IN

The pleasures and pain of
advanced type systems

Stephanie Weirich
University of Pennsylvania

PENN
@ Or: how | learned to stop worrying and love a good type error

Static types work

Static typing is by far the most widely used

program verification technology in use today

e Lightweight (so programmers use them)
 Machine-checked (with every compilation)
e Ubiquitous (so programmers can’t avoid them)

Why do types work?

Type errors identify bugs!

— True + ¢

— Memory & control-flow safety
Types specify code. They say (to people) what
functions do

foozle :: Gizmo -> Gadget -> Contraption

Types support interactive program development
(Intellisense,Eclipse)

Types support software maintenance (the most
important benefit, seldom mentioned)

N

Haskell’s advanced type system

Types work better /lm' —
7

for pure code <

f::[a] ->[a] & @ |

*Q

Type system PaiiT tleasure

/ All programs (that do somethirm

Similar to a correct program
but the type system can’t
rule it out

Programs that do
what you want

“Dependent types”
and EDSLs

Programs that
type check

well-typed program,
but much easier to write

Generic Programming

/

Haskell Metaprogramming

data Expr =

CB Bool

CI Int

If Expr ExXpr EXpr
BinOp Op Expr EXpr

deriving (Eq, Ord, Show, Read)

Automatic definition of equality, ordering,
serialization functions

Generic Programming

deriving (Eq, .., Generic)

* Enables user-defined generic traversals
— Operations defined over representations of the type structure, in a
type-preserving way
— Eliminates boilerplate code. Aids development & refactoring

 Examples:
children (BinOp Plus el e2) == [el; e2]
freevars (BinOp Plus (Var “x"”) (Var *“y")) ==
[“X"; “y"]
freshen (If (Var “x"”) (Var "“y"”) (Var “z"))
(If (var “x0") (var “y0"”) (Var “z0"))
arbitrary / shrink forrandom test generation

Dependent types, aka GADTs

data Expr a where
CB :: Bool -> Expr Bool
CI :: Int -> ExXpr Int
:: Expr Bool -> Expr a
-> EXpr a -> EXpr a
BinOp :: Op (a -> b -> <)
-> ExXpr a -> ExXpr b -> EXpr c

t = If (CI 3 (CI 4) (CI 5)

Doesn’t type check now

Embedded Domain Specific Language

* Why define a DSL?

— Specialize your development environment for your
application

— Reduced language, so fewer “wrong” program
typecheck

* Why Embedded in Haskell?
— Building a programming language is hard!

— Dependent types can constrain embedded
language, application-specific type checking

lvory EDSL

* Low-level safe C-like language

for safe systems programming

* DARPA research program for
vehicle security

* Deeply embedded in Haskell, generates C,
linked with RTOS and loaded onto quadcopter

g ad I.O] S http://smaccmpilot.org/

-- | Convert an array of four 8-bit integers
into a 32-bit integer.

test2 :: Def ('[Ref s (Array 4 (Stored Uint8))]
:-> Uint32)
test2 = proc "test2" $ \arr -> body $ do
a <- deref (arr ! 0)
b <- deref (arr ! 1)
c <- deref (arr ! 2)
d <- deref (arr ! 3)
ret $ ((safeCast a) “iShiftL™ 24) .
((safeCast b) " iShiftL™ 16) .
((safeCast c) “iShiftL" 8)
((safeCast d) " iShiftL™ o)

Quipper EDSL

 Embedded, scalable functional language for
guantum computing
— circuit description language

— automatic synthesis of reversible
guantum circuits

* Joint project between Dalhousie,
Penn, IAS

http://www.mathstat.dal.ca/~selinger/quipper/

Unlimited possiblities

import BASIC
mailn = runBASIC S do
10 LET X =: 1
20 PRINT "Hello BASIC world!"

30 LET X =: X + 1
40 IF X <> 11 THEN 20
50 END

http://augustss.blogspot.com/2009/02/regression-they-say-that-as-you-get.html

The pain of types

/ Sometimes the types still gh

in the way

Programs that do
what you want

Programs that
type check

/

Current research

/ Type-level computation\

expresses a relationship
etween types as a program

‘Real” dependent types,
which allow program values
in types

Type inference in the presence
vf these advanced features /

Type-level computation

—- Diatonic fifths, and their class (comments with the
CMaj scale)

-- See http://en.wikipedia.org/wiki/Circle progression

type family DiatV deg :: *

type instance DiatV I = Imp -- V —- G7 should be Dom
type instance DiatV Vv = Imp -—- II -- Dm7 should be SDom
type instance DiatVv II = VI -- Am7

type instance DiatV VI = III -- Em7

type instance DiatV III = VII
—— Bhdim7 can be explained by Dim rule

type instance DiatV VII = Imp -- IV
—- FMaj7 should be SDom
type instance DiatV IV = Imp -- I —- CMaj7

http://hackage.haskell.org/package/HarmTrace-2.2.0

Not pain! Refactoring

Google+ ‘ol
& | (Q~ Google

Don Stewart Apr21, 2012 - Mobile - Public

Modified 700 lines across 70 files.
Once it typed checked, it worked first time. #types

q - Baag -

Hide comments 2

& Don Stewart Apr21, 2012 +2
Upside is early beer o'clock - thank you, mr. type checker.

Daniel Nugent Apr21, 2012
Noice! Where you been drinking since you transplanted?

Hangouts
Felipe Almeida Lessa »Apr21, 2012

And that's how you do it! =)

Christopher Done Apr 21, 2012 +17
Scumbag Haskeller:

Refactors whole code base.
Program still works.

Robert Harper Yesterday 12:12 AM
but of course!

Pain? Refactoring

* “Once it type checked...” heh, heh
 What about running tests while refactoring?
... even if the program doesn’t type check?

... even if parts of the program haven’t been
written?

newVersionOfMyFunction :: Widget -> Sprocket -> Assemblage

newVersionOfMyFunction = undefined

spaceman:~ sweirich$ ghci -fdefer-type-errors

GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

Prelude> let x = (True, 'a’ && False)

<interactive>:2:16: Warning:

Couldn't match expected type Bool' with actual type “Char

~ 1 !

In the first argument of " (&&)', namely 'a

In the expression: 'a' && False
In the expression: (True, 'a’' && False)
Prelude> :type X
X :: (Bool, Bool)
Prelude> fst x
True
Prelude> snd x
*** Exception: <interactive>:2:16:
Couldn't match expected type "Bool' with actual type ~“Char'

In the first argument of " (&&)', namely 'a
In the expression: 'a' && False
In the expression: (True, 'a’' && False)

(deferred type error)

Real Pain!

* Haskell is a research language, not supported
by a major corporation

— MSR will not invest more resources into it

* Open source (Yay!), fun for research (Yay!), but
“infrastructure” things don’t get done

IS

Questions?

thanks!

