Mechanizing a Decision Procedure
for Coproduct Equality in Twelf

Arbob Ahmad (applying to PhD programs this fall!)
Dan Licata

Robert Harper

Carnegie Mellon University

Equality

Equality of program terms is one of the thorniest issues
In type theory. Various applications, including:

e justifying compiler optimizations
e dependency: program equality induces type equality

Dan Licata WMM 2007

Equality

Equality of program terms is one of the thorniest issues
In type theory. Various applications, including:

e justifying compiler optimizations
e dependency: program equality induces type equality

Thorny because you often want equality to be
e as coarse as possible
e decidable

Dan Licata WMM 2007

Equality

STLC with finite products and sums:
T = 11— T |1y XTo |1 |T1+T2 |0

e = ...|inle |inre |case(e,zs.e;,z2.€2) |...

Equality: congruenceI' - e = ¢': 7

Dan Licata WMM 2007

Equality

STLC with finite products and sums:
T = 11— T |1y XTo |1 |T1+T2 |0

e = ...|inle |inre |case(e,zs.e;,z2.€2) |...

Equality: congruenceI' - e = ¢': 7

How is equality defined?

Dan Licata WMM 2007

Equality for Sums

Standard @7 rules for —, x, 1 capture categorical
universal properties

What is the equivalent for sums?

case(inl e, zy.e1,20.€2) = |e/x]eg O+

case(inr e, xy.e;,T2.€2) = |e/x]es B

Dan Licata WMM 2007

Equality for Sums

n for sums: “defines the same decision tree”

Pick any subterm of sum type and pivot on it at the
outside:

€:T1] + T2
le/x]e’ = case(e, x;.[inl 7 /x]e’, x2.]inr zo /x]€)

T+

C.f. the uniqueness condition of the categorical universal
property for coproducts.

Dan Licata WMM 2007

Equality for Sums: Consequences

Reconstruction:

€:T1 + T2
e = case(e, xz.inl x7, xs.inr T2)

Dan Licata WMM 2007

Equality for Sums: Consequences

Reconstruction:

€:T1 + T2
e = case(e, xz.inl x7, xs.inr T2)

Commuting conversions:

(case(e, xy.e1,x0.€2)) ¢ = case(e,z7.e; €, x5.e9 €')

Dan Licata WMM 2007

Equality for Sums: Consequences

Reconstruction:

€:T1 + T2
e = case(e, xz.inl x7, xs.inr T2)

Commuting conversions:

(case(e, xy.e1,x0.€2)) ¢ = case(e,z7.e; €, x5.e9 €')

Permuting conversion (c.f. BDD variable ordering):

case(e, zy.case(f,y:.f1,y2.fo), x0.€2) =
case(f, y;.case(e, v1.f1, T2.€2), yz.case(e, 11 .f2, T2.€2))

Dan Licata WMM 2007

Deciding Coproduct Equality 1s Tricky

n. has a very non-local flavor: pick any subterm and
pivot on it
Previous decision procedures:

e Ghani (1995), Lindley (2007) using rewriting

e Altenkirch et al. (2001), Balat et al. (2004) using
NBE/TDPE

Dan Licata WMM 2007

This Work

e Give a new decision procedure for coproduct equality
based on a canonical forms technique

e Mechanize the proof of its correctness in Twelf

Dan Licata WMM 2007

This Work

e Give a new decision procedure for coproduct
equality based on a canonical forms technique

e Mechanize the proof of its correctness in Twelf

Dan Licata WMM 2007

Our Decision Procedure

Toprove: I' - ¢ = ¢ :7is decidable

Our approach: give a sound, complete, and decidable
algorithmic definition of equality

1. Translate terms into a language of canonical forms.
Many equal terms have the same canonical form

2. Compare canonical forms with a structural
congruence to get the remaining equalities

Dan Licata WMM 2007

Canonical Forms

Goal: only one way to write equivalent terms.
You can’t write:

B (Az.z)y,onlyy

B+ case(inl z, z;.inl z7,22.()), only inl x
n = attype 1, only ()

n—1 fattype1 — 1,only A_.f ()

Dan Licata WMM 2007

10

Canonical Forms

Goal: only one way to write equivalent terms.
You can’t write:

B (Az.z)y,onlyy

B+ case(inl z, z;.inl z7,22.()), only inl x
n = attype 1, only ()
n—1 fattype1 — 1,only A_.f ()

How do canonical forms control 7 ?

Dan Licata WMM 2007

10

Canonical Forms

e Monadic language based on CLF [Watkins et al., '02]

e Distinction between asynchronous and synchronous
types based on focussing [Andreoli '92]

A = A1—>AQ‘A1><A2|Z‘{S}
S = A|S;+ 852 |0
Intuition:

> elims for synchronous types involve a third party

> monad controls the use of these elims

Dan Licata WMM 2007

11

Canonical Forms

Consider or: bool — bool — bool. Two Implementations:

1. AX.If X then A_.true else WA
2. AX. A\y.f X then true else y

Dan Licata WMM 2007

12

Canonical Forms

Consider or: bool — bool — bool. Two Implementations:

1. AX.If X then A_.true else WA
2. AX. A\y.f X then true else y

In canonical forms
e bool — (bool — bool) IS {bool} — ({bool} — {bool})

e Cannot write (1): case-analysis only when producing
something of type {5}

Dan Licata WMM 2007

12

Structural Congruence

Canonical forms don’t get rid of all instances of 7 :

e Permuting conversion:
case(e, zy.case(f, ys.f1,y2.f2), x2.€2) @and
case(f, ys.case(e, x7.f1,T2.€2), yo.case(e, x1.f2, T2.€2))

e Dead code: case(e, z;.(), z2.case(e, x;.dead, x2.())) and
case(e, z7.(), x2.())

e Indifference: case(e, z;.(), z2.()) and ()

Dan Licata WMM 2007

13

Structural Congruence

Consequently, we compare canonical forms up to
permuting conversions, dead code, and indifference.

Why bundle the three together?

e Permuting conversions are inherently symmetric, so
neither side Is to be preferred

e Permuting creates dead code and indifference

Dan Licata WMM 2007 14

Translation to Canonical Forms

Need meta-operations to withess expected principles:

e Hereditary substitution: compute the canonical result
of substituting one canonical form into another
(withesses cut admissibility)

e Expansion: expand a variable into a canonical term
(withesses identity principle)

e Inversion: rearrange a decision tree so that a
specified term is case-analyzed first (withesses
coproduct reasoning)

Dan Licata WMM 2007

- 15

Translation to Canonical Forms

Need meta-operations to withess expected principles:

e Hereditary substitution: compute the canonical result
of substituting one canonical form into another
(withesses cut admissibility)

e Expansion: expand a variable into a canonical term
(withesses identity principle)

e Inversion: rearrange a decision tree so that a
specified term is case-analyzed first (withesses
coproduct reasoning)

Translation from STLC to canonical forms is a simple
outer induction using these judgements

Dan Licata WMM 2007 15

Properties

e Totality: translation is a type-correct function

e Completeness: If two terms are equal, then they
translate to congruent canonical forms

e Soundness: If two terms translate to congruent
canonical forms, then they’re equal

e Decidability: congruence of canonical forms is
decidable

Dan Licata WMM 2007

16

Properties

OK Totality: translation is a type-correct function

Almost Completeness: if two terms are equal, then they
translate to congruent canonical forms
[everything but functionality of hered. subst.]

To do Soundness: If two terms translate to congruent
canonical forms, then they’re equal

To do Decidability: congruence of canonical forms is
decidable

Dan Licata WMM 2007 17

This Work

e Give a new decision procedure for coproduct equality
based on a canonical forms technique

e Mechanize the proof of its correctness in Twelf

Dan Licata WMM 2007

18

Syntax = LF Types and Constants

A = A1—>AQ‘A1><AQ|]‘{S}
S = A|S1+ 820

atp : type.

Stp . type.

arrow : atp -> atp -> atp.
prod : atp -> atp -> atp.
one . atp.

circ : stp -> atp.

Dan Licata WMM 2007

Syntax = LF Types and Constants

Terms (— and + fragment):

LF type
rtm
ntm
etm
mtm
Itm

Dan Licata WMM 2007

- = I = o

Syntactic Category

r |RN

Az. N |[{F}

M I|R>T

N |inl M |inr M
case(l;,Is) |asynch(z.FE)

20

Judgements = Indexed Type Families

Hereditary substitution [N /z] ,R = N': A’

represented by

hsubst-rr : ntm -> atp -> (rtm -> rtm)
-> ntm -> atp
-> type.

Dan Licata WMM 2007

21

Inference Rules = Constants

:NO/fE:AORZ —)\y.N/ : AQ — A
:NU/:E:AONQ = Ny
No/yla,N' = N"

[N0/$]A0R1 NQ — N” A

c : hsubst-r NO AO ([x] app (R1 x) (N2 x)) N” A
<- hsubst-rr NO AO R1 (lam N’) (arrow A2 A)
<- hsubst-n NO A0 N2 N2
<- hsubst-n N2’ A2 ([y] N’) N".

Dan Licata WMM 2007

29

Twelf Proves Termination

hsubst-rr : ntm -> atp -> (rtm -> rtm)
-> ntm -> atp

-> type.
%reduces A’ <= AO (hsubst-rr _ A0 A
%worlds (x:;rtm) + (hsubst-rr _)
%terminates {(AO ...) (R ...)}
(hsubst-rr _ AO R _)

(Ellipses: mutually recursive with hsubst for the other
syntactic categories)

Dan Licata WMM 2007

23

Thm. Statements = Annotated Type Families

Theorem: fI'y = As F N < Aand I' - Ny, < A,
then [Nz /y], N =N'andT - N' <= A.

thm : {A2}
{y : ntm} {dy : synth y A2} ncheck (N y) A)
-> ncheck N2 A2
-> hsubst-n N2 A2 ([y] N y) N’
-> ncheck N’ A

-> type.
%mode thm +A2 +D1 +D2 -D3 -DA4.
%worlds (x:tm, dx: synth x A) * (thm).

Dan Licata WMM 2007 24

Proofs = Constants + Totality Check

| © thm A2
([X] [dX] (ncheck-lam ([y] [dy] DcN x dx y dy)))
DcN2

(hsubst-n-lam DsN)
(ncheck-lam DcN’)

<- ({y} {dy : synth y Af}
thm A2 ([X] [dX] (DcN x dx y dy)) DcN2
(DsN y) (DcN' y dy)).

%total {(A ..) (D ..)} thm AD) ...

Dan Licata WMM 2007

25

Proof So Far

(768) Represent syntax and judgements

(5558) Functionality and type-correctness of translation to
canonical forms

(7617) Several lemmas leading up to completeness. E.g.
both sides of

€:T1 + T2
e = case(e, zz.inl x7, x2.inr)

have the same canonical form

Dan Licata WMM 2007

26

Proof Techniques

Uses lots of Twelf techniques:

e using %reduces for termination

e mutual induction and lexicographic induction
e reasoning with equality and respects lemmas
e proving unigueness lemmas

e Output factoring

e reasoning from false

e catch-all cases

Dan Licata WMM 2007

27

Dan Licata- 2007

http://twelf.plparty.org

_6 O_Ej Main Page - The Twelf Project (=
- t‘J “'?‘ ﬁ http:/ /twelf.plparty.org/wiki/Main_Page v || ﬂ * q,
.ﬁn Recent changes - The Twelf Pr... & uﬁn Main Page - The Twelf Project \
2 Login/create account T
article discussion view source history
¢T—A—NEL Main Page
Welcome to The Twelf Project
137 articles and counting...
the twelf wiki
= Main Page What is Twelf? What's new?

8 The Twelf Project
s Download Twelf
= Documentation

Twelf is a language used to specify, implement, and prave
properties of deduclve sysfems such as programming languages
and logics. Large research projects using Twelf include the TALT
typed assembly language, a foundational proof-carrying-code
system, and a type safety proof for Standard ML.

m Recent changes

m Contributing

o vt Visitars without a technical background are encouraged to read the
= Introductions general description of Twelf,
= Tutorials

Case studies

Twell glossary 0 | d Twelf
Ask Twealf ENF own an I e g

reference Cownload Twelf ar try it online,

Learn Twelf:

April 25, 2007
= Todd posted a tutorial on using Church encodings
10 create user-defined constraint domains.
April 11, 2007
= [fyou think up some exercises while you're learning
Twelf, add them to the intro tutorial,
March 21, 2007
= Official launch day! Thanks to everyone who has
contributed so far, and welcome to new visitars.
March 14, 2007

= Dan has finished a draft of the introductory article
Proving metathearems with Twelf.

28

http://twelf.plparty.org

= Hecent changes

u Contributing

learn twelf

® Introductions

s Tutorials

s Twelf glossary
= Ask Twelf EN

reference
® |LF bibliography
8 Research with Twelf

search

Go | Search |

toolbox

u What links here
® Related changes
s Liplpad file

= Special pages

= Printable versicn

8 Permanent link

Dan Licata WMM 2007

Proof techniques fedi]

Beginner [edif]

Holes in metatheorems - how 10 assume lemmas while developing proofs.

Equality - how to represent equality of LF terms as a type family.

Respects lemmas - how to prove that other families and constants respect equality and other relations.
Unigueness lemmas - how to prove that the inputs to a relation determine an output uniguely,

Effectiveness lemmas - how to prove totality assertions explicitly.

Cutput factoring - how 10 reason from a disjunction. lllustrates proving the progress theorem for a programming
language.

Reasaning from false - how to do proofs by contradiction.

Catch-all cases - how to avoid putting a theorem case in the LF context.

Mutual induction - how to prove mutually inductive theorems

Converting between implicit and explicit parameters - how to convert between implicit and explicit quantification
of the parameters of a type family.

Advanced [edif]

sStrengthening - how to convince Twelfthat a term does not depend on some assumptions.
Explicit termination metrics - how to use a termination metric other than the subderivation ordering.

= Numeric termination metrics - how to use numbers to induct on the size of some argument.
= Structural termination metrics - how to use fancier termination metrics that capture the structure of an argument
directly.
sSimplifying dynamic clauses - how to streamline certain proofs about relations that introduce hypotheses.
Canonical forms lemma for a progress theorem - how to get this lemma for free when you can, and how to prove g

http://twelf.plparty.org

the teelf wiki

Main Page

The Twelf Project
Cownload Twelf
Drocumentation

Recent changes

Contributing

learn tealf

Introductions
Tutarials
Case studies
Twelf glossary
Ask Twelf EIf

reference

LF bibliography
Research with Twelf

Dan Licata....WMM 2007

¥ Login/ creats account

artlele discussion edit history
Hereditary substitution for the STLC

You may wish fo read the tuforial on admissibilily of cuf first

in this tutorial, we recast the proof of cut admissibility as an algorithm for normalizing terms in the simply-typed
A-calculus. This algorithm is called hereditary substitution, itis used in the definition of LF itself, as well as in many
other type theories. To apply hereditary substitution, it is necessary to:

1. Define a language of canonical forms. in programming language terms, canonical forms correspond to terms
that are not B-reducible (beta-normal) and then are n-expanded as much as possible (eta-long); logically,
canonical forms correspond to the cut-free sequent calculus proofs.

2. Define hereditary substitution, which computes the canonical result of substituting one canonical form into
anather. In programming language terms, hereditary substitution is part of a normalization algorithm; logically,
it is the computational content of the proof of cut admissibility.

3. Define an eta-expansion judgement. In programming language terms, eta-expansion is partofa
normalization algorithm: logically, itis the computational content of the identity theorem t:[', _,:1 — _;:1 Y.

4. Define an external language that admits non-canonical forms by elabaration into the canonical forms. In
programming language terms, this elaboration relation corresponds to a normalization algorithm; logically, it
is the computational content of the proof of cut eliminatian.

in this article, we formalize hereditary substitution and elaboration in Twelf, We prove several results:

1. Itisdecidable whether or not a hereditary substitution exists. (This property is proved automatically by Twelf.)
2. Under the appropriate typing conditions, hereditary substitutions exist and preserve types. Moreover,
hereditary substitutions compute a unigue result.
3. Ela-expansions exist, preserve types, and are unigue. 30

Arbob’s Experience

“Determining the Twelf representation for the syntax and
judgments was generally straightforward. Typically, the
correct mechanization could be seen by direct analogy to
some similar construct that appeared in an example on
the wiki. In one case, the process of mechanizing the
syntax and judgments actually revealed a superfluous
term in our language, which we were then able to
eliminate.”

Dan Licata WMM 2007 31

Arbob’s Experience

“Of course, mechanizing the proofs was more
challenging. Often when a proof seemed difficult to
formalize or | was uncertain which lemmas the Twelf
proof would require, there was a case study on the wiki
that described the mechanization of a similar proof. The
mechanized proofs themselves generally resembled my

paper proofs. Typical
additional lemmas, w
paper proof. | found t

y, they just required some
nich | had glossed over in doing the

nat mechanizing the proofs typically

Increased my confidence In their correctness. Moreover,
mechanized proofs are far more useful for keeping a

clear and comprehen

sible record than informal proofs

which are typically scattered across numerous sheets of
paper or tex documents.”

Dan Licata WMM 2007

32

Summary

e New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

Dan Licata WMM 2007

- ...33

Summary

e New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

e SO far, straightforward to mechanize in Twelf

Dan Licata WMM 2007

- ...33

Summary

e New, fully syntactic decision procedure for
coproducts based on canonical forms methodology

e SO far, straightforward to mechanize in Twelf

e Accept Arbob to your PhD programs and he will do
your proofs instead!

Dan Licata WMM 2007 33

Thanks for listening!

The Twelf Wiki: http://twelf.plparty.org

Dan Licata WMM 2007

34

	Equality
	Equality

	Equality
	Equality

	Equality for Sums
	Equality for Sums
	Equality for Sums: Consequences
	Equality for Sums: Consequences
	Equality for Sums: Consequences

	Deciding Coproduct Equality is Tricky
	This Work
	This Work
	Our Decision Procedure
	Canonical Forms
	Canonical Forms

	Canonical Forms
	Canonical Forms
	Canonical Forms

	Structural Congruence
	Structural Congruence
	Translation to Canonical Forms
	Translation to Canonical Forms

	Properties
	Properties
	This Work
	Syntax = LF Types and Constants
	Syntax = LF Types and Constants
	Judgements = Indexed Type Families
	Inference Rules = Constants
	Twelf Proves Termination
	Thm. Statements = Annotated Type Families
	Proofs = Constants + Totality Check
	Proof So Far
	Proof Techniques
	http://twelf.plparty.org
	http://twelf.plparty.org
	http://twelf.plparty.org
	Arbob's Experience
	Arbob's Experience
	Summary
	Summary
	Summary

