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Abstract

An empirical regularity designated as the Number-Average Size (NAS) Rule was first

identified for the case of Japan by Mori, Nishikimi and Smith [13], and has since been

extended to the US by Hsu [6]. This rule asserts a negative log-linear relation between

the number and average population size of cities where a given industry is present, i.e., of

industry-choice cities. Hence one of its key features is to focus on the presence or absence

of industries in each city, rather than the percentage distribution of industries across cities.

But despite the strong empirical regularity of this rule, there still remains the statistical

question of whether such location patterns could simply have occurred by chance. In this

paper an alternative approach to industry-choice cities is proposed. This approach utilizes the

statistical procedure developed in Mori and Smith [15] to identify spatially explicit patterns of

agglomeration for each industry. In this context, the desired industry-choice cities are taken

to be those (economic) cities that constitute at least part of a significant spatial agglomeration

for the industry. These cluster-based choice cities are then used to reformulate both the NAS

Rule and the closely related Hierarchy Principle of Christaller [2]. The key empirical result of

the paper is to show that the NAS Rule not only continues to hold under this new definition,

but in some respects is even stronger. The Hierarchy Principle is also shown to hold under

this new definition. Finally, the present notion of cluster-based choice cities is also used

to develop tests of both the locational diversity of industries and the industrial diversity of

cities in Japan.
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1 Introduction

A remarkable empirical regularity between the (population) size and industrial structure of cities

in Japan was reported in our previous paper, Mori, Nishikimi and Smith [13]. This regularity,

designated as the Number-Average Size (NAS) Rule, showed that for a given set of Japanese in-

dustrial data1 there is a strong negative log-linear relationship between the number and average

size of industry-choice cities in which establishments of each given industry operate.2 Subse-

quently, the same regularity was reported by Hsu [6] for the US, using comparable definitions

of both industries and cities.

The validity of this rule, however, depends critically on how “industry-choice cities” are

defined. In both of the above papers, such cities for a given industry were taken to be those

with a positive share of the industry employment. Hence there remains the question of whether

such an industrial presence could simply have occurred by chance. Indeed, if cities with only a

single establishment of the industry are included, then such chance occurrences would seem to

be quite likely.

Hence the central purpose of the present paper is to develop a more meaningful definition of

industry-choice cities, and to reconfirm the NAS Rule for Japan in these terms. In particular, we

seek to identify for each industry those cities with a substantial presence of that industry. While

it is possible to simply strengthen the above definition in terms of some minimal threshold share

of establishments or employment (say 5% of national totals),3 the choice of such a threshold

is necessarily ad hoc. Hence the approach adopted here is to characterize substantial presence

in terms of “significant industrial agglomerations”. This approach draws on the statistical

procedure recently developed by Mori and Smith [15] to identify spatially explicit patterns of

significant clustering (agglomeration)4 for any given industry. In this context, the desired choice

cities for an industry are taken to be those which share at least part of a significant cluster for

that industry, and are here designated as cluster-based choice cities.

The key empirical result of this paper is to show that the NAS Rule not only continues to

hold under this new definition, but in some respects is even stronger. In particular, the few

outlier industries found for Japan (2001) in Mori et al. [13] turn out to be precisely those

industries for which no significant agglomeration can be identified. Hence this finding serves to

suggest that there may indeed be a strong underlying connection between this NAS Rule and

phenomenon of industrial agglomeration itself.

As was also shown in Mori et al. [13, Section 5], there is a strong connection between this

Rule and two classical regularities: the Rank-Size Rule for cities, and the Hierarchy Principle

for industries. The former asserts a log-linear relationship between the (population) size and

the rank in terms of size of cities. The latter, which is an essential feature of the Central Place

1 In particular, this data was for two time points, 1980 and 2000 (where 1981 establishment location data was
associated with the 1980 population data and similarly, 1999 establishment location data was associated with the
2000 population data).

2Our present notion of a “city” is taken to be an “urban employment area” as discussed in Section 2.5 below.
3Such an approach was investigated in Mori et al.[13], where it was found that the NAS rule for Japan (2001)

is indeed robust up to thresholds of around 5%.
4We shall also use the terms “cluster” and “agglomeration” interchangeably. See however the discussion in

Section 8.1 of Mori and Smith [15] for a possible distinction between these concepts.
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Theory of Christaller [2], asserts that industries found in a city of a given size should also be

found in all cities at least as large. In particular, it was shown that in the presence of the

Hierarchy Principle, the NAS Rule and Rank-Size Rule are in certain respects equivalent. So

evidence for the NAS Rule should in principle have consequences for both of these additional

types of empirical regularities. Hence a final objective of this paper is to show that the empirical

support for both the Rank-Size Rule and Hierarchy Principle found by Mori et al.[13, Section

5] for Japan continues to hold in terms of cluster-based choice cities.

To establish these results, we begin in Section 2 below with an overview of the cluster-

detection procedure developed in Mori and Smith [15]. This forms the basis for our subsequent

definition of cluster-based choice cities in Section 3. The natural converse of this concept is

the notion of cluster-based choice industries for each city, as defined in the same section. This

concept in turn provides natural extensions of the tests of the Hierarchy Principle in Mori et

al. [13, Section 5]. Such extensions are developed in Section 4, and include tests of both the

locational diversity of an industry as determined by the number of its cluster-based choice cities,

and the industrial diversity of a city as determined by the number of its cluster-based choice

industries. Finally, similar extensions with respect to the NAS Rule are presented in Section 5.

The paper concludes in Section 6 with a brief discussion of some directions for further research.

2 Industrial Cluster Analysis

As mentioned above, the present paper draws heavily on the cluster-detection procedure devel-

oped in Mori and Smith [15]. This approach to identifying clusters of regions (municipalities)

for a given industry is closely related to the statistical clustering procedures proposed by Besag

and Newell [1], Kulldorff and Nagarwalla [11], and Kulldorff [10]. To test for the presence of

clusters, these procedures start by postulating an appropriate null hypothesis of “no clustering”.

In the present case, this hypothesis is characterized by a uniform distribution of industrial loca-

tions across regions (as discussed further in Section 2.3 below). Such clustering procedures then

seek to determine the single “most significant” cluster of regions with respect to this hypothesis.

Candidate clusters are typically defined to be approximately circular areas containing all regions

having centroids within some specified distance of a given reference point (such as the centroid

of a “central” region).

The approach developed in Mori and Smith [15] extends these procedures in two ways.

First, the notion of a “circular” cluster of regions is extended to the (metric based) notion of

convex solids which is meaningful for more general distance structures such as road networks.

Second, individual (convex solid) clusters are extended to the more global concept of cluster

schemes. Hence it is appropriate to begin by sketching these basic concepts in Sections 2.1 and

2.2, respectively. This is followed in Section 2.3 with a brief outline of the cluster-detection

procedure based on these concepts. In addition, the test of significance for the resulting cluster

schemes is reviewed in Section 2.4. Finally, we briefly describe the industrial and city data sets

that will be used here.
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2.1 Clusters

We begin with a set, R, of relevant regions (municipalities), r, within which each industry

can locate. An industrial cluster is then taken roughly to be a spatially coherent subset of

regions within which the density of industrial establishments is unusually high. Since the explicit

construction of such clusters will have consequences for our present definition of cluster-based

cities, it is appropriate to outline this construct more explicitly. Here we begin by noting

that “spatial coherence” is taken to include the requirement that such regions be contiguous,

and as close to one another as possible — where “closeness” is defined with respect to the

relevant underlying road network. Using network distances between regional centers, we define

shortest paths between each pair of regions, ri and rj , to be sequences of intermediate regions,

(ri, r1, .., rk, rj) reflecting minimum travel distances with respect to the road network.5 Hence

the key requirement here is that a cluster of regions be convex in the sense that it includes all

shortest paths between its member regions. But unlike the usual notion of planar convexity with

respect to Euclidean distance, the convex clusters may have “holes” in them. An illustrative

example is given in the first two panels of Figure 2.1 below.

Figure 2.1 here

Here a stylized system of regions, R, is represented by a grid of square regions. The portion

shown in Figure 2.1 is taken to be a small part of R. The set, S, of four black regions in Figure

2.1(a) depicts a grouping of regions where industry density is unusually high (as discussed further

below). But while these four regions are close enough to each other to be considered as a single

“cluster”, they are not contiguous. Hence one would like to “convexify” this set to obtain a more

coherent cluster. Here it is assumed that the road network in R has a system of major roads, part

of which is shown by the four heavy lines in Figure 2.1(b). Hence the industry concentrations in

Figure 2.1(a) are seen to be at crossroads of the major network (possibly to minimize shipping

costs). In addition, there is also a finer network of minor roads indicated schematically by the

dashed lines in Figure 2.1(b). But these local roads are in fact more circuitous in nature, and

hence are effectively much longer. Hence if the travel distance, t, between adjacent regions on the

major network is set as t = 1, then it is assumed that travel distance between adjacent regions

on minor roads is t = 3.6 With respect to this network it is easily seen that all the shortest paths

between the members of S consist of the regions on major roads connecting them, as shown by

gray in Figure 2.1(c). But in fact, this ring of regions also contains all shortest paths between

each pair of its regions. For example, the shortest path in the ring between regions r1 and r2

shown in Figure 2.1(c) is seen to be t = 7, while the straight-line path between them on minor

roads has distance t = 9. Hence this ring constitutes the desired convexification of S.7

5Technically these shortest paths may in many cases be longer than actual shortest routes on the network. For
additional details see Mori and Smith [15, Section 4.1].

6This differences may also be interpreted in terms of effective travel times.
7More generally, convexification is an iterative process that requires successively adding the minimal paths of

new points until no further new points are added. See Mori and Smith [15, Section 4.2].
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But since the six regions inside the ring are not on any shortest path, this convex set contains

a large “hole”. Hence to obtain a more coherent cluster, one would like to “fill in” this hole. The

only complication here is defining the “inside” versus the “outside” of a set, so that holes can be

identified and eliminated. The details of this procedure (which defines “outside” with respect to

the boundary of the full regional system, R) are given in Mori and Smith [15, Section 4.3]. This

process of “solidifying” a convex set is called convex solidification, and is detailed more fully in

Mori and Smith [15, Section 4.4]. The resulting convex solids then constitute the desired class

of candidate clusters for our purposes. A particular set of cluster examples (for the “livestock

products” industry in Japan) are illustrated and discussed in Section 2.3 below.

2.2 Cluster Schemes

Industrial agglomeration patterns generally consist of multiple clusters that are necessarily re-

lated to one another. In fact, the spacing between such clusters is a topic of considerable

economic interest.8 Hence it is essential to model such patterns as explicit spatial arrangements

of multiple clusters. The simple model proposed in Mori and Smith [15, Section 2] is that of a

cluster scheme, C = (R0, C1, .., CkC), that partitions R into one or more disjoint clusters (con-

vex solids), C1, .., CkC , together with the residual set, R0, of all non-cluster regions in R. The

individual clusters are implicitly taken to be areas in R where industry density is unusually

high. But for modeling purposes, all that is assumed is that inside each cluster, Cj , the loca-

tion probabilities for randomly sampled industrial establishments is uniform across all locations.

Hence if the feasible area9 for locations in each region, r ∈ R, is denoted by ar, so that the total

area of Cj is aCj =
P

r∈Cj ar, then the conditional probability of an establishment locating in

r ∈ Cj given that it is located in Cj is simply ar/aCj . With this assumption, the only unknown

probalities are the marginal location probabilities, pC(j), for clusters Cj in C. Hence each clus-

ter scheme, C, generates a candidate cluster probability model, pC = [pC(j) : j = 1, .., kC], of

establishment locations for the industry.10 These cluster probability models, pC, thus amount

formally to multinomial sampling models on their underlying cluster schemes, C, with respect

to the n establishments for a given industry.11 Finally, since the observed relative frequencies,

fC = [fC(j) = nj/n : j = 1, .., kC], of establishments in each cluster are natural maximum-

likelihood estimates of these (multinomial) probabilities, these estimates yield a family of well-

defined candidate probability models for describing the agglomeration patterns of each industry.

2.3 Cluster-Detection Procedure

The only question remaining is how to compare these models to find “best” representative

model. While many goodness-of-fit criteria are possible, it is argued in Mori and Smith [15,

Section 3] that the Bayes Information Criterion (BIC) offers a number of distinct advantages.

If the (multinomial) log-likelihood of each cluster scheme, C, given fC is denoted by LC(fC),

8See, for example, the discussion in Mori and Smith [15, Section 8.2].
9Feasible area is here taken to be economic area as defined in Section 2.5.4 below.
10This probability model is completed by the condition that pC(R0) = 1−ΣjpC(j).
11See Mori and Smith [15, footnote 12] for related model-based clustering approaches.
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then the BIC value for C is given by

BICC = LC(fC)−
kC
2
ln(n) (2.1)

Hence BIC is essentially a penalized goodness-of-measure. Here “goodness-of-fit” is identified

with the log-likelihood, LC(fC), which will assign higher values to those cluster schemes, C,

in which the relative frequencies in fC are indeed “unusually high” relative to those in other

cluster schemes. The second term then penalizes those cluster schemes, C, with higher numbers

of clusters (kC) relative to the total number of establishments, n (to avoid “over fitting” the

data).

Given this criterion function, the cluster-detection procedure developed in Mori and Smith

[15, Section 5] amounts to a systematic way of searching the space of possible cluster probabity

models above to find a cluster scheme, C∗, with a maximum value of BICC∗ .12 While the details

of this search procedure will play no role in the present analysis, the results of this procedure

for Japanese industries will play a crucial role. Hence it is appropriate to illustrate these results

in terms of the “livestock products” industry in Japan, shown in Figure 2.2 below.

Figure 2.2 here

Here Figure 2.2(a) shows the relative density of “livestock products” establishments in each

municipality of Japan,13 where darker patchs correspond to higher densities. Figure 2.2(b)

shows the cluster scheme, C∗, that was produced for the “livestock products” industry by this

cluster-detection procedure. Here it is seen that not all isolated patches of density are clusters.

But the highest density areas do indeed yield significant clusters. Notice also that while these

clusters are by no means circular, the convex solidification procedure above has produced easily

recognizable clusters that do seem to reflect the shapes of these high density areas.

2.4 A Test of Significant Clustering

Finally it should be emphasized that even random locational patterns are not perfectly uniform,

and hence will tend to exhibit some degree of clustering. So there remains the statistical question

of whether the “locally best” cluster scheme, C∗, found for an industry by the above procedure

is significantly better (in terms of BIC values) than would be expected in a random location

pattern. This can be tested in a straightforward way by (i) generating N random location

patterns for the establishments of a given industry, (ii) determining the locally optimal values,

say BIC∗s , for each simulated pattern, s = 1, .., N , and (iii) comparing the value, BICC∗ , with

this sampling distribution of BIC values. If BICC∗ is sufficiently large (say in the top 5% of

these values), then one may conclude that the clustering captured by C∗ is significantly higher

12However, it should be emphasized that this space of probability models is very large, and hence that one can
only expect to find local maxima (with respect to the particular perturbations defined by the search procedure
itself).
13These municipalities are mapped in Figure 2.3 below
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than what would be expected under randomness. Otherwise, C∗ is said to involve spurious

clustering.14

2.5 Data for Analysis

In this section, we decribe the data sets to be used in this paper. The regional data, industrial

data and spatial network data are the same as those used in Mori and Smith [15], and are

summarized in Sections 2.5.1, 2.5.3, and 2.5.4, respectively. The new element here is data for

cities, which is summarized in Section 2.5.2 (and which in part overlaps that used in Mori and

Smith [14]).

2.5.1 Basic Regions

The basic regions, r ∈ R, in the present study are taken to bemunicipalities in Japan15 [including

cities,16 wards, towns and villages] as of October 1, 2001.17 While there are a total of 3,363

municipalities in Japan, we take R to include only 3,207 of these (as shown in Figure 2.3), namely

those that are geographically connected to the major islands of Japan (Honshu, Hokkaido,

Kyushu and Shikoku). This is convenient for the identification of clusters, as discussed further

in Mori and Smith [15, Section 7.1.1].

Figure 2.3 here

2.5.2 City Data

In terms of these basic regional units, an (economic) city is formally defined to be an Urban

Employment Area (UEA), as proposed originally by Kanemoto and Tokuoka [9]. Each UEA

is designed to be an urban area of Japan that is comparable to a Core Based Statistical Area

(CBSA) in the US.18 Hence each UEA consists of a core set of municipalities designated as

its business district (BD) together with a set of suburban municipalities from which workers

commute toward the BD. Following Kanemoto and Tokuoka [9], UEAs are constructed as ag-

gregations of municipalities by a recursive procedure that is detailed in Mori et al.[13].19

Using the municipality population and commuting data from the Population Census of Japan

in 2000 (Japan Statistics Bureau [7]), 258 cities are identified (see Figure 2.4) which account,

respectively, for 92% of the national population, 92% of total employment, and 55% of total

area in 2000. As is typically the case, the population distribution among these cities is quite

14For additional details, see Mori and Smith [15, Section 5.3].
15 In Japan, the “municipality”category is designated as shi-ku-cho-son.
16 It is important to note here that “cities” in this municipality catergory are defined in terms of political

boundaries, and are not to be confused with “cities” as Urban Employment Areas in Section 2.5.2 below.
17The data source for the definition of “municipalities” is the Statistical Information Institute for Consulting

and Analysis [18, 19].
18See the US Office of Management and Budget [17] for the definition of a CBSA.
19Basically this construction starts with a large “seed” municipality, designated as the central municipality of

the UEA. This in turn is extended to a BD and an appropropriate set of suburban municipalities.
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skewed, with city populations ranging from 31.8 million in Tokyo down to 19,689 in Kucchan

(while the average population size is 445,088). Here it should be noted that the present set

of cities is larger than that used in the original NAS analysis of Mori et al.[13]. In particular,

we here include all UEAs as defined by Kanemoto and Tokuoka [9], i.e., those with a central

municipality population of at least 10,000.20

Figure 2.4 here

2.5.3 Industry Data

The industry and establishments data used for this analysis is based on the Japanese Standard

Industrial Classification (JSIC) in 2001. In particular, we focus on three-digit manufacturing

industries, of which 163 industrial types are present in the set of basic regions chosen for this

analysis.21 The establishment counts across these 163 industries is taken from the Establishment

and Enterprise Census of Japan [8] in 2001. Such counts range from 1 to 38,643 within the

present regional system, R (with a mean and median of 3,958 and 1,825, respectively).22 Here

it should be noted that the original NAS analysis of Mori et al.[13] used a much larger set of

264 industries, including services, wholesale, and retail, as well as manufacturing. However,

since manufacturing exhibits a wider and more interesting variety of location patterns at the

three-digit level, we choose to focus on these industries.23

In this context, the test of cluster significance in Section 2.4 above revealed that the clustering

found in nine of these industries was in fact spurious (at the 5% level). The main reason for

rejection in these cases [which include seven arms-related industries (JSIC331-337), together

with “tobacco manufacturing” (JSIC135) and “coke” (JSIC213)], appears to be the small size

of these industries.24 But these industries are special in other ways. For example, both tobacco

manufacturing and arms-related industries are highly regulated in Japan, with location patterns

influenced by many non-economic factors. Further discussion of these “outlier” industries is

given in Section 5 below (where these industries are labeled explicitly in Figure 5.1).25 Hence,

for the present, it suffices to say that all subsequent analyses in this paper are based on the 154

industries which exhibit some significant degree of clustering.

2.5.4 Spatial Data

The notion of “feasible area”, ar, for each basic region (municipality), r ∈ R, employed in Section

2.2 above is here taken to be the economic area of r, as defined by the Statistical Information
20Mori et al. [13] used only Metropolitan Employment Areas (MEA), i.e., UEAs with central municpality

populations of at least 50,000.
21More precisely, out of total 164 industrial types in the data, all but one has establishments in R.
22 In addition, 147 (90%) of these industries have more than 100 establishments, and 125 (77%) have more than

500 establishments.
23See Mori and Smith [14, Section 2.2].
24The average number of establishments for these industries is 7.89 (in contrast to an average of 4189 estab-

lishments for all other industries).
25See also discussions in Mori and Smith [14, p.108].
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Institute for Consulting and Analysis [18, 19]. This definition of area essentially excludes forests,

lakes, marshes and undeveloped areas in r.26

In addition, recall from the discussion of shortest-path distances in Section 2.1 above that

such distances are derived from an underlying road network. In the present application, dis-

tances between adjacent municipalities, r1, r2 ∈ R, are defined in terms of the shortest-route

distance between their municipality offices on the public road network in Japan. The relevant

road-network data is taken from Hokkaido-chizu Co. Lit.[5]. From the computed shortest-route

distances between neighboring municipalities, the corresponding shortest-path distances and

shortest-path sequences of municipalities between each pair of municipalities are then obtained.27

3 Cluster-Based Choice Cities and Industries

In this section we use the clusters identified by the detection procedure above to strengthen the

notion of industry-choice cities utilized in Mori et al.[13]. This sharper cluster-based version

is developed in Section 3.1 below. The parallel city-oriented notion of cluster-based choice

industries is then developed in Section 3.2.

3.1 Cluster-Based Choice Cities

Here we start in Section 3.1.1 by reviewing the original concept of industry-choice cities used

in Mori et al.[13]. The extended cluster-based version is then developed in Section 3.1.2. Fi-

nally these two definitions are compared empirically in Section 3.1.3 with respect their relative

industrial concentrations.

3.1.1 PB-Choice Cities

As mentioned in the Introduction, an industry-choice city was defined in Mori et al.[13] to be

any city with a positive share of the employment in that industry. To be more precise, we now

denote the set of all cities (UEA’s) in the regional system R by U , and denote the set of all
relevant industries by I. Then if the total number of establishments in each industry, i ∈ I, in

city U ∈ U is denoted by niU , the set of cities with positive i-employment is given by

U+i = {U ∈ U : niU > 0} (3.1)

Equivalently, U+i is the set of cities where i is present. Hence in this context, it is convenient to

designate each city U ∈ U+i as a presence-based (pb) choice city for i. A possible shortcoming

of this concept (also noted in the Introduction) is that the presence of a few establishments in

a city isolated from the rest of the industry may have little significance in terms of the overall

26The economic area of Japan as as a whole is 120,205km2, which amounts to 31.8% of the total area in Japan.
Among individual municipalities the proportions of total area that constitute economic area range from 2.1% to
100%, with a mean of 48.5%. For a detailed justification of the use of economic area here, see the discussion in
Mori and Smith [15, Section 7.1.2].
27Based on this data, the resulting shortest-path distances between (non-adjacent) pairs of municipalities appear

to approximate their corresponding shortest-route distances quite well. See Mori and Smith [15, Section 7.1.3]
for a further detail.
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spatial structure of that industry. While it is difficult to be precise here, this shortcoming can

nonetheless be illustrated by examples. For this purpose, we again use the “livestock products”

industry in Figure 2.2 above and now show an enlargement of the northern island of Hokkaido

in Figure 3.1 below.

Figure 3.1 here

Here the enclosed gray areas in the figure again correspond to the Hokkaido clusters for this

industry in Figure 2.2(b). In addition we have now included those pb-choice cities for Hokkaido

that do not coincide with clusters as enclosed dotted areas (the hatched areas can be ignored

for the moment). Notice again from a comparison of Figures 2.2(a) and 3.1 that the major

concentrations of livestock production include the largest city, Sapporo, together with the cities

of Asahikawa, Tomakomai, Obihiro and Hakodate. Moreover, it is also clear (from the gray

areas in Figure 3.1) that these concentrations have all been identified as significant “livestock

products” clusters. But while there are some pb-choice cities near the edges of these clusters,

there are also others which are far away from these major concentrations. For example, there is

evidently a small number of “livestock products” establishments in the northern tip of Hokkaido

around the city of Wakkanai, and also in the eastern tip of Hokkaido around Nemuro. But

relative to the concentrations above, these are clearly “outlier” areas. A less clear example is

provided by the ring of four small cities around Lake Saroma. But since there are not sufficiently

many establishments here to constitute even a small cluster, the significance of this grouping is

nonetheless questionable.

3.1.2 CB-Choice Cities

In view of these shortcomings of pb-choice cities, the main objective of this paper is to strengthen

this concept in a way that does indeed reflect the essential spatial structure of each industry.

In particular, we focus on those cities that share at least part of a significant cluster for that

industry. To do so, observe first that cities are by definition collections of basic regions (munici-

palities) in R, so that each city, U ∈ U , is formally a subset, U ⊂ R. Hence if the cluster scheme

identified for each industry i ∈ I is now denoted by Ci = (Ri0, Ci1, .., CikCi ,
), then it would seem

appropriate to focus on those cities, U , that share at least one basic region with some cluster in

Ci, i.e., which satisfy

U ∩ Cij 6= ∅ (3.2)

for some j = 1, .., kCi . However, recall that our construction of clusters in terms of convex

solidification will often include “empty spaces”, i.e., basic regions with no establishments in the

given industry. This can be illustrated by the schematic cluster constructed in Figure 2.1(d)

above. This cluster is reproduced in Figure 3.2 below, where two specific cities, U1 and U2, have

also been added, where each consists of five basic regions (shown as hatched, with the central

region partially hidden by the city label).
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Figure 3.2 here

Here both cities are seen to intersect this cluster. But while the black regions in Figure 2.1

were assumed to contain industry establishments, it may well be that the gray regions do not.

In particular the gray region shared with city U1 may in fact contains no establishments of

this industry whatsoever. While this will usually not be the case, condition (3.2) formally

allows this possibility.28 Hence to ensure that the desired industry-choice cities actually share

establishments with the given industry cluster, it is appropriate to strengthen condition (3.2) as

follows. If nir denotes the number of i-establishments in region r ∈ R, and if for each cluster,

Cij ∈ Ci we now let

C+ij = {r ∈ Cij : nir > 0} (3.3)

denote the set of i-employment regions in cluster Cij , i.e., basic regions with at least one i-

establishment, then we now designate a city, U ∈ U , as a cluster-based (cb) choice city for
industry i iff

U ∩ C+ij 6= ∅ (3.4)

for some Cij ∈ Ci, i.e., if and only if U shares an i-employment region with some cluster in

Ci.29 In addition, if we let

Ui = {U ∈ U : U ∩C+ij 6= ∅ for some Cij ∈ Ci} (3.5)

denote the set of cb-choice cities for industry i, then by definition we must have Ui ⊆ U+i , so
that cb-choice cities are seen to be a formal strengthening of pb-choice cities.

This stronger definition can be illustrated schematically by city U2 in Figure 3.2, which is in

fact centered on one of the original (crossroad) regions of establishment concentrations. Hence

U2 constitutes an integral part of this cluster, and is clearly a cb-choice city for the industry.

Empirical examples of cb-choice cities for the “livestock products” industry are provided by the

five Hokkaido cities mentioned above. The boundaries of these cities are denoted by the enclosed

hatched areas in Figure 3.2, and in all cases actually contain at least one significant “livestock

products” cluster.

A comparison of the numbers of cb-choice cities versus pb-choice cities for each of the 154

industries in I is shown in Figure 3.3 below.

Figure 3.3 here

28For the case of Japan, where the overall density of industry establishments is very high, there were actually
no such cities with respect to the cluster schemes constructed in Mori and Smith [15]. But since the present
framework is intended for general use, it is important to exclude such cities explicitly [as in condition (3.4) below].
29Here it should be noted that this definition differs slightly from that in Mori and Smith [14] where cities

were required to satisfy condition (3.2) and to have a positive employment share. In the present paper this is
strengthened to require that the intersection in condition (3.2) itself have a positive employment share. These
two definitions are equivalent in the case of our present Japanese data, but are not so in general.
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Notice in particular that for industries with smaller numbers of cb-choice cities, many are on

the 45-degree line. For these industries (42 in number) every pb-choice city is also a cb-choice

city. So the latter concept is seen to be more important for more ubiquitous industries.

Finally we note that these numbers of cb-choice cities for industries have spatial consequences,

and in particular, reflect the spatial diversity of their location patterns. Hence for each industry,

i ∈ I, we now designate this number30 as the (cluster-based) locational diversity31

di = |Ui| (3.6)

of industry i with respect to city system, U . A more general definition with respect to arbitrary
locational patterns of industries is given in expression (4.7) below.

3.1.3 Relative Industrial Concentration

Next recall that the primary motivation for introducing cb-choice cities was to capture the notion

of substantial industry presence in a city. Hence it is important to ask whether industries are

indeed more concentrated in cb-choice cities than in pb-choice cities. Concentration can of course

be defined either in terms of establishment numbers or total employment. But as we shall see for

the Japan data, industries exhibit higher concentrations in their cb-choice cities than pb-choice

cities regardless of how concentration is defined.

If we first let the employment of industry i in city U be denoted by eiU , then we may

define the employment-concentration ratio, Remp
i , of average i-employment in cb-choice cities

(Ui) relative to all other pb-choice cities (U+i − Ui) by:

Remp
i ≡

1
|Ui|
P

U∈Ui eiU
1

|U+i |−|Ui|
P

U∈U+i −Ui
eiU

, i ∈ I+ (3.7)

where I+ = {i ∈ I :
¯̄
U+i
¯̄
> |Ui|}. As pointed out in the discussion of Figure 3.3 above,

U+i = Ui for 42 of the 154 industries with significant clustering. Hence in the present case, this
set I+ consists of the remaining 112 industries for which the employment-concentration ratio

is meaningful. For these industries, the values of this ratio range from 2.37 to 120.97 (with

an average value of 16.13). In particular, since all values are above one, this shows that all

industries in I+ are relatively more concentrated in their cb-choice cities than in their other

pb-choice cities.32 The full histogram of such values is displayed in Figure 3.4(a) below, where

the vertical dashed line denote the critical unit ratio value.

Figure 3.4 here

30We shall denote the cardinality of each set A by |A|.
31This essentially replaces the term “degree of localization” used in Mori et al. [13] for numbers of pb-choice

cities. Our present terminology is designed to reflect the parallel between locational diversity of industries and
industrial diversity of cites, as seen more clearly in expressions (4.7) and (4.8) below.
32Here it should be noted that similar ratios are calculated in Mori and Smith [14]. However, the set of industries

used for that analysis were required to be compatible across two time periods (1981 and 2001), and hence are
somewhat different.
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In a similar manner, recalling that niU denotes the number of i-establishement in U , one

can define the corresponding establishment-concentration ratio, Rest
i , by:

Rest
i ≡

1
|Ui|
P

U∈Ui niU
1

|U+i |−|Ui|
P

U∈U+i −Ui
niU

, i ∈ I+ (3.8)

where I+ has the same meaning as above. For the 112 industries in I+, these values range from

2.52 to 71.74 (with an average value of 15.05), and hence are again all above unity, as shown in

Figure 3.4(b).

So regardless of how industry concentration is measured, it should be clear that the restriction

to cb-choice cities versus pb-choice cities does indeed capture “substantial industry presence” in

a structural manner, without imposing ad hoc conditions such as industry-share thresholds.

3.2 CB-Choice Industries

As a parallel to cb-choice cities, Ui, for each industry, i ∈ I, one can also identify for each city,

U ∈ U , the set of industries in I for which U is a cb-choice city. More formally, it is natural to

designate each industry in the set

IU = {i ∈ I : U ∈ Ui} (3.9)

as a cluster-based (cb) choice industry for city U ∈ U . Similarly, as a parallel to pb-choice cities,
we may designate each industry in

I+U = {i ∈ I : niU > 0} (3.10)

as a presence-based (pb) choice industry for city U ∈ U .
In a manner similar to Figure 3.3 above, the numbers of cb-choice industries and pb-choice

industries are plotted in Figure 3.5 below for each of the 258 cities in U .

Figure 3.5 here

Notice that in contrast to Figure 3.3, all cities have more pb-choice industries than cb-choice

industries, except for a few at the very highest end. But since this high end is seen to involve

nearly all 154 industries, these numbers are necessarily almost the same. In the three largest

cities (Tokyo, Osaka and Nagoya) they are in fact identical.

While this alternative “slice” through the data is of course closely related to cb-choice cities,

the emphasis here is slightly different. For example, the notion of locational diversity for indus-

tries in Section 3.1.2 above now has a clear parallel with respect to cities. In particular, the

number of cb-choice industries for each city is a clear reflection of its industrial diversity. Hence,

as a parallel to expression (3.6) above, we now designate the number of cb-choice industries for

each city, U ∈ U , as its (cluster-based) industrial diversity,

dU = |IU | (3.11)
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with respect to the family of industries in I. A more general definition in terms of arbitrary

spatial patterns of industries is given in expression (4.8). This concept will play a central role

in our analysis of the Hierarchy Principle in Section 4.4 below.

In addition to this parallel between diversity measures, we can now construct concentration

ratios for cities paralleling those of industries in expressions (3.7) and (3.8) above. To do so,

it is important to note that while the employment levels, eiU , and establishment numbers, niU ,

for a given industry i are directly comparable across cities, they are not comparable across

industries for a given city U . In particular, these values are only meaningful relative to the

size of each industry. Hence to develop comparable concentration ratios for cities, it seems

more appropriate to use shares rather than counts. Hence. if we now let ei denote the total

employment in each industry i ∈ I, so that its employment share in city U is given by eiU/ei,

then an employment-concentration ratio, Remp
U , for city U paralleling Remp

i above can be defined

as,

Remp
U ≡

1
|IU |

P
U∈Ui(eiU/ei)

1

|I+U |−|IU |
P

U∈U+i −Ui
(eiU/ei)

, U ∈ U+ (3.12)

where U+ = {U ∈ U :
¯̄
I+U
¯̄
> |IU |}. As mentioned in the discussion of Figure 3.5 above, I+U = IU

for the three largest cities in Japan. Hence for our present data, U+ consists of the remaining
255 cities for which this employment-concentration ratio is meaningful. For these industries, the

values of this ratio range from 0.35 to 37.58 (with an average value of 6.51). The full histogram

of values is given in Figure 3.6(a) below.

Figure 3.6 here

In particular, there are six (out of 255) cities for which this value is less than one, as reflected by

the position of the unit-ratio line in this figure. These few outliers are small cities with clusters

mainly in ubiquitous industries. Since employment in such industries tends to be proportional

to population, the industrial employment shares in these towns is very small.

Turning finally to establishment concentrations for cities, if we now let ni denote the total

number of establishments in industry i, so that its establisment share in each city U is given by

niU/ni, then an establishment-concentration ratio, Rest
U , for city U paralleling Remp

U above can be

defined as,

Rest
U ≡

1
|IU |

P
U∈Ui(niU/ni)

1

|I+U |−|IU |
P

U∈U+i −Ui
(niU/ni)

, U ∈ U+ (3.13)

Here the range of Rest
U is from 1.06 to 65.36 (with a mean of 5.10). Hence, in contrast to

Remp
U , this ratio is everywhere above one, as shown by the position of the unit-ratio line in

Figure 3.6(b). In particular, the six outliers for employment concentration above now all have

establishment-concentration ratios above one. Here it is of interest to note that if our cluster-

detection procedure were based on employment densities (rather than establishment densities),

then these six cities would be likely to exhibit no significant clustering at all.
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4 Hierarchy Principle

The central purpose of this section is to reformulate the Hierarchy Principle of Christaller [2]

in terms of our present notion of industrial diversity, and to develop a test of this Principle.

Recall that the original version of the Hierarchy Principle asserted that industries found in a

city with a given population should also be found in all cities with populations at least as large.

In Mori at al.[13] it was argued that rather than population, a more appropriate measure of “city

size” would be to use levels of industrial diversity. The notion of industrial diversity used there

was defined in terms of pb-choice industries for cities. With respect to our present notation,

this (presence-based) Hierarchy Principle asserted formally that for any cities, U, V ∈ U with¯̄
I+U
¯̄
≤
¯̄
I+V
¯̄
and any industry, i ∈ I, if i ∈ I+U then i ∈ I+V . Hence our main objective is to

replace this definition with industrial diversity based on cb-choice industries for cities. Again in

terms of our present notation, this amount to replacing the set of pb-choice industries, I+U , for

each city U with the corresponding set of cb-choice industries, IU (⊆ I+U ). More formally, this

(cluster-based) Hierarchy Principle now asserts that for any cities, U, V ∈ U and industry, i ∈ I,

(i ∈ IU ) & (|IU | ≤ |IV |) ⇒ i ∈ IV (4.1)

As in Mori at al.[13], it should be emphasized that while this modification has certain advan-

tages, both in terms of interpretation and testing, it is nonetheless very similar in the spirit to

the original Hierarchy Principle. In particular, the rankings of Japanese cities in terms of their

populations and cluster-based industrial diversities are quite similar [with a (highly significant)

Spearman’s rank correlation of 0.742].

To do so, we begin in Section 4.1 by reformulating both industrial diversity and locational

diversity [expressions (3.6) and (3.11) above] within a common framework that is more useful

for testing purposes. This will yield tests of these two diversity concepts in Sections 4.2 and

4.3, respectively. The parallel test of the Hierarchy Principle is then developed in Section 4.4.

Finally the relation between this Principle and the notion of “specialized cities” popularized by

Henderson [4] is developed in Section 4.5.

4.1 Industrial and Locational Diversity

To develop a common framework for industrial and locational diversity, it is convenient to begin

by defining a family of indicator functions, xiU : I × U → {0, 1}, for each industry, i ∈ I, and

city, U ∈ U , as follows33

33Here it should be noted that the following framwork is closely related to that in Mori et al. [13] (starting on
p.185). The key difference is with respect to these indicator functions. In Mori et al. [13] the set R consisted
not of a partition of basic regions, but rather a set of municipalities corresponding to Metropolitan Employments
Areas (MEAs) [as mentioned in footnote 20 above]. In the present paper we distinguish between basic regions
(used for cluster identification) and cities, U ∈ U , here defined to be Urban Employment Areas (UEAs), as in
Section 2.5.2 above. More importantly, the notion of pb-choice cities used to define indicator functions in Mori
et al. [13] is here replaced bycb-choice cities. Hence to avoid confusion, it is convenient to restate this formal
framework explicitly in terms of the present definitions.
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xiU =

(
1 , U ∈ Ui
0 , otherwise

(4.2)

The resulting vector of indicator values,

x = (xiU : i ∈ I, U ∈ U) ∈ {0, 1}I×U ≡ X (4.3)

then constitutes an industrial location pattern identifying both the cb-choice cities for each

industry, i ∈ I, and the cb-choice industries for each city, U ∈ U . In particular, for each location
pattern, x ∈ X, we now denote the set of cb-choice cities for industry i in x by,

Ui(x) = {U ∈ U : xiU = 1} (4.4)

and, similarly, denote the set of pb-choice industries for city U in x by

IU (x) = {i ∈ I : xiU = 1} (4.5)

If the given set of industrial location data is now represented by the observed industrial location

pattern,

x0 = (x0iU : i ∈ I, U ∈ U) (4.6)

then expressions (3.5) and (3.9) above are related to the present framework by Ui ≡ Ui(x0) and
IU ≡ IU (x

0), respectively.

Within this more general setting, the locational diversity of industry, i ∈ I, in each location

pattern, x ∈ X, is now defined by

di(x) =
X
U∈U

xiU = |Ui(x)| (4.7)

The associated vector, dI(x) = [di(x) : i ∈ I ], then summarizes the locational diversity structure

for all industries with respect to x. Similarly, the industrial diversity of each city, U ∈ U , in
pattern x is defined by

dU (x) =
X
i∈I

xiU = |IU (x)| (4.8)

with associated vector, dU(x) = [dU (x) : U ∈ U ], summarizing the industrial diversity structure
for all cities with respect to x.

In particular, the observed locational diversity structure of industries is given by d0I = (d
0
i :

i ∈ I), where:

d0i = di(x
0) =

X
U∈U

x0iU , i ∈ I (4.9)

Similarly, the observed industrial diversity structure of cities is given by d0U = (d0U : U ∈ U),
where:

d0U = dU (x
0) =

X
i∈I

x0iU , U ∈ U (4.10)
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Finally, it should be noted that expressions (3.6) and (3.11) in Section 3.2 above are related to

the present definitions by |Ui| = di ≡ d0i and |IU | = dU ≡ d0U , respectively.

4.2 A Test of Industrial Diversity

Before proceeding to the Hierarchy Principle itself, we begin by noting that the above concepts

of industrial and locational diversity structures are of interest in their own right. In the present

section, we consider the industrial diversity of cities in more detail, and develop a test for the

presence of significant diversity. A parallel analysis of the locational diversity of industries is

developed in Section 4.3 below. Following Mori et al.[13], we start by taking the observed

structure of locational diversity among industries as given, and identify the set of all industrial

location patterns consistent with this data. More precisely, for any given observed locational

diversity structure, d0I = (d
0
i : i ∈ I), the set of feasible location patterns, X0I , consistent with d0I

is given by,

X0I =

(
x = (xiU : i ∈ I, U ∈ U) :

X
U∈U

xiU = d0i , i ∈ I

)
⊂ X (4.11)

By restricting industrial location patterns to those consistent with d0I , one is preserving as much

of the actual locational diversity structure as possible. For example, ubiquitous industries with

high levels of locational diversity will continue to be ubiquitous in all location patterns, x ∈ X0I .
In this context, one may then ask what the industrial diversity structure for cities would

look like if for these given levels of locational diversity for industries, the locational pattern

of industries was otherwise random. This may be formalized by treating location patterns,

x = (xiU : i ∈ I, U ∈ U), as possible realizations of a random vector, X = (XiU : i ∈ I, U ∈ U),
and considering the null hypothesis:

H0
I : X is uniformly distributed on X0I (4.12)

In particular, to test whether the observed industrial diversity structure, d0U , in (4.10) is more

heterogenous than would be expected under H0
I , one may construct some appropriate statistic,

say S(x), reflecting the heterogeneity of industrial diversities among cities and ask whether the

observed value, S(x0), is higher (more heterogeneous) than would be expected under H0
I . One

simple choice for S(x) here is given by the range, ∆dU(x), of industrial diversity levels in dU(x),

as defined for each x ∈ X0I by

∆dU(x) ≡ max
U,V ∈U

|dU (x)− dV (x)| (4.13)

Given this specification, the desired test can be carried out by simply generating a set of

Monte Carlo samples (xs : s = 1, .., N) of X, and calculating the fraction of simulated range

values, [∆dU(xs); s = 1, ..,N ], that are at least as large as the observed value, ∆dU(x0). In the

present case, such calculations are in fact unnecessary since the observed value is literally “off

the chart”, as shown by the vertical dashed line to the right of the histogram of simulated range

values with N = 1000 in Figure 4.1(a) below.

16



Figure 4.1 here

Here the observed value, ∆dU(x0) = 153, is vastly higher than the maximum simulated value of

∆dU(x) = 43. Note that since there are only 154 industries in I, the observed range is almost

as large as possible (with an industrial diversity of 154 for Tokyo and an industrial diversity of

1 for the two cities in U with smallest populations, namely Ashibetsu and Kucchan34). Hence
it should be clear that even for simulated samples much larger than N = 1000, the same results

would obtain. So with respect to this range measure, the observed pattern of industrial diverstiy

in Japan is vastly larger than what would be expected under randomness.

One alternative to the range would be to focus simply on the largest industrial diversity

among cities, namely to replace the range of values in dU(x) with the maximum value:

dmaxU (x) ≡ max
U∈U

dU (x) (4.14)

Exactly the same testing procedure with respect to this statistic (and N = 1000) yields the

results shown in Figure 4.1(b). Here (as mentioned above) the highest observed value of 154

corresponds to Tokyo, while the highest simulated maximum value is only 89. So these results

again confirm the dramatic departure of the observed structure, dU(x0), of industrial diversity

versus those simulated under the randomness hypothesis in (4.12).

To interpret these results, note that heterogeneity of industrial diversity suggests that many

cities tend to exhibit higher levels of industrial diversity than would be expected under ran-

domness. But since the number of cb-choice cities for each industry is being held constant (by

the construction of X0I) this in turn implies more of these locational choices are coincident with

other industries than would be expected. Hence these results suggest that there is significant

spatial coordination of agglomerations across industries, as implied by the work of Christaller [2]

(together with more recent formalizations of this work by Fujita et al. [3], Tabuchi and Thisse

[20, 21] and Hsu [6]). Indeed, the test of Christaller’s Hierarchy Principle developed in Section

4.4 below will provide an even more direct test of this spatial coordination among industries.

4.3 A Test of Locational Diversity

In a manner completely paralleling the procedure in Section 4.2 above, one may also test for

the presence of significant locational diversity among industries given the observed level of

industrial diversity among cities, as summarized by the observed industrial diversity structure,

d0U = (d0U : U ∈ U), defined by (4.10). Here we simply sketch the main elements of this test.
First, let the set of feasible location patterns consistent with d0U be denoted by,

X0U =

(
x = (xiU : i ∈ I, U ∈ U) :

X
i∈I

xiU = d0U , U ∈ U
)
⊂ X (4.15)

34The singly cb_choice industry for Ashibetsu (population = 21,026) is “newspaper industries” (JSIC191) and
that for Kucchan (population = 19,689) is “sugar processing” (JSIC125). Note also that the number of cb-choice
cities for “newspaper industries” and “suger processing” are 153 and 49, respectively. The former is a typical
ubiquitous industry which is found in most cities, while the latter is relatively localized industry. Thus, Kucchan
can be considered as a typical instance of a “specialized-industry” town.
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Next, as a parallel to (4.12) above, consider the null hypothesis,

H0
U : X is uniformly distributed on X0U (4.16)

that except for consistency with d0U , industrial location patterns are otherwise random. Here,

the restriction to industrial diversity patterns consistent with d0U ensures the preservation of as

much of the actual city structure as possible. For example, Tokyo will continue to be a cb-choice

city for every industry, and all smaller cities will continue to have the same number of cb-choice

industries as observed in actuality. To measure the heterogeneity of locational diversity levels

among industries, we shall here only consider the range of such diversity levels, as defined for

each locational pattern, x ∈ X0U , by:

∆dI(x) ≡ max
i,j∈I

|di(x)− dj(x)| (4.17)

In these terms, we now wish to test whether the range of observed locational diversity levels,

∆dI(x
0), is significantly larger than would be expected under H0

U . The results of a Monte Carlo

test (again with N = 1000 simulated samples of ∆dI(x) under H0
U) are shown in Figure 4.2

below:

Figure 4.2 here

Here the results are in some ways even more dramatic than those in Figure 4.1(a) above. Out

of the 258 possible cities in U , the observed range is 212 while the maximum range of the 1000

random location patterns simulated is only 53. Here the most ubiquitous industry (with 224 cb-

choice cities out of 258) happens to be the industry manufacturing “printing plates” (JSIC194).

More generally, printing-related activities often require direct interaction with customers, and

are very market oriented. At the other extreme, the most localized industries (each with only 12

cb-choice cities) are the “leather glove and mittens” industry (JSIC245) and the “briquettes and

briquette balls” industry (JSIC214). The former is an example of a highly specialized industry

that is concentrated almost entirely in a group of three small villages accounting for over 90%

of the national market share (see Section 4.5 below for further discussion of this industry).35

The latter is a good example of a resource-oriented (“first-nature”) industry with establishments

located primarily in the vicinity of briquette mines. Given the locations of such mines in Japan,

this industry turns out to be highly localized as well.

Two final points here relate to the interpretation of these results. First, it should be clear

that industries with high locational diversity must by definition have many establishments,

and correspondingly large levels of employment. Hence it can be argued that such test results

essentially reflect a diversity in the size of industries. Moreover, from an economic viewpoint,

such results in part reflect underlying variations in scale economies among industries [as analyzed

for example in the city-system models of Fujita, Krugman and Mori [3] and Hsu [6]].
35More generally, it is of interest to note that most leather/fur-related industries tend to be similarly specialized

with small locational diversities. In fact, five of the ten industries with smallest locational diversities in Japan
are in this category.
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4.4 A Test of the Hierarchy Principle

Given these initial results, we now turn to the Hierarchy Principle itself. In a manner similar

to the diversity measures above, it is convenient to restate this Principle in terms of industrial

location patterns. As an extension of the definition in (4.1), we now say that an industrial

location pattern, x = (xiU : i ∈ I, U ∈ U) ∈ X, satisfies the (cluster-based) Hierarchy Principle
if and only if for each pair of cities, U, V ∈ U and industry, i ∈ I,

[ i ∈ IU (x) & dU (x) ≤ dV (x) ] ⇒ i ∈ IV (x) (4.18)

To test this Principle, we follow the basic approach developed in Mori et al.[13]. In particular,

we start by representing the observed industrial location pattern, x0 = (x0iU : i ∈ I, U ∈ U), as
in Figure 4.3 below:

Figure 4.3 here

Here cities, U ∈ U , are ordered on the horizontal axis from lowest to highest in terms of their

observed industrial diversities, d0U . Similarly, industries, i ∈ I, are ordered in terms of their

observed locational diversities, d0i . With respect to this coordinate system, a “plus” symbol (+)

in position (U, i) indicates that U is a cb-choice city for industry i (and equivalently, that i is a

cb-choice industry for city U). If we distinguish such positions as positive, then the Hierarchy

Principle asserts that for each positive position (U, i) there must also be a (+) in every row

position (·, i) to the right of (U, i), indicating that all cities with industrial diversities greater
than or equal to city U are also cb-choice cities for industry i. It is evident from the figure that

while the Hierarchy Principle does not hold perfectly, the row density of (+) values increases

from left to right in virtually every row.36 Hence this data is seen to exhibit a strong level of

agreement with the Hierarchy Principle that could not have occurred by chance.37

In this context, one may regard each occurrence of a full row of (+) values to the right of a

positive position (U, i) as a “full hierarchy event” in the sense that it is fully consistent with the

Hierarchy Principle. However, if only small fraction of (+) values are missing, then it is natural

to consider such cases as being “closer” to a full hierarchy event than if all (+) values were

missing. To formalize these ideas for arbitrary industrial location patterns, x, we first observe

that such hierarchy events are only meaningful for the positive positions in x (i.e., the pairs, iU ,

for which U is a cb-choice city for industry i in x). Hence if for each industrial location pattern,

x ∈ X, we now denote this set of positive pairs by

Px = {iU ∈ I × U : xiU = 1} , x ∈ X (4.19)
36 It should also be noted that the SIC classification system for industries is by no means exact. Hence some

level of disagreement in such hierarchical relations is unavoidable.
37Note that this figure bares a strong resemblance to Figure 7 in Mori et al. [13], as well as Figure 9 in Mori

and Smith [14] The key difference from Mori et al. [13] is our present definition of cb-choice cities versus pb-choice
cities. In addition, a larger set of cities is used here (as described in Section 2.5.2 above). The difference from
Mori and Smith [14] is mainly in term of industries. In that paper, industries were required to be consistently
defined over a twenty-year span, thus resulting in a smaller set of 139 industries. But in spite of these differences,
the resulting figures are seen to be qualitatively very similar.
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and for each city, U ∈ U , let

SU (x) = {V ∈ U : dV (x) ≥ dU (x)} (4.20)

denote the set of cities with industrial diversities in x at least as large as that of U , then the

desired fractional hierarchy event for each positive pair, iU ∈ Px, is defined to be38

HiU (x) =
1

|SU (x)|
P

V ∈SU (x)xiV (4.21)

By definition, 0 < HiU (x) ≤ 1,39 with the extreme case, HiU (x) = 1, constituting a full heirarchy

event at iU ∈ Px.
In these terms, a simple summary measure of the overall consistency of pattern, x ∈ X, with

the Hierarchy Principle is given by the mean of these fractional hierarchy events, which we now

designate as the hierarchy share

H(x) =
1

|Px|
X

iU∈Px
HiU (x) (4.22)

for pattern x. As a parallel to the underlying fractional hierarchy events, these hierarchy shares

must also satisfy 0 < H(x) ≤ 1.40 Moreover, the full equality condition, H(x) = 1, implies

that all fractional hierarchy events must be full, and hence from (4.18) that x must satisfy the

Hierarchy Principle. Thus, these hierarchy shares are seen to provide a natural test statistic for

the Hierarchy Principle itself.

In this context, it was argued in Mori et al.[13] that the most appropriate null hypothesis for

testing this Principle is precisely H0
U in (4.16) above, namely that except for consistency with

the given industrial diversity structure, d0U = (d0U : U ∈ U), industrial locations are otherwise
random. The advantage of this approach is that it allows industrial location patterns to be

“as random as possible” while maintaining the underlying city structure in terms of industrial

diversity. So, for example, major cities like Tokyo and Osaka will continue to have high levels

of industrial diversity under H0
U .
41

Given this null hypothesis, our test of the Hierarchy Principle is thus very similar to that

in Section 4.3 above. In particular, the observed industrial location pattern, x0, is again hy-

pothesized to be a typical realization of a uniform random variable, X, on the set of feasible

patterns, X0U in (4.15). The only difference here is that the relevant test statistic is now taken to

be the random hierarchy share variable, H(X). Hence under H0
U , the observed hierarchy share,

H(x0) [based on the data represented in Figure 4.3] should be a typical realization of H(X).

To test this, we again simulate N = 1000 draws {xs : s = 1, ..,N} from X0U and calculate their

38Note that U ∈ SU (x)⇒ |SU (x)| > 0 for all U .
39Note that iU ∈ Px implies xiU = 1, so that HiU (x) ≥ 1/ |SU (x)| > 0.
40Note that from a technical viewpoint, Hx is not defined for null pattern, xnull ∈ X, with xnulliU = 0 for all iU .

Indeed, the Hierarchy Principle is satisfied vacuously for this pattern since Pxnull = ∅. Hence, for convenience,
we simply ignore this degenerate case in all subsequent analyses.
41Recall from the introductory discussion to Section 4 that these levels of industrial diversity are indeed highly

correlated with their city sizes.
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associated hierarchy shares, {H(xs) : s = 1, .., N}. Using this simulated data, one may estimate
[as in Mori et al. [13]] the cumulative frequency distribution, F (h) = Pr(H < h), of H under

H0
U by bF (h) = 1

N
|{s : H(xs) < h}| (4.23)

and hence estimate the associated p-value for a one-sided test of H0
U by

cPr £H ≥ H(x0)
¤
= 1− bF [H(x0)] (4.24)

For example, if H(x0) were larger than 99% of the simulated H(xs) values [so that bF £H(x0)¤ >
0.99] then cPr £H ≥ H(x0)

¤
< 0.01 would imply that the (estimated) chance of observing a value

as large as H(x0) under H0
U is less than 0.01, and thus that this null hypothesis could be rejected

at the 0.01 level.42

In fact, the evidence against H0
U is far stronger than this, as can be seen in Figure 4.4 below.

Here the realized values are plotted (in a manner similar to Figure 4.2) as a histogram, with

the observed value, H(x0) = 0.771, again represented by a vertical dashed line. As in Figure

4.2, this value is again well above the range of simulated values [0.634, 0.636], and here provides

strong evidence for the Hierarchy Principle.

Figure 4.4 here

In summary, these results serve to reconfirm the findings of Mori et al.[13] under the present

more stringent definition of industrial diversity in terms of cb-choice cities. In particular they

show that even after controlling for relative industrial diversities among cities, the location pat-

tern of Japanese (three-digit) manufacturing industries in 2001 shows very significant hierarchical

structure.

4.5 Specialization and Agglomeration

It should be noted however that in spite of its statistical significance, the observed hierarchy

share, H(x0) = 0.771, is still well below unity. Moreover, since H(x0) is only an average value

over all industries, it should be clear that certain industries may in fact exhibit large deviations

from the Hierarchy Principle. To examine this question further, we now let

Hi =
1

|Ui|
X
U∈Ui

HiU(x
0) (4.25)

denote the (observed) hierarchy share for each industry i ∈ I. The histogram of these values

over the 154 industries in I is shown in Figure 4.5 below.

42 It should be noted that since H(x0) is formally postulated to be an additional sample of H(X) under H0
U ,

one could also estimate F (h) using the larger sample, {H(xs) : s = 0, 1, ..,N}, of size N +1. But for large N this
will make little difference in the results.
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Figure 4.5 here

While the mean value, 0.697, is very close to that of the overall hierarchy share, 0.771,43 the

individual values range from 0.213 to 0.969. Of particular interest for our present purposes are

those industries on the low end, that deviate quite dramatically from the Hierarchy Principle.

The ten industries with smallest hierarchy shares, Hi, are listed in Table 4.1 below.

Table 4.1 here

These industries can be roughly classified into three groups. The first group of industries

[“Fur skins” (JSIC248), “leather gloves and mittens” (JSIC245), “leather tanning and finishing”

(JSIC241), and “ophthalmic goods, including frames” (JSIC326)] are all examples of industries

that are subject to industry-specific localization economies. When production externalities are

industry specific (such as those related to knowledge shared among workers with specialized

skills), the specific locations of industrial concentrations may be largely determined by histor-

ical circumstances. For instance (as mentioned in Section 4.3 above), the “leather glove and

mittens” industry is almost entirely concentrated in a cluster of three remote municipalities

(Hikita, Shiratori and Ohuchi) on Shikoku island (refer to Figure 2.3). While these munici-

palities have a total population of only 38,000, they account for more than 90% of all leather

glove manufacturing in Japan. Similarly, the “opthalmic goods, including frames” industry is

highly concentrated in the small town of Sabae (population 65,000) on the northern coast of

Honshu (refer to Figure 2.3). This town also accounts for more than 90% of all eye glass frames

manufactured in Japan (and in fact, 20% of all eye glass manufacturing in the world). In both

of these cases, there are no strong reasons other than historic why such dramatic concentrations

should be found at these locations.

The second group of industries [“iron smelting, without blast furnaces” (JSIC262), “petro-

leum refining” (JSIC211), and “iron industries, with blast furnaces” (JSIC261)] are all subject

to large plant-level scale economies in production. Since their production processes are relatively

self-contained, these industries have little incentive to co-locate with other industries. In par-

ticular, since most of their (weight/bulk intensive) inputs are imported by sea, such industries

must often compete for suitable coastal locations.

The final group of industries [“briquettes and briquette balls” (JSIC214) and “lacquer ware”

(JSIC346)] are examples of resource-oriented (“first-nature”) industries constrained by their

input-supply locations. For example (as mentioned in Section 4.3 above) the “briquettes and

briquette balls” industry is primarily located in the vicinity of briquette mines.

What all of these groups have in common is a high degree of specialization in some aspect

of their production processes. This suggests that the degree of specialization among industries

may in fact help to explain deviations from the Hierarchy Principle. To test this idea, one must

43These two mean values are only guaranteed to be the same when the number of choice industries, |Ui|, is the
same for each industry i ∈ I.
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construct some appropriate measure of “specialization”. Here it is of interest to note that while

our present version of the Hierarchy Principle focuses on “substantial presence” of industries

in given cities, there is no explicit consideration of their actual employment shares in these

cities. So one way to measure the “degree of specialization” for industry i is to focus on its

employment shares across cities, and to quantify the deviations of these shares from those of the

manufacturing sector as a whole. To be more precise, we first recall from Section 3.1.3 that eiU
denotes the total employment of industry, i ∈ I, in city, U ∈ U . With this notation, it follows
that for any given industry, i ∈ I, the within-industry employment share of i in city U is given

by

sU |i =
eiUP

V ∈U eiV
(4.26)

Similarly, by letting eU =
P

i∈IeiU denote total manufacturing employment in city U , it follows

that the corresponding total employment share, sU , in city U of all manufacturing is given by

sU =
eUP

V ∈U eV
(4.27)

In this context, it is natural to regard equality between these two distributions as representing

the extreme case of “no specialization” for industry i. If this is formalized as a null hypothesis

Hi
0 : (sU |i = sU : U ∈ U) (4.28)

for industry i, then an appropriate statistic for testing this hypothesis is the Kullback-Leibler

(KL) divergence of distribution (sU |i : U ∈ U) from (sU : U ∈ U), as defined by (see Kullback
[16]):

Di =
X
U∈U

sU |i ln

µ
sU |i
sU

¶
(4.29)

As is well known, Di ≥ 0, and Di = 0 if and only if Hi
0 in (4.28) is satisfied. Hence larger

values represent greater “deviations” from the distribution of total employment shares, which in

our present context, suggests that Di can be interpreted as the degree of specialization for each

industry, i ∈ I.44

Given this measure, the above observations suggest that those industries, i, with greater

deviations from the Hierarchy Principle (i.e., with lower hierarchy shares, Hi) might in fact be

those with higher degrees of specialization, as measured by Di. A plot of Di against Hi for

the 154 industries in I is given in Figure 4.6 (where the ten industries in Table 4.1 are labeled

explicitly), and shows that there is indeed a strong negative relation between these values. In

particular, the Spearman’s rank correlation between the two is -0.850, and is of course highly

significant.

Figure 4.6 here

44For a similar application of KL-divergence to measure the degree of localization of industries, see Mori et
al.[12].
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For completeness, the associated histogram of Di values is given in Figure 4.7 below. As

expected from the inverse relation between the two, this histogram is essentially the reverse of

that for Hi in Figure 4.5.

Figure 4.7 here

Given this inverse relationship, it is of interest to observe that from a theoretical viewpoint,

perhaps the most prominent competitor to the Hierarchy Principle in the economic geography

literature is the “system of cities model” (first introduced by Henderson [4]) in which each city

is specialized in a single industry (due to industry-specific externalities/scale economies). In

this model, cities that are more specialized in a given industry are expected to exhibit a larger

presence of that industry than other cities. More precisely, if for any given city, U ∈ U , the
within-city employment share of industry i in U is defined by

si|U =
eiUP
j∈I ejU

=
eiU
eU

(4.30)

then those cities U that are more specialized in industry i are expected to exhibit higher within-

industry employment shares, sU |i, than other cities.

This specialization-concentration hypothesis is indeed supported by our Japanese data. In

particular, if for each industry i ∈ I one calculates the Spearman’s rank correlation between

these within-city employment shares, (si|U : U ∈ U), and the corresponding within-industry
employment shares, (sU |i : U ∈ U), across cities, then the mean of these correlations is 0.697.
Moreover, there is a strong concentration around this mean, as shown by the histogram of rank

correlation values for all industries in Figure 4.8 below. Hence while these correlations are by

no means perfect, they do suggest that elements of this “system of cities model” are exhibited

by manufacturing industries in Japan.

Figure 4.8 here

As a possible synthesis of these ideas, we note first that our present Hierarchy Principle

makes no assertion whatsoever about this specialization-concentration hypothesis. For example,

consider the extreme case in which a city system, U , satisfies the Hierarchy Principle for all
industries, but that for each industry, i ∈ I, (i) all cb-choice cities, U ∈ Ui, have the same
within-city employment shares, si|U ≡ si > 0, and (ii) all other cities have zero i-employment.45

Then, assuming that some industries are more specialized than others (i.e., that hypothesis Hi
0

does not hold identically for all industries i), it is clear that there can be no correlation between

specialization and within-industry employment shares. Hence such relationships are formally

independent of the presence or absence of industrial hierarchies.

45Note that in this extreme case, U also satisfies the presence-based Hierarchy Principle.
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In view of this independence, the inverse relationship in Figure 4.6 suggests that the structure

of manufacturing in Japan exhibits both hierarchical and specialization-concentration structure.

Moreover, these two concepts appear to be complementary in that specialization-concentration

tends to be strongest in those industries where hierarchies are the weakest. This suggests that

perhaps a more satisfactory theory of urban industrial structure should involve a synthesis of

these two ideas.

5 NAS Rule

In addition to the Hierarchy Principle itself, it was also shown in Mori et al. [13, Theorems 1

and 2] that this Principle has consequences for both the Number-Average Size (NAS) Rule for

industries and the Rank-Size Rule for cities. In particular, it was shown that in the presence

of the Hierarchy Principle, these two rules are essentially equivalent. While these analytical

results require that the classical (population based) Hierarchy Principle hold exactly, they still

suggest that in the presence of a strong hierarchical industrial structure, these two rules should

continue to exhibit a close relationship. In this regard, it was shown empirically in Mori et al.

[13] that for the presence-based version of the Hierarchy Principle, both of these rules indeed

exhibit strong statistical significance. For the present cluster-based version of this Principle, it

was also shown in Mori and Smith [14] that both of these rules not only exhibit strong statistical

significance, but also remarkable stablity over a twenty-year time span.

With respect to the Rank-Size Rule in particular, the regression for 2000/2001 in expression

(13) of Mori and Smith [14] confirms the significance of this relation for our present set of

city data.46 However, since the NAS Rule involves both industry and city data, and since our

combined industry-city data differs from both these previous papers (as discussed in Section

2.5.2 above), it is of interest to reconsider the NAS Rule within the present setting. Hence the

main objective of this section is to reconfirm the NAS Rule using the cluster-based choice cities

generated by our present sets of industries, I, and cities, U .
To do so, we start by recalling that the NAS Rule formulated in Mori et al. [13] asserts that

there is a log-linear relationship between the number and average size of pb-choice cities for in-

dustries. This rule was motivated by a remarkably strong log-linear regression obtained between

these variables. In particular, if we let U∗ denote the set of 113 Metropolitan Employment Areas
(MEAs) for Japan in 2000, and let I∗ denote the larger set of 261 Japanese industries in 2000

including services, wholesale, and retail, together with manufacturing,47 then this regression was

based on the pb-choice cities in U∗ for all industries in I∗.48 For these data sets, if we now denote
46See Mori and Smith [14, pp.197-202] for a complete discussion.
47The full set of such industries is 264 in number. But to maintain a parallel with the regression in expression

(2) of Mori et al. [13], the three obvious outliers in Figure 1 of Mori et al. [13], namely, “coke” (JSIC213), “small
arms (rifles)” (JSIC331) and “small arms ammunition (bullets)” (JSIC333), are excluded from the regression (5.1)
below. Here it should be noted that these three industries are among the nine with spurious clustering, and hence
are also excluded from the regressions in (5.2) and (5.3) below. Finally, it should also be noted that the “rifles”
industry (JSIC331) no longer appears to be an outlier in Figure 5.1 below. This is a consequence of the additon
of new establishments in this (very small) industry between the 1999 establishment-location data used in Mori et
al. [13] and the 2001 establishment-location data used here.
48Similar results were reported for 1980 data. But for purposes of comparability with the present data, we
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the average size of pb-choice cities in U∗ for a generic industry in I∗ by SIZE, and similarly,

denote the number of such cities for this industry by #CITY , then the regression obtained was

as follows (where standard deviations of estimates are in parentheses):49

log(SIZE) = 17.101
(0.0097)

− 0.712
(0.0022)

log(#CITY ), R2 = 0.998 (5.1)

As noted in that paper (and elsewhere) the usual independent-random-sampling assumptions

underlying linear regression are questionable here. But the goodness-of-fit in terms of R2 is so

strong that this relation in fact appears to be almost deterministic. It was this observation that

inspired the NAS Rule.

To extend this analysis to the present setting, we now employ the larger set, U , of all 258
UEAs in Japan and the (more comparable) set, I, of 154 manufacturing industries in Japan

exhibiting significant clustering. For the sake of comparability with (5.1), we again denote the

average size of pb-choice cities in U for a generic industry in I by SIZE, and similarly, denote

the number of such cities for this industry by #CITY . In these terms, the results of the new

regression yield:

log(SIZE) = 17.030
(0.0200)

− 0.718
(0.0042)

log(#CITY ), R2 = 0.995 (5.2)

The similarity between (5.1) and (5.2) is apparent. Of special importance are the slope and

goodness-of-fit, which are essentially the same. Hence the inclusion of all UEAs on the city side,

and the restriction to clustered manufacturing on the industry side, has not altered the nature

of this NAS regularity.

But as emphasized above, when industries are restricted to those exhibiting significant clus-

tering, it is more appropriate to examine this NAS relationship in terms of cluster-based choice

cities. Hence if this regression is re-run using the smaller set of cb-choice cities for each industry,

and if again for the sake of comparison we denote the average size of cb-choice cities in U for
a generic industry in I by SIZE, and denote the number of such cities for this industry by

#CITY , then the results of this new regression yield:

log(SIZE) = 17.011
(0.0278)

− 0.717
(0.0062)

log(#CITY ), R2 = 0.989 (5.3)

It is the relation between (5.2) and (5.3) which is of primary interest for our present purposes.

Here again it is clear that these results are almost indistinguishable. So even when all non

cluster-based pb-choice cities are eliminated (such as those illustrated for the “livestock products”

industry in Figure 3.1 above), this NAS relationship remains strong. Indeed it is our belief that

this relationship among the choice cities for each industry is most meaningful when restricted

to those cities exhibiting a substantial industry presence in terms of clustering.

A visual comparison of (5.2) and (5.3) can also be made by examining panels (a) and (b)

consider only the results for 2000.
49Note also that the intercept, 7.427, in expression (2) of Mori et al. [13] was based on a regression using logs

to the base 10, whereas the present results use natural logs. This affects the intercept but not the slope. Hence
the intercept (and standard error) reported here have been rescaled to natural logs [i.e., multiplied by ln(10)].
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of Figure 5.1, respectively, where these regressions correspond to the solid lines in each panel.

It should also be noted that the data points for the 154 industries in I are represented by the

(+) symbols in both panels. The additional points shown by (¯) symbols correspond to the
remaining nine industries with spurious clustering (as discussed in Section 2.5.3 above). Given

this distinction, notice first that the five dramatic outliers in these regressions are all among

the nine industries with spurious clustering. In our view, this adds further credence to the

hypothesis that industrial clustering plays a significant role in the NAS Rule itself.

Figure 5.1 here

The two dashed curves in each panel represent the upper and lower bounds for the average size

of any given number of choice cities. In particular, for each number, n, the upper [resp., lower]

bound of the average population size of n choice cities is given by that of the n largest [resp.,

smallest] cities. Recall that under original (population based) Hierarchy Principle in Section 4

above, the number of choice cities for each industry should achieve these upper bounds exactly.

Hence, in the presence of a strong hierachical structure of industries, it is reasonable to expect

that these average sizes of choice cities will be close to their upper bounds. As seen in both

panels of Figure 5.1, this is indeed the case.

Notice also that the upper-bound curve is nearly log linear. It is shown by Mori et al. [13,

Theorem 2] that the log linearity of this upper bound is essentially equivalent to that of the

rank size distribution for a large number of cities.

Next observe that the data points for those nine industries with spurious clustering, and

indeed all industries with less than about 30 choice cities, are identical in these two scatter

plots. The reason for this can be seen in Figure 3.3 where these industries all appear on the

45◦ line, indicating that every pb-choice city for these industries is also a cb-choice city. Indeed,

when the number of pb-choice cities for an industry is small, it is reasonable to expect that

even cities with only a few of its establishments will constitute a substantial contribution to

BIC (in our cluster-detection algorithm of Section 2.3 above), and hence will qualify as cb-

choice cities. Additional evidence for this is provided by the fact that the number of clusters

per establishment is strongly negatively correlated with the number of establishments across

industries (Spearman’s rank correlation = -0.971).

Note finally that this NAS relation appears to be the strongest among those industries with

large numbers of choice cities. This suggests that there may indeed be some “threshold” level

of locational diversity required for industries to exhibit this type of regulartity.50

6 Concluding Remarks

In this paper, we have introduced the concept of cluster-based choice cities for an industry as a

means of identifying those cities with a substantial industry presence. This concept was in turn
50This is somewhat analogous to the Rank Size Rule presented in Mori and Smith [14, Figure 10], where large

cities seem to exhibit special “outlier” features. Hence for case of the NAS Rule, it would appear that industries
with small numbers of choice cities (either pb or cb) play a similar role.
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used to develop modified forms of both the classical Hierarchy Principle of Christaller [2] and

the NAS Rule of Mori et al. [13]. Finally, these modified regularities were shown to exhibit a

significant presence with respect to Japanese manufacturing and city data from 2000/2001.

But this industrial agglomeration approach to central place and city-size regularities also

raises a number of additional issues that are appropriate to touch on in these concluding re-

marks.51

6.1 Level of Industrial Aggregation

It should be clear that the notion of industrial clustering itself depends critically on the level

of industrial aggregation employed. Indeed, for the completely disaggregated case in which

each establishment constitutes a single industry category, there can be no meaningful notion

of clustering at all. This is equally true for the notion of cluster-based choice cities. Even at

intermediate levels of aggregation, the set of choice cities for industrial categories may change

drastically. For example, recall from Figure 2.2 that at the JSIC three-digit level used in this

paper, the “livestock products” industry in Japan consists of a large number of small clusters

spread throughout the nation. But, it is not clear that all types of livestock (e.g., poultry,

cattle, hogs) are equally represented by each cluster. In particular, some types of livestock may

be confined to specific sub-regions of the nation.

These aggregation effects in turn have consequences for the validity of both the Hierarchy

Principle and the NAS Rule. Indeed neither regularity is even meaningful for completely dis-

aggregated (or completely aggregated) industries. Hence it is clearly of interest to examine the

sensivity of these regularities to alternative levels of aggregation, and in particular, to identify the

level of aggregation (industrial classification) at which these regularities are most pronounced.

To obtain data at a finer level of disaggregation, observe that since the present analysis

requires only the number of industry establishments in each municipality, it is possible to ex-

tract such data from the telephone directory. For Japan, we have recently been able to obtain

industrial location data for municipalities in 2006 based on the four-digit Nippon Telegraph

and Telephone Business Classification System (NTTBCS). This more detailed data contains

539 manufacturing categories with positive employment, versus the 163 categories at the JSIC

three-digit level used in the present analysis. By applying this analysis at the NTTBCS four-

digit level, we should at least be able to identify differences between these regularities for two

important levels of aggregation. Such comparisons will be reported in subsequent work.

6.2 Comparison with the US City System

While this cluster-based approach to central place and city-size regularities has been shown

to be successful for the case of Japan, it is important to ask whether such regularities hold

more generally. For the US case, Hsu [6] has shown that the NAS Rule (defined with respect

to pb-choice cities) exhibits a significant presence in both the three- and four-digit industry

51See the companion papers, Mori et al. [13, Section 6] and Mori and Smith [14, pp.202-204] for further discussion
of our research agenda.
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classifications based on the North American Industry Classification System (NAICS).52 This

suggests that such regularities should continue to hold for definitions based on cb-choice cities,

and will be examined in subsequent work.

In addition, County Business Pattern Data for the US provides establishment locations (at

the county level) for industries up to the six-digit level going back as far as 1998. In particular,

this data set includes 473 manufacturing categories with positive employment in 2007, which

is roughly comparable to the four-digit NTTBCS data for Japan mentioned above. Hence by

using these two data sets, it should be possible to conduct comparative studies of the US and

Japan — at a level of aggregation that is much finer than that used in the present paper.

6.3 The Role of Spatial Structure

Finally, while the success of these cluster-based formulations suggest that both the Hierarchy

Principle and NAS Rule reflect underlying spatial coordinations between population and indus-

trial agglomerations, there is no explicit mention of spatial structure whatsoever. However, the

theoretical models of urban hierarchies mentioned above (Fujita et al. [3], Tabuchi and Thisse

[20, 21] and Hsu [6]) indicate that transports costs, scale economies and externalities may in-

fluence the spacing of agglomerations within each industry, and thus implicitly determine the

spacing of their cb-choice cities. If so, then by studying the spatial relationships of cb-choice

cities both within and between industries, one may hope to gain further insight into the under-

lying causes of these regularities. Initial efforts to quantify both the spacing of clusters within

industries and the spatial coordination of clusters between industries were reported in Mori and

Smith [15, Sections 8.2 and 8.3]. Such tools will be employed in subsequent work to examine

these spatial questions.

52More precisely, the analysis of Hsu [6] includes all three- and four-digit NAICS industries, which are eqivalent
to the set of industries considered in Mori et al. [13], i.e., excluding agriculture, forestory, fishing and hunting,
mining, and public administration.
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Figure 2.1. Formation of clusters
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Figure 2.2. Spatial pattern of “livestock products” industry (JSIC121)
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Figure 2.3. The regional system of Japan
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Figure 2.4. Cities in Japan



Figure 3.1. Choice cities for “livestock products” industry
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Figure 3.2. Cb-choice cities 
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Figure 3.3. Number of industry-choice cities under two approaches
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Figure 3.4. Average concentration in cb- versus pb-choice cities
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Figure 3.5. Number of choice industries in cities under two approaches
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Figure 3.6. Average concentration of cb- versus pb-choice industries
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Figure 4.1. Industrial diversity of a city in random samples
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Figure 4.2. Locational diversities of industries in random samples
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Figure 4.3. Industry-location events
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Figure 4.4. Hierarchy shares of random samples
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JSIC Industries with the smallest hierarchy shares Pi 
248 
262 
214 
211 
245 
261 
326 
346 
147 
244 

Fur skins 
Iron smelting, without blast furnaces 
Briquettes and briquette balls 
Petroleum refining 
Leather gloves and mittens 
Iron industries, with blast furnaces 
Ophthalmic goods, including frames 
Lacquer ware 
Rope and netting 
Leather footwear 

0.213 
0.252 
0.270 
0.315 
0.318 
0.364 
0.406 
0.417 
0.434 
0.441 

 
Table 4.1.  Industries deviating from the Hierarchy Principle 
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Figure 4.5. Hierarchy share for individual industries
Hi



Di

Hi

Figure 4.6. Hierarchy share and specialization index
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Figure 4.7. Specialization indices for individual industries
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Figure 4.8. Correlation between employment shares within a city (si|U) versus within an industry (sU|i)

Spearman’s rank correlation
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Figure 5.1. The Number-Average Size Rule
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