
Dependent types and program
equivalence

Stephanie Weirich, University of Pennsylvania
with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg

Doing dependent types wrong
without going wrong

Stephanie Weirich, University of Pennsylvania
with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg

What are dependent types?

Types that depend on elements of other types.
  Examples:

  vec n – type of lists of length in
  Generalized tries
  PADS
  Type of ASTs that represent well-typed code

  Statically enforce expressive program properties
  BST ops preserve BST invariants
  CompCert compiler

Two sorts in practice today

Pure everywhere Pure types only

Types indexed by actual computations,
everything is pure (terminating)

Types indexed by a pure language,
separate from impure computations

•  Decidable type checking
•  Easy to connect type system to actual
computation
•  Uniform reasoning independent of phase
•  Total correctness

•  Decidable type checking
•  Expressive computation language,
including nontermination, state & control
effects, etc

•  Not really a programming language •  Index language may have minimal
similarity to computation language, both in
syntax and semantics
•  "Partial" Correctness

Examples: Coq, Epigram, Agda2 Examples: DML, ATS, Ωmega, Haskell

Let’s do it wrong…

  What about languages that are impure everywhere?
  Deliberately allow nonterminating terms in types
  Type:Type [Cardelli 86], Cayenne [Augustsson 98]

  What does a type soundness proof for such a language look
like?
  Note: type checking undecidable

  Advantages
  Linguistic uniformity, reasoning does not depend on phase
  Programming language, not a logic

  Disadvantages
  How to type check?
  Partial correctness

What else do we want?

  Syntactic type soundness proof
  Easily extensible

  Strong eliminators
  "If x = true then int else bool"
  Important for expressivity, refinements, etc.

  Call-by-value language
  If we have an impure language, we must fix the evaluation order
  CBV has better treatment of control effects

  "Modular" metatheory
  Program equivalence is hard. Let's not commit to a particular

definition.

"Pure everywhere" type system - PTS

  No distinction between types, terms, kinds
 e, τ, k ::= x | λx.e | e e' | (x:τ1) ➝ τ2 | ∗ | ◻
 | T | C | case e { Ci xi ⇒ ei }
  One set of formation rules
 Γ ⊢ e : τ

  Conversion rule uses beta-equivalence
Γ ⊢ e : τ1 Γ ⊢ τ2 : s τ1 ~ τ2

Γ ⊢ e : τ2

  Term equivalence is fixed by type system (and defined to
be the same as type equivalence).

τ1 and τ2 are
beta-

convertible

New vision

  Syntactic distinction between terms, types, and kinds
k ::= ∗ | (x:τ) ➝ ∗
τ ::= (x:τ1) ➝ τ2 | T | τ e | case e ⟨T e' ⟩ { Ci xi ⇒ τ i }
e ::= x | fun f (x) = e | e e' | C e | case e { Ci xi ⇒ ei }

  Key syntactic changes
  Term language includes non-termination
  Curry-style, no types in expressions

  Convenient simplifications
  Datatypes have one index, data constructors have one

argument (unit/products in paper)
  No polymorphism, no higher-kinded types (future work)

Parameterized term equivalence

  Given an "equivalence context"
  Δ ::= . | Δ , e1 = e2

  Assume the existence of program equivalence predicate
  isEq (Δ, e1, e2)

  Equality is untyped
  No guarantee that e1 and e2 have the same type
  No assumptions about the types of the free variables

  Rules do not use substitution, add to equivalence context
instead

Type system

  Two sorts of judgments
  Equality for type, contexts, and kinds

  Formation for contexts, kinds, types and terms

  All judgments derivable from an inconsistent context
  incon (Δ) if there exist pure terms Ci wi and Cj wj such that

isEq (Δ , Ci wi, Cj wj) and Ci ≠ Cj

  Pure terms
  w ::= x | fun f (x) = e | C w

Typing rules (excerpt) Extract equivalence
context

Typing rules for case

Type equivalence (excerpt)

Questions to answer

  What properties of isEq must hold to show
preservation & progress?

  What instantiations of isEq satisfy these properties?

Necessary assumptions about isEq

  Is an equivalence class
  Contains evaluation: e ↦ e' implies isEq (Δ, e, e')

  Constructors are injective for pure arguments
  isEq (Δ, C w, C w') implies isEq (Δ, w, w')

  Empty context is consistent
  C ≠ C' implies isEq(., C w, C' w') does not hold

  Closed under pure substitution
  isEq (Δ, e, e') implies isEq (Δ{w/x}, e{w/x}, e'{w/x})

  Preserved under contextual operations
  isEq ((Δ, e = e', Δ'), e1, e2) and isEq(Δ, e, e') implies

isEq (Δ Δ', e1, e2)
  isEq (Δ Δ'',e1, e2) implies isEq (Δ Δ' Δ'', e1, e2)
  isEq (Δ, e1, e2) and Δ = Δ' implies isEq (Δ', e1, e2)

What satisfies these properties?

  Compare normal forms (ignoring Δ)
  Only types STLC terms

  Contextual equivalence (ignoring Δ)
  Only types STLC terms

  RST-closure of evaluation, constructor injectivity, and
equivalence assumptions

  CBV Contextual equivalence modulo Δ
  Some strange equalities that identify nonterminating

terms with terminating terms
  Safe to conclude isEq(let x = loop in 3, 3) as long as we

don’t conclude isEq(let x = loop in 3, loop)
  Safe to say isEq(loop,3) as long as we don’t say isEq(loop, 4)

What about decidable type checking?

  All instantiations of isEq are undecidable
  Must contain evaluation relation

  Decidable approximations are type safe, but don’t satisfy
preservation
  Any types system that checks strictly fewer terms than a safe

type system is safe

  Preservation important for compiler transformations
  Want to know that inlining always produces safe code
  Not really an issue: Decidable doesn't mean tractable

What about termination analysis?

  Like most type systems, only get "partial correctness"
results:
  Σx:t. P(x) means “If this expression terminates, then it

produces a value of type t such that P holds”
  Implications (P1 ➝ P2) may be bogus

  Termination analysis produces total correctness
  Termination/stage analysis is an optimization

  permits proof erasure in CBV language

Future work

  Add polymorphism, higher-order types
  Keep curry-style system for simple specification of isEq

  Annotated external language to aid type checking
  Similar to ICC* [Barras and Bernardo]
  Terms contain type annotations, but equality defined for erased

terms
  Type checking still undecidable but closer to an algorithm

  Add control/state effects to computations
  Should we limit domain of isEq?
  Non-termination ok in types, but exceptions are not?

  Can we provide type/termination information to
strengthen equivalence?

Conclusions – What have we achieved?

  Uniform design
  Same reasoning for compile time as run time
  Not easy for CBV!

  Simple design
  Program equivalence isolated from type system
  Proved all metatheory in Coq in ~2 weeks (OTT + LNgen)

  General design
  Program equivalence not nailed down
  Lots of examples that satisfy preservation, not just type

soundness

