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What are dependent types? 

Types that depend on elements of other types.  
  Examples: 

  vec n – type of lists of length in 
  Generalized tries 
  PADS 
  Type of ASTs that represent well-typed code 

  Statically enforce expressive program properties 
  BST ops preserve BST invariants 
  CompCert compiler 



Two sorts in practice today 

Pure everywhere Pure types only 

Types indexed by actual computations, 
everything is pure (terminating) 

Types indexed by a pure language, 
separate from impure computations 

•  Decidable type checking   
•  Easy to connect type system to actual 
computation 
•  Uniform reasoning independent of phase 
•  Total correctness 

•  Decidable type checking  
•  Expressive computation language, 
including nontermination, state & control 
effects, etc 

•  Not really a programming language •  Index language may have minimal 
similarity to computation language, both in 
syntax and semantics  
•  "Partial" Correctness 

Examples: Coq, Epigram, Agda2 Examples: DML,  ATS, Ωmega, Haskell 



Let’s do it wrong… 

  What about languages that are impure everywhere?  
  Deliberately allow nonterminating terms in types 
  Type:Type [Cardelli 86], Cayenne [Augustsson 98] 

  What does a type soundness proof for such a language look 
like? 
  Note:  type checking undecidable 

  Advantages 
  Linguistic uniformity, reasoning does not depend on phase 
  Programming language, not a logic 

  Disadvantages 
  How to type check? 
  Partial correctness 



What else do we want? 

  Syntactic type soundness proof 
  Easily extensible 

  Strong eliminators 
  "If x = true then int else bool" 
  Important for expressivity, refinements, etc. 

  Call-by-value language 
  If we have an impure language, we must fix the evaluation order 
  CBV has better treatment of control effects 

  "Modular" metatheory 
  Program equivalence is hard. Let's not commit to a particular 

definition. 



"Pure everywhere" type system - PTS 

  No distinction between types, terms, kinds 
         e, τ, k  ::=  x | λx.e | e e' | (x:τ1) ➝ τ2 | ∗ | ◻ 
                      |   T |  C  | case e { Ci xi ⇒ ei } 
  One set of formation rules 
                                            Γ ⊢ e : τ 

  Conversion rule uses beta-equivalence 
Γ ⊢ e : τ1       Γ ⊢  τ2 : s        τ1 ~ τ2 

Γ ⊢ e : τ2 

  Term equivalence is fixed by type system (and defined to 
be the same as type equivalence). 

τ1 and τ2 are 
beta-

convertible 



New vision 

  Syntactic distinction between terms, types, and kinds 
k  ::=   ∗ | (x:τ) ➝  ∗ 
τ  ::=  (x:τ1) ➝ τ2 | T  | τ e  | case e ⟨T e' ⟩ { Ci xi ⇒ τ i }  
e  ::=  x | fun f (x) = e | e e' | C e | case e { Ci xi ⇒ ei }  

  Key syntactic changes  
  Term language includes non-termination  
  Curry-style, no types in expressions 

  Convenient simplifications 
  Datatypes have one index, data constructors have one 

argument (unit/products in paper) 
  No polymorphism, no higher-kinded types (future work) 



Parameterized term equivalence 

  Given an "equivalence context" 
  Δ ::= . | Δ , e1 = e2 

  Assume the existence of program equivalence predicate 
  isEq (Δ, e1, e2) 

   Equality is untyped  
  No guarantee that e1 and e2 have the same type 
  No assumptions about the types of the free variables 

  Rules do not use substitution, add to equivalence context 
instead 



Type system 

  Two sorts of judgments 
  Equality for type, contexts, and kinds 

  Formation for contexts, kinds, types and terms 

  All judgments derivable from an inconsistent context 
  incon (Δ) if there exist pure terms Ci wi and Cj wj such that  

isEq (Δ , Ci wi,  Cj wj ) and Ci ≠ Cj 

  Pure terms 
  w ::= x | fun f (x) = e | C w  



Typing rules (excerpt) Extract equivalence 
context  



Typing rules for case 



Type equivalence (excerpt) 



Questions to answer 

  What properties of isEq must hold to show 
preservation & progress? 

  What instantiations of isEq satisfy these properties? 



Necessary assumptions about isEq 

  Is an equivalence class 
  Contains evaluation:  e ↦ e'  implies isEq (Δ, e, e') 

  Constructors are injective for pure arguments 
  isEq (Δ, C w, C w') implies isEq (Δ, w, w') 

  Empty context is consistent 
  C ≠ C' implies isEq(., C w, C' w') does not hold 

  Closed under pure substitution 
  isEq (Δ, e, e') implies isEq (Δ{w/x}, e{w/x}, e'{w/x}) 

  Preserved under contextual operations 
  isEq ((Δ, e = e', Δ'), e1, e2) and isEq(Δ, e, e') implies 

isEq (Δ Δ',  e1, e2) 
  isEq (Δ Δ'',e1, e2) implies isEq (Δ Δ' Δ'', e1, e2)  
  isEq (Δ, e1, e2) and Δ = Δ' implies isEq (Δ', e1, e2)   



What satisfies these properties? 

  Compare normal forms (ignoring Δ) 
  Only types STLC terms  

  Contextual equivalence (ignoring Δ) 
  Only types STLC terms 

  RST-closure of evaluation, constructor injectivity, and 
equivalence assumptions 

  CBV Contextual equivalence modulo Δ  
  Some strange equalities that identify nonterminating 

terms with terminating terms 
  Safe to conclude isEq(let x = loop in 3, 3) as long as we  

don’t conclude isEq(let x = loop in 3, loop) 
  Safe to say isEq(loop,3) as long as we don’t say isEq(loop, 4) 



What about decidable type checking? 

  All instantiations of isEq are undecidable 
  Must contain evaluation relation 

  Decidable approximations are type safe, but don’t satisfy 
preservation 
  Any types system that checks strictly fewer terms than a safe 

type system is safe 

  Preservation important for compiler transformations  
  Want to know that inlining always produces safe code 
  Not really an issue: Decidable doesn't mean tractable 



What about termination analysis? 

  Like most type systems, only get "partial correctness" 
results: 
  Σx:t. P(x) means “If this expression terminates, then it 

produces a value of type t such that P holds” 
  Implications (P1 ➝ P2) may be bogus 

  Termination analysis produces total correctness 
  Termination/stage analysis is an optimization 

  permits proof erasure in CBV language 



Future work 

  Add polymorphism, higher-order types 
  Keep curry-style system for simple specification of isEq 

  Annotated external language to aid type checking 
  Similar to ICC* [Barras and Bernardo] 
  Terms contain type annotations, but equality defined for erased 

terms 
  Type checking still undecidable but closer to an algorithm 

  Add control/state effects to computations 
  Should we limit domain of isEq?  
  Non-termination ok in types, but exceptions are not? 

  Can we provide type/termination information to 
strengthen equivalence? 



Conclusions – What have we achieved? 

  Uniform design 
  Same reasoning for compile time as run time 
  Not easy for CBV! 

  Simple design 
  Program equivalence isolated from type system 
  Proved all metatheory in Coq in ~2 weeks (OTT + LNgen) 

  General design 
  Program equivalence not nailed down 
  Lots of examples that satisfy preservation, not just type 

soundness 


