
What are 
dependent 
types and 
what are they 
good for?
Stephanie Weirich

ENIAC President's Distinguished Professor of
Computer and Information Science

University of Pennsylvania



How do we make sense of software?



Static typing is by far the most 
widely used program verification 

technology in use today



Principle: Static type systems 
help us create and maintain 

reliable software, at scale 



Types let us make 
distinctions 
between things that 
look similar

Types tell us how 
things should fit 
together

u/PeranerdErndrerd

Improving these leads to better type systems

https://www.reddit.com/user/PeranerdErndrerd/


How to Design Type Systems 

Programs that do 
what you want

Programs that 
type check

All programs

No bugs here, 
but the type system
gets in the way
Underlying problem: Type system 
can't express why some things 
should fit together

Has a bug but the type 
system can’t rule it out
Underlying Problem: 
Type system can't make 
the right distinctions



How to Design Type Systems 

Programs that do 
what you want

Programs that 
type check

All programs

No bugs here, 
but the type system
gets in the way
Underlying problem: Type system 
can't express why some things 
should fit together

Has a bug but the type 
system can’t rule it out
Underlying Problem: 
Type system can't make 
the right distinctions



Robin Milner's Types
A tool for practical programming





Milner's 
Contributions 

Semantic soundness theorem
"Well-typed programs cannot 

go wrong"

Syntactic soundness theorem
Algorithm W that decides when 
programs are well-typed



Semantic Soundness Theorem: 
"Well-typed Programs cannot go wrong"
• Semantics includes a value "wrong" that corresponds to run-

time failure 
• EXAMPLE:  using a function value as a conditional

• Type system assigns types to some expressions and semantic 
values, but "wrong" does not have a type
• Semantic Soundness Theorem: the semantic value of a well-

typed expression is well-typed (with the same type)
• Corollary: If an expression type checks, it cannot evaluate to 

"wrong"



Syntactic Soundness Theorem: Algorithm W

• Key feature of Milner's language is type polymorphism
map : ∀ ɑ β. (ɑ -> β) -> ɑ list -> β list    

• Algorithm W calculates principal types (every function has a 
"best" or "most polymorphic" type)
• Complete type inference: no type annotations required!
• Syntactic soundness theorem: Algorithm W correctly 

determines whether programs are well-typed
• Foundation for ML and Haskell languages, used to this day



Can Dependent Types improve on Milner's 
type system?
Semantic soundness: Well-typed programs cannot "go wrong"
• Type system approximates "buggy program" by "going wrong"        
• "Buggy" defined by the programming language semantics
• What if: buggy could be defined by the program itself?
• Dependent type systems enable more distinctions

Syntactic soundness: Algorithm W
• Types are properties of values, and there is a "best" type 
• What if: types could express relationships between values?
• Dependent type systems enable more programs to type check, 

but less automatically



Rust Typescript

Scala Swift
Kotlin

1980 201020001990 2020

Milner

Haskell

Martin-Löf

Standard ML
Caml OCaml F#

GADTs DataKinds
Singletons

TypeInType
TypeFamilies

Idris
Epigram

ATS F*  EverestTrellys
Pebble
Russell

Agda
LF

L∃∀N

LEGO

CompCert
Nuprl

CoqAUTOMATH

Dependent types



What are dependent types good 
for in practical programming?

Idris
Epigram

ATS F*  Trellys"Dependent" Haskell
GADTs DataKinds

Singletons
TypeInType

TypeFamilies
Agda



Application-specific 
distinctions between values



Access control

data User = Admin | Normal 
data Account = Account { userType :: User ... }

-- run code with any user account
doUserStuff :: Account -> IO ()
-- only admin accounts allowed 
doAdminStuff :: Account -> IO () 
-- make sure this runs *without* admin privileges 
doPublicStuff :: Account -> IO () 



Access conrol

data User = Admin | Normal 
data Account (u :: User) = Account { userType :: … }

-- run code with any user account
doUserStuff :: Account u -> IO ()
-- only admin accounts allowed 
doAdminStuff :: Account Admin -> IO () 
-- make sure this runs *without* admin privileges 
doPublicStuff :: Account Normal -> IO () 



Red-Black Trees
data Tree :: Type where
E  :: Tree 
NR :: Tree -> A -> Tree -> Tree   -- red node 
NB :: Tree -> A -> Tree -> Tree -- black node

data RBT :: Type where
Root :: Tree -> RBT 

insert :: RBT -> A -> RBT
insert (Root t) x = …

1. Red nodes have black children
2. Empty trees are black
3. Root is black
4. Both children of a node have 

same black height



Red-Black Trees
data Tree :: Color -> Type where
E  :: Tree Black
NR :: Tree Black -> A -> Tree Black -> Tree Red
NB :: Tree c1 -> A -> Tree c2 -> Tree Black  

data RBT :: Type where
Root :: Tree Black -> RBT 

insert :: RBT -> A -> RBT
insert (Root t) x = …

1. Red nodes have black children
2. Empty trees are black
3. Root is black
4. Both children of a node have 

same black height



Red-Black Trees
data Tree :: Color -> Nat -> Type where
E  :: Tree Black Zero
NR :: Tree Black n -> A -> Tree Black n -> Tree Red n
NB :: Tree c1 n -> A -> Tree c2 n -> Tree Black (Suc n)

data RBT :: Type where
Root :: Tree Black n -> RBT 

insert :: RBT -> A -> RBT
insert (Root t) x = …

1. Red nodes have black children
2. Empty trees are black
3. Root is black
4. Both children of a node have 

same black height



More Examples (distinctions) 

•Verified data structures 
(Merkle Trees, Braun Trees, etc)
•Units of measure  (2 inches vs. 2cm)
•Data provenance (tracking unsanitized inputs)
•Refinement types (positive integers, nonempty lists)
•Well-scoped and strongly-typed ASTs 



Application-specific 
relationships between values



Data Processing in Python

def read_db(classes_schema, students_schema):
classes_data = load_table(classes_schema, 'classes.json')
student_data = load_table(students_schema, 'students.json')
name = raw_input("Whose students do you want to see:") 
students = [ student for class in classes_data \

for student in student_data \
if (class['prof'] == name) \
and (student['id'] in class['students'])]

map(lambda row: print(row['name']), students) 



Data Processing in Haskell

read_db classes_schema students_schema = do
classes_data <- load_table classes_schema "classes.json"
student_data <- load_table students_schema "students.json"
name <- putStr "Whose students do you want to see?" >> getLine
let students = [ student | class <- classes_data

, student <- student_data
, class.prof == name
, student.id `elem` class.students ]

mapM_ (\row -> print row.name) students



read_db classes_schema students_schema = do
classes_data <- load_table classes_schema "classes.json"
student_data <- load_table students_schema "students.json"
name <- putStr "Whose students do you want to see?" >> getLine
let students = [ student | class <- classes_data

, student <- student_data
, class.prof == name
, student.id `elem` class.students ] 

mapM_ (\row -> print row.name) students

(HasField "students" (Row schema1) [Int], 
HasField "prof" (Row schema1) String,
HasField "id" (Row schema2) Int,
HasField "name" (Row schema2) String) => 

Schema schema1 -> Schema schema2 -> IO () 

read_db ::



Types relate schema to data

load_table :: Schema schema -> FilePath -> IO [Row schema]

-- Schema type describes expected data format 
classes_schema :: Schema [ Col "prof" String

, Col "students" [Int] 
, Col "course_id" String ]

-- Ensures data is a list of rows in the specified format
class_data = [ "Weirich" :> [1,5,7] :> "CIS 552" :> Nil

, "Zdancewic" :> [1,2] :> "CIS 341" :> Nil ]



Types describe interfaces
Informal specification of Web API

The endpoint at /users expects a GET request and returns a list of JSON objects 
describing users, with fields name, email, and registration_date,
or a single user specified by an id number

data User = User { name :: String, 
email :: String, 
registration_date :: Day }

type UserAPI =
"users" :> Get '[JSON] [User]  :<|>
"users" :> Capture "id" Int :> Get '[JSON] User 



Haskell Servant Library
• API type expresses relationship between the server and client 

applications
• Server: Ensures web application provides exactly this functionality

server :: Server UserAPI
server = sendUserById :<|> return users

sendUserById id = if id < length users then return (users !! id) 
else throwError err404

• Client: Receives values of the associated type

getUserById :<|> getUsers = client userAPI



Automatic marshalling
Server and client need to convert between type User and JSON 
formatted strings. 

Dependent Types track relationship between User and its generic 
representation.

data User = User { name :: String, 
email :: String, 
registration_date :: Day }

deriving (Eq, Show, Generic)

instance ToJSON User     -- uses Aeson library to derive
instance FromJSON User   -- based on Generic rep of type



More examples (relationships)

• Other rich interfaces (printf, regexp matching) 
• Type-based reflection (Dynamic types, type-indexed maps, 

datatype-generic programming)
• Protocols, i.e. interfaces with effects (state machines, session 

types, algebraic effects)
• Improved performance (Express low-level memory layouts, 

eliminate dynamic array bounds and tag checks, verify C 
code)
• Embedded Domain-Specific Languages (Hardware/FPGAs, 

Music, Contract Law, etc.)



The Future of Dependent Types in Practical 
Programming
• Distinctions for describing resource usage: integration of linear and 

dependent types (already in Agda, Idris)
• New approaches to type and proof inference: SMT solvers 

(LiquidHaskell), tactic languages (Mtac2), algorithms (QuickLook)
• More type-directed program development:  the type system as a 

guide either in the IDE or for automatic synthesis
• More flexibility in working with coercions and isomorphisms: new 

semantics for dependent types (HoTT, Higher-Inductive Types) 



Summary: Static types provide 
practical benefits to programmers.

Dependent types provide practical 
benefits to type systems.

•Making application-specific 
distinctions between values
• Expressing application-specific 

relationships between values


