Dependently-Typed Programming in
GHC

Stephanie Weirich

University of Pennsylvania

I¥

Acknowledgements

Simon Peyton Jones

Dimitrios Vytiniotis

Brent Yorgey UNIVERSITY of PENNSYLVANIA
Richard Eisenberg
Justin Hsu

icrosoft
Julien Cretin N%search

José Pedro Magalhaes

lavor Diatchki

Conor McBride galois ZVINRIA

§\v University of X

S~
5 b = Universiteit Utrecht Strathcl de
%@ Glasgow y

My (Overly Ambitious) Abstract

Is Haskell a dependently-typed programming language?

The Glasgow Haskell Compiler (GHC) type-system extensions, such as
Generalized Algebraic Datatypes (GADTs), multiparameter type classes and
type families, give programmers the ability to encode domain-specific
invariants in types. Clever functional programmers have used these features
to enhance the reasoning capabilities of static type checking. But really, how
far have we come?

In this talk, | will (attempt to) answer the question ”Is it Dependent Types
Yet?”, through examples, analysis and comparisons with modern full-
spectrum dependently-typed languages, such as Agda and Coq. What sorts of
dependently-typed programming can be done? What sorts of programming
do these languages support that Haskell cannot? What should GHC learn
from these languages, and conversely, what lessons can GHC offer in return?

Why Dependent Types?

Verification: Dependent types express application-specific
program invariants that are beyond the scope of existing type

systems

Expressiveness: Dependent types enable flexible interfaces,
allowing more programs to be statically checked

Uniformity: The same syntax and semantics is used for
computations, specifications and proofs

Program verification is “just programming”

s GHC dependently-typed?

YES

Example: Red Black Trees

Application-specific invariants:
— Binary search tree
— Root is black
— Empty nodes at the leaves are black
— Red nodes have black children

— From each node, every path to a leaf has the same number of black
nodes

As with all verification, choose Q
trade-off between correctness ° °

and complexity Q O °

/

00 o 000
[cf. Kahr’s Coq version] o @ 0

Red/Black Trees in Haskell

data Color = R | B
data T a = E | N Color (T a) a (T a)

color :: T a -> Color
color E = B

color (N c) = C

member :: Ord a => a -=> T a -> T a
= False
T ay b) =

member

member

= member X b

X E

X
X < y = member X a
X >y

= True

cf. Okasaki 1998

Insert

result may have a red node

ins x E = N R E x E with a red child.
ins X s@(N c a y b)
X < y = balancelL ¢ (ins x a) y b
X >y = balanceR c¢c a y (ins X b)

S Two fixes:
- rebalance if Black on top

of two Reds
insert :: Ord a => a —=> T JEEE0 T deloht 1 latel =hemal=r =ale

insert x t = blacken (ins x t) where
blacken E = error “erk”
blacken (N a x b) = NB axb

Rebalancing

balanceL :: Ord a =>
Color -> T a -=> a ->Ta ->T a
balance,. B (N R (NR a x b) yc) z d
(NR (NBaxb)y (NBc z d))
balanceL,. B (NR a x (NR b yc)) z d
(NR (NBaxb)y (NBc z d))

balancelL. ¢c a x b= Nc¢c axb

Can we statically enforce
Red/Black tree invariants?

Root is black
Empty nodes at the leaves are black
Red nodes have black children

Alternative syntax for ADTs

data Color where
R :: Color
B

:: Color
data T (a :: *) where

E :: T a

N :¢: Color -=> Ta->a ->Ta->T a

With normal datatypes, result of each

constructor is always the same

GADT: Index by the root color

data T (¢ :: Color) (a :: *) where
E ¢:¢: T B a
N ::

Tcl a->a->Tc2 a->T«c3 a

* Indexed datatypes (GADTs)
* Datatype promotion

data RBT (a :: *) where
Root :: T B a -> RBT a

GADT: Index by the root color

data T (¢ :: Color) (a :: *) where
E ¢:¢: T B a
N :: Valid cl c2 c3 =>

Tcl a->a->Tc2 a->T¢c3 a

class Valid (cl::Color) (c2::Color) (c3::Color)
instance Valid B B R

instance Vvalid cl c2 B * Indexed datatypes (GADTs)
* Datatype promotion
data RBT (a :: *) where * Multiparameter type classes

Root :: T B a -> RBT a

Runtime access to the node color

data Sing (¢ :: Color) where

SR :: Sing R “Singleton” GADTs provides a

SB :: Sing B runtime witness to type-level data.

Sing c isomorphic to Color but with
more informative type

data T (¢ :: Color) (a :: *) where
E T B a
N Valid cl c2 ¢c3 => Sing c3
-> T cl a->a->Tc2a->T=¢c3 a

color :: T ¢ a -> Sing C
color E = SB

color (N c) = C

Static enforcement

N SR E 1 E

ghci> let tl
ghci> :t tl
T R Integer
ghci> let t2
ghci> :t t2
T B Integer
ghci> let t3 = N SR tl1 2 E
<interactive>:23:10:

No instance for (Valid R B R)

arising from a use of N

I
2

SB tl 2 (N SR E 3 E)

Possible fix: add an instance
declaration for (Valid R B R)

Insertion

ins :: Ord a => a -=> T c a -> ?22?2?
X E=NGSRE X E

ins X (Nc ay b)
X <y = balancelL ¢ (ins x a) y b
X >y = balanceR ¢ a y (ins X b)

= Ncayb

Insertion produces a tree
that “slightly” violates the

invariant.
This tree is not representable.

insert :: Ord a => a -> RBT a -> RBT a
insert (Root t) = blacken (ins x t) where
blacken :: ?2?? -> RBT a

Safe insertion?

* Data type preserves invariants too strongly
data T (¢ :: Color) (a :: *) where
E :¢: T B a
N :: Valid cl c2 ¢3 => Sing c3

-> T cl a ->a ->Tc2 a->T-¢c3 a

* A new data type to hold slightly wrong, nonempty trees that
hides the top-level color

data Node (a :: *) where
Node :: Sing cC

-> T ¢cl a -=> a -=> T c2 a -> Node a

How to insert into tree?

ins :: Ord a => a -=> T ¢ a -> Node a
X E = Node SR E x E

ins X (Nc ay b)
X <y = balancelL ¢ (ins x a) y b
X > y = balanceR ¢ a y (ins X b)

= Node ¢ a y b

insert :: Ord a => a -> RBT a -> RBT a
insert (Root t) = blacken (ins x t) where
blacken :: Node a -> RBT a

blacken (Node a x b) =
Root (T SB a x b)

Rebalancing

balancel :: Ord a => Sing cC
-> Node a -> a -> T cl a
balancelL SB (Node SR (N SR a X
(Node SR (N SB a x b) y (N
balancel. SB (Node SR a x (N SR
(Node SR (N SB a x b) y (N
balancelL ¢ a X b = (Node ¢ a x

-> Node a
b) yc) zd
SB c z d))
byc)) zd
SB c z d))
b)

Rebalancing

balancelL :: Ord a => Sing cC
-> Node a -> a -=> T cl a -> Node a
balancel. SB (Node SR (N SR a x b) y ¢c) z d
(Node SR (N SB a x b) v (N SB c z d))
balancel. SB (Node SR a x (N SR by c)) z d =
(Node SR (N SB a x b) v (N SB c z d))
balancel—eax b ={(Nedeec—axb)
balancel. ¢ (Node SR a'@(N SB) x'
b'@(NSB)) xb =
(Node ¢ (N SR a' x' b') x b)
balancelL ¢ (Node SR a'@E x' b'@E) x b =
(Node ¢ (N SR a' x' b') x b)
balancel. ¢ (No«¢

Nontrivial exhaustiveness check:
QIR 1,51 ancel, SR (Node SR (N SR a x b) y ¢) ..
impossible.

BlackHeight

data Nat = S Nat | Z

Uses promotion again

data T (c :: Color) (n :: Nat) (a :: *)
where

E :¢: T B Z a
N :: Valid cl c2 ¢c3 => Sing c3
-> T cl na->a->Toc2 n a

-> T ¢3 2?2727 a

BlackHeight

data Nat = S Nat | Z
type family Inc (c::Color) (n::Nat) :: Nat
type instance (Inc B n) = S n
type instance (Inc R n) = n Type families
i.e. Type-level functions

data T (¢ :: Color) (n :: Nat) (a :: *)

where

E T B Z a

N Valid cl c2 ¢c3 => Sing c3

> T cl na ->a->Tc2 n a

-> T ¢3 (Inc ¢c3 n) a

Top-level tree

data T (¢ :: Color) (n :: Nat) (a :: *)
where

E
N

T B Z a

Valid cl ¢c2 ¢3 => Sing n
-> T cl na->a->T<c2n a
-> T ¢3 (Inc ¢c3 n) a

Existential Datatype
data RBT a where type argument n

Root =2 T B n a -> RBT a doesnotappearinresult

Why is this dependent types?

* Informative case analysis
— Pattern matching GADTs refines type checking
— Singletons connect types and terms

* Type-level computation (i.e. “large eliminations”)
— Type families
— Datatype promotion
— Kind polymorphism

* First-class polymorphism
— Existential data constructors
— Higher-rank types

How does GHC compare?

* Phase distinction
 “Partial” correctness

* Type inference & Qualified types

GHC: Phase distinction

* Terms can never appear in types
* Complete distinction between types and terms

types

Can show equivalent Can compile to machine code

Coqg/Agda: No Phase Distinction

* Proof assistants based on
Type Theory

* Terms can appear in types
(trivially)

* No distinction between
types and terms

Can show equivalent Can compile to machine code

Getting around the phase distinction

promoted datatypes datatypes
pe families functions

singleton datatypes
singleton functions

Benefits of the phase distinction

Prevents types from being “infected” by terms.
— Don’t have to decide arbitrary program equivalence
— Don’t have to reason about effectful code (esp. 10 monad)

Clearly separates specificational arguments from runtime
arguments (important for efficient compilation)

f forall (c Color). Bool
f forall (c Color). Sing c -> Bool

Parametricity (?)

— Have parametricity results for GADTs, type-level computation
[Vytiniotis & Weirich 2007, 2010]

— Just figuring out parametricity for dependent types [Bernardy et. al
2010]

Problems with singletons

* Must define same datatype and functions multiple times

* Must convert between “vanilla” and “refined” versions of the
data

Problems with singletons

data Bool = True | False -- promotion makes Bool also a kind
data SBool (b :: Bool) where
STrue :: SBool True
SFalse :: SBool False
(&&) :: Bool -> Bool -> Bool
True && X = X
False && _ = False
type family (:&&:) (bl :: Bool) (b2 :: Bool) :: Bool

type instance True :&&: X = X
type instance False :&&: x = False

(%&&) :: SBool bl -> SBool b2 -> SBool (bl :&&: b2)
True %$&& X = X
False $%$&& = False

Bool and SBool are isomorphic

fromSBool :: SBool a -> Bool
fromSBool STrue = True

fromSBool SFalse = False

data ExSBool = forall a. Ex (SBool a)
toSBool :: Bool -> ExSBool

toSBool True = Ex STrue

toSBool False = Ex SFalse

Blurring the phase distinction

e Strathclyde Haskell Extension (SHE Preprocessor) [McBride]
e Datatype Promotion [TLDI 2012, Yorgey et al.]

* Automatic Singletons [work in progress, Eisenberg]
— Template Haskell code to generate duplicate code, isomorphism
— Uniform interface to singleton code

newtype family Sing (a :: k) —- kind-indexed function
type instance Sing (a :: Bool) where

STrue :: Sing True

SFalse :: Sing False
type instance Sing (a :: Maybe k) where

SNothing :: Sing Nothing

SJust :: Sing (b :: k) -> Sing (Just b)

Future Work

* |s this enough for practical programming?

— Overheads nudge towards limited use of dependency, maybe that’s a
good thing?

types

“Partial” Correctness

* |n Cog/Agda all programs must terminate
— Under Curry-Howard Isomorphism all programs are proofs
— Logical consistency: “False” is an uninhabited type

* There is no termination checking in GHC
— Good news: Much easier for programmers who don’t do proofs

— Bad news: No logical consistency. Every type and every kind is
inhabited in GHC

* Have we really proved anything?

“Partial” Correctness

data Eq (a :: k) (b :: k) where
Refl :: Egaa

symmetry:: Eqab -> Eqba
symmetry Refl = Refl

Can define an equality proposition
in Haskell, asserting the equality between
two types. Note: kind polymorphic!

“Partial” Correctness

data Eq (a :: k) (b :: k) where
Refl :: Egaa

symmetry :: Eqab -> Egba
symmetry-Refl=Refl

symmetry = error “Just Kidding”

Can define an equality proposition
in Haskell, asserting the equality between
two types. Note: kind polymorphic!

b=

“Partial” Correctness

insert :: Ord a => a -> RBT a -> RBT a
* In Agda/Coq, know that insertion function is totally correct

* In GHC, type soundness asserts that if insert terminates
without error and we get a tree, then the tree satisfies RBT
invariants

— But insert could trigger a pattern match failure or diverge
— And the tree could have | elements!

Future directions?

Layer totality checking on top of GHC?

— Exhaustiveness checking for pattern matching difficult

Combine partial and total dependently-typed language
together

— Type system indicates termination behavior

— Proofs are a sublanguage of programs

— Proofs can reason about (potentially) nonterminating programs

— Programs can manipulate first-class proofs

Related work
— TRELLYS [Kimmel et al. PLPV 12, Casinghino et al. MSFP 12]
— F-Star [Swamy et al. ICFP 11, POPL 12]

Type Inference

What is type inference?

Inferring the types of values, including the interface to
functions.

Implicit argument inference

Supplying specificational arguments to functions that can be
inferred from type checking

f :: forall a. a -> a

f (\x -=> x + 1)

Constraint resolution

Satisfying constraints at the applications of functions
insert :: Ord a => a -> RBT a -> RBT a
insert “a” t

GHC'’s Secret Weapon

Constraint-based type inference

Comprensive type inference story for type classes, GADTS,
type functions, etc. based on constraints

OuTsIDEIN(X) [Schrijvers et al. 2009, Vytiniotis et al. JFP 2010]

Type classes and dependent types

* Specificational constraints

class Valid (cl::Color) (c2::Color) (c3::Color)
instance Valid B B R

instance Valid cl c2 B

* “Fake” implicit arguments
class SingI (a :: k) where
sing :: Sing (a :: k)
instance Singl (True :: Bool) where sing = STrue
instance Singl (False :: Bool) where sing = SFalse

* Type classes being adopted by Coq [Gonthier et al. 2011] and
Agda [Devriese & Piessens, 2011]

Future research w/ constraints

Constrained polymorphism provides the framework for new
type-system extensions:

* First-class constraints [Orchard and Schrijvers 2010,
Bolingbroke 2011]

 TypeNats [Diatchki, current work]

— Natural numbers + equality and inequality axioms
— Solved (now) by adding to GHC's constraint solver
— Future: external/pluggable constraint solver?

Program verification is “just functional and logic programming”?

MPTCs vs. Type functions

* Open question: how to express type-level computation?

* Type families (aka type functions):

type family Inc (c::Color) (n::Nat) :: Nat
type instance (Inc B n) = S n

type instance (Inc R n) = n

* MPTC

type class Inc (c::Color) (n::Nat) (m ::Nat) | cn ->m
type instance Inc B n (Sn)

type instance Inc R n n

* Type functions more natural to functional programmers and more similar to
Agda/Coq.

* GHCrestricts how they can be used.

Future research w/ type functions

In Haskell, can only generalize over datatype constants, not
type functions.

— Gives strong inference guarantee:
ml al = m2 a2 impliesml = m2 andal = a2
— Necessary to typecheck common idioms: [return 2,return 3]

Type functions must be saturated

— Can’t instantiate Monad type class with type function (such as Id)
— F al ~ F a2 doesnotimply al ~ a2

Can we do better?
— Mark some type functions as injective?
— Explicit instantiation for type functions?

Conclusion

* GHC continues to be a productive testlab for type system

extensions

— GADTs

— Type Families (type level functions)

— Existential datatypes (and constraints)
— First-class polymorphism

— Datatype Promotion

— Kind polymorphism

— Constraint Kinds

— TypeNats

— Automatic singletons

* On the way to the world’s finest dependently-typed
programming language

