
Applications of Metatheory: Verification of Compiler
Optimisations

Richard Warburton
University of Warwick

rlmw@dcs.warwick.ac.uk

Sara Kalvala
University of Warwick
sk@dcs.warwick.ac.uk

A commonly raised critique of the use of formal methods is
the practicality of the methodologies and techniques proposed.
Frequently there is evidence to support this perspective: claims that
are sometimes ’verified’ don’t hold true, and techniques are devised
that prove properties of programs that seldom cause a mainstream
programmer too much difficulty. Such criticisms can be addressed
in a constructive way, by building tools and proving theorems that
affect general use.

Programming language metatheory offers an interesting avenue
towards this goal. The approach we concentrate on is verification of
compiler optimisations. In this approach, given some optimisation,
one ensures that for all programs it is applied to the transformed
program will preserve the semantics of the input program. In order
to verify language transformations we start with a formal semantics
of the programming language that is being used. In some earlier
works, the language being optimised has been simplified in order
to reduce the effort required to verify or validate the soundness of
a given optimisation, reducing the usefulness of the approach. This
is one of our motivations for automating programming language
semantics and metatheory.

We present our optimisation specifications inTRANS - a
declarative language that combines elements of model checking,
logic programming and rewriting. A central component of our ap-
proach is how to use a formalisation of the language in a theorem
prover to build a system that allows one to apply such specifications
to real world programs.

In his PhD thesis, Norrish presents a formal semantics for the
C programming language, and proves type preservation and safety.
These last two results are of interest to us, since they allow a proof
of transformation to be able to rely on certain base properties of the
language. Nipkow and Klein present a mechanised semantics for a
Java-like language, known as Jinja, for which they have developed
bytecode semantics. These are in the form of a function that denotes
a bytecode operator in the context of the state of the virtual machine
by mapping it onto the state of the virtual machine and are used
in our work on verification of optimisations on Java Bytecode. In
parallel with these theoretical advances the Sable Group at McGill
University has developed the Soot framework. This offers a high
level intermediate representation, Jimple, against which program
transformations can be applied.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

The compiler that is presented here,Rosser, comprises three
components. A meta-compiler translatesTRANS specifications
to produce the optimising phase. The program generated relies on
a runtime structure, common to all optimisations built on top of
the Soot framework. After an optimisation phase is generated by
the compiler from a specification it can be loaded into the runtime
framework and then applied to a program via the Soot framework.

Figure 1. Overall System Architecture

The meta-compiler,RosserC, refines the transformations by

1. refining the logic that specifies the optimisation’s analysis to a
minimal set of connectives,

2. type checking the language to ensure specifications are well
formed, and

3. rewriting the aliasing predicates to allow the use of efficiently
computable conservative approximations,

before outputting a compiled optimiser. The runtime frame-
work, RosserF, alters the representation of the program within the
Soot framework, so that programs are represented using BDDs,
relationally rather than through a traditional object orientated ap-
proach.

In terms of formalisation we are developing machine checked
proofs of soundness for TRANS specifications. We base our model
of what a program is on the semantics for Jinja. Grounded in Jinja,
a definition for Control Flow Graphs is specified and a Denota-
tional style semantics for TRANS then builds on that definition.
The semantics for TRANS is defined with respect to a Control
Flow Graph, a valuation and a TRANS specification. The semantics
specifies the changes made to the Control Flow Graph by a valua-
tion, if the TRANS side condition holds true, as well as whether a
side-condition holds true for a given valuation.

This work provides evidence that it is possible to start with
a formalisation as a basis towards building a practical tool for
program development.

