What are
dependent
types and
what are they
good for?

Stephanie Weirich

ENIAC President's Distinguished Professor of
Computer and Information Science

University of Pennsylvania

»

=8
u,m%_.ij% cadll ud i W
ke sense of software?
7 J ¥ i ",'-,

How do we ma

oy,
v .‘

Static typing is by far the most
widely used program verification
technology in use today

Principle: Static type systems
help us create and maintain
reliable software, at scale

Types let us make * * .*, *
distinctions x

between th|ngs that regular guy angel wings fathead slant head

look similar “. * ‘* * *

4 way 3 way super point square foot big foot
Types tell us how

:ccg:gnegcizfr\ould fit * * * * *

little foot long foot claw foot P'9eontoed geyjj i)
or neck pinch

Improving these leads to better type systems

u/PeranerdErndrerd

https://www.reddit.com/user/PeranerdErndrerd/

How to Design Type Systems

/AII programs

Programs that do

what you want
Programs th

type check

No bugs here,
but the type system
gets in the way
Underlying problem: Type system
can't express why some things

Quld fit together

N

Has a bug but the type
system can’t rule it out
Underlying Problem:
Type system can't make
the right distinctions

How to Design Type Systems

/AII programs \

Has a bug but the type
system can’t rule it out
Underlying Problem:
Type system can't make
the right distinctions

ograms that
type check

No bugs here,
but the type system
gets in the way

Underlying problem: Type sys
can't express why some things

Quld fit together /

Robin Milner's Types

A tool for practical programming

A Theory of Type Polymorphism in Programming
ROBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm %" which enforces the
discipline. A Semantic Soundness T"heorem (based on a formal semantics for the language)
states that well-type programs cannot ‘““go wrong’’ and a Syntactic Soundness Theorem
states that if %~ accepts a program then it is well typed. We also discuss extending these

‘ Semantic soundness theorem
‘& "Well-typed programs cannot

go wrong"

Milner's

Contributions ,
Syntactic soundness theorem

Algorithm W that decides when
programs are well-typed

Semantic Soundness Theorem:

"Well-typed Programs cannot go wrong"

* Semantics includes a value "wrong" that corresponds to run-
time failure
e EXAMPLE: using a function value as a conditional

* Type system assigns types to some expressions and semantic
values, but "wrong" does not have a type

* Semantic Soundness Theorem: the semantic value of a well-
typed expression is well-typed (with the same type)

* Corollary: If an expression type checks, it cannot evaluate to
Ilwrongll

Syntactic Soundness Theorem: Algorithm W

 Key feature of Milner's language is type polymorphism
map : V. a B. (a -> B) -> a list -> B list

e Algorithm W calculates principal types (every function has a
"best" or "most polymorphic" type)

* Complete type inference: no type annotations required!

* Syntactic soundness theorem: Algorithm W correctly
determines whether programs are well-typed

* Foundation for ML and Haskell languages, used to this day

Can Dependent Types improve on Milner's
type system?

Semantic soundness: Well-typed programs cannot "go wrong"
* Type system approximates "buggy program" by "going wrong"
* "Buggy" defined by the programming language semantics
* What if: buggy could be defined by the program itself?
* Dependent type systems enable more distinctions

Syntactic soundness: Algorithm W
* Types are properties of values, and there is a "best" type
* What if: types could express relationships between values?
* Dependent type systems enable more programs to type check,
but less automatically

Dependent types Rust Typescript

Kotlin
Milner Scala Swift
Caml OCaml F#
Standard ML
GADTs DataKinds
Haskell TypeFamilies Singletons
TypelnType
~ N
F* Everest

Trellys
Pebble

Russell

Idris

Martin-Lof
Epigram
Coq LEGO Agda

AUTOMATH LF

Nuprl
CompCert LAVN

2010

What are dependent types good
for in practical programming?

Dependent” Haskell ATS

Trellys *

GADTs DataKinds Id r|S

TypeFamilies Singletons

L Epigram Agda

Application-specific I
distinctions between values

Access control

data User = Admin | Normal
data Account = Account { userType :: User ... }

—— run code with any user account

doUserStuff :: Account —> I0 ()

—— only admin accounts allowed

doAdminStuff :: Account -> IO ()

—— make sure this runs *xwithout* admin privileges
doPublicStuff :: Account —> IO ()

Access conrol

data User = Admin | Normal
data Account (u :: User) = Account { userType :: ..

—— run code with any user account

doUserStuff :: Account u —> IO ()

—— only admin accounts allowed

doAdminStuff :: Account Admin -> IO ()

—— make sure this runs *xwithout* admin privileges
doPublicStuff :: Account Normal —> IO ()

Red-Black Trees

data Tree :: Type where
E :: Tree
NR :: Tree -> A -> Tree -> Tree -- red node
NB :: Tree -> A -> Tree -> Tree -- black node

data RBT :: Type where
Root :: Tree -> RBT

. Red nodes have black children

. Empty trees are black

. Root is black

. Both children of a node have
same black height

B~ WON -

insert :: RBT -> A -> RBT
insert (Root t) x = ..

Red-Black Trees

data Tree :: Color -> Type where
E :: Tree Black
NR :: Tree Black -> A -> Tree Black -> Tree Red
NB :: Tree cl1 -> A -> Tree c2 -> Tree Black

data RBT :: Type where 1. Red nodes have black children

Root :: Tree Black -> RBT 2. Empty trees are black
3. Root is black
insert :: RBT -> A -> RBT 4. Both children of a node have

insert (Root t) x = .. same black height

Red-Black Trees

data Tree :: Color -> -> Type where
E :: Tree Black
NR :: Tree Black -> A -> Tree Black -> Tree Red
NB :: Tree cl -> A -> Tree c2 -> Tree Black

data RBT :: Type where 1. Red nodes have black children

Root :: Tree Black n -> RBT 2. Empty trees are black
3. Root is black

insert :: RBT -> A -> RBT
insert (Root t) x = ..

More Examples (distinctions)

e Verified data structures
(Merkle Trees, Braun Trees, etc)

* Units of measure (2 inches vs. 2cm)

* Data provenance (tracking unsanitized inputs)
* Refinement types (positive integers, nonempty lists)
* Well-scoped and strongly-typed ASTs

Application-specific I
relationships between values

Data Processing in Python

def read db(classes schema, students schema):

classes data = load table(classes schema, 'classes.json')
student _data = load table(students schema, 'students.json')
name = raw_input("Whose students do you want to see:")
students = [student for class in classes data \

for student in student data \

if (class['prof'] == name) \

and (student['id'] in class['students'])]
map(lambda row: print(row['name']), students)

Data Processing in Haskell

read db classes schema students schema = do

classes data <- load table classes schema "classes.json”
student data <- load table students schema "students.json”
name <- putStr "Whose students do you want to see?" >> getLine
let students = [student | class <- classes data

, student <- student data

, class.prof == name

, student.id "elem class.students]
mapM_ (\row -> print row.name) students

read db :: (HasField (Row) [Int],

HasField (Row) String,

HasField (Row) Int,

HasField (Row) String) =>
Schema -> Schema -> I0 ()

read db classes schema students schema = do

classes data <- load table classes schema "classes.json”
student data <- load table students schema "students.json”
name <- putStr "Whose students do you want to see?" >> getLine
let students = [student | class <- classes data

, student <- student data

, class. == name

, Student. "elem” class.]
mapM_ (\row -> print row.) students

Types relate schema to data

load _table :: Schema schema -> FilePath -> IO [Row schema]

-- Schema type describes expected data format
classes _schema :: Schema [Col "prof" String
, Col "students" [Int]
, Col "course_id" String]
-- Ensures data is a list of rows in the specified format
class data = ["Weirich" :> [1,5,7] :> "CIS 552" :> Nil
, Zdancewic" :> [1,2] :> "CIS 341" :> Nil]

Types describe interfaces

Informal specification of Web API

The endpoint at /users expects a GET request and returns a list of JSON objects
describing users, with fields name, email, and registration date,

or a single user specified by an id number

data User = User { name :: String,
email :: String,
registration _date :: Day }

type UserAPI =
"users" :> Get '[JSON] [User] :<|>
"users" :> Capture "id" Int :> Get '[JSON] User

Haskell Servant Library

* APl type expresses relationship between the server and client
applications

* Server: Ensures web application provides exactly this functionality

server :: Server UserAPI
server = sendUserById :<|> return users

sendUserById id = if id < length users then return (users !! id)
else throwError err404

* Client: Receives values of the associated type

getUserById :<|> getUsers = client userAPI

Automatic marshalling

Server and client need to convert between type User and JSON
formatted strings.

data User = User { name :: String,
email :: String,
registration _date :: Day }

deriving (Eq, Show, Generic)

instance ToJSON User -- uses Aeson library to derive
instance FromJSON User -- based on Generic rep of type

Dependent Types track relationship between User and its generic
representation.

More exam p\es (relationships)

* Other rich interfaces (printf, regexp matching)

* Type-based reflection (Dynamic types, type-indexed maps,
datatype-generic programming)

* Protocols, i.e. interfaces with effects (state machines, session
types, algebraic effects)

* Improved performance (Express low-level memory layouts,
eliminate dynamic array bounds and tag checks, verify C
code)

* Embedded Domain-Specific Languages (Hardware/FPGAs,
Music, Contract Law, etc.)

The Future of Dependent Types in Practical
Programming

* Distinctions for describing resource usage: integration of linear and
dependent types (already in Agda, Idris)

 New approaches to type and proof inference: SMT solvers
(LiguidHaskell), tactic languages (Mtac2), algorithms (QuickLook)

* More type-directed program development: the type system as a
guide either in the IDE or for automatic synthesis

* More flexibility in working with coercions and isomorphisms: new
semantics for dependent types (HoTT, Higher-Inductive Types)

Summary: Static types provide
practical benefits to programmers.

Dependent types provide practical
benefits to type systems.

* Making application-specific
distinctions between values

* Expressing application-specific

relationships between values

