A Mechanized Framework for Aspects in
Isabelle/HOL

Florian Kammuller and Henry Sudhof

Institut fiir Softwaretechnik und Theoretische Informatik

WMM, 4 October 2007

Motivation and Background

= Verification of object-oriented paradigms
e Aspect-oriented programming (AOP)

Distributed objects (ASP)

e |sabelle/HOL

Isabelle: generic interactive theorem prover

Embedding: types, constants, and definitions constitute
object logic (theory)

Isabelle/HOL: instance for classical HOL

Many applications for programming language semantics,
e.g. Java,

also specification languages: CSP, TLA, Object-Z, ...

Overview

@ Aspect-Orientation

@ The Theory of Objects in Isabelle/HOL

©® A Theory of Aspects

@ Discussion

Aspect-Oriented Programing (AOP)

Idea: Weave Advice into

OO-Program P ‘°“‘\
Advice = code fragments * \

Pointcuts: points at
which advice is woven in

0OO-Program

Aspect = Advice +
Pointcut-definition

Weave produces
combination

AOP-language: base
language (programs and
advice)+ Pointcut
definition language

AOP-Constructs

e Pointcut selection
e call: syntactic selection of method calls
e.g., all methods whose name contains “set”
e cflow: selection of control flow points
e.g., from entry to exit of method x
e Advice insertion
e before, after
e around: instead of selected command,
e or around with proceed: before/after original command

= Change of semantics
= Endangers properties of programs

Foundations of AOP

Formalization of AOP in Isabelle/HOL
Idea: simple, functional calculus
Represent pointcuts by labels, e.g.

(L,AX. e) vy +11(v2) het vy + e[va/X]
with poincuts L , advice \ x. e, and weaving operator |
Based on object calculus (Theory of Objects ¢)
Advanced features: type preserving compilation

Theory of Objects: ¢-calculus

e Terms in the ¢-calculus: “labelled lists” of methods/fields
e Objects: [l1 = ¢(Xo)bo, ..., In = <(Xn)bn] where x;
“self”-parameter
e Method call/ field selection: a.l; where j € 1..n
e Update of method/field: a.l; := ¢(x)b where j € 1..n

e Semantics: reduction relation —3
e Substitution of formal parameter with a it"self”

a=[lj = <(Xj)bj]j€1~-”

a.Ij —3 bj [a/xj] j€l.n

First step: ¢-calculus in Isabelle/HOL

Formalization of finite mapsL — T

Simple datatype for (de Bruijn) object terms

datatype term =
Var nat
| Obj Label — term
| Call term Label
| Upd term Label term

Definition of substitution on de Bruijnterms t [s / k]
Reduction relation — g

inductive
intros
beta:
upd :
sel :
updL:
updR:
obj

—,n n n =~ -

beta

€ dom f = Call (Obj f) 1 —p the(f 1) [(0bj £)/0.
€ dom f = Upd (0bj f) 1 a —g 0bj (f (1—a))
—pt = Call s 1 —g Call t 1

—pt = Upd s 1 u —g Upd t 1 u

—3t = Upduls —g Updult

s —pgt; 1 € dom fl= 0bj(£f(l—s)) —p3 0bj(f(1l—1t))

Confluence and Type Safety for ¢-calculus

e Confluence (diamond property)
M

L
e If aterm M can be reduced in n > 0 reduction steps to
terms Ng and Ny, then there exists L such that Ny and N4
can be reduced to L.

e We define simple type system for ¢-calculus,
EFt:T

i.e., term t has type Tin type environment £
e We prove type safety for first-order type system of ¢

Theorem (preservation)

[t =5t EFt:TI]=EF®t :T
Theorem (progress)

[l OFt:4 Ac.t=0jcll=3IDb.t—ghb

Aspects

e Extend terms t by (aspect-)labelled terms, e.g. I(t)

datatype term = Var nat
| Obj label — term
| Call term label
| Upd term label term
| Asp Label term ("_ (_)")

e Aspect = (pointcut (set of Labels), advice (term function))
datatype aspect = Aspect (Label set) term ("(_, _)")

Weaving

¢ Idea of weaving: replace existing labels in program with
advice
weave :: [term, aspect] = term ("|")

e For example, central rule now:
1(t)lla = if 1 € pct a then 1(adv a [t/0]) else 1(t)

where pct (L, a)= Land adv (L, a)= a

Typing of Aspects

e Problem: AOP not type safe in general
e Example: around advice exchanges return value
[Kammdiller, Vosgen: FOALO6]

e Type system to exclude pathological cases:

e Extend previous type relation by labels L

E, Lkt :T
i.e., term t has type T in type/label environment E, L
o Idea: label types represent “legal” advice

¢ Define well-formedness of program t wrt set of aspects A
(wf t A)

e Goal: prove that weaving preserves type relation.
Theorem
[wf t A; [, LEt : T]= [, L+ Weave t A: T

Summary

e The ¢-calculus as a Basis for AOP (and ASP) in
Isabelle/HOL

[1] L. Henrio, F. Kammdller. A Mechanized Model of the
Theory of Objects. FMOODs'07.

e Labels representing pointcuts in programs
¢ Definition of weaving function
e Typing of advice and labels :

= type safety for aspects in Isabelle/HOL

Discussion

Nominal Techniques vs HOAS vs de Bruijn

Code extraction

Structural vs Nominal Type Systems

Is ¢-calculus unrealistic (type preserving compilations)?

	Aspect-Orientation
	The Theory of Objects in Isabelle/HOL
	A Theory of Aspects
	Discussion
	Additional Slides on Aspects

