Names are (mostly) Useless:
Encoding Nominal Logic Programming Techniques

with Use-counting and Dependent Types

Jason Reed

September 20, 2008
Workshop on Mechanizing Metatheory

Binding and Names

e There are various familiar ways of handling binding
e HOAS, Nominal Logic, deBruijn indices, etc.

e Nominal logic supposed to allow particularly easy reasoning
about disequality, apartness: primitive apartness relation a#b

Example: a-inequality of A-terms
(in Nominal Logic Programming)
[taken from Cheney, Urban "06]
var : name — term
lam : (name)term — term
aneq (lam {x)E) (lam (x)E’) :— aneq E E’
aneq (var X) (var Y) :— X#Y

Example: a-inequality of A-terms
(in HOAS)
var : name — term
lam : (name — term) — term
aneq (lam E) (lam E’) :— I1x:name.aneq (E x) (E’ x)
aneq (var X) (var Y) == 7

Problem: last clause (apparently) can’t help but match even when
X and Y are equal.

Even worse with usual HOAS encoding of terms where variables
are not specially distinguished!

Alternate HOAS Encoding

o Actually could tediously keep track of and pass around a list of
names discovered so far each time a new name is introduced

o Effectively implement apartness manually by walking through
this list

e Not terrifically satisfying

Another Idea

e Use concepts from resource-sensitive substructural logics (e.g.
linear logic) to get simple encoding of apartness relation

— without introducing it as primitive as in nominal logic

— without explicit list-passing or -crawling as in HOAS above

Sketch

Declare X#Y as a relation, with kind something like
name — name — type.

Define X#Y with one clause something like
I X:name.I1Y:name. X#Y.

But we don’t want any X and Y in this relation, just different
ones

So consume each argument linearly to enforce disjointness:

/4

think ‘name — name —o - - -

Want some kind of linear Pi, so we can say something like
[IX*name.I1Y name X#Y .

Key Idea 1: Use disjointness of linear resources to model apartness
of names

Problem with Linear Dependent Types

Naively combining linearity with dependency can lead to serious
problems.

Suppose we tried to typecheck

AxAy.(y~x) : Tlx T oIly:(0 — fam™x).fam” x
in the signature

o : type. fam : 0 —o type.

Then we’d get:

xto kFx:o0 y:0—ofam”x Fy:0—ofam”x

xto,y:0—ofam"x Fy“x:fam” x

Context splitting strands y away from x!

Solution

Can’t seem to have relations (type families) themselves
actually use (consume) resources linearly

But we still need to mention linear resources, e.g. in the clause:
11X * name.l1Y © name X#Y.

Introduce “Useless’ function type A /o B, useless function kind
A +o type to allow mention without use

Will have # : name /o name 4+~ type

Key Idea 2: Use useless functions to reconcile linearity with the
dependency of the type family # on names that are resources

Plan

e Sketch appropriate logic for encoding
e Show how apartness is encoded

e Examples of use of apartness relation

10

n-Linear Logic

Useless functions and linear Pi are both instances of a more
general n-linear dependent function type IIx:"A.B

Function uses its argument exactly n times
Useless: n = 0 (A /o B = I1x:°A.B)
Linear: n =1 (Ilx * A.B = IIx:'A.B)

Note that if Ax.M : I'Ix:"A.B, then x is used n times in M, not in
B!

In fact x will be required to be used zero times in B, but may

still get mentioned in B (B might contain as a subterm e.g. ¢ " x
forc: A fo A’)

Judgmental Setup

(x " A) means: x gets used exactly n times
A = X1 M Al,. .., XK 1K AK
[::= X1 :Bl,...,xK . BK

Typing judgment:
AN THM:C

12

n-Linear dependent function types

A, x"A +M:B
;A F Ax.M : TIx:"A.B

A1 M: TIx:"A.B IADEN:A
I Aq+n-A; I-MANZ[N/X]B

(x:"A)+ (x:"A)=(x:""A)
n-(x:"A)=x:""A)

13

Ordinary dependent function types

I, x:A;A+rM:B
A+ Ax.M : IIx:A.B

IDA+M:1Ix:A.B IbO-AEFN:A
IbAMN : [N/x]B

14

Use of Variables

x:AeTl
I'0-A Fx:A [; (x:P A)+0-A Fx: A

15

Additives

IDAFM:A IAFN
ARQ:T A F(M,N): A&B

IA+rM: A&B IbAFM: A&B
IDAFTiM: A IAvr oM : B

16

Well-Formedness of Dependent Types

;A x:°A + B:type I, x:A;AFrB:type
[;AFTIx:"A.B : type [; A +TIx:A.B : type

e Argument of a (n-)linear I is required to “be used zero times”
in the body of the type.

e Safe generalization of usual requirement that it is not
mentioned to occur (i.e. the nondependent function type —o)

e Strict generalization because other constants used in B may
have types like C /o D, which promise that they use their
substructural argument zero times.

Encoding Apartness

name : type.
: name /o name /o type
irrefl : TIX:'name ITY: name. (X#Y o— T)

That's it!

18

Encoding Apartness

name : type.
: name /o name /o type
irrefl : TIX:'name ITY 1 name. (X#Y o— T)

Note that:
o X#Y shortfor#"X"Y
e o— T because other names besides X and Y may be present

e Resources hypotheses of names consumed in derivation of
apartness and not in formation of the apartness relation

Encoding a-inequality
var : name +o term
lam : (name 4~ term) — term
_:aneq (lam E) (lam E") o— (TITx:'name.aneq (E " x) (E' "~ x))
_:aneq (var X) (var Y) o— X#Y

- -+ (more cases, just as in nominal logic program)

20

Encoding a-inequality
var : name +o term

lam : (name +o term) — term

_:aneq (lam E) (lam E") o— (ITx:'name.aneq (E " x) (E’ "~ x))
_:aneq (var X) (var Y) o— X#Y

e Functions over names are O-linear dependent functions.
(“Names are Useless”)

Encoding a-inequality
var : name +o term
lam : (name +o term) — term
_:aneq (lam E) (lam E’) o— (ITx:'name.aneq (E " x) (E’ " x))
_:aneq (var X) (var Y) o— X#Y

e Functions over names are O-linear dependent functions.

e Linear functions automatically propagate the set of names.

Encoding a-inequality
var : name +o term

lam : (name +o term) — term

_:aneq (lam E) (lam E’) o— (ITx:'name .aneq (E " x) (E’ " x))
_:aneq (var X) (var Y) o— X#Y

e Functions over names are O-linear dependent functions.
e Linear functions automatically propagate the set of names.

e 1l-linear dependent function abstracts over new name.

The Encoding In Action

(abbreviate name as n)

xyin, x3dln b T Xo:ln Fxpim xeln Fxginm
x1in, xtn, x3tn, xatn kgt
1 1 1 1
X101, Xy N, X3 N, Xg4: n Faneq (var xg) (var xy)

Recall: irrefl : TIX:'name ITY: name. (X#Y o— T)

xiyin, x3dln b T X0 Xn Fxyin Xo Xn Fxy:in
xiin, xmdn, x3in, xgtn ko
1 1 1 1
X190 N, Xp N, X3 N, Xq4: n Faneq (var xp) (var xy)

Problem: no X e Ns.t. X+ X =1

Encoding a Programming Language with Store
eval : store — exp — result — type
letref : val — (val — exp) — exp % letx = refvine
let! : val — (val — exp) = exp % letx = (lv)ine
loc : name +o val

((_,0) =) : name +o val — store — store

Consider a small CPS language with updatable store represented
as a list of name/value pairs.

25

Encoding a Programming Language with Store
eval : store — exp — result — type
letref : val — (val — exp) — exp
let! : val — (val — exp) — exp
loc : name +o val

((_,0) =) : name 4o val — store — store

_:eval S (letref V E) R o— TI€:'n. eval (¢, V) :: S) (E (loc”€)) R
_:eval S (let! (loc" L) E) R o— (lookup S"L'V & eval S (E V) R)
lookup : store — name +o val — type

_tlookup (N ,V)::S)" N Vo-T

_tlookup ((N",.):S)" N V o— (N#N’ & lookup S™ N V)

Reasoning in a Programming Language with Store
wfstore : store — type
notin : name +o store — type
_:wfstore nil o— T
:wfstore (N ,) 2 S) o— (notin™ N S & wfstore S)
cnotin”™ N nil o= T
_:notin™ N (N’ ,.)=S)o—(notin™” N S& N#N’)

Or: could use substructural features directly, for shorter or more
expressive encoding

wfstore’ : store — type
_: wfstore’ nil o— T (or just _ : wfstore’ nil)

_: Thx:tname (wfstore’ S —o wfstore’ ((x,.) 2 S))

Related Work

n-use functions [Wright, Momigliano]

Other 0-use (“irrelevant”) functions [Pfenning, Ley-Wild]
RLF [Ishtiaq, Pym]

HLF

— Designed for statement of metatheorems for Linear LE.
— Does n-linear I1Is above, and more (e.g. some of BI)

— Prototype implementation

Conclusion

Key Idea 1: Use disjointness of linear resources to model apartness
of names

Key Idea 2: Use useless functions to reconcile linearity with the
dependency of the type family # on names that are resources

Substructural dependent types can imitate nominal logic
programming techniques

Practical?

In what ways does it do even better?

Thanks

30

