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Abstract

In statistical models of spatial behavior, there is often a mismatch be-
tween the scale at which data is available and the scale at which key spatial
dependencies are known to occur. However, in attempting to incorporate
Þner grain information about spatial dependencies, certain estimation prob-
lems arise. Here it is shown that maximum likelihood procedures can pro-
duce signiÞcantly negative estimates of positive autocorrelation. This prob-
lem is analyzed in the context of a simple spatial autoregressive process,
and possible correction procedure is proposed for reducing aggregation bias.



1. Introduction

In statistical models of spatial behavior, there is often a mismatch between the
scale at which data is available and the scale at which key spatial dependencies
are known to occur. For example, spatial dependencies in housing values may
be strongest between adjacent houses or houses on the same block face, while
available data may only be available at the blockgroup or even census tract level.
Hence when modeling such dependencies in terms of spatial lag or spatial auto-
correlation effects, the corresponding proximity weight matrices are necessarily
limited to the same degree of aggregation as the given data. However, in many
cases it is possible to obtain Þner grain weight matrices in term of existing map
data. In the illustration above, for example, it may be possible to determine
proximity relations at a more appropriate scale, such as shared block faces rather
than shared blockgroup boundaries.
In this context, the central question of interest here is how to combine such

Þner grain information about spatial dependencies with aggregated data in a man-
ner which improves the overall goodness of Þt. A number of initial efforts in
this direction (including various attempts at lower-dimensional approximations
to weight matrices for regression models with spatial autoregressive errors and/or
spatial lags) all produced disappointing results. However, further investigation
revealed that the poor Þt of these models was partly a consequence of the maxi-
mum likelihood estimation procedure itself. In particular, when spatial interaction
effects are at a Þner scale than the basic data, the standard maximum likelihood
procedure has a strong tendency to underestimate the degree of spatial autocor-
relation. At Þrst glance, this would appear to be consequence of the well-known
fact that correlations among aggregates tend to diminish (shrink toward zero) as
aggregation size increases [see for example Chapter 5 of Arbia, 1989]. However,
the present situation is quite different, and appears to be more a consequence
of the variance minimizing tendency of maximum likelihood estimation which,
in the presence of aggregation, tends to favor negative autocorrelation. In many
instances, a substantial portion of the estimates are thus negative when actual
autocorrelation is positive. Moreover, this is not simply a �small sample� problem.
While such estimates are theoretically consistent, examples show that even for
very large sample sizes these problems need not disappear. Hence they serve to
illustrate some of the practical limitations of consistency itself.
For purposes of analysis, we focus in the present paper on the simplest possible

case of a pure spatial autoregressive model involving only a single variable. While
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this model is generally of interest only as one component of a larger model, in the
present context it has the advantage of exhibiting all of the key difficulties above
while removing many extraneous factors. This model is formalized in Section 2
below. In addition, both the small sample and large sample properties of spatial
autocorrelation estimates are developed for selected examples. In Section 3 the
nature of this aggregation bias problem is explored in more depth. Here it is
shown by means of a small example that this bias is at least in part due to the
variance minimizing tendency of maximum likelihood estimation. In addition, a
possible method is proposed for reducing this bias.

2. An Aggregated Spatial Autoregressive Model

Consider the n-vector spatial autoregressive process,

y = ρWy + ε (2.1)

with nonnegative (nonzero) n×n weight matrix, W = (wij), satisfying wii = 0 for
all i = 1, .., n, together with inßuence parameter, ρ,and n × 1 disturbance vector,
ε, normally distributed as

ε ∼ N(0,σ2In) (2.2)

In the analysis to follow, W will be assumed to be either symmetric or the row
normalization of a symmetric matrix, both of which are known to possess real
eigenvalues. If we let

B = In − ρW (2.3)

and denote the minimum and maximum eigenvalues of W by λmin and λmax,
respectively, then it is well known that the inverse matrix

D = B−1 = (In − ρW )−1 (2.4)

exists for all ρ in the open interval (1/λmin, 1/λmax), and allows y in (2.1) to be
expressed in terms of ε as1

y = Dε (2.5)

In this context, it is assumed that the vector y is not directly observable. Only
an aggregated form of y is observable, here denoted by

x = Ay (2.6)

1For notational simplicity we have suppressed the dependency of both B and D on ρ.
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where A is a nonnegative k × n aggregation matrix (1 ≤ k < n) satisfying the
�partition� condition that for each j = 1, .., n, aij > 0 for exactly one i = 1, .., k,
i.e., that each subregion (micro zone), j, belongs to exactly one region (macro
zone), i. In the introductory example, if each component yj were to represent the
average housing value in block j, and aij were to represent the fraction of housing
units of block group i belonging to block j, then each component, xi =

P
j aijyj,

would represent the average housing value in block group i.2

By combining (2.5) and (2.6) we obtain the following aggregate model corre-
sponding to the disaggregate model in (2.5):

x = ADε (2.7)

To analyze this model, note Þrst that by deÞnition the rows of the aggregation
matrix A are orthogonal (since the partition condition above implies that each col-
umn j has exactly one nonzero coefficient aij). Hence A is of full row rank, which
together with the nonsingularity of D implies (from standard matrix results) that
AD is of full row rank, and that ADD0A0 is nonsingular. It thus follows at once
from (2.7) that the aggregate data x is normally distributed as N(0, σ2ADD0A0),
with k-dimensional density:

φk(x; ρ, σ
2) = (2πσ2)−k/2|ADD0A0|−1/2 exp{− 1

2σ2
x0(ADD0A0)−1x} (2.8)

So even though y is not directly observable, it is still possible to obtain maximum-
likelihood estimates of ρ and σ2 in this aggregate model by employing the log
likelihood function,

Lk(ρ, σ
2;x) = const.− k

2
ln
³
σ2
´
− 1
2
ln |ADD0A0|− 1

2σ2
x0(ADD0A0)−1x (2.9)

2.1. Estimation of ρ

Since our main concern here is the estimation of ρ, it is convenient to solve for
the mle of σ2 as bσ2 = 1

k
x0(ADD0A0)−1x (2.10)

2It should be noted that this interpretation is for convenience only, and is not meant to imply
that a spatial autoregressive process in (2.1) should represent even a Þrst approximation to the
distribution of housing values.
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and substitute (2.10) in (2.9) to obtain the concentrated likelihood of ρ,

lk(ρ; x) = −1
2
ln
³
x0(ADD0A0)−1x

´
− 1

2k
ln |ADD0A0| (2.11)

where for convenience we have multiplied through by 1/k and supressed the con-
stant, −(1+ln k)/2. To maximize this function, we begin with the Þrst derivative,

∂

∂ρ
lk = −1

2

x0 [(∂/∂ρ) (ADD0A0)−1] x
x0(ADD0A0)−1x

− 1

2k

∂

∂ρ
ln |ADD0A0| (2.12)

where

∂

∂ρ
(ADD0A0)−1 = −(ADD0A0)−1A

"
∂

∂ρ
DD0

#
A0(ADD0A0)−1

= −(ADD0A0)−1AD [WD +D0W 0]D0A0(ADD0A0)−1

(2.13)

and

∂

∂ρ
ln |ADDA0| = tr

"
(ADD0A0)−1A

Ã
∂

∂ρ
DD0

!
A0
#

= 2 · tr
h
(ADD0A0)−1ADWDD0A0

i
(2.14)

By substituting (2.13) and (2.14) into (2.12) and employing the trace identity,
tr(M1M2) = tr(M2M1), one obtains the Þrst-order condition:

∂

∂ρ
lk =

x0(ADD0A0)−1ADWDD0A0(ADD0A0)−1x
x0(ADD0A0)−1x

−1
k
tr
h
D0A0(ADD0A0)−1ADWD

i
= 0 . (2.15)

In the case of no aggregation (A = In) it follows it follows that (2.15) reduces to
the simpler condition that

∂

∂ρ
lk =

y0B0WBy
y0B0By

− 1
k
tr(WD) = 0 (2.16)

where B is given by (2.3) above. It should be clear from a comparison of (2.15)
and (2.16) that the case of aggregation involves a much more complex Þrst-order
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condition. In particular, while it is readily shown [see Section 1 of the Appendix]
that (2.16) always has a unique (maximal) root, this is not true of (2.15).
This is seen most easily by constructing a simple spatial example, as shown

schematically in Figure 1. Here there are n = 6 subregions all connected by a
simple {0, 1}-contiguity relation, yielding the symmetric binary weight matrix W
shown in the Þgure.3 These subregions are aggregated into k = 3 regions (where
again the values, aij, of the aggregation matrix A in Figure 1 might reßect the
fraction of housing units or population of region i located in subregion j ). The
resulting aggregate model (2.7) was then simulated using many choices of ρ, and
the concentrated likelihood functions were plotted. The two examples shown in
Figure 2 are both for ρ = .5 and σ = 1, and illustrate multiple maxima with
Figure 2a showing a positive global maximum at ρ = .69 and Figure 2b showing
a negative global maximum at ρ = −.77 .4
This example shows that local search procedures (such as gradient methods)

can be very misleading in estimating ρ for the present class of models. But since
the maximization is only over a one-dimensional bounded interval of possible ρ
values, it should be equally clear that global maximization presents no real prob-
lem in this case. Hence it will be assumed throughout that global maximization
procedures are used. In this context, the real questions of interest relate to the
statistical properties of these global maxima.

2.2. Sampling Distributions of ρ

We begin with 1000 simulations of global maximum estimates for simple example
above with ρ = .5 and σ = 1. Figure 3a shows the results for the standard
disaggregate model (2.5) with no aggregation. Here we see that the distribution
is somewhat negatively skewed with sample mean, ρ = .335, indicating a tendency
to underestimate ρ in the standard model. Such biases have been well documented
for a wide range of maximum likelihood estimates involving small sample sizes,
such as the present case of n = 6. However, for the results of the aggregate model
(2.7) the situation is decidedly worse, as seen in Figure 3b. Here the sample mean,
ρ = .02, shows a pronounced bias. Much more important however is the erratic
multimodal nature of the histogram. The strong mode near ρ = −1 is particularly

3The symmetric normalization, diag(W 0u)−1/2[W ]diag(W 0u)−1/2, of W [with unit vector,
u0 = (1, .., 1)] was employed.in these examples. However, the standard row normalization,
diag(W 0u)−1[W ], of W yields essentially the same results.

4The respective y-vectors for Figures 2a and 2b are (.0043,−0.318, 1.095,−1.874, 0.428, 0.896)
and (−0.399, 0.690, 0.816, 0.712, 1.290, 0.669).
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troublesome. But since there are effectively only three samples here, namely the
values of x = Ay for the three aggregate regions, it can be argued that this may
be simply an artifact of sample size.
To show that this is not the case, a number of larger models were constructed

and simulated as well. The Þrst is a square 10× 10 grid of subregions aggregated
into 16 regions, as shown in Figure 4a. Here the weight matrix W is again based
on simple contiguities (with row normalized values wij now interpretable as the
fraction of shared boundary for subregion i which is contiguous with subregion
j). The aggregation matrix, A, in this case gives equal weight to the members of
each region i (so that if ni denotes the number of subregions in i then aij = 1/ni
for all j = 1, .., ni). The results of 1000 simulations for the disaggregate model
(2.5) with ρ = .4 and σ = 1 are shown for this case in Figure 5. Here it is seen
that estimates for this model (with n = 100) are now behaving very well with a
bell-shaped histogram centered at ρ = .39. However, the results for the aggregate
model (2.7) continue to exhibit the same difficulties: a low sample mean, ρ = .097,
and a multimodal histogram with a strong mode near ρ = −1.
A Þnal example involving both a larger number of samples and a more realistic

regional scheme is the set of blocks and block groups fromWest Philadephia shown
in Figure 4b. In this case W is again based on boundary shares as above, and A
is based on the fraction of housing units in each block of a block group. There are
312 blocks within the 43 block groups shown. The results for 1000 simulations
of the disaggregate model (2.5) with ρ = .4 and σ = 1 are shown for this case in
Figure 6a. Here again that estimates for this model (with n = 312) are right on
target, with a sample mean ρ = .395. While the results for the aggregate model
(2.7) are somewhat better than the example above, with a mean of ρ = .252, there
continues to be a secondary mode near ρ = −1. Hence while there is some clear
improvement in this case, there is still a signiÞcant fraction of negative estimatesbρ [more than 22%] even though the degree of positive spatial autocorrelation
(ρ = .4) is considerable. Moreover, while the effective sample size (k = 43) is
not overwhelming, it should certainly be adequate to obtain estimates in such a
simple two-parameter model.

2.3. Asymptotic Properties of ρ Estimates

Before proceeding to a more detailed investigation of the possible causes of this
undesirable behavior, it is of interest to ask whether such behavior persists in
the limit. The examples above suggest that this might simply be a case where
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relatively large samples are required in order to achieve reasonable sampling dis-
tributions of the maximum likelihood estimates. However, the following extension
of the example in Figure 1 provides an informative counterexample.
While asymptotic results for spatial models are somewhat more tenuous than

for temporal models, it is nontheless possible to imagine that a given spatial pat-
tern can be extended to the inÞnite plane by some form of expansion scheme
[designated as �increasing-domain asymptotics� by Cressie (1993)]. In this con-
text, Mardia and Marshall (1984) developed a set of �growth, convergence, and
continuity� conditions [based on the more general results of Sweeting (1980)] for
both consistency and asymptotic normality of maximum likelihood estimates. In
principle, this result can be applied to establish a comparable consistency result
for the present aggregated case, under appropriate conditions.5. However it is far
too general to allow any conclusions to be drawn about the Þnite-sample behavior
of such estimators.6

But there is one case in which such analysis is possible. In particular, if we
simply replicate a given system of regions an arbitrarily large number of times, and
treat each replicate as an �island� then the (block diagonal) covariance structure of
this composite system not only satisÞes all conditions for convergence, but actually
allows the limiting behavior of estimates to be studied. In this case, a set of N
replicates can be viewed as a sequence of N independent random sample from the
k-dimensional aggregate model in (2.7), so that all classical results for maximum-
likelihood estimation in the independence case can be applied. In particular, it
follows from the results of Wald (1949) that for a random vector x distributed with
density f (x; θ) , if bθN denotes any choice of a global maximum of the associated
likelihood function for N independent random samples, then the sequence

³bθN ´
converges in probability (and in fact converges almost surely) to the true value of
θ. Hence by applying this result to the sequence of N replicates with parameter
θ = (ρ,σ2), we could establish consistency of such estimators for this replicated
case.
However, for our present purposes it is much more insightful to employ the �ex-

5Such conditions must for example include the requirement that the average number of
subregions per region converge [i.e., that kn/n have a positive limit in (0,1)], and that the
sequence of aggregation matrices (An) as well as the weight matrices (Wn) exhibit appropriate
�growth, covergence and continuity� properties.

6It is worth noting in particular that the general result of Sweeting (1980) shows only that
there is a consistent root of the likelihood equations. Hence in cases of multiple local maxima
(such as those illustrated below) such general arguments offer no help in picking a consistent
root. [See footnote 7 below for further discussion of this point.]

8



tremum estimator� approach of Amemiya (1985). In particular, Amemiya shows
(Theorem 4.1.1) that in our case if any positive monotone transformation of the
concentrated likelihood function can be constructed which converges (uniformly
in probability) to a nonstochastic function for which the true ρ value yields the
unique global maximum, then the sequence of maximal-root estimators, bρN , will
converge in probability to ρ. The advantage of this approach is that if the limiting
nonstochastic objective function can be computed, then the qualitative nature of
this convergence can be examined in some detail.7 To do so, we begin by observ-
ing that if the true values of ρ and σ2 are denoted respectively by ρ0 and σ

2
0 , and

if D0 = (In − ρ0W )−1, then by (2.7) it follows that x = AD0ε. Hence for a single
replication, the concentrated likelihood, lk(·;x), in (2.11) is a random function of
the form

lk(·, ε) = −1
2
ln
³
ε0D0

0A
0(ADD0A0)−1AD0ε

´
− 1

2k
ln |ADD0A0|

= −1
2
ln
h
tr
³
D0
0A

0(ADD0A0)−1AD0εε0
´i
− 1

2k
ln |ADD0A0| (2.17)

Next let us replicate this system N times, so that the n × n weight matrix W
is replaced by the Nn × Nn block diagonal weight matrix hW iN with diagonal
blocks all equal to W (indicating in particular that there are no spatial con-
nections between replicates). The k × n aggregation matrix A also becomes an
Nk ×Nn block diagonal matrix hAiN . It can then be easily veriÞed that matri-
ces D0

0A
0(ADD0A0)−1AD0 and ADD0A0 in (2.17) are both replaced by their block

diagonal counterparts hD0
0A

0(ADD0A0)−1AD0iN and hADD0A0iN . If for N inde-
pendent samples ε1, .., εN from N(0, σ20In) we denote the Nn × 1 stacked vector
by ε(N) = (ε01, .., ε

0
N)

0, then the resulting concentrated likelihood function takes
the form

lNk(·, ε(N)) = −1
2
ln
h
tr
³
hD0

0A
0(ADD0A0)−1AD0iNε(N)ε0(N)

´i
− 1

2k
ln |hADD0A0iN |

= −1
2
ln
·XN

i=1
tr
³
D0
0A

0(ADD0A0)−1AD0εiε0i
´¸
− 1

2Nk
N ln |ADD0A0|

= −1
2
ln
·
tr
µ
D0
0A

0(ADD0A0)−1AD0
·XN

i=1
εiε

0
i

¸¶¸
− 1

2k
ln |ADD0A0|

(2.18)

7An additional advantage of this approach is that it permits consistent estimation in the case
of multiple local maxima. For as long as the global maximum is unique (generally a reasonable
assumption), one can be assured that a global search of the parameter space will yield the
consistent estimator.
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Hence if we deÞne the new function, zN(·, ε(N)) by

zN(ρ, ε(N)) = 2 · lNk(ρ, ε(N)) + 1
2
ln

Ã
N

σ20

!

= − ln
"
1

σ20
tr
µ
D0
0A

0(ADD0A0)−1AD0
·
1

N

XN

i=1
εiε

0
i

¸¶#

−1
k
ln |ADD0A0| (2.19)

then it follows from the Þrst line of (2.19) that zN (·, ε(N)) is a positive monotone
transformation of lNk(·, ε(N)). Moreover, since it is well known that

1

N

XN

i=1
εiε

0
i →
prob

σ20In (2.20)

it also follows that zN(·, ε(N)) converges in probability to the nonstochastic func-
tion, z(·), deÞned by

z(ρ) = − ln
h
tr
³
D0
0A

0(ADD0A0)−1AD0
´i
− 1
k
ln |ADD0A0| (2.21)

As is shown in Section 2 of the Appendix, z(·) is the desired limiting function.
It thus remains to examine the properties of this limiting function in speciÞc

cases. Here it is instructive to consider once again the simple example in Figure
1. In this case, the limiting function z(·) has the bimodal form shown in Figure
7a. More importantly, this example shows that while the global maximum is
indeed at the true value ρ0 = .5, the secondary mode is strongly negative, ρ00 =
−.71, and has a z-value very close to the maximum value [z(ρ00) = −1.0954 ≈
−1.0782 = z(ρ0)]. Hence it should be clear in this case that even for large numbers
of replications, N , the maximal-root estimate, bρN , may well be close to ρ00 rather
than ρ0. This is illustrated by the histogram of Figure 7b, which shows the
estimation results for 1000 simulated samples of the replicated process with N =
100. As expected from the general consistency result above, at sample sizes this
large (k = 300) the majority of maximal-root estimates bρN cluster around ρ0.
However, a substantial fraction (more that 12%) still cluster around the secondary
mode ρ00. Hence, even at these large sample sizes, the values z(ρ0) and z(ρ00) are
sufficiently close to ensure that the global maximum of the concentrated likelihood
still has a signiÞcant chance of occurring near ρ00 rather than ρ0.

8

8Simulations of larger replication numbers show that by N = 1000 (k = 3000) the second
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It should also be noted that an additional consequence of this bimodal behavior
is the failure of standard signiÞcance tests based on asymptotic normality. So if
one is unlucky enough to come up with strongly negative estimates of ρ in such
situations where positive autocorrelation is expected, then standard signiÞcance
tests will only serve to reinforce these negative Þndings.9

3. Analysis of Aggregation Bias

The negative results above raise the obvious questions: What is going on? What
can we do about it? While there appear to be no deÞnitive answers to these ques-
tions, some insight can be gained by studying the behavior of the log-likelihood
function in (2.9). Since our main focus is on ρ, it is of interest to consider the
asymptotic behavior of (2.9) with respect to ρ as the variance parameter, σ2, be-
comes large. To do so, observe that if for any aggregate data value, x, and distinct
ρ-values, ρ1 and ρ2, we let Di = (In − ρiW )−1, i = 1, 2, then

Lk(ρ1, σ
2; x)− Lk(ρ2, σ2; x) = −1

2
ln |AD1D0

1A
0|+ 1

2
ln |AD2D0

2A
0|

− 1

2σ2
x0
h
(AD1D

0
1A

0)−1 − (AD2D0
2A

0)−1
i
x

so that as σ2 becomes large,

lim
σ2→∞

h
Lk(ρ1, σ

2; x)− Lk(ρ2,σ2;x)
i
= −1

2
ln |AD1D0

1A
0|+ 1

2
ln |AD2D0

2A
0|

Hence we may conclude that the limiting form of Lk is a positive monotone func-
tion of the negative log determinant,

L(ρ) = − ln |ADD0A0| (3.1)

mode has Þnally disappeared, so that classical consistency and asymptotic normality properties
are in full force. However, it should be emphasized that this case was chosen mainly for its
simplicity. A local search for �worst cases� in the neighborhood of this example produced a case
in which |z(ρ0) − z(ρ00)| was so small that even for N = 1000 the fraction of 1000 samples in
the ρ00-cluster exceeded 40%.

9This was veriÞed in the present case by calculating the asymptotic covariance matrix and
constructing (Wald) signiÞcance tests for the simulated estimates. Not surprisingly, for the
given sample size of k = 300 all negative estimates near ρ00 were shown to be highly signiÞcant.
These results are not reported here.
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which may be viewed as the asymptotic log-likelihood of ρ under inÞnite disper-
sion. Notice also that this asymptotic function is nonstochastic and hence can
be analyzed independently of any x-data. For later use, we also note that the
concentrated likelihood function in (2.11) can be written in terms of L as

lk(ρ;x) = −1
2
ln
³
x0(ADD0A0)−1x

´
+
1

2k
L(ρ) (3.2)

Given these observations, we next ask: how should this as asymptotic function
behave? An examination of (2.1) suggests that as the dispersion of ε becomes
arbitrarily large, any autocorrelation effects among the y value should eventually
be overwhelmed. This conjecture is conÞrmed by analyzing L for the disaggregate
model with A = In. In this case L reduces to

L(ρ) = − ln |DD0| = − ln
³
|D|2

´
= const.− ln |D| (3.3)

which is well known to be strictly concave.10 Hence the unique maximum of L is
given by the Þrst-order condition in (2.14) [with A = In] as

0 =
∂L

∂ρ
= −2 · tr

h
(DD0)−1DWDD0i = −2 · tr(WD) (3.4)

But at ρ = 0 we see that D = In ⇒ tr(WD) = tr(W ) = 0,11 and hence
may conclude that the unique solution to (3.4) is given by ρ = 0. Thus for the
disaggregate model we obtain the intuitively satisfying result that as dispersion
of ε becomes arbitrarily large, the most likely value of ρ converges to zero.
However, for the aggregate model this is not the case. While a full analysis of

this problem appears to be quite difficult, some insight can be gained by examining
the derivative of L at ρ = 0 for the dissagregate model. Here again we see from
(2.14) [with D = In] that

∂L

∂ρ

¯̄̄̄
¯
ρ=0

= −2 · tr
h
(AA0)−1AWA0

i
(3.5)

But since A is nonnegative with orthogonal rows, it follows that AA0 is a posi-
tive diagonal matrix, and hence that (AA0)−1 is positive diagonal. This together

10In section (3.1) of the Appendix it is shown that ∂2L/∂ρ2 = −k ·Pi ω
2
i < 0, where the ωi�s

are the (real) eigenvalues of WD.
11Recall that wii ≡ 0 by assumption.
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with the nonnegativity of W implies that tr [(AA0)−1AWA0] ≥ 0, and hence that
(∂L/∂ρ)ρ=0 ≤ 0. Moreover (barring exceptional cases) this derivative is strictly
negative. Hence there must always be at least a local maximum of L at negative
values of ρ. While sharper results here are somewhat elusive, it can be shown
[Section 3 of the Appendix] that if W is symmetric then L is strictly concave,
and hence that the unique global maximizer of L is always negative. For row
normalizations of symmetric weight matrices, it also appears that all maxima are
achieved at negative ρ values.12

What this means from a practical viewpoint is that at least for highly dispersed
aggregate models, the asympotically most likely values of ρ tend to be negative.
This leads naturally to the next question of why this should be true. Here again
there seems to be no completely satisfactory answer. However, some insight can
be gained by looking at the simplest possible case.

3.1. The Case of One Region and Two Subregions

At Þrst glance the case of single region (k = 1) divided into two subregions
(n = 2) would appear to be degenerate from a spatial viewpoint. With only
one region in the aggregate model, there can be no observable spatial interaction.
However, the model is still inßuenced by the unobservable interaction between
subregions. Hence this case serves to emphasize the effects of this unobservable
spatial component. One additional advantage here is that the regional covariance
matrix reduces to simple variance, which is more readily interpretable.
To formalize this case, let the weight matrix W be given by

W =

Ã
0 1
1 0

!
(3.6)

so that B and D have the respective forms

B =

Ã
1 −ρ
−ρ 1

!
, D =

1

1− ρ2
Ã
1 ρ
ρ 1

!
(3.7)

Next let the aggregation matrix be an unspeciÞed positive linear combination
A = a0 = (a1, a2), so that for normally distributed ε = (ε1, ε2)0 in (2.2), the single

12Extensive studies of numerical examples for such matrices show that L need not be concave,
but that the derivative ∂L/∂ρ is always negative for ρ > 0. It thus seems reasonable to conjecture
in this case that all maxima continue to occur at negative values of ρ.
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aggregate regional variate x has the form

x = a0Dε =
1

1− ρ2 [(a1 + ρa2)ε1 + (a1ρ+ a2)ε2] (3.8)

with corresponding variance given by

var(x) = σ2a0DD0a

= σ2
(a1 + ρa2)

2 + (a1ρ+ a2)
2

(1− ρ2)2 (3.9)

Note that inßuence of ρ on the variance of x is summarized by the value, a0DD0a,
which may here be designated as the relative variance of x (since it deÞnes variance
up to a scalar multiple). With this terminology it is clear that the asymptotic
log-likelihood L(ρ) in (3.1) depends entirely on this relative variance:

L(ρ) = − ln [a0DD0a]

= const.− ln
"

1

(1− ρ2)2
#
− ln

h
(a1 + ρa2)

2 + (a1ρ+ a2)
2
i
(3.10)

Hence the value of ρ which is asymptotically most likely (as dispersion of ε be-
comes large) is precisely that value that minimizes the relative variance of x.
More generally, if the determinant |ADD0A0| in (2.8) is designated as the relative
generalized variance of x,13 then this same interpretation holds for (3.1) as well.
In this context, it should be clear from (3.9) that determining the minimizing

value of ρ is complex even in this simple case. But here one can gain qualitative
insight by observing from (3.3) that for the disaggregate model, the asymptotic
log-likelihood function L becomes

L(ρ) = const.− ln |D|
= const.− ln

"
1

(1− ρ2)2
#

(3.11)

Hence this disaggregate likelihood is seen to be essentially the Þrst term of (3.10),
which corresponds to the denominator of relative variance in (3.9). It is thus
reasonable in this case to interpret the denominator of relative variance (Þrst

13This terminology follows the generalized variance interpretation of covariance matrix deter-
minants Þrst introduced by Wilks (1932).
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term of L) as the �disaggregate� effect of ρ on relative variance, arising from
interaction between the individual subregions. The numerator of relative variance
(second term of L) then represents the additional �aggregate� effect of ρ arising
from regional aggregation. Moreover, since the terms (a1 + ρa2)2 and (a1ρ+ a2)2

in (3.9) are essentially the contributions to relative variance of the two aggregate
variates (a1 + ρa2)ε1 and (a1ρ+ a2)ε2 in (3.8), it is appropriate to designate this
numerator as aggregation variance,

v(ρ) = (a1 + ρa2)
2 + (a1ρ+ a2)

2 (3.12)

By observing that the denominator of (3.9) achieves its maximum at ρ = 0 [yield-
ing minimum relative variance for the disaggregate case], it is clear that the key
effect of aggregation on relative variance is in terms of v(ρ). Moreover by differ-
entiating v(ρ), this aggregation variance is seen to be minimized at

ρv = −
2a1a2
a21 + a

2
2

< 0 (3.13)

This implies that the value of ρ minimizing relative variance in (3.9) must lie
between the extremes, ρ = ρv and ρ = 0, and hence must be negative.
Thus in this simple case, the effect of aggregation on minimum relative variance

is clear: the positivity of a1 and a2 imply that any positive correlation effect, ρ,
in (3.12) must necessarily increase aggregation variance, and hence that relative
variance can only be minimized at negative ρ values. This is of course completely
analogous to standard �variance reduction� techniques in sample design, where
one reduces the variance of sums by creating negatively correlated samples. In
the present case, the relevant �sums� are simply the aggregated data. While this
interpretation is less clear in the general case, where variance must be replaced by
�generalized variance� (as in foonote 13 above), it nonetheless appears that this
type of variance reduction effect is at the root of the aggregation-bias problem
in the present case. The maximum-likelihood values of ρ tend to be those which
yield smaller relative (generalized) variances, and in the presence of aggregation,
these values tend to be negative.

3.2. A Possible Bias-Correction Procedure

While there appears to be no quick Þx for this type of aggregation bias, the above
observations suggest at least one possible approach. For if one focuses on the
asymptotic case when the dispersion of ε becomes large, then it is reasonable
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to require that (as in the bias-free disaggregate case) the aggregate maximum-
likelihood estimate of ρ approach zero. As observed above, this is equivalent to
requiring that relative generalized variance, |ADD0A0|, achieve its minimum at
ρ = 0. There are many ways to implement such a modiÞcation. For example, by
simply subtracting the derivative, (∂L/∂ρ)ρ=0, of the asymptotic log-likelihood at
zero [expression (3.5)] from Lk(ρ, σ

2; x), one produces a modiÞed log-likelihood
function

L0k(ρ,σ
2; x) = −k

2
ln
³
σ2
´
− 1

2σ2
x0(ADD0A0)−1x

−1
2
ln |ADD0A0|+ tr

h
(AA0)−1AWA0

i
(3.14)

for which the associated asymptotic log-likelihood must have zero derivative at
ρ = 0.
However, after experimenting with numerous variations on this theme, the

most successful approach found is simply to rescale ρ in the asymptotic log-
likelihood, L(ρ), in a manner which achieves the same effect. In particular, if
the boundary values of ρ are denoted by ρmin = 1/λmin and ρmax = 1/λmax , and
if ρ∗ denotes the point in (ρmin, ρmax) where L achieves its maximum, then the
appropriate rescaling of ρ amounts to a piecewise linear transformation, ρ → eρ
which moves ρ∗ to the origin while leaving the boundaries Þxed, i.e.,

eρ = (
ρ+ (1− ρ

ρmin
) · ρ∗ , ρmin < ρ ≤ 0

ρ+ (1− ρ
ρmax

) · ρ∗ , 0 < ρ < ρmax
(3.15)

If we denote the resulting transformation of L by eL(ρ) = L(eρ), then the corre-
sponding modiÞcation of the concentrated likelihood function in (3.2) now given
by elk(ρ;x) = −1

2
ln
³
x0(ADD0A0)−1x

´
+
1

2k
eL(ρ) (3.16)

In the present case, the relevant values (ρmin = −1.16, ρ∗ = −.226, ρmax = 1)
yield the tranformed asymptotic log-likelihood, eL, shown in Figure 8a, where the
dotted curve represents the corrected values (achieving a maximum at ρ = 0).
The limiting likelihood function, ez, under this rescaling is shown in Figure

8b. Notice Þrst that while there are still two modes, the secondary mode in
the negative range of ρ has now diminished markedly. As a consequence, the
histogram of 1000 simulated estimates of ρ shown in Figure 9a no longer exhibits
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a second mode, yielding a dramatic improvement over Figure 7a. Figure 9b shows
a similar result for the example in Figure 5 above.
However, one should hasten to add that this correction is meaningful only for

�small� samples, and is surely not consistent. In the present case, the primary
mode is at ρ1 = .52 > .5 = ρ0, so that estimates will eventually exhibit a small
upward bias. The is already seen in Figure 9a, where the sample mean is .513.
Moreover, while this bias is small in the present case, this need not be true in
general. In the present case, the table below shows the ρ1 values calculated for a
selection of nonnegative ρ0 values. As ρ0 approaches zero, bias clearly increases
(and is even worse for negative ρ0).

ρ0 0 .1 .2 .3 .4 .5 .6 .7 .8
ρ1 .278 .299 .331 .378 .440 .517 .605 .700 .800

Moreover, while the higher values look promising, the secondary mode in these
cases is more severe (indicating simply that corrections of the likelihood function
are relatively slight for large ρ0). So if ρ0 is close to zero in the present example
(with σ = 1), then this correction procedure will reject the null hypothesis much
too often.
Hence a better correction procedure (assuming ρ0 ≥ 0) might involve some

compromise between lk and elk. In particular, for any convex combination of these
functions, αk elk + (1− αk)lk, with limk→∞ αk = 0, it is clear that the maximum-
root estimate of ρ must necessarily be consistent. The task here is to Þnd a choice
of αk�s which avoids the serious bimodality properties of lk while at the same time
minimizing the positive bias introduced by elk. Such possibilities will be considered
in subsequent work.

4. Concluding Remarks

The central task of this paper has been to illuminate the difficulties of estimating
parameters in the presence of �misalligned� data. Here we have focused on the
simple case of a pure spatial autoregressive process in which the observable data
is at a higher level of aggregation than the actual process itself, as represented
by the weight-matrix data. In this setting, the resulting sampling distributions
of maximum likelihood estimates for selected examples were shown to exhibit
serious bias (even for large sample sizes), and a possible correction procedure was
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proposed. This procedure is admittedly ad hoc, and clearly represents only a Þrst
pass at the problem.
However, it can be argued that in the simple context of spatial autoregressive

processes, there is perhaps no need for such correction procedures at all. Given
model [(2.1),(2.2),(2.6)] for a speciÞc weight matrix, W , and aggregation matrix,
A, one can in principle simulate the sampling distribution of ρ estimates for a
selected range of ρ0 values and simply observe how they behave. For example,
in the case illustrated by Figure 1 above, the sampling distribution (for 1000
simulations) under null hypothesis, ρ0 = 0, is shown in Figure 10. Hence it is
possible to test the null hypothesis of �no spatial interaction� directly in terms of
this sampling distribution. The fact that the sample mean is signiÞcantly negative
(about −.10 in this case) is of no consequence. One can still test whether a given
estimate is �signiÞcantly big� with respect to this distribution, and hence test for
the presence of spatial autocorrelation even though the estimates are themselves
very biased.14

But in the more important cases of multiple regression models with spatial
autoregressive errors or spatial lags, the situation is far more complex. Here the
estimate of ρ is mainly of interest as an intermediate step in estimating and testing
the signiÞcance of the key β parameters. Hence the value of the ρ estimate is
crucial for estimating the primary β parameters. An even more fundamental issue
in these models is whether consistent estimation of parameters is even possible.
In the case of spatial lag models for example, even if explanatory variables are
observed at the same level of aggregation as the dependent variable, there exists
no simple reduced form such as (2.7) above. Hence the possibility of consistent
estimation in such cases is questionable. In these more complex models it may thus
only be meaningful to introduce micro spatial lags in combination with other micro
data that allow the possibility of consistent estimation [such as the �auxilliary
variable� techniques of Holt, Steel, Tranmer and Wrigley (1996) and others].15

14It is also of interest to note in the present case that the behavior of these sampling distri-
butions is well predicted by the corresponding asymptotic form of the concentrated likelihood
function (2.21), as shown in Figure 7. This is also seen in Figure 10 where the associated as-
ymptotic function is plotted above the histogram. Notice in particular, that at ρ0 = 0, the
secondary mode has now merged with the primary mode, to produce a single �ßat� mode ex-
tending signiÞcantly into the negative range of ρ. Again this form is roughly mirrored by the
sampling distribution below. Hence one can (very quickly) plot these asymptotic functions for
a selected range of ρ0 values, and see how the estimates behave.
15Some initial results along these lines using Best Linear Unbiased Prediction methods have

been obtained by James LeSage (personal communication).
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Alternatively, one might consider the general Bayesian approach to misaligned
data recently proposed by Zhu, Gelfand, and Carlin (2000) in which micro spatial
lags are treated simply as another type of data misalignment. Such possibilities
will be explored in subsequent work.
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5. Appendix

In this Appendix, a number of the results in the text are proved.
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5.1. Uniqueness of MLEs for the Disaggregate Case

In view of the central role plays by multiple roots of the likelihood function in
aggregate case, it is appropriate to document uniqueness of roots for the standard
disaggregate case [see also Ripley (1988, section 2.2)]. To do so, it suffices to show
that the second derivative of lk with respect to ρ is always negative whenever the
Þrst derivative is zero. We begin by differentiating (2.16) to obtain

∂2

∂ρ2
lk = 2

Ã
y0B0Wy
y0B0By

!2
− y

0W 0Wy
y0B0By

− 1
k
tr(WDWD)

= [A1] + [A2] (A.1)

where

A1 =

Ã
y0B0Wy
y0B0By

!2
− y

0W 0Wy
y0B0By

(A.2)

and

A2 =

Ã
y0B0Wy
y0B0By

!2
− 1
k
tr(WDWD) (A.3)

Turning Þrst to A1, observe that if x = By and w =Wy then

A1 =
(x0w)2

kxk4 − kwk
2

kxk2

=
kwk2
kxk2

Ã
(x0w)2

kxk2 kwk2 − 1
!
≤ 0 (A.4)

by the Cauchy-Schwartz Inequality. Moreover, if ∂lk/∂ρ = 0, then by (2.16) it
follows that

y0B0Wy
y0B0By

=
1

k
tr(WD) (A.5)

and hence from (A.3) that

A2 =
µ
1

k
tr(WD)

¶2
− 1

k
tr(WDWD)

=
1

k2

h
tr(WD)2 − k · tr(WDWD)

i
(A.6)

But since the spectrum, σ(W ) = (λ1, ..,λn), of W is real, and since the corre-
sponding spectrum of WD, say σ(WD) = (ω1, ..,ωn), is easily seen to be given
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by

ωi =
λi

1− ρλi , i = 1, .., n

it follows that λ(WD) is also real. Hence, observing by deÞnition that λ(WDWD) =
(ω21, ..,ω

2
n), and recalling the trace of a matrix is the sum of its spectrum, it follows

(from an application of Hölder�s Inequality) that

A2 =
1

k2

·³X
i
ωi
´2 − k ·X

i
ω2i

¸
≤ 0 (A.7)

with strict inquality holding unless ω1 = · · · = ωn. To see that the latter case is
not possible, observe that since our condition, ρ ∈ (1/λmin, 1/λmax), implies that
1 − ρλi > 0 for all i = 1, .., n, it follows that each ωi has the same sign as λi.
Finally since λmax > 0 for every nonnegative (nonzero) matrix and since wii ≡ 0
implies that 0 = tr(W ) =

P
i λi, we must also have λmin < 0, and may conclude

that ωmin < 0 < ωmax.

5.2. Limiting Objective Function

To show verify that z(·) is the desired limit function, it must be shown that (i) the
sequence of random functions

³
zN(ρ, ε(N))

´
in (2.19) exhibit appropriate uniform

probabilistic convergence to z(·), and that (ii) the unique global maximum of this
function is at ρ = ρ0. To establish (i), we begin by observing that while z(·)
diverges at the boundaries of the parameter space (1/λmin, 1/λmax), it is easily
seen to be uniformly continuous on every closed interval Γ ⊂ (1/λmin, 1/λmax).
Hence it is enough to establish uniform probabilistic convergence on every closed
interval Γ ⊂ (1/λmin, 1/λmax) containing ρ0. To do so, let the random function
h(·, ε) be deÞned on each Γ by

h(ρ, ε) = tr
h
D0
0A

0(ADD0A0)−1AD0εε0
i

(A.8)

and observe that

E [h(ρ, ε)] = tr
h
D0
0A

0(ADD0A0)−1AD0E(εε0)
i

= tr
h
D0
0A

0(ADD0A0)−1AD0
³
σ20In

´i
= σ20 · tr

h
D0
0A

0(ADD0A0)−1AD0
i

(A.9)
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Hence letting the nonstochastic mean-value function h(·) be deÞned by the right
hand side, i.e., by

h(ρ) = σ20 · tr
h
D0
0A

0(ADD0A0)−1AD0
i

(A.10)

it follows easily that the difference function

g(ρ, ε) = h(ρ, ε)− h(ρ) (A.11)

has zero mean for all ρ ∈ Γ, and is continuous in both ρ and ε. In addition if we
write the matrix D0

0A
0(ADD0A0)−1AD0 as M(ρ) = [mij(ρ)], then

h(ρ, ε) = tr[M(ρ)εε0] = tr[ε0M(ρ)ε] =
X

ij
εimij(ρ)εj

⇒ |h(ρ, ε)| ≤
¯̄̄̄X

ij
εimij(ρ)εj

¯̄̄̄
≤X

ij
|εiεj| · |mij(ρ)|

⇒ sup
ρ∈Γ

|h(ρ, ε)| ≤X
ij
|εiεj| · sup

ρ∈Γ
|mij(ρ)| =

X
ij
|εiεj| ·mij

(A.12)

where mij = supρ∈Γ |mij(ρ)| < ∞ for all i, j = 1, .., n. Hence the Þniteness of
E(|εiεj|) for all i, j = 1, .., n implies that

E

Ã
sup
ρ∈Γ

|h(ρ, ε)|
!
=
X

ij
mijE(|εiεj|) <∞ (A.13)

and the function g is seen to satisfy all conditions of Theorem 4.2.1 in Amemiya
(1985) for the iid sequence of random vectors (εi). Thus 1

N

PN
i=1 g(·, εi) converges

uniformly in probability to zero on Γ, implying from (A.11) that 1
N

PN
i=1 h(·, εi)

converges uniformly in probability to h(·) on Γ. Finally since (2.19) shows that
zN (·, ε(N)) can written as

zN (·, ε(N)) = − ln
"
1

σ20

½
1

N

XN

i=1
h(·, εi)

¾#
− 1

k
ln |ADD0A0| (A.14)

and hence is uniformly continuous in both ρ and 1
N

PN
i=1 h(·, εi), it follows that

uniform probabilistic convergence of 1
N

PN
i=1 h(·, εi) to h(·) implies uniform prob-

abilistic convergence of zN(·, ε(N)) to the function

z(·) = − ln
"
1

σ20
h(·)

#
− 1
k
ln |ADD0A0| (A.15)

22



which is precisely (2.21).
Establishing (ii) is somewhat more delicate [as should be clear from Figure 7a,

which shows that other local maxima not only exist, but can also be very close
in value to the global maximum]. The following argument starts with the full
log-likelihood function in (2.9) and makes use of the fundamental �information
inequality� which asserts that for any parameter pair (ρ, σ2) distinct from the
true values (ρ0, σ

2
0), if the functions Lk (ρ, σ

2; ·) and Lk (ρ0, σ20; ·) differ on a set of
positive probability measure, then

E
h
Lk
³
ρ, σ2;x

´i
< E

h
Lk
³
ρ0,σ

2
0;x

´i
(A.16)

where expectation is taken with respect to x under the true parameter values
(ρ0, σ

2
0).

16 In the present case, it is enough to require that for all (ρ, σ2) 6= (ρ0, σ20),
the covariance matrices, σ2ADD0A0 and σ20AD0D

0
0A

0 be distinct.17 To evaluate
the left hand side of (A.16) we employ the arguments in (2.17) and (A.9) to obtain,

E
h
Lk(ρ, σ

2; x)
i
= E

h
Lk(ρ, σ

2;AD0ε)
i

= −k
2
ln
³
σ2
´
− 1
2
ln |ADD0A0|− 1

2σ2
tr
h
D0
0A

0(ADD0A0)−1AD0E(εε0)
i

= −k
2
ln
³
σ2
´
− 1
2
ln |ADD0A0|− σ20

2σ2
tr
h
D0
0A

0(ADD0A0)−1AD0
i

(A.17)

where the constant term has been dropped for convenience. Next we maximize
(A.17) with respect to σ2 for each Þxed value of ρ to obtain the unique value

σ2ρ =
σ20
k
tr
h
D0
0A

0(ADD0A0)−1AD0
i

(A.18)

Since (A.16) holds for all (ρ,σ2) 6= (ρ0, σ20), it follows in particular that for each
ρ 6= ρ0,

E
h
Lk(ρ, σ

2
ρ;AD0ε

i
< E

h
Lk(ρ0,σ

2
0;AD0ε

i
(A.19)

16It is worth noting that one of the earliest applications of this basic inequality was by Wald
(1949) in his proof of consistency of maximal roots for the independent sampling case. Hence
its relevance here is not surprising.
17This requires that the (highly overdetermined) system of k(k+1)/2 distinct polynomial equa-

tions in the two unknowns (ρ,σ2) [implied by the matrix equality σ2ADD0A0 = σ20AD0D00A0]
have no solutions in (1/λmin, 1/λmax)×R+ other than (ρ0,σ20).
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To evaluate the right hand side of (A.19) we next observe that (ρ,σ2) = (ρ0, σ
2
0)

implies D = D0, so that

tr
h
D0
0A

0(AD0D0
0A

0)−1AD0
i
= tr

h
(AD0D

0
0A

0)−1AD0D0
0A

0i
= tr(Ik) = k (A.20)

Hence for these true values, we have

E
h
Lk(ρ0,σ

2
0;AD0ε

i
= −k

2
ln
³
σ20
´
− 1
2
ln |AD0D0

0A
0|− k

2
(A.21)

and may use (A.17),(A.18),(A.20), and (A.21) to rewrite (A.19) as follows

−k
2
ln

Ã
σ20
k
tr
h
D0
0A

0(ADD0A0)−1AD0
i!
− 1
2
ln |ADD0A0|− k

2

< −k
2
ln
³
σ20
´
− 1
2
ln |AD0D0

0A
0|− k

2

⇒ −k
2
ln
³
σ20
´
− k
2
ln
µ
1

k
tr
h
D0
0A

0(ADD0A0)−1AD0
i¶
− 1
2
ln |ADD0A0|

< −k
2
ln
³
σ20
´
− 1
2
ln |AD0D0

0A
0|

⇒ k

2
ln(k)− k

2
ln
³
tr
h
D0
0A

0(ADD0A0)−1AD0
i´
− 1
2
ln |ADD0A0|

< −1
2
ln |AD0D0

0A
0|

⇒ −k
2
ln
³
tr
h
D0
0A

0(ADD0A0)−1AD0
i´
− 1
2
ln |ADD0A0|

< −k
2
ln(k)− 1

2
ln |AD0D0

0A
0|

⇒ −1
2
ln
³
tr
h
D0
0A

0(ADD0A0)−1AD0
i´
− 1

2k
ln |ADD0A0|

< −1
2
ln(tr

h
D0
0A

0(AD0D0
0A

0)−1AD0
i
− 1

2k
ln |AD0D0

0A
0|

⇒ z(ρ) < z(ρ0) (A.22)

Hence z(ρ) achieves its unique global maximum at ρ = ρ0.
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5.3. Concavity of L for Symmetric W

To establish concavity of L for the case of symmetric weight matrices, W , we
begin by observing that if the orthogonal projection onto span(D0A0) is denoted
by

P = D0A0(ADD0A0)−1AD (A.23)

then it follows at once from (2.14) and (3.1) together with the identity tr(M1M2) =
tr(M2M1) that

∂L

∂ρ
= −2 · tr

h
D0A0(ADD0A0)−1ADWD

i
= −2 · tr [PWD] (A.24)

Moreover, by using (2.13) we see that

∂

∂ρ
P =

Ã
∂

∂ρ
D0
!
A0(ADD0A0)−1AD

+D0A0
"
∂

∂ρ
(ADD0A0)−1

#
AD

+D0A0(ADD0A0)−1A

Ã
∂

∂ρ
D

!
= D0W 0P−P(WD +D0W 0)P+PWD
= (In −P)D0W 0P+PWD(In −P) (A.25)

Hence the second derivative of L is given by

∂2L

∂ρ2
= −2 · tr

"Ã
∂

∂ρ
P

!
WD +PW

Ã
∂

∂ρ
D

!#

= −2 · tr [(In −P)D0W 0PWD +PWD(In −P)WD +PWDWD]

= −2 · {tr [(In −P)D0W 0PWD] + tr [PWD(In −P)WD] + tr [WDPWD]}
(A.26)

To show that this expression is negative for symmetric W , we next observe from
(2.3) and (2.4) that by deÞnition, W = W 0 ⇒ B = B0 ⇒ D = D0. Moreover,
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since

WB = W − ρW 2 = (In − ρW )W = BW

⇒ DW = WD (A.27)

we see that (WD)0 = D0W 0 = DW = WD, and hence thatWD is also symmetric.
Finally, since P and In −P are each orthogonal projections, they are symmetric,
idempotent and positive semideÞnite. Hence by letting M1 = WD(In − P), the
Þrst term in the brackets of (A.26) is seen to be of the form

tr [(In −P)D0W 0PWD] = tr
h
(In −P)2D0W 0PWD

i
= tr [(In −P)D0W 0PWD(In −P)]
= tr [M 0

1PM1] (A.28)

But since the symmetric positive semideÞniteness of P implies that M 0
1PM1 is

also symmetric positive semideÞnite, it then follows that all eigenvalues are non-
negative, and hence that tr [M 0

1PM1] ≥ 0. Similarly, by setting M2 = WDP, the
second term in the brackets of (A.26) is of the form

tr [PWD(In −P)WD] = tr
h
P2WD(In −P)WD

i
= tr [PWD(In −P)WDP]
= tr [M 0

2(In −P)M2] (A.29)

and hence is nonnegative by the same arguments. Finally, since the third term
the brackets of (A.26) is also of this same form with M3 = WD, it follows that
all terms are nonnegative.
It thus remains only to show that at least one term is positive. But for the third

term, we see from the orthogonal projection properties ofP (including the equality
ADP = AD) together with the identity WD = DW and the nonsingularity of D
that

tr [(WD)0PWD] = 0 ⇒ (WD)0PWD = O

⇒ PWD = O ⇒ ADPWD = O

⇒ ADWD = O ⇒ ADW = O

⇒ AWD = O ⇒ AW = O , (A.30)

which is not possible given our deÞnitions of A andW . Hence tr [(WD)0PWD] >
0 and the result is established.
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Figure 1.  A Simple Spatial Aggregation Example
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Figure 2a. Bimodal with Positive Global Maximum

Figure 2b. Bimodal with Negative Global Maximum
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Figure 3a. Disaggregate Model estimates of Rho (3x6)

Figure 3b. Aggregate Model estimates of Rho (3x6)



                                  

                                   Figure 4a.  Regions and Subregions (16x100)

            

                                 Figure 4a.  Philadelphia Block Groups (43x312)
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Figure 5a. Disaggregate Model estimates of Rho (16x100)

Figure 5b. Aggregate Model estimates of Rho (16x100)
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Figure 6a. Dissaggregate Model estimates of Rho (43x312)

Figure 6b. Aggregate Model estimates of Rho (43x312)
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Figure 7a. Limiting Likelihood function (3x6)

Figure 7b. Histogram for 100 Replications (3x6)
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Figure 8a. Corrected Asymptotic Log-Likelihood (100 reps of 3x6)

Figure 8b. Corrected Limit Likelihood (100 reps of 3x6)
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Figure 9a. Histogram of Corrected Estimates (3x6, N = 100)

Figure 9b. Histogram of Corrected Estimates (16x100)
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