How to write a
great research paper:
Simon’s seven easy steps

Stephanie Weirich
University of Pennsylvania

based on a talk by
Simon Peyton Jones
Microsoft Research, Cambridge

Why write a great paper?

@ Maybe you don’t need to learn how to write a great

paper...

R It takes a lot of time & effort, shouldn’t you be doing
research?

R There are lots of bad papers out there, maybe it 1s not
important

R THIS IS WRONG! Good writing 1s a fundamental part
of research excellence.

R You will get more papers accepted
R Your ideas will have more impact
R You will have better ideas

1. Don’t wait: write

Writing papers: model 1

s~

Do research Write paper

Writing papers: model 2

e~ g

-y Write paper

ldea Write paper Do research

«® Forces us to be clear, focused
«r Crystallizes what we don’t understand

«® Opens the way to dialogue with others: reality check,
critique, and collaboration

How to get started

—ommr—

Fallacy You need to have a fantastic idea before
you can write a paper. (Everyone else
seems to.)

Do not be intimidated

= = e

Write a paper about any idea, no matter
how insignificant it may seem to you

R Writing the paper is how you develop
the idea in the first place

R It usually turns out to be more interesting
and challenging than it seems at first

2. Identify your key 1dea

R

Your paper’s goal:
convey your 1dea

o

R You want infect the mind of your reader with your

idea, like a virus A

&R Your idea must provide some re-usable
insight to the reader <

R Papers are the best way to communicate and record
research ideas

One clear, sharp idea

e GO

R Your paper should have just one “ping”

R You may not know exactly what the ping 1s
when you start; but you must know when you

finish

«r If you have lots of ideas, write lots of papers

Be explicit about your 1dea

e GO

«® Make certain that the reader 1s in no doubt what your
1dea 1s.
R “The main idea of this paper is....”

R “In this section we present the main contributions of
fncpaper.

Rk Many papers contain good 1deas, but do not distill what
they are.

3. Tell a story

Your 1dea 1s the center of
narrative flow

Iwish I

S = = = knew how
to solve

: that!
Rk Here 1s a problem

R It’s an interesting problem

< It’s an unsolved problem I see how
that works.

. s Ingenious!
R Here is my idea

@ My 1dea works (details, data)

«k Here’s how my idea compares to other
people’s approaches

Structure

(conference paper)

SIS
Title (1000 readers)

Abstract (4 sentences, 100 readers)
Introduction (1 page, 100 readers)
The problem (1 page, 10 readers)
My 1dea (2 pages, 10 readers)

The details (5 pages, 3 readers)
Related work (1-2 pages, 10 readers)

Conclusions and further work (0.5 pages)

The introduction (1 page)

A o = =

1. Describe the problem
2. State your contributions

...and that 1s all

ONE PAGE!

Describe the problem

1 Introduction

There are two basic ways to implement function application in
a higher-order language, when the function is unknown: the
push/enter model or the eval/upply model [11]. To illustrate the
difference, consider the higher-order function zipWith, which zips
together two lists, using a function k to combine corresponding list
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith k [] (] = []
zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Here k is an unknown function, passed as an argument; global flow
analysis aside, the compiler does not know what function k is bound
to. How should the compiler deal with the call k x y in the body
of zipWith? It can’t blithely apply k to two arguments, because
k might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of the zipWithisa
list of functions.

Molehills not Mountains

e GO

R “Computer programs often have bugs. It is very
important to eliminate these bugs [1,2]. Many
researchers have tried [3,4,5]. It really 1s very
important.”

R “Consider this program which has an interesting bug.
<brief description>. We will show an automatic
technique for removing such bugs.”

The introduction (1 page)

A o = =

1. Describe the problem
2. State your contributions

...and that 1s all

ONE PAGE!

4. Nail your contributions

~ \\\ =9

2

State your contributions

A = == g

Write the list of contributions first

The list of contributions drives the entire paper:
the paper substantiates the claims you have made

Reader thinks “gosh, if they can really deliver
this, that’d be exciting; I'd better read on”

State your contributions

A = == g

Which of the two is best in practice? The trouble is that the eval-
nation model has a pervasive effect on the implementation, so it is
too much work to implement both and pick the best. Historically,

compilers for strict languages (using call-by-value) have tended to

use eval/apply, while those for lazy languages (using call-by-need) 7 :

have often used push/enter, but this is 90% historical accident —ei- Bulleted 1]-St Of
ther approach will work in both settings. In practice, implementors . —
choose one of the two approaches based on a qualitative assessment COHtI‘lbllthIlS

of the trade-offs. 1n this paper we put the choice on a firmer basis:

e We explain precisely what the two models are, in a common
notational framework (Section 4). Surprisingly, this has not
been done before.

e The choice of evaluation model affects many other design Do not leave the reader
choices in subtle but pervasive ways. We identify and dis-
cuss these effects in Sections 5 and 6, and contrast them in to guess what your
Section 7. There are lots of nitty-gritty details here, for which contributions are!

we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking

Contributions should be

refutable

We describe the WizWoz
system. It is really cool.

We give the syntax and semantics of a
language that supports concurrent
processes (Section 3). Its innovative
features are...

We study its properties We prove that the type system is sound,
and that type checking is decidable
(Section 4)

We have used WizWoz in We have built a GUI toolkit in WizWoz,

practice and used it to implement a text editor

(Section 5). The result is half the length
of the Java version.

No “rest of this paper 1s structured as follows...”

5. Related work: later

Structure

o

No related work yet!

\‘I/

Related
| work

Your reader Your idea

We adopt the notion of transaction from Brown [1], as modified for
distributed systems by White [2], using the four-phase interpolation
algorithm of Green [3]. Our work differs from White in our advanced

revocation protocol, which deals with the case of priority inversion as
described by Yellow [4].

Related work

=R
Fallacy To make my work look good, I

have to make other people’s work
look bad

The truth: credit 1s not like money

G1ving credit to others does not
diminish the credit you get from
your paper

Warmly acknowledge people who have helped
you

Be generous to the competition. “In his inspiring
paper [Foo98] Foogle shows.... We develop his
foundation in the following ways...”

Acknowledge weaknesses in your approach

6. Put your readers first

~ \\\ 2

Structure

Presenting the 1dea

3. The idea

Consider a bifircuated semi-lattice D, over a
hyper-modulated signature S. Suppose p; is an
element of D. Then we know for every such p;
there is an epi-modulus j, such that p; < p;.

Sounds impressive...but
Sends readers to sleep

In a paper you MUST provide the details,
but FIRST convey the idea

Presenting the 1dea

A = == g

R Conveying the intuition is primary, not
secondary

&R Once your reader has the intuition, she can
follow the details (but not vice versa)

R Even 1f she skips the details, she still takes
away something valuable

Conveying the intuition

—ommr—

Using examples

2 Background

To set the scene for this paper, we begin with a brief overview of
the Scrap your boilerplate approach to generic programming. Sup-
pose that we want to write a function that computes the size of an
arbitrary data structure. The basic algorithm is “for each node, add
the sizes of the children, and add 1 for the node itself”. Here is
entire code for gsize:

- Example
gsize :: Data a => a -> Iat I'lght away
gsize t = 1 + sum (gmanQ gsize t) — : — ‘
The type for gsize says that it works over any type a, provided a

is a data type — that is, that it is an instance of the class Data!

The definition of gsize refers to the operation gmapQ, which *~ =~

method of the Data class: The Simon PJ
class Typeable a => Data a where question: is there
...other methods of class Data... any typewriter

gmapQ :: (forall b. Data b => b -> r) -> a -> font?

Put the reader first

e GO

Do not recapitulate your personal journey of
discovery. This route may be soaked with your blood,
but that 1s not interesting to the reader.

Do not craft a mystery novel, leaving the biggest
surprise for the end.

Instead, choose the most direct route to the 1dea.

It’s not about you

S e g

Fallacy Fact

We write papers and Great papers are

give talks mainly to influential because they
impress others, gain communicate ideas to
recognition, and get readers

promoted

I USED TO HATE WRITING | | I REALI\ZED THAT THE WITH A LITTLE PRACTICE, | THE DYNAMICS OF INTERBEING
ASSIGNMENTS , BUT Now PURPOSE OF WRITING IS WRITING CAN RE AN AND MONOLOGICAL IMPERATIVES

T ENJON THEM, TO INFLATE WEAK \DEAS, INTIMIDATING AND 2| W DICK AND JANE - A STUDY
T\ || RstURe PooR REASONING, | INPENETRABLE FOR! IN PSICHIC TRANSRELATIONAL
AND INHIBIT CLARITY. WANT TO SEE MY BooK

REPORT ?

Aq pNQISQUOSIBNEM D66

=
SIRPUAS 55814 (RSIDANN

Use simple, direct language

The object under study was
displaced horizontally

On an annual basis

Endeavour to ascertain

It could be considered that the
speed of storage reclamation left
something to be desired

The ball moved sideways

Yearly

Find out

The garbage collector was really
slow

Many good resources

A o = =

WILLIAM ﬁ JUSEPH M. IWILLIAMS | JOSEPH M. WILLIAMS

STRUNKJR
WHITE Sm[

= (g~ " TOWARD CLARTY |
ELEMENTS AND GRACE
—— Oy ——

STYLE —

115

(,/42/

the THINKING PERSON’'S GUIDE

in th

(/ O ;';'_',-s..
/(2:€72" ////(2
d THE BLANK SLATE

7. Listen to your readers

Get help from readers

= . = o
R Collaborate (via version control software)

R QGet feedback from your friends

R Each reader can only read your paper for the first time
once! So use them carefully

R Get feedback from your competitors

®R “Could you help me ensure that I describe your work
fairly?”

R Listen to your reviewers

R Read every criticism as a positive suggestion for
something you could explain more clearly

Simon’s Steps to Great Writing

R = = e

. Don’t wait: write

. Identify your key idea

. Tell a story

. Nail your contributions
. Related work: later

. Put your readers first

J O\ U B WON e

. Listen to your readers

