
Simple Unification-based Type
Inference for GADTs

Stephanie Weirich
University of Pennsylvania

joint work with Dimitrios Vytiniotis, Simon
Peyton Jones and Geoffrey Washburn

Overview
• Goal: Add GADTs to Haskell
• Problem: GADT type inference is hard
• Requirements:
– Simple, declarative specification
– Easy to implement in GHC

• Solution: Type annotations
• Non-goal: type as many programs as

possible

A typical evaluator

data Term = Lit Int
| Succ Term
| IsZero Term
| If Term Term Term

data Value = VInt Int | VBool Bool

eval :: Term -> Value
eval (Lit i) = VInt i
eval (Succ t) = case eval t of { VInt i -> VInt (i+1) }
eval (IsZero t) = case eval t of { VInt i -> VBool (i==0) }
eval (If b t1 t2) = case eval b of

VBool True -> eval t1
VBool False -> eval t2

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

Richer data types

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2

here, a=Int.
rhs has type Int

In here, a=Bool
rhs has type Bool

• In a case alternative, we learn more about ‘a’;
we call this type refinement

• Can’t construct ill-typed terms: (If (Lit 3) …)
• Evaluator is simpler and more efficient

Algebraic Data Types

data T a = T1 | T2 Bool | T3 a a

gives rise to constructors with types
T1 :: T a
T2 :: Bool -> T a
T3 :: a -> a -> T a

Return type is always (T a)

Normal Haskell or ML data types:

Generalized Algebraic Data Types

• Allow arbitrary arguments to return
type

• Programmer gives types of constructors
explicitly

• Subsumes standard algebraic datatypes
and datatypes with “existential
components” [LO94]

data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a

GADTs have MANY applications

• Language description and implementation
 (Typed evaluators,Pugs)
• Domain-specific embedded languages
(Darcs,Yampa)

• Generic programming
 (Hinze et al.,Weirich)
• “Dependent” types
(Xi et al.,Sheard)

Adding GADTs to GHC

• Simple extension
– No big changes to language semantics
– No re-engineering compiler

• GADTs generalize algebraic datatypes
– Uniform mechanism for ADTs, “existential

components” and GADTs
– All existing Haskell programs still work

• Complete specification of type inference
– Predictability

Just a modest extension?

Yes....
• Construction is simple: constructors are just

ordinary polymorphic functions
• All the constructors are still declared in one

place
• Pattern matching is still strictly based on the

value of the constructor; the dynamic
semantics is type-erasing

Complete type inference is hard
• Many examples require polymorphic

recursion
• Even for those that don’t, problems remain

• What is type of f ?

data T a where
 C :: Int -> T Int

f (C x) = 3 + x

Neither type is
more general

∀ a. T a -> Int

∀ a. T a -> a

T Int -> Int

Annotations solve the problem

• Naïve specification allows multiple types for f
– T Int -> Int
– ∀ a. T a -> Int
– ∀ a. T a -> a

• Inference algorithm can assign just one
• Annotations remove this ambiguity in the

specification

Basic idea
• Type system distinguishes between inferred

types and those known from user
annotations

• Typing context and judgment tracks when
types are wobbly or rigid

Modifiers m, n ::= w | r
Environments Γ,Δ ::= . | Γ, x:m σ
Judgment Γ ⊢ t :m τ

• Γ ⊢ t :r τ means that term t has type τ when
we know τ completely in advance.

• Γ ⊢ t :w τ checks without that assumption.

GADT refinement
• GADT refinement only involves rigid type

information
– Rigid scrutinee triggers refinement
– Only rigid context types refined
– Only rigid result types refined

• Example:

data T a where C :: Int -> T Int
f :: forall a.T a -> a -> Int
f (C x) y = x + y

-- inferred type: T Int -> Int -> Int
g (C x) y = x + y

Type checking a case expression

x :m τp ∈ Γ
Γ ⊢ p → t : <m,n> τp → τt

Γ ⊢ (case x of p -> t) :n τt

Type checking a wobbly branch

Type of scrutinee is
wobbly

Guess instantiation
of type arguments to C

data T a where C :: a -> T a
f y = case y of C x -> x + 1

Type checking a rigid branch

Refine result
type if it is rigid

Refine rigid
parts of the

context

Unify scrutinee type
with result type of

constructor

data T a b where C :: b -> T Int b
f :: T a Bool -> a -> a
f y w = case y of C x -> if x then w else 1

Checking + inference is hard
• MGU is the standard way to solve constraints

and produce a substitution
– Used in Algorithm W

• We really thought this would work
• But, even with all these annotations

– scrutinee of case
– return type of case
– all refined variables in context

 MGU does not produce a complete
specification of what programs typecheck.

Pathological example

Should this program type check?

Context: x:r Eq a b, y :r a->Int, z:r b, w:w b
Compute θ = MGU(Eq c c = Eq a b)

If θ = { a ⇒ b, c ⇒ b } then yes
If θ = { b ⇒ a, c ⇒ a } then no
If θ = { b ⇒ c, a ⇒ c } then no

data Eq a b where
 Refl :: Eq c c

f :: ∀a b. Eq a b -> (a -> Int) -> b -> Int
f x y z = (\w -> case x of Refl -> y w) z

 “Fresh” - mgu
• Problem

– Choice of MGU makes refined type match type of
wobbly variable

• A solution
– Choose the right(?) MGU

• Our solution
– Don’t choose any MGU
– In this situation, never let refined type match

wobbly type
– Choose a fresh variable d and use unifier

 θ = {a ⇒ d, b ⇒ d, c ⇒ d}
– Rejects pathological example

Other details
• Additional rules to locally propagate type

annotations
– Like shape inference pass (Pottier/Régis-Gianis)

• Lexically-scoped type variables
– Must be able to annotate all sub-expressions
– Bind both “universally” and “existentially”

quantified type variables in program text
• Nested patterns

– more complicated rules, but straightforward

• See paper for details

• Sometimes adding an annotation can cause a working
program to be rejected

• Hasn’t been a problem in practice
• Pathological example:

– Making y rigid triggers refinement

– Making return type rigid restores typability

Non-monotonic annotations

data T a where C :: T Int
x:r T a, y :w a ⊢ case x of C -> y :w a

x:r T a, y :r a ⊬ case x of C -> y :w a

x:r T a, y :r a ⊢ case x of C -> y :r a

Formal Properties
• Type system is sound

– Type-preserving translation to explicitly-typed
language (System F + GADT)

– Soundness proved for explicit language
• Type system is expressive

– Any program in explicitly-typed language
acceptable (with enough annotations)

• Type inference algorithm is sound and
complete

• Type system is a conservative extension of
Hindley-Milner system

• All details in companion technical report

Related work
• Pottier and Simonet

– Use implication constraints for complete type inference
– Solving such constraints can be intractable

• Our previous (unpublished) version
– Implemented in a previous version of GHC
– More complicated than this system: types may be partly

wobbly
• Pottier and Régis-Gianis

– Constraint-based
– Shape inference pass to propagate local annotations
– Second pass for explicit type system

• Sulzmann et al.
– Constraint-based
– Abandons complete type inference
– Concentrates on error messages

Future work
• Resolve poor interaction between type

classes and GADTs
• More general way to combine type

inference and type checking
– slightly different mechanism useful for

higher-rank/impredicative polymorphism
• Towards dependently-typed

programming languages

Conclusions
• GADTs implemented in GHC
• Can extend unification-based type

inference with GADTs
• Simple specification of type system due

to user annotations
• Complete specification of where type

annotations are necessary is important

