


Ad-hoc polymorphism

% Define operations that can be used
for many types of data
% Different from
= Subtype polymorphism (Java)
= Parametric polymorphism (ML)
% Behavior of operation depends on the
type of the data
+ Example: polymorphic equality
eq : Va. (a'a) = bool
+ Call those operations polytypic



Ad hoc polymorphism

% Appears in many different forms:
+ Overloading
+ Haskell type classes
+ Instanceof/dynamic dispatch
+ Run-time type analysis
+ Generic/polytypic programming
% Many distinctions between these forms
+ Compile-time vs. run-time resolution
= Types vs. type operators
+ Nominal vs. structural



Nominal style

% Poster child: overloading
eq(x:1nt, y:nt) = (x ==Yy)
eq(x:bool, y:bool) =
if x then y else not(y)
eq(x: a'B, y: a'B) =
eq(x.1,y.1) && eq(x.2,y.2)

% Don't have to cover all types

+ type checker uses def to ensure that there is
an appropriate instance for each call site.

+ Can't treat eq as first-class function.



Structural style

% Use a "case” term to branch on the
structure of types

eq : Va. (a'a) — bool

eqla:T] =
typecase o of
int ) M(x:int, y:int). (X ==Y)
bool ) AM(x:bool,y:bool).

if x then y else not(y)
Bv) )M By, y: BY).

eq[B](x.Ly.1) && eq[y](x.2,y.2)
(B —v) ) error “Can’t compare functions”



Nominal vs. Structural

% Nominal style is "open”

+ Can have as many or as few branches as we
wish.

+= New branches can be added later (even other
modules).
% Structural style is "closed”

= Must have a case for all forms of types when
operation is defined.

+ Use exceptions/error values for types that are
not in the domain.
% With user-defined (aka application-
specific) types, these two forms are
radically different.



User-defined types

% Application-specific types aid
software development

= A PhoneNumber is different than an
Age even though both are integers.

= Type checker distinguishes between
them at compile time

% Examples:
+ class names in Java
+ newtypes in Haskell
+ generative datatypes in ML



Modeling user-defined types

% Define new label (a type isomorphism)
new type Age = int

% Coercion functions
in[Age] :1nt —=Age
out[Age] : Age — int

% Type checker enforces distinction.
X (in[Age] 29) +1



With polytypism?

% Nominal style--add a new branch
eq(x:Age, y:Age) =
let x1 = out[Age] x
let y1 = out[Age]y
if x1 > 30 && y1> 30
then true else x1 == yi1

% ... but, each new type must define new
branches for all polytypic ops.

newtype Phone = int
eq(x:Phone,y:Phone) =
eq (out[Phone] x, out[Phone] y )



Structural Style

% Not extensible

% But, polytypic ops already available to
all types
+ Language implicitly coerces
let x = 1n[Age] 53
eq(x,21)
+ Breaks distinction between Age and int
+ Can't have a special case for Age.

% Which style is better?



Best of both worlds

% Idea: Combine both styles in one language,
let the user choose.

% A language where we can write polytypic
ops that

+ Have a partial domain (static detection of
wrong arguments)

+ Are first-class (based on typecase)

+ May distinguish user-defined types from their
definitions

+ May easily convert to underlying type
+ May be extensible (for flexibility)

+ May not be extensible (for closed-world
reasoning)



Caveat

% This language is not yet ready for
humans!
+ Explicit polymorphism.
= Writing polytypic operations is highly
idiomatic.
# Next step is to design an appropriate
source language/elaboration tool.



Type isomorphisms

# Syntax: new type :'T=1tine
= Scope of new label limited to e

+ Inside ¢ use 1n[l| and out[l] to witness
the isomorphism

% Also labels for
new typel’ : T —=T=1listine
in[I’] :Vao. lista =1 a

out[l’] : Va. I’ a — list a



User control of coercions

% Don't automatically coerce types.
+ User may want to use a specialized branch.

% When specialized branch is unnecessary,
make it easy to coerce types
+= And efficient too!

+ Especially when user-defined type is buried
inside another data structure.

r Example: Coerce a value of type
Age'int to int'int
without destructing/rebuilding product



Higher-order coercions

% Coerce part of a type
4 If 1isisomorphic to 1’
r If e:1(l) then {e: 1} has type 1(7)
r If e:1(t’) then {e:t}* has type ()
% Example
X : (Age " int) = (ho:T.o 'int) Age
{e: AT a'int}-, . :(int " int)
% A bit more complicated for type
operators



Operational Semantics

% Coercions don't do anything at runtime, just
change the types.

% Annotation determines execution.
{1:hoint}, ® 1
{(Vi,v) kot 1, 31 @ ({vyihant; 11, {vy oty b 1)
{(Ax:T.€):h0.T, =T,
@ Ax:ty[l/a]. { e[{x:hao.T,}/X]: ho.T,} 7
{viio.o} " ® 1nfl] v
% Reminiscent of colored brackets [GMZO00]



Special cases for new types

% If a new name is in scope, can add a branch
for it in typecase

eq[a:T] = typecase o of
int ) A(X:nt,y:int). (x==y)
Age ) Mx:Age,y:Age).
let x1 = out[Age] x
let y1 = out[Age]y
if x1 > 30 && y1> 30
then true else x1 == y1
¥ eq[Age] (in[Age] 31, in[Age] 45) = true
¥ eq[int] (31, 45) = false



What if there isn't a branch?

new type 1 =1nt in

eq[l] (in[l] 3, 1n[1] 6)
shouldn't type check because no branch
forlin eq.

Solution: Make type of polytypic
functions describe what types they
can handle.



Restricted polymorphism

% Polymorphic functions restricted by a
set of labels.
eq : VouT|{int,",bool,Age}. ...
eq [o:T|{1nt," ,bool,Age}]=...
% Can instantiate f only with types
formed by the above constants.
= eq [(int'bool) 'Age] is ok
+ eq [Phone ' int] i1s not
+ eq [int = bool] is not




Restricted polymorphism

% Typecase must have a branch for every
label that could occur in its argument.

eq[o:T|{int, ",bool,Age} ]

(X:0,y:0) =
typecase o of
int ) ..

BY) ) Mx: By, y: B'y).
eq[P](x.1,y.1) && eq[y](x.2,y.2)
bool )...
Age )...
% What about recursive calls for g and y?



Product branch

% Use restricted polymorphism for those
variables too.

let L = {Int, ', Bool, Age}
eqlo:T|L] (x:0,y:01) =
typecase o of
Int )

(B:TIL) "(y:TIL) ) Ax: By, y: B'y).
eq[PB](x.1,y.1) && eq[y](x.2,y.2)

Bool )

Age )




Universal set

% Set T is set of all labels
w1 [o:T|T] ...
= f can be applied to any type

+ eq[a] doesn't typecheck

+ o cannot be analyzed, because no
typecase can cover all branches.

+ No type containing a can be analyzed
either.

+ Cheap way to add parametric
polymorphism.



Extensibility

% How can we make a polytypic operation
extensible to new types?

% Make branches for typecase first-
class

new type 1 =1nt in
eq[l] { 1) Ax:Ly:1). ...} (in[l] 3, in[1] 6)



First-class maps

% New expression forms:

R% empty map
r {le} singleton map
re, Ue, map join

% Type of map must describe the
branches to typecase



Type of typecase branches

( % Branches in eq follow a pattern:
+ int branch: int ' int — bool
= (Ao o' — bool) int
+ bool branch: bool ' bool — bool
= (Ao o' — bool) bool
r Age branch: Age’ Age — bool
= (Ao o'o — bool) Age
+ Product branch:
VB:T|IL.Vy:TIL. (BY) " (B"y) — bool
= VB:T|L.Vy:TIL. ( (Aho.. o'a — bool) (B'y) )



Type Operators

% In general: type of branch for label 1
with kind k is t'n l:k | Lt
= (Aa.oo ‘o — bool)n int: T | L v = int "int — bool
= (Ao.oo ‘o = bool)n': T—=T—=T|L1
= VB:TIL.Vy:T|L. (B'y) " (B"y) — bool

% Expand this type:
tntT|Le =171
tntk,—= k,| L= Vak|L. T'nt a:k,|Lt



Type of typecase

% typecase 1 {1,)e,...,1,)e,} has type t’
t when

+1 has kind T using labels from L
+=for all I. of kind k; in L,
e, has type T'nl.:k | Lt
¥ Type of first-class label map must
include

+ What labels are in domain
+ What v’ and L are for the branches



First-class maps
% Type of map is €., 7", L, @

+ L, is the domain of the map
+ 1" and L, are for the type of each branch

% Singleton map {1) e} has type
@1}, v, L, @when

+1is a label of kind k and
+ e has type nl:k|L,u



Other map formers
% empty map @ has type €7, v, L @

+ For arbitrary v’, L

¥ e; U e, has type @L,UL,, 7, L @when
= el has type QL. 7', L @
= e2 has type @L,, ", L @



Union is non-disjoint

floa:T|{int}]
(X : Qint}, T, L@) =

typecase o ({int )2} Ux)

# Can overwrite existing mappings:
# f[int] {int)4} =4

% Reversing order prevents overwrite:
typecase o ( x U {int ) 2} )



Not flexible enough

% Must specify the domain of the map.
r eq: VaTL. €int}, 7, L&— (o' o) — bool
# Can't add branches for new labels
new type 1 :T =1nt 1n
eq[1] {1)AGcLy:D). ...} (in[1] 3, in[1] 6)

% Need to be able to abstract over
maps with any domain --- label set
polymorphism



Label-Set polymorphism

% Quantify over label set used in an
expression.

% Use label-set variable in map type and type
argument restriction.

eq [s:LS] [a:T |s U {int,bool,}]
(x : €&, 1°, s U {int,bool} ) =
typecase o
x U {int)...,bool) ...}
call with:

eq [{I] {1) ...} [1] (in[1] 3, in[1] 6)



Open vs. closed polytypic ops

% Closed version of eq has type
Vo:T|L. T° a
where L = { int, bool, ', Age}

T’ =A0. (o' o) = bool

% Open version of eq has type
Vs:LS. Vo:T|s U L. Q.. sULQ—> T«

% What is the difference?



Open ops calling other ops

important : Vs:LS. Vo T|s. €&, AB.p — bool, s€— o — bool

print[s:LS][a:T|s]
(mp : €, (AB. B — string), s€@ mi : €, M. B — bool,s@=
typecase o of
(B:Tl|s "v:Tls ) )
Mx:B ).
write(“(*);
1f important[s][f] m1 (x.1)
then print[s][B] (x.1) (mp,m1)
else write(*“...”);
write(*,”);
1f important[s][y] m1 (x.2) then ...



Fully-reflexive analysis

% New forms of types
= Vo T|L. o = «a
rQL T, L @
= Vs:LS. 1
% A calculus is fully-reflexive if it can
analyze all types.
+ Need kind-polymorphism for V

% Label set polymorphism also lets us analyze
types that contain label sets

% Branches are label-set polymorphic

typecase (@L, 7', L’ €@ { €@1,0, s2€) ¢ }



Analyzing label sets

¥ setfcase
+ Analyzes structure of label sets

r Determines if the normal form is empty,
a single label, or the union of two sets.

+ Requires /abe/l and kind polymorphism

¥ lindex

+ returns the "index"” (an integer) of a
particular label

r lets user distinguish between generated
labels



Extensions

% Default branch for typecase
+ Destroys parameftricity

% Record/variant types
+ Label maps instead of label sets

% Type-level type analysis
= First-class maps at the type level

% Combine with module
system/distributed calculus



Key ideas (Summary)

% Branches in typecase for new types
+ Typecase does not need to be exhaustive
+ Restrict type polymorphism by a set of labels

+ Only instantiate with types formed from
those labels

+ Ensures typecase has a branch for each arg

% New branches at run time
+ Label-set polymorphism makes polytypic ops
extensible
% Expressive type isomorphisms
+ User can easily convert between types
+ Distinction isn't lost between them



Conclusion

% Can combine features of nominal
analysis and structural analysis in the
same system.

¥ Gives us a nhew look at the trade-offs
between the two systems.

# See paper at
http://www.cis.upenn.edu/~sweirich/



