Also labels for type operators:
new type l’ : T → T = list in e
in[l’]   : ∀α. list α  → l’ α
out[l’] : ∀α. l’ α → list α



User control of coercions
Don’t automatically coerce types.

User may want to use a specialized branch.
When specialized branch is unnecessary,
make it easy to coerce types

And efficient too!
Especially when user-defined type is buried
inside another data structure.
Example: Coerce  a value of type

Age ′ int   to    int ′ int
without destructing/rebuilding product



Higher-order coercions
Coerce part of a type
If l is isomorphic to τ’

If  e : τ(l)   then  { e : τ }-
l  has type τ(τ’)

If  e : τ(τ’) then  { e : τ }+
l  has type τ(l)

Example
 x : (Age ′ int) = (λα:T.α ′int) Age
{e: λα:T.α′int}-

Age :(int ′ int)

A bit more complicated for type
operators



Operational Semantics
Coercions don’t do anything at runtime, just
change the types.
Annotation determines execution.
{i:λα.int}+

l ⊗ i
{(v1,v2):λα.τ1′τ2 }+

l   ⊗ ({v1:λα.τ1}+
l,{v2:λα.τ2}+

l)
{(λx:τ.e):λα.τ1→τ2}+

l

⊗ λx:τ1[l/α]. { e[{x:λα.τ1}-
l/x]: λα.τ2}+

l

{v:λα.α}+
l ⊗ in[l] v

Reminiscent of colored brackets [GMZ00]



Special cases for new types
If a new name is in scope, can add a branch
for it in typecase
eq[α:T] = typecase α of
   int ) λ(x:int,y:int). (x==y)
   Age ) λ(x:Age,y:Age).

    let xi = out[Age] x
            let yi = out[Age] y

          if xi > 30 && yi > 30
          then true else xi == yi
eq[Age] (in[Age] 31, in[Age] 45) = true
eq[int] (31, 45) = false



What if there isn’t a branch?
new type l = int in
     eq[l] (in[l] 3, in[l] 6)
shouldn’t type check because no branch

for l in eq.

Solution: Make type of polytypic
functions describe what types they
can handle.



Restricted polymorphism
Polymorphic functions restricted by a
set of labels.

eq : ∀α:T|{int,′,bool,Age}. …
eq [α:T|{int,′,bool,Age}] = …

Can instantiate f only with types
formed by the above constants.

eq [(int′bool) ′Age]  is ok
eq [Phone ′ int] is not
eq [int → bool]  is not



Restricted polymorphism
Typecase must have a branch for every
label that could occur in its argument.

eq[α:T|{int, ′,bool,Age}]
 (x:α,y:α) =

typecase α of
int ) …
(β′γ) ) λ(x: β′γ, y: β′γ).

eq[β](x.1,y.1) && eq[γ](x.2,y.2)
bool ) …
Age ) …

What about recursive calls for β and γ?



Product branch
Use restricted polymorphism for those
variables too.

let L = {Int, ′, Bool, Age}
eq[α:T|L] (x:α,y:α) =

typecase α of
Int )
(β:T|L) ′(γ:T|L) )  λ(x: β′γ, y: β′γ).
   eq[β](x.1,y.1) && eq[γ](x.2,y.2)
Bool )
Age )



Universal set
Set ⊺ is set of all labels
f [α:T|⊺]  …

f can be applied to any type
eq[α] doesn’t typecheck
α cannot be analyzed, because no
typecase can cover all branches.
No type containing α can be analyzed
either.
Cheap way to add parametric
polymorphism.



How can we make a polytypic operation
extensible to new types?

Make branches for typecase first-
class

new type l = int in
   eq[l] { l ) λ(x:l,y:l).  …} (in[l] 3, in[l] 6)

Extensibility



First-class maps
New expression forms:
∅    empty map
{l)e}   singleton map
e1 ∪ e2   map join

Type of map must describe the
branches to typecase



Type of typecase branches
Branches in eq follow a pattern:

int branch: int ′ int → bool  
= (λα. α′α → bool) int
bool branch: bool ′ bool → bool
= (λα. α′α → bool) bool
Age branch: Age ′ Age → bool
= (λα. α′α → bool) Age
Product branch:

   ∀β:T|L.∀γ:T|L. (β′γ) ′ (β′γ) → bool
   = ∀β:T|L.∀γ:T|L. ( (λα. α′α → bool) (β′γ) )



Type Operators

In general: type of branch for label l
with kind k is τ’η l:k | Lι

(λα.α ′α → bool) η int : T | L ι = int ′int → bool
(λα.α ′α → bool) η ′ : T →T →T | L ι

            = ∀β:T|L.∀γ:T|L. (β′γ) ′ (β′γ) → bool

Expand this type:
τ’ητ:T | Lι  = τ’ τ
τ’ητ:k1→ k2 | Lι = ∀α:k1|L. τ’ητ α:k2|Lι



 Type of typecase
typecase  τ { l1 ) e1, …, ln ) en} has type τ’
τ  when
τ has kind T using labels from L
for all li of kind ki in L,

      ei has type τ’ηli:ki | Lι
Type of first-class label map must
include

What labels are in domain
What τ’ and L are for the branches



First-class maps
Type of map is �L1, τ’, L2 �

L1 is the domain of the map
τ’ and L2 are for the type of each branch

Singleton map { l ) e } has type
   � {l}, τ’, L2 � when

l is a label of kind k and
e has type τ’η l : k | L2ι



Other map formers
empty map ∅ has type � ∅, τ’, L �

For arbitrary τ’, L

e1 ∪ e2 has type � L1∪L2, τ’, L � when
e1 has type � L1, τ’, L �
e2 has type � L2, τ’, L �



Union is non-disjoint
f [ α :T | { int}]
   (x : �{int}, τ’,  L � ) =

       typecase α  ({int ) 2} ∪ x )

Can overwrite existing mappings:
f [int] {int ) 4} = 4

Reversing order prevents overwrite:
typecase α ( x ∪ {int ) 2} )



Not flexible enough
Must specify the domain of the map.

   eq: ∀α:T|L.  �{int}, τ’, L� → (α ′ α) → bool

Can’t add branches for new labels
new type l :T = int in
eq [l] { l ) λ(x:l,y:l).  …} (in[l] 3, in[l] 6)

Need to be able to abstract over
maps with any domain --- label set
polymorphism



Label-Set polymorphism
Quantify over label set used in an
expression.
Use label-set variable in map type and  type
argument restriction.
eq [s:LS]  [α:T | s ∪ {int,bool,}]

              (x : �s, τ’, s ∪ {int,bool}� ) =
        typecase α
            x ∪ { int )…, bool ) … }

call with:
eq [{l}] { l ) … } [l] (in[l] 3, in[l] 6)



Open vs. closed polytypic ops
Closed version of eq has type
 ∀α:T|L. τ’ α

    where L = { int, bool, ′, Age}
              τ’  = λα. (α ′ α) → bool

Open version of eq has type
 ∀s:LS. ∀α:T|s ∪ L.  � s, τ’, s ∪ L� → τ’ α

What is the difference?



Open ops calling other ops
important : ∀s:LS. ∀α:T|s. �s, λβ.β → bool, s�  → α → bool

print[s:LS][α:T|s]
   (mp : �s, (λβ. β → string), s�,  mi : �s, λβ. β → bool,s�) =

typecase α of
(β:T|s ′ γ:T|s ) )

       λ(x:β ′ γ).
       write(“(“);
   if important[s][β] mi (x.1)
       then print[s][β] (x.1) (mp,mi)

else write(“…”);
write(“,”);
if important[s][γ] mi (x.2) then …



Fully-reflexive analysis
 New forms of types

∀α:T|L. α → α
� L, τ’, L’ �
∀s:LS. τ

A calculus is fully-reflexive if it can
analyze all types.

Need kind-polymorphism for ∀
Label set polymorphism also lets us analyze
types that contain label sets
Branches are label-set polymorphic

typecase (� L, τ’, L’ �)  { �s1,α, s2� ) e }



Analyzing label sets
setcase

Analyzes structure of label sets
Determines if the normal form is empty,
a single label, or the union of two sets.
Requires label and kind polymorphism

lindex
returns the “index” (an integer) of a
particular label
lets user distinguish between generated
labels



Extensions
Default branch for typecase

Destroys parametricity
Record/variant types

Label maps instead of label sets
Type-level type analysis

First-class maps at the type level
Combine with module
system/distributed calculus



Key ideas (Summary)
Branches in typecase for new types

Typecase does not need to be exhaustive
Restrict type polymorphism by a set of labels
Only instantiate with types formed from
those labels
Ensures typecase has a branch for each arg

New branches at run time
Label-set polymorphism makes polytypic ops
extensible

Expressive type isomorphisms
User can easily convert between types
Distinction isn’t lost between them



Conclusion
Can combine features of nominal
analysis and structural analysis in the
same system.
Gives us a new look at the trade-offs
between the two systems.

See paper at
http://www.cis.upenn.edu/~sweirich/


