Higher-Order Intensional
Type Analysis

Stephanie Weirich
Cornell University



Reflection
]

e A style of programming that supports the
run-time discovery of program information.

- “What does this code do?”
- “How is this data structured?”
e Running program provides information
about itself.
— self-descriptive computation.
- self-descriptive data.

8/24/06



Applications of reflection
—

Runtime systems: garbage collection,
serialization, structural equality, cloning, hashing,
checkpointing, dynamic loading

Code monitoring tools: debuggers, profilers

Component frameworks: software composition
tools, code browsers

Adaptation: stub generators, proxies

Algorithms: iterators, visitor patterns, pattern
matching, unification

8/24/06



What is reflection?
]

¢ Run-time examination of type
or class.

e Not dynamic dispatch in OO languages.

- Have to declare an instance for every new class
declared. Easy but tedious.

- Simple apps hard-wired in Java.
e Not instanceof operator in OO languages.

— It requires a closed world.
e Need to know the name of the class a priori.
e Need to know what that name means.

8/24/06



Structural Reflection
]

e Need to know about the structure of the
data to implement these operations once
and for all.

e Intensional Type Analysis
- Examines the structure of types at run time.

- A term called tcase implements case analysis of
types.

8/24/06



Serialization
I

serialize[a] (x:a) =
tcase a of
int ) int2string(x)
string) “\*“” + x + «\»”
B’y ) + serialize[p](x.1) + *,”
+ serialize[y](x.2) + *)”
B—v) “<function>”

8/24/06



State of the art
]

e No system for defining type-indexed
functionality extends to both type
constructors and quantified types.

8/24/06



Type constructors
S

e Types indexed by other types.

e Useful to describe parameterized data
structures.

— head :8a. list a 2 «
— tail :8a. list a 2 list o
— add :8a. (a'list o) = list o

e Don't have to cast the type of elements
removed from data structures.

8/24/06



Type functions
S

e Type constructors are functions from types
to types.

e Expressed like lambda-calculus functions.
Ti= .|t |TyT, | @
e Example:
Quad=ia. (a'a)'(a’'a)

e Static language for reasoning about the
relationship between types.

8/24/06



Types with binding structure
S

e Parametric polymorphism hides the types of
inputs to functions.

8a. o = string
e Other examples:

- Existential types (Ja . t) hide the actual type of
stored data.

— Recursive types (pa. t) describe data structures
that may refer to themselves (such as lists).

- Self quantifiers (self a. T) encode objects.

8/24/06



Problems with these types
.

e tcase is based on the fact that the closed,
simple types are inductive.

T ::=int | string |t1 2 12 |11 ' T2
e Analysis is an iteration over the type
structure.

e With quantified types, the structure is not so
simple.
T::=.../80.7T |«

8/24/06



Example

tcase o of

int )...
string ) ...

B—=>7)

B'y )...

8a.?? ) ...

Here B and y are O
bound to the
subcomponents of the
type, so they may be

analyzed. -

\ Can’t abstract the
body of the type here,
because of free

occurrences of .

p 7

8/24/06




Higher-order abstract syntax
-

e Type constructors for polymorphic types.

Sa.0 20 vs.8hao.a=>a)

e 8 branch abstracts that constructor.
typecase 8(ALa.a = a) of

int ) el
p—>v ) e2
8 ) e3

reduces to e3 with 0 replacedby (La.0 > a)

e Have to apply 0 to some type in order to analyze it.
[Trifonov et al.]

8/24/06



Works for some applications
S

serialize[a] (x:a) =
tcase a of

int ) int2string(x)

string ) “\*” + x + “\””

B’y )« + serialize[B](x.1) + «,”
+ serialize[y](x.2) + *)”

p—>v ) “<function>”

80 ) “<polymorphic function>”

36 ) let<p, y>=unpack x in
serialize [o(P)] ¥

8/24/06



But not for all

serializeType|a] =
tcase o of
illt ) “int”

B'y ) “(” +serializeType[p] +* *”
+ serializeType|[y] + ¢“)”

B—>v)“” +serializeType[B] +*“->"
+ serializeType|[y] + ¢“)”

8 )??2?

ap ) ??7?

8/24/06



Two solutions with one stone
-

If we can analyze
type constructors
In a principled way,

then we can analyze
quantified types

In a principled way.

8/24/06



Type equivalence
S

e For type checking, we must be able to
determine when two types are semantically
equal.

- to call a function the argument must have an
equivalent type.

e Reference algorithm: fully apply all type
functions inside the two types and compare
the results.

(A a.a’ a) (int) =? (A B. B "int) (int)
int’ int =? int’ int

8/24/06



Constraint on type analysis
-

e \When we analyze this type language we
must respect type equivalence.

tcase [(Aa. a ' int) int]...
must produce the same result as

tcase [ int ' int |...

e Type functions, applications, and variables
must be “transparant” to analysis.

8/24/06



Generic/Polytypic programming
c—

e Generates operations over parameterized
data-structures. [Moggi&Jay][Jansson&Juering][Hinze]

- Example: gmap<list> applies a function f to all of
the a’s in list a.

e Compile-time specialization. No type
information is analyzed at run-time.
- Can’t handle polymorphic or existential types.

8/24/06



Idea
]

e A polytypic definition must also respect type
equality.

- foo < (Aa. o’ int) int > = foo <int ' int >

e Produce equivalent terms for equivalent
types.
- foo<((Ao.o’'int)int>=(Ax.x+1)1
— foo<int'int>=1+1

8/24/06



Idea
]

e Create an interpretation of the type language
with the term language.

- Map type functions to term functions.
- Map type variables to term variables.

- Map type applications to term
applications.

- Map type constants to (almost) anything.

e \Ve can use this idea at run-time to analyze
type constructors and quantified types.

8/24/06



Type Language
-

ta=a e variable
Ad. T e function
T, T, e application
int | string e constants
>1"|8

 The type int ' int is the constant ' applied to
int twice.

* The type 8a . a =2a is the constant 8 applied
to the type constructor (Aa . a = a ).

8/24/06



Interpreter
S

Instead of tcase, define analysis term:
tinterp[n] ©

e To interpret this language we need an
environment to keep track of the variables.

e This environment will also have mappings
for all of the constants.

8/24/06



Operational semantics of tinterp
c—

e Type constants are retrieved from the environment

tinterp
tinterp

tinterp
tinterp

n
n
tinterp[n|
n
n

int = 11(int)
string =» n(string)

- 2 (™)
’ =2 1()
8 = 1(8)

e Type variables are retrieved from the environment

tinterp[n] « = ()

8/24/06



Type functions
S

e Type functions are mapped to term
functions.

e \When we reach a type function, we add a
new mapping to the environment.

tinterp[n] (Aa.t) =
A x. tinterp[ n+{a)x}] ()

H_J

Execution extends

environment, mapping @ to x.
8/24/06



Application
S

e [ype application is interpreted as term
application

tinterp[n] (t; T,)
> (tinterp[n] t,) (tinterp[n] 1,)

The
interpretation of

T4 IS a function
g

8/24/06



Example
S

serializeType = tinterp [n]
wheren = {
int ) “int”
string ) “string”
’ ) A x:string. A y:string.
6‘(99 _|_ X _|_ 669 _|_ y _|_ 6‘)99
- ) A Xx:string. A y:string.
6‘(99 _|_ X _|_ 6‘_>99 _|_ y _|_ 6‘)99
8 ) A x:string—>string.
let v=gensym () in
“(all " 4y %4 (X V) + “)99

8/24/06



Example execution
S

serializeType[int'int]

> (tinterp|n] ') (tinterp[n] int) (tinterp[n] int)

> (A x:string. A y:string. “(”+ x +“*”+ y +)”)
(tinterp[n] int) (tinterp[n] int)

> (A x:string. A y:string. “(”+ x +“*”+ y +)”)
“int” “int”

9 66(” _|_ “int” _|_ 1% 2 _I_ “int” _|_ 66)”

> “(int*int)”

8/24/06



Example
S

serializeType = tinterp [n]
wheren = {
int ) “int”
string ) “string”
’ ) A x:string. A y:string.
6‘(99 _|_ X _|_ 669 _|_ y _|_ 6‘)99
- ) A Xx:string. A y:string.
6‘(99 _|_ X _|_ 6‘_>99 _|_ y _|_ 6‘)99
8 ) A x:string—>string.
let v=gensym () in
“(all " 4y %4 (X V) + “)99

8/24/06



Not the whole story
S

e More complicated examples require a
generalization of this framework.

- Must allow the type of each mapping in the
environment to depend on the analyzed type.

- Requires maintenance of additional type
substitutions to do so in a type-safe way.

- This language is type sound.
e Details appear in paper.

8/24/06



Conclusion
I

e Reflection is analyzing the structure of
abstract types.

e Branching on type structure doesn’t scale
well to sophisticated and expressive type
systems.

e A better solution is to interpret the compile-
time language at run-time.

8/24/06






