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Abstract
Dating from the seminal work of Ellison and Glaeser in 1997, a wealth of evidence for
the ubiquity of industrial agglomerations has been published. However, most of these
results are based on analyses of single (scalar) indices of agglomeration. Hence, it is
not surprising that industries deemed to be similar by such indices can often exhibit
very different patterns of agglomeration—with respect to the number, size and spatial
extent of individual agglomerations. The purpose of this article is thus to propose a
more detailed spatial analysis of agglomeration in terms of multiple-cluster patterns,
where each cluster represents a (roughly) convex set of contiguous regions within
which the density of establishments is relatively uniform. The key idea is to develop a
simple probability model of multiple clusters, called cluster schemes, and then to seek
a ‘best’ cluster scheme for each industry by employing a standard model-selection
criterion. Our ultimate objective is to provide a richer characterization of spatial
agglomeration patterns that will allow more meaningful comparisons of these patterns
across industries.
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1. Introduction

Economic agglomeration is the single most dominant feature of industrial location
patterns throughout the modern world. In Japan, with a population density more than
10 times that of the USA, land is generally considered to be extremely scarce. Yet, more
than 60% of the total population and more than 80% of total employment are
concentrated in less than 3% of total area. Similar observations can be made for any
other developed country. The extent of this concentration phenomenon explains why
economic agglomeration is now a major topic in urban and regional economics (see, e.g.
Henderson and Thisse, 2004). Industrial agglomeration has also gained increasing
interest in the management literature, dating from the seminal work of Porter (1990) on
‘industrial cluster theory.’
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In terms of empirical work, a substantial number of studies on industrial

agglomeration have been published in the recent decades. Some of them have proposed

indices of industrial agglomeration that allow testable comparisons of the degree of

agglomeration among industries (Brülhart and Traeger, 2005; Duranton and Overman,

2005; Mori et al., 2005; Marcon and Puech, 2010). The results of these works suggest

that industrial agglomeration is far more ubiquitous than previously believed and

extends well beyond the traditional types of industrial agglomeration (such as

information technology industries in Silicon Valley and automobile manufacturing in

Detroit). Moreover, the degree of such agglomeration has been shown to vary widely

across industries.
But while these studies provide ample evidence for the ubiquity of industrial

agglomerations, they tell us very little about the actual spatial structure of agglomer-

ations. In particular (to our knowledge), there have been no systematic efforts to

determine the number, location and spatial extent of agglomerations within individual

industries. Most indices of agglomeration currently in use measure the discrepancy

between industry-specific regional distributions of establishments/employment and

some hypothetical reference distribution representing ‘complete dispersion.’1 But even if

industries are judged to be similar with respect to these indices, their spatial patterns of

agglomeration may appear to be quite different. The reason for this is that such patterns

are basically multidimensional in nature and are not easily compared with any single

index.
This can be illustrated by a sample of our results for Japanese manufacturing

industries (developed in more detail in Section 5, and in our companion paper, Mori

and Smith, 2011b). Here, we consider two industries that are virtually indistinguishable

in terms of their overall degree of spatial concentration (as measured by the Kulback–

Leibler measure of concentration sketched in Section 5). But the actual patterns of

agglomeration for these two industries are quite different. The agglomeration pattern of

the first industry, classified as ‘plastic compounds and reclaimed plastics’, is seen in

Figure 13(b). (For now, the area marked in gray can be considered as industrial

agglomerations.) The concentration of this industry lies mainly along the inland

industrial belt extending westward from Tokyo to Hiroshima. Moreover, the individual

clusters of establishments within this belt are seen to be densely packed from end to end.

Our second industry, classified as ‘soft drinks and carbonated water’, exhibits a very

different pattern of agglomeration. As seen in Figure 14(b), this industry is spread

throughout the nation, but exhibits a large number of local agglomerations. A closer

inspection of these industries reveals the nature of these differences. On the one hand,

plastic components constitute essential inputs to a variety of manufactured goods, from

automobiles to TV sets. Hence, the concentration of this industry along the industrial

belt forms a series of intermediate markets for other manufacturing industries using

these components. On the other hand, soft drinks are more directly oriented to final

markets serving consumers. So while there are still sufficient scale economies to warrant

industrial agglomerations, these agglomerations are widely scattered and essentially

follow patterns of population density.

1 Examples of such reference distributions are the regional distribution of all-industry employment or
establishments (e.g. Ellison and Glaeser, 1997; Duranton and Overman, 2005), and that of economic area
(e.g. Mori et al., 2005).
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Thus, while summary measures of spatial concentration (or dispersion) are
unquestionably useful for a wide range of global comparisons, the above illustration
suggests that more detailed representations of spatial agglomeration patterns can in
principle allow much richer types of comparisons. With this in mind, our central
objective is to propose a methodology for representing and identifying such agglom-
eration patterns.

Before doing so, it is important to note that there have been other attempts to
develop statistical measures that are more multidimensional in nature. Most notably,
the K-density approach of Duranton and Overman (2005) utilizes pairwise distances
between individual establishments and is capable of indicating the spatial extent of an
agglomeration. In a similar vein, Mori et al. (2005) proposed a spatially decomposable
index of regional localization that yields some information about the most relevant
geographic scales of agglomeration within individual industries. However, neither of
these approaches is designed to identify specific (map) locations of industrial
agglomerations, from which spatial patterns of agglomerations can be characterized.

Methodologically, our approach is closely related to cluster-identification methods
proposed by Besag and Newell (1991), Kulldorff and Nagarwalla (1995) and Kulldorff
(1997) that have been used for the detection of disease clusters in epidemiology.2 As
with the agglomeration indices mentioned above, these methods start by postulating a
null hypothesis of ‘no clustering’ (in terms of a uniform distribution of industrial
locations across regions), and then seek to test this hypothesis by finding a single ‘most
significant’ cluster of regions with respect to this hypothesis. Candidate clusters are
typically defined to be approximately circular areas containing all regions with
centroids within some specified distance from a reference point (e.g. the centroid of a
‘central’ region). While this approach is in principle extendable to multiple clusters by
recursion (i.e. by removing the cluster found and repeating the procedure), such
extensions are piecemeal at best.3

Hence, our strategy is essentially to generalize their approach by finding the single
most significant ‘cluster scheme’ rather than ‘cluster’. We do so by formalizing these
schemes as probability models to which appropriate statistical model-selection criteria
can be applied for finding a ‘best cluster scheme’. Here, a cluster scheme is simply a
partition of space in which it is postulated that firms are more likely to locate in ‘cluster’
partitions than elsewhere.4 Our probability model then amounts to a multinomial
sampling model on this partition. These candidate cluster schemes can in principle be
compared by means of standard model-selection criteria, including Akaike’s (1973)
information criterion, Schwarz’s (1978) Bayesian information criterion (BIC) and the
Normalized maximum likelihood of Kontkanen and Myllymäki (2005).

2 We shall use ‘clusters’ and ‘agglomerations’ interchangeably throughout the analysis to follow. However,
one possible distinction between these terms is suggested in Section 5.3.

3 The recursive application of such procedures gives rise to the notorius ‘multiple testing’ problem that
these procedures were originally designed to overcome. In essence, multiple applications of this procedure
tend to identify too many clusters as being significant. For a further discussion of this ‘false discovery’
problem, see Castro and Singer (2005) together with the references cited therein.

4 An alternative approach would be to characterize spatial distributions of establishments as smooth
surfaces, by utilizing the density estimation methods in Billings and Johnson (2012). However, a primary
advantage of our present discrete characterization of agglomerations as spatially disjoint clusters is to
allow systematic identification of the location, spatial extent and size of each individual agglomeration.
This derived data can in turn lead to more detailed analyses of industrial agglomerations (as discussed in
Section 6).
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To find a best model (cluster scheme) with respect to such criteria, it would of course
be ideal to compare all possible cluster schemes constructible from the given system of
regions. But even for modest numbers of regions, this is a practical impossibility. Hence,
a second major objective of this article is to develop a reasonable algorithm for
searching the space of possible cluster schemes. Our approach can be considered as an
elaboration of the basic ideas proposed by Besag and Newell (1991) in which one starts
with an individual region and then adds contiguous regions within a given distance
from this initial region to identify the single most significant cluster. In particular, we
generalize the Besag–Newell concept of clusters by imposing only convexity rather than
circularity. Although searching over possible convex sets of regions is computationally
impractical when the number of regions is large, the procedure reduces to be reasonably
simple if the (continuous) location space is approximated by a (discrete) regional
network. Accordingly, we develop the notion of convex solid, representing the convexity
in the regional network.

In this context, cluster schemes are grown by (i) adding new disjoint clusters or by (ii)
either expanding or combining existing clusters until no further improvement in the
given model-selection criterion is possible. The final result is thus a ‘locally best cluster
scheme’ with respect to this criterion. Although the criteria listed above are
conceptually different, it turns out that the cluster schemes found are in high agreement
across different criteria. Thus, in this article, we will focus on BIC, which turns out to be
the most parsimonious criterion in terms of the number of clusters found (Mori and
Smith, 2009, Section 3).

The rest of the article is organized as follows. We begin in Section 2 by defining a
probabilistic location model for an establishment, where location probabilities are
assumed to be industry-specific and independent for each establishment within a given
industry as well as across industries. Our criterion for model selection in terms of BIC is
also developed. In Section 3, we introduce the notion of convex solids and then in
Section 4 present a practical procedure for cluster detection which searches for the best
cluster scheme consisting of a set of distinct ‘convex’ clusters. The results of this
procedure are then illustrated in Section 5 in terms of the selected pair of Japanese
industries discussed above. Here, we sketch a classification scheme for agglomeration
patterns in terms of ‘global extent’ (GE) and ‘local density’ (LD) that can be employed
to quantify the spatial scale of industrial agglomeration and dispersion. A possible
refinement and the results of sensitivity analyses for our cluster detection are also
presented. Finally, in Section 6, we briefly discuss a number of directions for further
research.

2. A probability model of agglomeration patterns

To motivate our approach to cluster detection, we begin by observing that recent
theoretical results on equilibrium location patterns in continuous space (e.g. Tabuchi
and Thisse, 2011; Ikeda et al., 2012; Hsu, 2012) suggest that there is remarkable
commonality among possible equilibrium patterns of agglomeration within each
industry. In particular, the number, size and spacing of agglomerations are shown to be
well preserved under a variety of stable equilibria. From this perspective, our objective
is to identify these common features. To do so, we treat such equilibria as stationary
states and develop a probabilistic model of location behavior within such stationary
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states. In particular, while individual location decisions may be based on the prevailing
steady-state distribution, they can nonetheless be treated as statisitically independent
events, i.e. as random samples from this distribution.5 This simplification of course
precludes any questions about the process of cluster formation, or even the economic
rationale for clustering. Rather, our goal here is to provide a simple statistical

framework within which the most salient features of these equilibrium cluster patterns
can be identified.6

To this end, we start by assuming that the location behavior of individual
establishments in a given industry can be treated as independent random samples
from an unknown industry-specific locational probability distribution, P, over a
continuous location space, � (e.g. a national location space). Hence, for any
(measurable) subregion, S � �, the probability that a randomly sampled establishment
locates in S is denoted by PðSÞ. In this context, the class of all possible location models

corresponds to the set of probability measures on �.
However, observable location data are here assumed to be only in terms of

establishment counts for each of a set of disjoint basic regions (e.g. municipalities),
�r � �, indexed by R ¼ f1, . . . , kRg. These regions are assumed to partition �, so that
[r2R�r ¼ �. Hence, the only relevant features of the location probability distribution,
P, for our purposes are the location probabilities for each basic region:

P ¼ ½PðrÞ � Pð�rÞ : r 2 R� : ð2:1Þ

We now consider an approximation of P by probability models, PC, that postulate
areas of relatively intense locational activity. Each model is characterized by a ‘cluster
scheme’, C, consisting of disjoint clusters of basic regions, Cj � R, j ¼ 1, . . . , kC, within
which establishments are more densely located. For the present, such clusters are left
unspecified. A more detailed model of individual clusters is developed in Section 3.

If the full extent of cluster Cj in � is denoted by �Cj
¼ [r2Cj

�r, j ¼ 1, . . . , kC, then
the corresponding location probabilities, pCðjÞ � PCð�Cj

Þ, are implicitly taken to define
areas of concentration.7 To complete these probability models, let the set of residual

regions be denoted by R0ð� C0Þ ¼ R n [kCj¼1 Cj, and let �R0
¼ � n [kCj¼1 �Cj

, with
corresponding location probability, pCð0Þ ¼ PCð�R0

Þ ¼ 1�
PkC

j¼1 pCðjÞ:
Each cluster scheme, C ¼ ðR0,C1, . . . ,CkCÞ, then constitutes a partition of the

regional index set, R, and the location probabilities ½pCðjÞ : j ¼ 0, 1, . . . , kC� yield a
probability distribution on C.8 Finally, to specify location probabilities for basic
regions, it is assumed that within each cluster, Cj, the location behavior of individual
establishments is completely random.9 To define ‘complete randomness’ in the present
setting, it is important to focus on those locations within each basic region where

establishments could potentially locate (excluding, e.g. bodies of water). Such locations

5 Here, all firms within each industry are implicitly treated as identical single-establishment firms.
6 A complementary clustering approach has recently been proposed by Kerr and Kominers (2012) which

identifies establishment clusters based on maximal interaction distances. This distance approach is
particularly useful when relevant interactions can be documented, as in the case of patent citations within
research-intensive industries.

7 An implicit assumption here is that the regions f�r : r 2 Cjg in each cluster are contiguous. This
assumption is not crucial at present, but will play a central role in the construction of clusters below.

8 A formal definition of cluster schemes is given in Definition 4.1.
9 This implicitly assumes that the regions within a given cluster not only have high densities of

establishments but also that these densities are similar.

Detection of industrial agglomerations . 551

 at U
niversity of Pennsylvania L

ibrary on Septem
ber 20, 2014

http://joeg.oxfordjournals.org/
D

ow
nloaded from

 

http://joeg.oxfordjournals.org/


are here designated as the economic area of each region.10 Hence, if for each basic region

r 2 R, we let ar denote the (economic) area of �r, so that the total area of cluster Cj is

given by

aCj
¼
X
r2Cj

ar, ð2:2Þ

then for each establishment locating in Cj, it is postulated that the conditional

probability of locating in basic region, r 2 Cj, is proportional to the area of region r, i.e.

that

PCð�rj�Cj
Þ ¼

ar
aCj

, r 2 Cj , j ¼ 0, 1, . . . , kC : ð2:3Þ

But since �r � �Cj
implies that PCð�rj�Cj

Þ ¼ PCð�rÞ=PCð�Cj
Þ, if we let

PCðrÞ � PCð�rÞ, it then follows that for all r 2 R

PCðrÞ ¼ pCðjÞ
ar
aCj

, r 2 Cj : ð2:4Þ

Hence, for each cluster scheme, C, Expression (2.4) yields a well-defined cluster

probability model, PC ¼ ½PCðrÞ : r 2 R�, which is comparable with the unknown true

model (2.1). Note moreover that since all area values are known, it follows that for each

given cluster scheme, C ¼ ðR0,C1, . . . ,CkC Þ, the only unknown parameters are given by

the kC-dimensional vector of cluster probabilities, pC ¼ ½pCðjÞ : j ¼ 1, . . . , kC�.
11

Within this modeling framework, we now consider a sequence of n independ-

ent location decisions by individual establishments. For each establishment,

i ¼ 1, . . . , n, let its location choice be modeled by a random (indicator) vector,

XðiÞ ¼ ðXðiÞr : r 2 RÞ, with XðiÞr ¼ 1 if establishment i locates in region r, and XðiÞr ¼ 0,

otherwise. This set of location decisions is then representable by a random matrix of

indicators, X ¼ ðXðiÞ : i ¼ 1, . . . , nÞ, with the following finite set of possible realizations

(location patterns):

�RðnÞ ¼ x ¼ ðxðiÞr : r 2 R, i ¼ 1, . . . , nÞ 2 f0, 1gn�kR :
X
r2R

xðiÞr ¼ 1, i ¼ 1, . . . , n

( )
:

ð2:5Þ

By independence, the probability distribution of X under the unknown true distribution

in (2.1) is given for each location pattern, x 2 �RðnÞ, by

PðxÞ ¼
Yn
i¼1

Y
r2R

PðrÞx
ðiÞ
r ¼

Y
r2R

PðrÞnr , ð2:6Þ

10 As pointed out by a referee, ‘economic area’ is at best a crude approximation to actual usable area for
firms. But without more detailed information, we believe that it provides the best approximation
currently available.

11 Note that pCð0Þ is constructable from pC as shown above.
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where the total number of estabishments locating in region r is denoted by

nr ¼
Xn
i¼1

xðiÞr ð2:7Þ

[see Expression (2.5)]. Similarly, for each cluster probability model, PC, the postulated
distribution of X is given for each pattern, x 2 �RðnÞ, by

PCðxjpCÞ ¼
Y
r2R

PCðrÞ
nr ¼

YkC
j¼0

Y
r2Cj

pCðjÞ
ar
aCj

� �nr

, ð2:8Þ

where the relevant parameter vector, pC, for each such model has been made explicit. In
most contexts, it will turn out that the locational frequencies
njðxÞ ¼

P
r2Cj

nr , j ¼ 0, 1, . . . , kC, are sufficient statistics, since by definition

PCðxjpCÞ ¼
YkC
j¼0

pCðjÞ

P
r2Cj

nr
Y
r2Cj

ar
aCj

� �nr

24 35 ¼ aCðxÞ
YkC
j¼0

pCðjÞ
njðxÞ, ð2:9Þ

where the factor, aCðxÞ ¼
QkC

j¼0

Q
r2Cj
ðar=aCj

Þ
nr , is independent of parameter vector, pC.

This likelihood function will form the central element in our comparisons among
candidate cluster schemes. As mentioned in Section 1, the specific model-selection
criterion to be used here is the BIC of Schwarz (1978). As with a number of other
criteria, BIC is essentially a ‘penalized likelihood’ measure. To state this criterion
precisely, we first recall from Expression (2.9), that for any given cluster scheme, C, the
log likelihood of parameter vector, pC, given an observed location pattern, x, is of the
form

LðpCjxÞ ¼
XkC
j¼0

njðxÞ ln pCðjÞ þ ln aCðxÞ : ð2:10Þ

But since the second term is independent of pC, it follows at once (by differentiation)
that the maximum-likelihood estimate, p̂C ¼ ½p̂CðjÞ : j ¼ 1, . . . , kC�, of pC is given for
each j ¼ 1, . . . , kC simply by the fraction of establishments in Cj, i.e.

p̂CðjÞ ¼
njðxÞ

n
: ð2:11Þ

By substituting (2.11) into (2.10), we obtain a corresponding estimate of the
maximum log-likelihood value for model PC,

LCðxÞ ¼ Lðp̂CjxÞ ¼
XkC
j¼0

njðxÞ ln
njðxÞ

n

� �
þ ln aCðxÞ: ð2:12Þ

But since likelihood values are non-decreasing in the number of parameters
estimated, it follows in particular that values of LCðxÞ will almost always increase as
more clusters are introduced. Hence, the ‘best’ cluster scheme with respect to model fit
alone is the completely disaggregated scheme in which every basic region constitutes its
own cluster. To avoid this obvious ‘over fitting’ problem, BIC penalizes those cluster
schemes with larger numbers of clusters, kC, and for any given sample size, n, is of the
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form

BICCðxÞ ¼ LCðxÞ �
kC
2
lnðnÞ : ð2:13Þ

In the actual computations involved in cluster detection (to be described in Section 4),
it turned out to be convenient to evaluate the cluster scheme, PC, relative to the
uniform probability distribution model as a benchmark in which individual establish-
ment location follows uniform probability density over economic area. If the BIC
value for the uniform probability distribution model is denoted by BIC0 ¼PkC

j¼0 nj lnðaCj
=aÞð� L0Þ, where a �

P
r2R ar represents the total area, then we may

reformulate this measure in terms of BIC-differences from this benchmark model as

�C ¼ BICCðxÞ � BIC0 � TCðxÞ �
kC
2
lnðnÞ , ð2:14Þ

where TCðxÞ is the log-likelihood ratio between the cluster and benchmark models:

TCðxÞ � LCðxÞ � L0 ¼
XkC
j¼0

njðxÞ ln
njðxÞ=n

aCj
=a

� �
: ð2:15Þ

Since the sample size (number of establishments) for each industry is fixed, it plays no
direct role in model selection for that industry. But when comparing cluster patterns for
different industries, this penalty term will be more severe in industries with larger
numbers of establishments. So, all else being equal, BIC tends to yield more
parsimonious cluster schemes for larger industries. Moreover, it tends to yield more
parsimonious cluster schemes for all industries than the other model-selection criteria
mentioned above. It is for this reason that we choose to focus on BIC in the present
application.

3. A model of clusters as convex solids

Given the set of basic regions, R, it might seem desirable to treat cluster schemes, C, as
arbitrary partitions of R, and then to identify the best cluster scheme from this class, i.e.

C� ¼ argmax
C

�C : ð3:1Þ

But from a practical viewpoint, the number of possible partitions can be enormous
for even modest numbers of basic regions.12 Moreover, without further restrictions, the
components of such partitions can be bizarre and difficult to interpret as ‘clusters’. This
has long been recognized by cluster analysts, who have typically proposed that clusters
be roughly circular in shape (as in Besag and Newell, 1991; Kulldorff and Nagarwalla,
1995; Kulldorff, 1997). Here, we propose a more flexible class of clusters that preserve
spatial compactness by requiring only that they be ‘approximately convex’. We further
simplify the identification of convex clusters by representing the location space in terms
of a discrete regional network, since from a practical viewpoint, searching over
candidate convex clusters is much simpler on networks than in Euclidian space

12 For instance, the numbers of counties in the USA and municipalities in Japan are both over 3000.

554 . Mori and Smith

 at U
niversity of Pennsylvania L

ibrary on Septem
ber 20, 2014

http://joeg.oxfordjournals.org/
D

ow
nloaded from

 

http://joeg.oxfordjournals.org/


(especially when the space is large). This network-based (as opposed to Euclidian
space-based) approach is particularly useful when economically meaningful distances
are adopted (such as travel distance and time), rather than simplistic straight-line
distances between regions. Before developing the details of this approach, it is useful to
begin with a brief overview.

To define clusters of basic regions, we first require that they be convex sets with
respect to the underlying network. This means simply that clusters must include all
regions on shortest paths between their members (in the same way, planar convex sets
include all lines between their points). But unlike straight-line planar paths, shortest
paths on discrete networks can sometimes exclude regions that are obviously interior to
the desired clusters, thus leaving ‘holes’ (as shown in Figures 5 and 6).13 It is thus
appropriate to ‘fill’ these holes by requiring that regional clusters be convex solid sets
with respect to the underlying network. The formal procedures for developing these
convex solid sets will in fact be utilized in the cluster detection algorithm itself, as
detailed in Section 4.2.

3.1. A discrete network representation of the regional system

Recall in Section 2 that the relevant location space, �, is partitioned into a set of basic
regions, �r � �, indexed by R ¼ f1, . . . , kRg. For our present purposes, it is convenient
to consider a larger world region, W, in which � resides, so that Wn� denotes the ‘rest
of the world’, as shown schematically in Figure 1. As in Section 2, we identify � with
the set of regional labels for R. In this framework, the boundary of the given location
space consists of the subset of basic regions, �R, that share boundary points (i.e. the
edges of a basic region cell) with Wn�. This distinguished set of boundary regions
(shown in gray) will play an important role in Section 3.3.

Within this basic continuous geographical framework, we next develop a discrete
network representation of the regional system that contains all the relevant information
needed for our cluster model. The nodes of this network are represented by the set R of
basic regions, and the links are taken to represent pairs of regional ‘neighbors’ in terms
of the underlying regional network. Here, it is assumed that data are available on
minimal travel distances, tðr, sÞ, between each pair of regions, r, s 2 R, say between their
designated administrative centers. These neighbors should of course include regional
pairs ðr, sÞ for which the shortest route from r to s passes through no regions other than
r and s. But for computational convenience, we choose to approximate this relation by
the standard ‘contiguity’ relation that takes each pair of basic regions sharing some
common boundary to be neighbors. While this approximation is reasonable in most
cases, there are exceptions. Consider for example the coastal regions, r and s, joined by
a bridge, as shown in Figure 2. Here, it is clear that the shortest route (path) between
regions r and s passes through no other regions, even though r and s share no common
boundary. Hence, to maintain a reasonable notion of ‘closeness’ among neighbors, it is
appropriate to include such regional pairs as neighbors. Finally, it is mathematically
convenient to include r as a neighbor of itself (since r is always ‘closer’ to itself than to
any other region).

13 In Section 3.2, it is shown that such holes persist for even straight-line approximations to travel
networks.

Detection of industrial agglomerations . 555

 at U
niversity of Pennsylvania L

ibrary on Septem
ber 20, 2014

http://joeg.oxfordjournals.org/
D

ow
nloaded from

 

http://joeg.oxfordjournals.org/


If this set of neighbors for region r 2 R is denoted by NðrÞ, then for the region r shown
in the schematic regional system of Figure 1, NðrÞ is seen to consist of eight neighbors
other than r itself. Our only formal requirement is that neighbors be symmetric, i.e. that

r 2 NðsÞ if and only if s 2 NðrÞ. If we now denote the full set of neighbor pairs by
L ¼ [r2R [s2NðrÞ ðr, sÞ � R2, then this defines the relevant set of links for our discrete
network representation, ðR,LÞ, of the regional system. A simple example of such a
regional network, ðR,LÞ, is shown in Figure 3. Here, R consists of 25 square regions
shown on the left. These regions are connected by the road network shown by dotted

lines on the left, with travel distances on each of the 40 links (to be discussed later)
displayed on the right. Hence, L in this case consists of the 40 distinct regional pairs
associated with each of these links, together with the 25 identity pairs ðr, rÞ.

Next, we employ travel distances between neighbors to approximate the entire
regional network by a shortest path metric on network ðR,LÞ. To do so, let each
sequence, � ¼ ðr1, r2, . . . , rnÞ, of linked neighbors [i.e. with ðri, riþ1Þ 2 L for

i ¼ 1, . . . , n� 1] be designated as a path in ðR,LÞ, and let the set of all paths in
ðR,LÞ be denoted by P ¼ f� ¼ ðr1, . . . , rnÞ : n > 1, ðri, riþ1Þ 2 L, i ¼ 1, . . . , n� 1g. If for
each pair of regions, r, s 2 R, we denote the subset of all paths from r to s in P by
Pðr, sÞ ¼ f� ¼ ðr1, . . . , rnÞ 2 P : r1 ¼ r, rn ¼ sg, then to ensure that shortest paths
between all pairs of regions are meaningful, we henceforth assume that Pðr, sÞ 6¼1
for all r, s 2 R, i.e. that the given regional network ðR,LÞ is connected.14 In this context,
if the length, lð�Þ, of path, � ¼ ðr1, r2, . . . , rnÞ, is now taken to be the sum of travel
distances on each of its links, i.e. lð�Þ ¼

Pn�1
i¼1 tðri, riþ1Þ, then for any pair of regions,

W −Ω

Ω

R

r

W

Figure 1. Geographical framework.

r

s

BayBridge

Figure 2. Bridge example.

14 See Mori and Smith (2011b, Section 4.2.1) for the treatment of major off-shore islands.
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r, s 2 R, the shortest path distance, dðr, sÞ, from r to s is taken to be the length of the
(possibly nonunique) shortest path from r to s:

dðr, sÞ ¼ minflð�Þ : � 2 Pðr, sÞg : ð3:2Þ

The set of all shortest paths in Pðr, sÞ is then denoted by Pdðr, sÞ ¼
f� 2 Pðr, sÞ : lð�Þ ¼ dðr, sÞg. The shortest path distances in (3.2) are easily seen to
define a metric on R, i.e. to satisfy (i) dðr, rÞ ¼ 0, (ii) dðr, sÞ ¼ dðs, rÞ and (iii)
dðr, sÞ 	 dðr, vÞ þ dðv, sÞ for all r, s, v 2 R. Moreover, these distances always agree with
travel distances between neighbors (i.e. dðr, sÞ ¼ tðr, sÞ for all ðr, sÞ 2 L). But for
non-neighbors, ðr, sÞ=2L, it will generally be true that dðr, sÞ > tðr, sÞ (since the shortest
route from r to s on the actual network may not pass through any intermediate regional
centers). Hence, these shortest path distances are only an approximation to shortest
route distances.15 The advantage of this approximation for our present purposes is that
for any r and s, the number of paths in Pðr, sÞ is generally much smaller than the
number of routes from r to s on the network, so that shortest paths in Pdðr, sÞ are more
easily identified.

3.2. Convexity in networks

Within this network framework, we now return to the question of defining candidate
clusters as spatially coherent groups of basic regions. As mentioned in Section 1, the
standard approach to this problem is to require that clusters be as close to ‘circular’ as
possible. To broaden this class, we begin by observing that a key property of circular
sets in the plane is their convexity. More generally, a set, S, in the plane is convex if and
only if for every pair of points, s, v 2 S, the set S also contains the line segment joining s
and v. But since lines are shortest paths with respect to Euclidean distance, an
equivalent definition of convexity would be to say that S contains all shortest paths
between points in S. Since shortest paths are equally well defined for the network model
above, it then follows that we can identify convex sets in the same way.

In particular, a set of basic regions, S, is now said to be d-convex if and only if for
every pair of regions r and s in S, the set of regions on every shortest path from r to s is

(R L), t = 2 

t = 1 

Figure 3. Regional network example.

15 This approximation appears to be good for the municipality network in Japan considered in Section 5.
For the ratios of short-path over shortest route distances (d=t) across all 4,491,991 relevant pairs of
municipalities, the mean and the 99.5 percentile point are 1.14 and 1.28, respectively.

Detection of industrial agglomerations . 557

 at U
niversity of Pennsylvania L

ibrary on Septem
ber 20, 2014

http://joeg.oxfordjournals.org/
D

ow
nloaded from

 

http://joeg.oxfordjournals.org/


also in S.16 More formally, if for any path, � ¼ ðr1, . . . , rnÞ 2 P, we now denote the set

of distinct points in � by �h i ¼ fr1, . . . , rng � R, and if the family of all nonempty

subsets of R is denoted by R ¼ fS � R : S 6¼1g, then

Definition 3.1 (d-Convexity): (i) A subset of basic regions, S � R, is said to be d-convex

iff for all s, r 2 S, � 2 Pdðr, sÞ ) �h i � S. (ii) The family of all d-convex sets in R is

denoted by Rd.

For example, suppose that in the schematic regional system of Figure 4, it is assumed

that regional squares sharing boundary points (faces or corners) are always neighbors,

and that travel distance, t, between neighbors is simply the Euclidean distance between

their centers. Then, with respect to the induced shortest path distance, d, it is clear that

the set, S, on the left consisting of four black squares is not d-convex, since the gray

squares in the middle figure belong to shortest paths between the black squares. But

even if these gray squares are added to S, the resulting set is still not d-convex, since the

four white squares remaining in the middle belong to shortest paths between the gray

squares. However, if these four squares are added, then the resulting set on the right is

seen to be d-convex since all squares on every shortest path between squares in the set

are included.
This process of adding shortest paths actually yields a well-defined constructive

procedure for ‘convexifying’ a given set, which can be formalized as follows. Let

Iðr, sÞ ¼
[

�2Pdðr, sÞ

�h i ð3:3Þ

denote the ðr, sÞ-interval of all points on shortest paths from r to s, and let the mapping,

I : R! R, defined for all S 2 R by

IðSÞ ¼
[
r, s2S

Iðr, sÞ ð3:4Þ

be designated as the interval function generated by d. For notational convenience,

we set I0ðSÞ ¼ S, I1ðSÞ ¼ IðSÞ, and construct the m th-iterate of I recursively by

ImðSÞ ¼ IðIm�1ðSÞÞ for all m > 1 and S 2 R. Since fr, sg � Iðr, sÞ for all r, s 2 R, it follows

from (3.4) that for each set, S 2 R,

S � IðSÞ : ð3:5Þ

S I(S) I 2(S)

Figure 4. d-Convexification of sets.

16 Our present notion of d-convexity is an instance of the more general notion of geodesic convexity applied
to graphs and appears to have first been introduced by Soltan (1983).
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By the same argument, it follows that for any S 2 R and r 2 ImðSÞ with m > 0, we

must have r 2 I½ImðSÞ� ¼ Imþ1ðSÞ. Hence, these interval iterates satisfy the following

nesting property for all S 2 R,

ImðSÞ � Imþ1ðSÞ, m 
 0 ð3:6Þ

and thus constitute a monotone nondecreasing sequence of sets. It then follows that for

any subset, S � R, of nodes in the finite network, ðR,LÞ, there must be an integer, m

ð	 jRnSjÞ,17 such that ImðSÞ ¼ Imþ1ðSÞ.18 The smallest such integer:

mðSÞ ¼ minfm : ImðSÞ ¼ Imþ1ðSÞg ð3:7Þ

is called the geodesic iteration number of set, S.19 With these definitions, it is well known

that the unique smallest d-convex set containing a given set S 2 R is given by the d-

convex hull (see Proposition A.2 in the appendix for a proof of this assertion),

cdðSÞ ¼ ImðSÞðSÞ : ð3:8Þ

The mapping, cd : R! R, defined by (3.8) is designated as the d-convexification

function. With this definition, it is shown in Proposition A.3 of the appendix that d-

convex sets are equivalently characterized as the fixed points of this mapping, i.e. a set

S 2 R is d-convex if and only if cdðSÞ ¼ S. So the family of all d-convex sets can be

equivalently defined as

Rd ¼ fS 2 R : cdðSÞ ¼ Sg : ð3:9Þ

However, for purposes of constructing d-convex sets, it is more useful to note that

they are equivalently characterized as the fixed points of the interval function,

I : R! R (as shown in the Corollary to Proposition A.3). Hence, Rd can also be

written as

Rd ¼ fS 2 R : IðSÞ ¼ Sg : ð3:10Þ

This in turn implies that a simple constructive algorithm for obtaining cdðSÞ is to

iterate I until the iteration number, mðSÞ, is found. This procedure is in fact illustrated

by Figure 4, where mðSÞ ¼ 2.
But while this particular set, I2ðSÞ, does indeed look reasonably compact (and close to

circular), this is not always the case. One simple counterexample is shown in Figure 5.

Given the regional network, ðR,LÞ, in Figure 3, suppose that S consists of the four

regions shown in black on the left in Figure 5. These regions are assumed to be

connected by major highways as shown by the heavy lines on the right in Figure 3, with

travel distances, t ¼ 1, on each link. All other road links are assumed to be circuitous

secondary roads, as represented by a travel distance of t ¼ 3 on each link. Here, it is

clear that the d-convexification, cdðSÞ, of S is obtained by adding all other regions

connected by the ring of major highways (as shown in gray on the right in Figure 5),

since shortest paths between such regions are always on these highways. But since the

17 Throughout this article, we denote cardinality of a set A by jAj.
18 Since ImðSÞ 6¼ Imþ1ðSÞ implies from (3.6) that jImþ1ðSÞnImðSÞj 
 1, and since ImðSÞ � R for all m, it

follows that this expansion process can involve at most jRnSj steps.
19 In our present application, this iteration number is typically small.
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central region shown in white is not on any of these paths, we see that cdðSÞ is a d-
convex set with a ‘hole’ in the middle.

This is very different from convex sets in the plane, which are always ‘solid’. But in
more general metric spaces, this need not be true. Indeed, for the present case of a
network (or graph) structure, the notion of a ‘hole’ itself is not even meaningful. For
example, if the central node in Figure 5 was pulled ‘outside’ the coastal regions (leaving
all links in tact) then the network, ðR,LÞ, would remain the same. So it is clear that the
above notion of a ‘hole’ depends on additional spatial structure, including the positions
of regions relative to one another. In particular, since the present notion of d-convexity
is intended to approximate convexity in the original location space, it is appropriate to
fill these holes.

Finally, it is of interest to note that even with simpler approximations to travel
distances, such holes can still exist. For example, if shortest paths between adjacent
regions are approximated by straight-line paths between their geometric centroids, then
this same convexification procedure can still yield holes. This is illustrated by the simple
four-region example in Figure 6, where the three exterior regions are seen to form a
convex set containing all shortest paths between them. Hence, the central region is not
part of this convex set and constitutes an obvious hole.

3.3. Convex solids in networks

These observations motivate the spatial structure that we now impose in order to
characterize ‘solid’ subsets of R in ðR,LÞ. The key idea here is to recall from Figure 1
that relative to the rest of the world, there is a distinguished collection of boundary
regions, �R, that are essentially ‘external’ to all subsets of R. If for any subset, S � R, and
boundary region, �r 2 �R, it is true that �r=2S, then it is reasonable to assert that �r is outside
of S.20 This set of boundary regions, �R, thus defines a natural reference set for
distinguishing regions in complement, RnS, of S that are ‘inside’ or ‘outside’ of S. In
particular, we now say that a complementary region, r 2 RnS, is inside S if and only if
every path joining r to a boundary region in �R must pass through at least one region of
S. For example, given the set, S, of black squares in Figure 7, the complementary region
r is seen to be inside of S since every path to the boundary, �R, must intersect S.
Similarly, the complementary region s is not inside S, since there is a path from s to �R
that does not intersect S. To formalize this concept, we now let the set of all paths from

S cd(S)

Figure 5. d-Convex set with a hole.

20 Even if �r is an element of S, it must always be part of the boundary of S. Hence, it is still reasonable to
assert that �r is ‘on the outside’ of S.
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any region, r 2 R, to �R be denoted by Pðr, �RÞ ¼ [�r2 �RPðr, �rÞ. Then, for any nonempty
set, S 2 R, the set of all complementary regions inside S is given by

S0 ¼ fr 2 RnS : � 2 Pðr, �RÞ ) �h i \ S 6¼1g ð3:11Þ

and is designated as the interior complement of S.

With this concept, we now say that a set, S 2 R, is solid if and only if its interior
complement is empty. In addition, we can now solidify a set S by simply adjoining its
interior complement. More formally, we now say that:

Definition 3.2 (Solidity): For any nonempty subset, S 2 R, (i) S is said to be solid iff
S0 ¼1. (ii) The set formed by adding S0 to S,

�ðSÞ ¼ S [ S0 ð3:12Þ

is designated as the solidification of S. (iii) The family of all solid sets in R is denoted
by R� .

The justification for the terminology in (ii) is given by Lemma A.1 in the appendix,
where it is shown that for any set, S 2 R, the set, �ðSÞ, is solid in the sense of (i) above.
The mapping, � : R! R, induced by (3.12) is designated as the solidification function.
As with the d-convexification function above, it also follows that solid sets are precisely
the fixed points of the solidification function (see Lemma A.2 in the appendix).

With these definitions, the two properties of d-convexity and solidity are taken to
constitute our desired model of clusters in R. Hence, we now combine them as follows:

Definition 3.3 (d-Convex solids): For any nonempty subset, S 2 R, (i) if S is both
d-convex and solid, then S is designated as a d-convex solid in R. (ii) The composite

Figure 6. Non-solid d-convex set.

r  s  

R

S

Figure 7. Inside versus outside.
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image set,

�cdðSÞ ¼ �½cdðSÞ� ð3:13Þ

is designated as the d-convex solidification of S.

If we now letR�d denote the family of all d-convex solids inR, then it follows at once

from Definitions 3.1–3.3 that

R�d ¼ R� \Rd: ð3:14Þ

3.4. Convex solidification of sets

As with (3.11) and (3.12), Expression (3.13) induces a composite mapping,

�cd : R! R, designated as the d-convex solidification function. We now examine this

function in more detail. To do so, it is instructive to begin by observing that the order in

which these two maps are composed is critical. In particular, it is not true that the d-

convexification of a solid set is necessarily a d-convex solid. This can be illustrated by

the example in Figures 3 and 5. If the exterior squares are taken to define the relevant

boundary set, �R, in Figure 3, then it is clear that the original set, S, of four black squares

is solid, since there are paths from every complementary region to �R that do not

intersect S.21 But, the d-convexification, cdðSÞ, of S is precisely the non-solid set that was

used to motivate solidification. So in this case, the composite image, cd½�ðSÞ� ¼ cdðSÞ is

not solid (and hence not a d-convex solid).
With this in mind, the key result of this section, established in Theorem A.1 of the

appendix, is to show that the terminology in Definition 3.3 is justified, i.e. that:

Property 3.4 (d-Convex solidification): For any set, S 2 R, the image set, �cdðSÞ, is a d-

convex solid.

Hence, if one is enlarging a given cluster, C, by adding a set, S, of new regions to

construct a new cluster containing C [ S, one need only d-convexify this set by the

algorithm

C [ S! IðC [ SÞ ! I2ðC [ SÞ � � � ! cdðC [ SÞ ð3:15Þ

and then solidify the resulting set by identifying all regions in the interior complement

½cdðC [ SÞ�0 of cdðC [ SÞ and forming

�cdðC [ SÞ ¼ cdðC [ SÞ [ ½cdðC [ SÞ�0 : ð3:16Þ

This algorithm has already been illustrated by the simple case in Figure 4, where no

solidification was required. A somewhat more detailed illustration is given in Figures 8

and 9. Figure 8 exhibits a subsystem of 19 (hexagonal) basic regions in R, along with the

major road network (solid and dashed lines) connecting the centers of these regions. As

in Figure 4, it is assumed that there are primary roads (freeways) and secondary roads.

Some regions lie along freeway corridors, as denoted by solid network links with travel

21 Note also from this example that the notion of ‘solidity’ by itself is rather weak. However, when applied
to d-convex sets, this turns out to be exaclty what is needed for ‘filling holes’.
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distance (or time) values of t ¼ 1. Other regions are connected by secondary roads
denoted by dashed network links with higher values of t ¼ 3.

A possible sequence of steps in the formation of a composite cluster in this subsystem
is depicted in Figure 9. Stage 1 begins at the point where it has been determined that an
existing cluster (d-convex solid), C1, of three regions (shown in black) should be
expanded to include a secondary set, S1, of two regions (also shown in black). Given the
shortest path distances, d, generated by the t-values in Figure 8, it is clear that the d-
convexification, cdðC1 [ S1Þ, of this composite set, C1 [ S1, is given by adding the gray
regions as shown in Stage 2. This larger ring of regions lies entirely on freeway corridors
and thus includes all shortest paths joining its members (in a manner similar to the ring
of regions in Figure 5). Hence, the two regions in the center of this ring lie in the internal
complement of cdðC1 [ S1Þ and are thus added in Stage 3 to form an new cluster

t = 1
t = 3

Figure 8. Regional subsystem.

Stage 2Stage 1 Stage 3 

Stage 4 Stage 5 Stage 6 

C1

S 1

C2

S 2
C2

Figure 9. Formation of composite clusters.
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(d-convex solid), C2 ¼ �cdðC1 [ S1Þ, containing C1 [ S1. In Stage 4, it is determined that
one additional singleton set, S2, should also be added to the existing cluster, C2. Again,
Stage 5 shows that all regions on the freeway corridors from S2 to C2 should be added
in a new d-convexification, cdðC2 [ S2Þ. Finally, this d-convex set is again seen to have
two regions in its interior complement, which are thus added to achieve the final d-
convex solid cluster, C3 ¼ �cdðC2 [ S2Þ.

Before proceeding, it is appropriate to note several additional features of this d-
convex solidification procedure that parallel the basic procedure of d-convexification
itself. First, as a parallel to d-convex hulls in (3.8), it is shown in Theorem A.3 of the
appendix that for any given set of regions, S, the d-convex solidification, �cdðSÞ, yields a
‘best d-convex solid approximation’ to S in the sense that:

Property 3.5 (Minimality of d-convex solidifications): For any set, S 2 R, the d-convex
solidification, �cdðSÞ, of S is the smallest d-convex solid containing S:

Hence, this process of cluster formation can be regarded as a smoothing procedure
that approximates each candidate set of high-density regions by a more spatially
coherent covexified version of this set.

Recall that our network representation of space is mainly for the computational
efficiency, and the d-convexity aims for approximating convexity in the original
location space. Property 3.5 indicates that d-convex solid in the network corresponds to
the convex hull in Euclidian space. Thus, as desired, it is conceptually consistent to
adopt d-convex solid as convex approximation of the spatial coverage of a given cluster.

Next, as a parallel to the fixed-point property of d-convexifications, it is shown in
Theorem A.4 of the appendix that the procedure in (3.15) and (3.16) always yields a
fixed point of the composite mapping, �cd : R! R:

Property 3.6 (d-Convex solid fixed points): A set, S 2 R, is a d-convex solid iff
�cdðSÞ ¼ S:

Hence, the family, R�d, of all d-convex solids in (3.14) can equivalently be written as
R�d ¼ fS 2 R : �cdðSÞ ¼ Sg. In this form, each new cluster is seen to be a natural
‘stopping point’ of the combined d-convexification and solidification procedure above.

4. A cluster-detection procedure

Given the cluster model developed above, the set of relevant cluster schemes for
regional network ðR,LÞ can now be formalized as follows:

Definition 4.1 (Cluster schemes): A finite partition, C ¼ ðR0,C1, . . . ,CkCÞ, of R is
designated as a cluster scheme for ðR,LÞ iff (i) (d-convex solidity) Ci 2 R�d for all
i ¼ 1, . . . , kC and (ii) (disjointness)Ci \ Cj ¼1 for all i, j with 1 	 i < j. Let CðR,LÞ
denote the class of admissible cluster schemes for ðR,LÞ:

Below, we develop our search procedure to identify the best cluster scheme. Before
developing the details of this procedure, however, it is useful to begin with an overview.

For any given industry, we start with the single best cluster consisting of a single basic
region. Then, at each subsequent step, we decide whether we should (i) stay with the
current cluster scheme; (ii) expand one of the existing clusters or (iii) start a new cluster.
In alternative (ii), we compare potential expansions of all the existing clusters.
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Such expansions involve annexations of nearby regions (or clusters) which are then
further enlarged to maintain d-convex solidity. A new cluster in alternative (iii) consists
of the best basic region in the current set of residual regions, R0. At each step, the best
option among these three is selected, and the system of clusters continues growing until
option (i) is evaluated as the best among the 3. Before completing the description of this
procedure (in Section 4.2), we specify the details of option (iii) above in the next section.

4.1. Operational rules for cluster expansion

At each step of the search procedure outlined above, option (ii) involves the expansion
of an existing cluster by first annexing certain nearby regions and then further enlarging
this set to maintain ‘spatial cohesiveness’. In view of the above definition of a cluster
scheme, this requires that such annexations be enlarged so as to maintain both d-convex
solidity and disjointness with respect to other existing clusters. This procedure can
sometimes require the annexation of other existing clusters, as illustrated by Figure 10.
Given the subsystem of a regional network shown in Figure 8, suppose that the current
cluster scheme includes the clusters C1 and C2 shown in Stage 1 of Figure 10. Suppose
also that it has been determined that the next step of the search procedure should be an
expansion of cluster C1 to include the set Q shown in Stage 1. The composite cluster,
�cdðC1 [QÞ, resulting from d-convex solidification of C1 [Q, includes C1 [Q together
with the gray region shown in Stage 2. But since cluster C2 is seen to overlap this
composite cluster, it is clear that disjointness between clusters can only be maintained
by annexing cluster C2 as well. This results in the larger composite cluster,
�cd½�cdðC1 [QÞ [ C2�, shown by the combined black and gray region of Stage 3 in
Figure 10.

More generally, if some current cluster, Cj 2 C ¼ ðR0,C1, . . . ,CkC Þ, is to be expanded
by annexing a set Q � R0, then the d-convex solidification, �Cd

ðCj [QÞ, must be further
enlarged to include all clusters, Ci 2 C, intersecting �Cd

ðCj [QÞ. For any given current
cluster scheme C ¼ ðR0,C1, . . . ,CkC Þ, this procedure can be formalized in terms of the
following operator, UC : R! R, defined for all S 2 R by

UCðSÞ ¼ �cdðSÞ [ fCi 2 C : Ci \ �cdðSÞ 6¼1g, ð4:1Þ

where the relevant sets, S, of interest will be of the form, S ¼ Cj [Q, with Cj 2 C and
Q � R0. Observe next that this single operation is not sufficient, since the resulting
image sets, UCðSÞ, may fail to be d-convex solids. Moreover, the d-convex solidification,
�cd½UCðSÞ�, may again fail to be disjoint from other existing clusters in C. So it should
be clear that what is needed here is an iteration of this operator until both conditions are
met. To formalize such iterations, we proceed as in Section 3.2 by letting the iterates of
UC be defined for each S 2 R by U0

CðSÞ ¼ S, U1
CðSÞ ¼ UCðSÞ and Um

CðSÞ ¼ UC½U
m�1
C ðSÞ�

for all m > 1. Since it is clear by definition that Um
CðSÞ � Umþ1

C ðSÞ for all m 
 0, this
yields a monotone nondecreasing sequence of sets in R. Hence, by the same arguments
leading to (3.7), it again follows that there must be an integer, m ð	 jRnSjÞ, such that
Um

CðSÞ ¼ Umþ1
C ðSÞ. As a parallel to (3.7), we may thus designate the smallest integer,

mðSjCÞ ¼ minfm : Um
CðSÞ ¼ Umþ1

C ðSÞg, satisfying this condition as the expansion iter-
ation number of S given C. Finally, if (as a parallel to d-convex hulls) we now designate
the resulting fixed point of UC,

uCðSÞ ¼ U
mðSjCÞ
C ðSÞ ð4:2Þ
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as the C-compatible expansion of S, then it is this set that satisfies the expansion
properties we need. First observe that the fixed point property, UC½uCðSÞ� ¼ uCðSÞ, of
this expanded set implies at once from (4.1) that for all clusters Ci 2 C with
Ci \ uCðSÞ 6¼1 we must have Ci � uCðSÞ. Thus, uCðSÞ is always disjoint from any
clusters, Ci 2 C, that have not already been absorbed into uCðSÞ. Moreover, this in turn
implies from (4.1) that uCðSÞ ¼ �cd½uCðSÞ�, and hence that uCðSÞ must be a d-convex
solid.

4.2. Cluster-detection procedure

In terms of Definition 4.1, the objective of this procedure, which we now designate as
the cluster-detection procedure, is to find a cluster scheme, C� 2 CðR,LÞ, satisfying,

C� ¼ arg max
C2CðR,LÞ

�C : ð4:3Þ

From a practical viewpoint, it should be stressed that the following search procedure
will only guarantee that the cluster scheme found is a ‘local maximum’ of (4.3) with
respect to the class of admissible ‘perturbations’ in CðR,LÞ defined by the procedure
itself.

To specify these perturbations in more detail, we begin with the following
notational conventions. At each stage, t ¼ 0, 1, 2, :::, of this procedure, let Ct ¼

ðRt, 0,Ct, 1, . . . ,Ct, kCt
Þ denote the current cluster scheme in CðR,LÞ. The procedure then

starts at stage t ¼ 0 with the null cluster scheme, C0 ¼ fR0, 0g ¼ fRg, containing no
clusters. By Expressions (2.14) and (2.15), it follows that the corresponding initial value
of the objective function in (4.3) must be 0. Given data, ½Ct,�Ct

�, at stage t, we then seek
the modification (perturbation), Ctþ1, of Ct in CðR,LÞ which yields the highest value of
�Ctþ1

. As outlined above, these modifications are of two types: (i) the formation of a
new cluster in scheme Ct or (ii) the expansion of an existing cluster in scheme Ct. We
now develop each of these steps in turn.

4.2.1. New cluster formation

Given the current cluster scheme, Ct ¼ ðRt, 0,Ct, 1, . . . ,Ct, kCt
Þ, at stage t, one can start a

new cluster, frg, by choosing some residual region, r 2 Rt, 0, which is disjoint with all
existing clusters. Hence, the set of feasible choices for r is given by R0ðCtÞ ¼ Rt, 0. For
each r 2 R0ðCtÞ, the corresponding expanded cluster scheme is then given by
C0

t ðrÞ ¼ ðR
0
t, 0ðrÞ,C

0
t, 1ðrÞ,C

0
t, 2, . . . ,C0

t, k
C0
t
ðrÞ
Þ, where R0

t, 0ðrÞ ¼ Rt, 0nfrg, kC0
t ðrÞ
¼ kCt

þ 1,

Stage 1

C1

Q

C2

Stage 2

C2

Stage 3

Figure 10. Formation of composite clusters.
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C0
t, 1ðrÞ ¼ frg and C0

t, i ¼ Ct, i�1 for i ¼ 2, . . . , kC0
t ðrÞ

. The superscript ‘0’ in cluster scheme,
C0

t ðrÞ, indicates that a change is made to the residual region, Rt, 0, rather than to one of
the clusters in Ct. Note that since frg is automatically a d-convex solid, and since
r 2 R0ðCtÞ guarantees that disjointness of all clusters is maintained, it follows that
C0

t ðrÞ 2 CðR,LÞ, and hence that C0
t ðrÞ is an admissible modification of Ct.

The best candidate for new cluster formation is of course the region, r�0 2 R0ðCtÞ,
that yields the highest value of the objective function, i.e. for which r�0 ¼
argmaxr2R0ðCtÞ�C0

t ðrÞ
. For purposes of comparison with other possible modifications

of Ct, we now set

C0
t � C0

t ðr
�
0Þ : ð4:4Þ

4.2.2. Expansion of an existing cluster

Next, we consider a potential expansion of each cluster, Ct, j 2 Ct, by annexing a set Q
of nearby regions in R. While the basic mechanics of this expansion procedure were
developed in Section 4.1, the specific choice of Q was not. Recall that such annexations
can potentially result in large expansions of Ct, j, given the need to preserve both d-
convex solidity and disjointness. Hence, to maintain reasonably ‘small increments’ in
our search process, it is appropriate to restrict initial annexations to single regions
whenever possible. Of course, when such regions are already part of another cluster, it
will be necessary to annex the whole cluster to preserve disjointness. But to motivate our
basic approach, it is convenient to start by considering the annexation of a single region
not in any other cluster, i.e. to set Q ¼ frg for some r 2 Rt, 0. Here, it would seem natural
to consider only regions in the immediate neighborhood of Ct, j. However, this often
turns out to be too restrictive, since there may exist much better choices that are not
direct neighbors of Ct, j.

In fact, it might seem more reasonable to consider all possible regions in RnCt, j and
simply let our model-selection criterion determine the best choice. But if one allows
choices of r ‘far away’ from Ct, j, then our d-convex solidity and disjointness criteria can
lead to the formation of very large clusters that violate any notion of spatial
cohesiveness.22 So it is convenient at this point to introduce a new set of neighborhoods
which strike a compromise between these two extremes. To do so, we first extend
shortest path distances, d, between points to corresponding distances between points and
sets by letting

dðr,QÞ ¼ min dðr, sÞ : s 2 Q
� �

ð4:5Þ

for r 2 R and Q 2 R. Since d is a metric on R, it is well known that for each set, Q 2 R,
(4.5) yields a well-defined distance function that preserves the usual continuity
properties of d on R (e.g. Berge, 1963, Ch. 5). Hence, one can define well-behaved
neighborhoods of Q in terms of this distance function as follows. For each Q 2 R, the
�-neighborhood of Q in R is defined to be �ðQÞ ¼ r 2 R : dðr,QÞ < �

� �
. Hence, the

22 The inclusion of large undeveloped regions (e.g. mountains and inland sea) of the nation can lead to an
exaggerated depiction of agglomeration involving areas that are mostly devoid of establishments. It
should be noted that this is in part due to our use of economic area (rather than total area), which
effectively ignores such undeveloped land when expanding clusters.
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appropriate choices for expansions of Ct, j are taken to be regions in �ðCt, jÞ for some

pre-specified choice of parameter �.23

As mentioned above, there are two cases that need to be distinguished here. First

suppose that for some given cluster Ct, j we consider the annexation of a region not in

any other cluster, i.e. a region r 2 Rt, 0 \ �ðCt, jÞ. Then, it follows from Expression (4.2)

that the corresponding Ct-compatible expansion of Ct, j [ frg is given by

Cj
t, 1ðrÞ ¼ uCt

ðCt, j [ frgÞ : ð4:6Þ

Thus, the cluster scheme, Cj
tðrÞ, resulting from this expansion has the form

Cj
tðrÞ ¼ Rj

t, 0ðrÞ,C
j
t, 1ðrÞ,C

j
t, 2ðrÞ, . . . ,Cj

t, k
C
j
t
ðrÞ

ðrÞ

� �
, ð4:7Þ

where by Expression (4.1), the set of all other clusters in Cj
tðrÞ is given by

Cj
t, 2ðrÞ, . . . ,Cj

t, k
C
j
t
ðrÞ

ðrÞg ¼ fCt, i 2 Ct : Ct, i \ C
j
t, 1ðrÞ ¼1

� 	
ð4:8Þ

and where the corresponding residual region has the form:

Rj
t, 0ðrÞ ¼ R


[k
C
j
t
ðrÞ

i¼1 Cj
t, iðrÞ : ð4:9Þ

As above, if r�j now denotes the region in Rt, 0 \ �ðCt, jÞ that yields the highest value of

the objective function, i.e. for which r�j ¼ argmaxr2Rt, 0\�ðCt, jÞ�C
j
tðrÞ

, then the best cluster

expansion for Ct, j in Ct starting with regions in Rt, 0 \ �ðCt, jÞ is given by Cj
tðr
�
j Þ:

Next, recall that it is possible that another cluster, Ct, i in Ct, intersects �ðCt, jÞ so that

the annexation of Ct, i is a possible expansion of Ct, j. For this case, it is necessary to

annex the entire cluster Ct, i in order to preserve disjointness. So if we now define the

index set, IjðCtÞ ¼ fi 6¼ j : Ct, i \ �ðCt, jÞ 6¼1g [not to be confused with interval sets Ið�Þ in

Section 3.2], and for each i 2 IjðCjÞ replace (4.6) with the Ct-compatible expansion

Cj
t, 1ðiÞ ¼ uCt

ðCt, j [ Ct, iÞ, then as a parallel to (4.7)–(4.9), the cluster scheme, Cj
tðiÞ,

resulting from this expansion now has the form

Cj
tðiÞ ¼ Rj

t, 0ðiÞ,C
j
t, 1ðiÞ,C

j
t, 2ðiÞ, . . . ,Cj

t, k
C
j
t
ðiÞ

ðiÞ

� �
ð4:10Þ

with the set of all other clusters in Cj
tðiÞ given by

Cj
t, 2ðiÞ, . . . ,Cj

t, k
C
j
t
ðiÞ

ðiÞ

� 	
¼ Ct, i 2 Ct : Ct, i \ C

j
t, 1ðiÞ ¼1

n o
ð4:11Þ

23 In our application in Section 5, the value used is � ¼ 36:0 km, which was chosen so that any single
expansion of a cluster cannot include a large section without economic area (e.g. inland sea and lakes).
This � value covers about 90% of the shortest path distances between neighboring basic regions
(municipalities) in our application. It is also worth noting from a practical viewpoint that this use of
uniform �-neighborhoods has the added advantage of controlling (at least in part) for size differences
among basic regions.
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and with corresponding residual region:

Rj
t, 0ðiÞ ¼ R


[k
C
j
t
ðiÞ

k¼1 Cj
t, kðiÞ : ð4:12Þ

If i�j denotes the cluster in IjðCtÞ that yields the highest value of the objective function
for which i�j ¼ argmaxi2IjðCtÞ�C

j
tðiÞ
, then the best cluster expansion for Ct, j in Ct is

given by Cj
tði
�
j Þ. Hence, the best cluster expansion, Cj

t, of Ct starting with cluster Ct, j is
given by

Cj
t � arg max

C2fC
j
tðr
�
j
Þ,Cj

tði
�
j
Þg

�C, j ¼ 1, . . . , kCt
: ð4:13Þ

4.2.3. Revision of the cluster scheme

Finally, given these candidate modifications, C0
t ,C

1
t , . . . ,C

kCt
t , of Ct in CðR,LÞ [as

defined by (4.4) together with (4.13)], let C�t be the best candidate, as defined by

C�t ¼ arg max
C2fC

j
t:j¼0, 1, ..., kCt g

�C : ð4:14Þ

There are then two possibilities left to consider: If �C�t
> �Ct

, then set
½Ctþ1,�Ctþ1

� ¼ ½C�t ,�C�t
� and proceed to stage tþ 1. On the other hand, if �C�t

	 �Ct
,

then no (local) improvement can be made, and the cluster-detection procedure
terminates with the (locally) optimal cluster scheme, C� ¼ Ct.

Finally, it is of interest to note that this cluster-detection procedure is roughly
analogous to ‘mixed forward search’ procedure in stepwise regression, where in the
present case, we add new clusters or merge existing ones until some locally optimal
stopping point is found. With this analogy in mind, it is in principle possible to consider
‘mixed backward search’ procedures as well. For example, one could start with a
maximal number of singleton clusters and proceed by either eliminating or merging
clusters until a stopping point is reached. Some experiments with this approach
produced results similar to the present search procedure, but proved to be far more
computationally demanding.

4.3. A test of spurious clustering

Although the cluster-detection procedure developed above will always find a (locally)
best cluster scheme, C�, with respect to BIC used, there is still the statistical question of
whether such clustering could simply have occurred by chance. Hence, one can ask how
the optimal criterion value, �C� , obtained compares with typical values obtainable by
applying the same cluster-detection procedure to randomly generated spatial data. This
can be formalized in terms of the hypothesis of complete spatial randomness, which in
this present context asserts that the probability, pr, that any given establishment will
locate in region, r 2 R, is proportional to the areal size, ar, of that region, i.e. that

pr ¼
ar
a
: ð4:15Þ

While the sampling distribution of �C under this hypothesis is complex, it can easily
be estimated by Monte Carlo simulation. More precisely, for any given industrial
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location pattern of n establishments, one can use (4.15) to generate, say, 1000 random

location patterns of n establishments, and apply the cluster-detection procedure to each

pattern. This will yield 1000 values of �C, say �1, . . . ,�1000. If the value for the actual

cluster scheme, �0 ¼ �C� , is say bigger than all but five of these in the ordering of

values, f�1, . . . ,�1000g, then the chance, p, of getting a value as large as this (under the

hypothesis that �0 is coming from the same population of random patterns) is,

p ¼ ð5þ 1Þ=ð1000þ 1Þ � 0:005. This would indicate very ‘significant clustering’. On the

other hand, if �0 were only bigger than say 800 of these values, then the p value,

p ¼ ð200þ 1Þ=ð1000þ 1Þ � 0:20, would suggest that the observed cluster scheme, C�, is

not sufficiently significant to warrant further investigation. This procedure was used in

the following illustrative application [as well as in the more extensive applications in

Mori and Smith (2011a, 2011b, 2012) and Hsu et al. (2011)].

4.4. Essential clusters

The identified clusters, C 2 C�, vary in terms of their contribution to the value of �C� .

While the clusters with larger contributions are often insensitive to small perturbations

of the original regional distribution of establishments, those with smaller contributions

may be sensitive. Thus, to obtain more robust results, it may be useful to focus on those

essential clusters which account for a large shares of �C� .
To formalize this idea, we start by assuming that an optimal cluster scheme, C ¼ C�,

has been found for the industry. To identify the essential clusters in C, we proceed

recursively by successively adding those clusters in C with maximum incremental

contributions to �C.
24 This recursion starts with the ‘empty’ cluster scheme represented

by C0 � R0, 0

� �
, where R0, 0 denotes the full set of regions, R. If the set of (non-residual)

clusters in C is denoted by Cþ � CnfR0g, then we next consider each possible

‘one-cluster’ scheme created by choosing a cluster, C 2 Cþ, and forming

C0ðCÞ ¼ fR0, 0ðCÞ,Cg, with R0, 0ðCÞ ¼ R0, 0nC. The ‘most significant’ of these, denoted

by C1 ¼ fR1, 0ðCÞ,C1, 1g, is then taken to be the cluster scheme with the maximum BIC

value (defined below). If this is called stage t ¼ 1, and if the essential cluster scheme

found at each stage t 
 1 is denoted by Ct � fRt, 0,Ct, 1, . . . ,Ct, tg, then the recursive

construction of these schemes can be defined more precisely as follows.
For each t 
 1, let Cþt�1 denote the (non-residual) clusters in Ct�1 (so that for t ¼ 1 we

have Cþt�1 ¼ Cþ0 ¼1), and for each cluster not yet included in Ct�1, i.e. each

C 2 CþnCþt�1, let Ct�1ðCÞ be defined by, Ct�1ðCÞ ¼ ðRt�1, 0ðCÞ,Ct�1, 1, . . . ,Ct�1, t�1,CÞ,

where Rt�1, 0ðCÞ ¼ Rt�1, 0nC. Then, the additional essential cluster, Ctð� Ct, tÞ

(2 CþnCþt�1), at stage t 
 1 is defined by

Ct � arg max
C2CþnCþ

t�1

TCt�1ðCÞ , ð4:16Þ

24 The procedure for identifying essential clusters in C is different from the one used to indentify C in
Section 4.2. Here, candidate clusters considered are only those in C itself.
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where TCt�1ðCÞ is the estimated maximum log-likelihood ratio for model pCt�1ðCÞ given [in a

manner paralleling expression (2.15)] by

TCt�1ðCÞ ¼
X

C 02Ct�1ðCÞ

nC 0 ln
nC 0=n

aC 0=a

� �
, ð4:17Þ

where nC0 �
P

r2C0 nr and n �
P

r2R nr. Thus, at each stage t 
 1, the

likelihood-maximizing cluster, Ct, is removed from the residual region, Rt�1, 0, and

added to the set of essential clusters in Ct�1. The resulting �C value at each stage t is

then given by

�Ct
¼ TCt

�
t

2
lnðnÞ, ð4:18Þ

with

TCt
¼
X
C2Ct

nC ln
nC=n

aC=a

� �
: ð4:19Þ

Finally, the incremental contribution of each new cluster, Ct, to BIC within C is given

by the increment for its associated cluster scheme, Ct, as follows:

�tðCÞ � �Ct
��Ct�1

: ð4:20Þ

To identify the relevant set of the essential clusters in C, one simple criterion would be

to require that each has a BIC contribution at least some specified fraction, �, of �1ðCÞ.

In terms of this criterion, the procedure would stop at the first stage, te, where

additional increments fail to satisfy this condition, i.e. where �teþ1 < ��1. Refer to

Mori and Smith (2011b, Section 3) for an application of these essential clusters.

5. An illustrative application

In this section, we illustrate the above procedure in terms of the two Japanese industries

discussed in Section 1, which for convenience we refer to here as simply ‘plastics’ and

‘soft drinks’, respectively. These two industries are part of the larger study in Mori and

Smith (2011b) that applies the present methodology to 163 manufacturing industries in

Japan. As discussed in Section 4.2 of that article, the test of spurious clustering above

identified nine industries with spurious clustering, so that only 154 industries were used

in the final analysis. The appropriate notion of a ‘basic region’, r, for purposes of this

study was taken to be the municipality category equivalent to a city-ward-town-village

in Japan. The relevant set R was then taken to be the 3207 municipalities geographically

connected to the major islands of Japan, as shown in Figure 11.25

25 The establishment counts across these industries are taken from the Establishment and Enterprise Census
of Japan in 2001. Economic area of each municipality is obtained by subtracting forests, lakes, marshes
and undeveloped area from the total area of the municipality. The data are available from the Toukei de
Miru Shi-Ku-Cho-Son no Sugata in 2002 and 2003 (in Japanese) by the Statistical Information Institute
for Consulting and Analysis of Japan.
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5.1. Comparison with a scalar measure of agglomeration

The choice of these two industries is motivated by their similarity in terms of overall

degree of agglomeration. This can be illustrated in terms of the D-index developed in

Mori et al. (2005), which for a given industry i is defined as the Kullback–Leibler (1951)

divergence of its establishment location probability distribution, Pi � ½PiðrÞ : r 2 R�, [as

in expression (2.1)] from purely random establishment locations. Here, the latter is

characterized by the uniform probability distribution, P0 � ½P0ðrÞ : r 2 R�, with

P0ðrÞ ¼ ar=
P

j2R aj [as in expression (4.15)]. By using the sample estimate of Pi,

namely, bPi ¼ ½P̂iðrÞ : r 2 R� with P̂iðrÞ � nr=n [as in expression (2.7)], a corresponding

estimate of this D-index is given by

DðbPijP0Þ ¼
X
r2R

bPiðrÞ ln
bPiðrÞ

P0ðrÞ

" #
: ð5:1Þ

The intuition behind this particular index is that it provides a natural measure of

distance between probability distributions. So by taking uniformity to represent the

complete absence of clustering, it is reasonable to assume that those distributions ‘more

distant’ from the uniform distribution should involve more clustering. Note also that

since both D and �C are based on similar log-likelihood measures of ‘distance from

uniformity’, our cluster detection procedure is closer in spirit to this scalar measure than

other possible choices such as the index by Ellison and Glaeser (1997).26 Hence D

provides a natural candidate for comparing the advantages of this approach over scalar

measures in general. The histogram of divergence values, D, for the 154 industries in

Japan is shown in Figure 12 and is seen to range from D ¼ 0:47 up to 5:98. With respect

Hokkaido

Kyushu

Shikoku

The main island

Figure 11. Basic regions (shi-ku-cho-son) of Japan.

26 In fact, Ellison–Glaeser index is highly correlated with D (refer to Mori et al., 2005, Section D). So, the
arguments in this section would remain essentially the same.
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to this overall range, the D values, 1:95 and 2:05, for soft drinks and plastics,
respectively, are seen to be virtually identical.

But in spite of this overall similarity, the agglomeration patterns obtained for these
two industries are substantially different, as seen in Figures 13 and 14.

Panel (a) of each figure displays the establishment densities for the corresponding
industry, where those basic regions with higher densities are shown as darker. In Panel
(b), the individual clusters in the derived cluster scheme, C�i , are represented by enclosed
gray areas. The portion of each cluster in lighter gray shows those basic regions which
contain no establishments (but are included in C�i by the process of convex
solidification).

Before examining these patterns in detail, it is of interest to consider the results of the
cluster-detection procedure itself. By comparing the establishment densities and cluster
schemes in Panels (a) and (b) of each figure, respectively, it is clear that these cluster
schemes closely reflect the underlying densities from which they were obtained. Notice
also that individual clusters are by no means ‘circular’ in shape. Rather each consists of
an easily recognizable set of contiguous basic regions (municipalities) in R that
approximates the area of higher establishment density in Panel (a) of the figure. Notice
also that certain clusters in each pattern are themselves contiguous. We shall return to
this point below.

To compare these two agglomeration patterns in more detail, we begin by observing
that while the plastics industry is more than twice as large as soft drinks in terms of the
number of establishments (1555 versus 777), its agglomeration pattern contains only 43
clusters versus 55 clusters for soft drinks. This illustrates the relative parsimoniousness
of our cluster-detection procedure with respect to larger industries, as mentioned
following the definition of BIC in expression (2.13). Notice also that clustering is indeed
much stronger in the plastics industry than in soft drinks. This can be seen in several
ways. First, the share of plastics establishments in clusters is much larger than for soft
drinks (93:9% versus 64:6%). Second, the average size of these clusters is greater not
only in terms of establishments per cluster (as implied by the statistics above), they are
also more than three time larger in terms of average areal extent.

D-index

Fr
eq

ue
nc

y 
(s

ha
re

)

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7

PlasticsSoft drinks

Figure 12. Frequency distribution of D-values of Japanese manufacturing industries.
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0.004 - 0.029

0.030 - 0.054

0.055 - 0.082

0.083 - 0.120

0.121 - 0.181

0.182 - 0.281

0.282 - 0.497

0.498 - 0.814

0.815 - 1.307

1.308 - 1.909

(a)

(b)

(c)

Tokyo

Nagoya

Osaka

Kyoto ToyamaHiroshima

Hamamatsu-Shizuoka

Kobe

Figure 13. Spatial distributions of establishments and clusters (plastics industry). (a) Density
of establishments (per km2), (b) clusters and (c) essential containment.
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0.003 - 0.017
0.018 - 0.029
0.030 - 0.043
0.044 - 0.062
0.063 - 0.086

0.087 - 0.121
0.122 - 0.177
0.178 - 0.296
0.297 - 0.601
0.602 - 1.274

(a)

(b)

(c)

Figure 14. Spatial distributions of establishments and clusters (soft drinks industry).
(a) Density of establishments (per km2), (b) clusters and (c) essential containment.
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5.2. Global extent versus local density of agglomerations

Aside from these general comparisons in terms of summary statistics, the level of spatial
detail in each of these agglomeration patterns allows a much broader range of
comparative measures. While such measures are developed in more detail in Mori and
Smith (2011b), their essential elements are well illustrated in terms of the present pair of
industries. As mentioned in Section 1, the plastics industry is primarily concentrated
along the industrial belt of Japan as in Figure 13(b). More generally, industries often
tend to concentrate within specific subregions of the nation, i.e. are themselves ‘spatially
contained’. To make this precise in terms of our present model of cluster schemes, we
adopt a two-stage approach. First, we identify the essential clusters with �¼ 0.05
(as defined in Section 4.4) in the optimal cluster scheme, C�, for a given industry. We
then define the essential containment (e-containment) for that industry to be the convex
solidification of these essential clusters, in other words, the smallest convex solid27

containing all these essential clusters for the industry. The e-containment for the plastics
industry is indicated by the hatched area in Figure 13(c) which clearly distinguishes the
‘industrial belt’ portion of this industry. In contrast, the e-containment for soft drinks
shown in Figure 14(c) appears to be much larger and reflects the wide scattering of
essential clusters for this industry.

While these visual summaries of ‘containment’ can be very informative, it is often
more useful to quantify such relations for purposes of analysis. One possibility here is to
define the global extent (GE) of an industry to be the fraction of area in its
e-containment relative to the nation as a whole.28 In the present case, the GE values for
plastics and soft drinks are 0:298 and 0:589, respectively. So in terms of this measure, it
is clear that the clusters of the plastics industry are much more localized than those of
soft drinks.

Next observe that while the GE of the plastics industry is much smaller than that of
soft drinks, the average size of its essential clusters is actually much larger. As is clear
from Figures 13 and 14, these clusters are thus more densely packed inside the
e-containment of the plastics industry. To capture this additional dimension of
agglomeration patterns, we now designate the fraction of e-containment area
represented by these essential clusters as the local density (LD) of the industry. Since
the LD values for plastics and soft drinks are given, respectively, by 0:465 and 0:133, it
is also clear that the agglomeration pattern for plastics is much more locally dense than
that of soft drinks.

5.3. Refinements of cluster schemes

Recall that in terms of our basic probability model of cluster schemes, C, individual
clusters, Cj, are implicitly assumed to constitute sets of basic regions with similar (and
unusually high) establishment density. But the relations between these clusters is left
unspecified. In this regard, it was observed above that the opimal cluster schemes, C�,
for both plastics and soft drinks contain clusters that are mutually contiguous. Here, it is
natural to ask why such clusters were not ‘joined’ at some stage during the

27 Recall Property 3.3 of convex solidification.
28 Here, we use the full geographic areas of basic regions rather than economic area, to give a better

representation of ‘extent’. See further discussions in Mori and Smith (2011b, Section 3.2).
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cluster-detection procedure. The reason is that our basic cluster probability model
assumes that location probabilities are essentially uniform within each cluster [as in
expression (2.3)], so that maximum-likelihood estimates for cluster probabilities, pCðjÞ,
are simply proportional to the number of establishments, nj, in that cluster. Hence, with
respect to the BIC measure underlying this procedure, contiguous clusters with very
different uniform densities often yield a better fit to establishment data than does their
union with its associated uniform density. As one illustration, there is a contiguous
chain of clusters for the plastics industry extending from Tokyo toward west as far as
Osaka [Figure 13(b)]. Here, the establishment densities in these contiguous areas are
sufficiently different so that by treating each as a different cluster, one obtains a better
overall fit in terms of BIC—even though the resulting scheme is penalized for this larger
number of clusters.

It is often the case, however, that there are not only very different establishment
densities among contiguous clusters, but also strong ‘central’ clusters: Tokyo, Nagoya
and Osaka in this case. More generally, this suggests that there is often more spatial
structure in cluster schemes than is captured by a simple listing of their clusters. In
particular, this example suggests that a grouping of contiguous clusters around each
central cluster (i.e. with the highest establishment density) might best be treated as
single agglomerations for an industry.

To formalize these ideas, we begin with a given cluster scheme, C, that has been
identified for an industry. For each individual cluster, C 2 C, let NCðCÞð� CÞ be the set
of contiguous neighbors of C in C (including C itself), so that by definition there exists
for each C0 2 NCðCÞ a basic region, r 2 C, which is adjacent to cluster C0, i.e. with
NðrÞ \ C0 6¼1.29 For each C 2 C, the maximal-density cluster in its immediate
neighborhood, NCðCÞ, can then be identified by a hill climbing function,
HCðCÞ � argmaxC02NCðCÞ nC0=aC0 .

30 In particular, if HCðCÞ ¼ C, then cluster C is a
local peak of establishment density with respect to its contiguous neighbors, NCðCÞ, and
hence can be considered as a central cluster in its vicinity. More generally, we can
generate a unique central cluster for each C 2 C by recursive applications of this hill
climbing function. To do so, we begin by settingH0

CðCÞ � HCðCÞ and constructing m th-
iterates of HC by Hm

CðCÞ ¼ HCðH
m�1
C ðCÞÞ for all integers, m 
 1.31 It can easily be

verified that this recursive mapping reaches a fixed point after a finite number of
iterations. If the smallest such number is denoted by mðCjCÞ � minfm : Hm

CðCÞ ¼
Hmþ1

C ðCÞgð<1Þ, then the fixed point of this mapping, say, hCðCÞ½� H
mðCjCÞ
C ðCÞ�,

identifies the unique central cluster generated by each cluster C 2 C. Accordingly, we
now define the corresponding agglomeration, AðCÞ, generated by C to be the
solidifiation of all clusters leading to the same central cluster, hCðCÞ, i.e.
AðCÞ � �ðfC0 2 C : hCðC

0Þ ¼ hCðCÞgÞ. Note that if C is an isolated cluster, i.e. if
NCðCÞ ¼ C, then by definition, AðCÞ ¼ C. Moreover, for all clusters, C,C0 2 C, either
AðCÞ ¼ AðC0Þ or AðCÞ \ AðC0Þ ¼1: So this procedure essentially transforms the
cluster scheme, C, by grouping its contiguous clusters into distinct agglomerations, each
with a central cluster.

29 Recall from Section 3.1 that NðrÞ is the set of adjacent neighbors for basic region r 2 R.
30 In practice, this solution is almost always unique. But if not, then additional conditions must be imposed

to ensure uniqueness (such as choosing the maximal-density cluster with the largest number of
establishments).

31 For example, H1
CðCÞ ¼ HCðHCðCÞÞ ¼ argmaxC02NCðHCðCÞÞ nC0=aC0 .
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Agglomerations identified for the plastic industry are shown in Figure 15, where 43
clusters reduced to 30 agglomerations, where darker colors indicate larger concentra-
tions of establishments. Notice in particular that certain individual clusters in the
Tokyo, Nagoya and Osaka areas have now been joined to larger agglomerations in
these respective areas.

5.4. Sensitivity analysis

Finally, we report on the sensitivity of identified cluster schemes with respect to small
perturbations to both the search algorithm and to regional boundaries. In doing so, it
should be stressed that our main objective has been to propose the first practical
framework for identifying industrial clusters on a map using regional data. So many
refinements of the present search procedure are yet to be made, such as optimizing its
computational efficiency. But even at this preliminary stage, it is nonetheless
informative to consider the robustness of this procedure with respect to possible
perturbations.

5.4.1. Alternative initial clusters

We first investigate the sensitivity of the results with respect to alternative starting
points. To do so, we now re-initialize the cluster search procedure for a given industry
by taking the initial cluster to be a randomly chosen municipality (with a strictly
positive number of establishments of the industry in question). In particular, we have
generated 10 such samples for each of i ¼ 1, . . . , 154 industries with non-spurious
clusters.

To compare the overlap between cluster schemes identified for industry i in each of
these samples with the original cluster scheme, we focus on their agreement in terms of
establishments belonging to clusters. To do so, let Ri0 and Rij denote, respectively, the
sets of municipalities in R belonging to clusters identified for industry i using (i) the

TokyoNagoyaOsaka

Kobe

Figure 15. Agglomerations of plastics industry.
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original initial cluster and (ii) the jth sampled initial cluster. If for any set of

municipalities, R0 � R we let niðR
0Þ denote the total number of i establishments in these

municipalities, then the agreement between these cluster schemes can be measured in

terms of the share, Sij, of cluster establishments common to both, as defined by

Sij ¼
niðRi0 \ RijÞ

niðRi0 [ RijÞ
, ð5:2Þ

where 0 	 Sij 	 1 with Sij ¼ 0 , Ri0 \ Rij ¼1 and Sij ¼ 1 , Ri0 ¼ Rij:
32 Over

the full set of samples, fSij : i ¼ 1, . . . , 154, j ¼ 1, . . . , 10g, the minimum value of Sij

observed was 0.952 (with a mean of 0.999). On this basis, we conclude that

the cluster schemes identified are highly robust against the perturbation of
initial clusters.

5.4.2. Perturbation of regional divisions

Next, we employ simulation methods to determine whether the identified cluster schemes

are sensitive to small perturbations of municipality boundaries. To construct each

perturbation, we first randomly partition the set of all municipalities, R, into mutually

exclusive adjacent pairs. In particular, if N ¼ fðr, sÞ 2 R : r 2 NðsÞg denotes the set of all
adjacent municipality pairs, then this partition is given by a randomly selected maximal

subset, N0, of mutually exclusive pairs in N [which by definition satisfies the two

conditions, that (i) fr, sg \ fr0, s0g ¼1 for all ðr, sÞðr0, s0Þ 2 N0, and that (ii) for each
ðr, sÞ =2 N0 there is some ðr0, s0Þ 2 N0 with fr, sg \ fr0, s0g 6¼1]. Second, for each pair,

ðr, sÞ 2 N0, we reallocate 5% of both establishments and economic area from

one municipality to the other,33 where the direction of the reallocation is determined

randomly.
Using this procedure, we again generated 10 randomly perturbed samples for each of

154 industries. Within each industry, we focus only on the set of essential clusters in the

original cluster scheme (using � ¼ 0:05 as defined in Section 4.4). With respect to these

clusters, we then compute the industry share (in terms of the number of establishments)
that continues to appear in these essential clusters identified for the perturbation. In all

but three industries, these industry shares exceeded 95% in each of the 10 sample

perturbations. A common property of these three exceptional industries (‘alcoholic
beverages’, ‘paving materials’ and ‘cement and its products’) is that they are relatively

ubiquitous. As for paving materials, the original clusters account for only 39:1% of all

establishments, which is the smallest among all industries (where the average value is

93:6%). Thus, the majority of establishments of this industry are located outside
clusters. As for the other two, while original clusters do account for a substantial

percentage of industry establishments (more than 70%), these clusters are spread over

more than 40% of the national economic area, as opposed to an average share of 22:7%

for all industries. Thus, for extremely ubiquitous industries of this type, the change in

lumpiness of establishment distributions across municipalities induced by such

perturbations in the regional allocation of establishments and economic area can in

32 This measure is an instance of the standard Jaccard measure of similarity between sets.
33 The number of establishments to be reallocated is rounded to the nearest integer.
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principle produce quite different clustering patterns. But for the majority of industries,
our cluster-identification procedure does appear to produce robust results.34

Figures 16 and 17 show for the cases of our two example industries, plastic and soft
drinks industries, respectively. The top and bottom panels in each figure show the
clusters identified under the actual and perturbed municipality boundaries, respectively,
where for the latter, we chose the random sample for which the industry share deviates
the most from the actual pattern, i.e. the worst case. In each panel, the darker clusters

represent the essential clusters. These two examples indicate that not only the essential
clusters are robust but also the entire cluster distributions are quite similar between the
actual and perturbed sample. Basically, this same property holds for 151 of the 154
three-digit industries.

6. Concluding remarks

In this article, we have developed a simple cluster-scheme model of agglomeration
patterns and have constructed an information-based algorithm for identifying such

patterns. To the best of our knowledge, this constitutes the first systematic framework

(a)

(b)

Figure 16. Clusters under the actual and perturbed municipalities boundaries (plastics
industry). (a) Clusters under the actual municipality boundaries and (b) clusters under
perturbed municipality boundaries.

34 It is to be noted that since municipality sizes vary significantly for the case of Japan, with geographic
areas of municipalities ranging from 1.64 to 1408.1 km2, these 5% reallocations of establishments and
economic area are actually not ‘small’ perturbations for relatively large municipalities. Hence, the results
here indicate strong robustness of our approach for the case of localized industries.
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for doing so. In addition, this formal framework opens up a number of possible
directions for further research. In particular, by utilizing clusters identified, it becomes
possible for the first time to directly identify the spatial patterns of industrial
agglomerations on a map, and test the hypotheses implied by the recent theoretical
developments on economic agglomerations under many-region/continuous location
space (e.g. Fujita et al., 1999; Tabuchi and Thisse, 2011; Ikeda et al., 2011; Hsu, 2012).
Below, we touch on two areas where initial investigations are already under way.

6.1. Cluster-based choice cities for industries

In our previous work (Mori et al., 2008), we reported on an empirical regularity
between the (population) size and industrial structure of cities in Japan, designated as
the number-average size (NAS) rule. This regularity (also established for the USA by
Hsu, 2012) asserts a negative log-linear relation between the number and average
population size of those cities where a given industry is present. Hence, the validity of
the NAS rule depends critically on how such ‘industrial presence’ is defined. In its
follow-up paper (Mori and Smith, 2011a), we have employed the present
cluster-detection procedure to identify cities where given industries exhibit a ‘substan-
tial’ presence with respect to their agglomeration patterns. In particular, if U denotes
the relevant set of cities in R, and if Ci is the cluster scheme identified for industry i, then
each city U 2 U containing establishments from at least one of the clusters in Ci is
designated as a cluster-based (cb) choice city for industry i. This cb-approach to
industrial presence yields a sharper version of the NAS rule for the case of Japan. In

(a)

(b)

Figure 17. Clusters under the actual and perturbed municipalities boundaries (soft drinks
industry). (a) Clusters under the actual municipality boundaries and (b) clusters under
perturbed municipality boundaries.
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addition, by identifying those cb-choice cities shared by different industries, this also
provides one approach to analyzing spatial coordination between industries. In ongoing
work (Hsu et al., 2012), we are examining the consequences of such industrial
coordination for city size distributions, and in particular for the Rank Size Rule. In

addition, by examining the spacing between cb cities for industries, one can also
formulate a range of testable propositons about the spatial structure of urban
hierarchies.

6.2. Regional agglomeration analysis

As emphasized in Section 1, most analyses of industrial agglomeration have relied
on overall indices of agglomeration, and hence have necessarily been aggregate
in nature. However, the present identification of local cluster patterns for
industries allows the possibility for more disaggregate spatial analyses. Of particular
interest is the question of why industries agglomerate in certain regions and not others.

While this question has of course been addressed by a variety of theoretical models,
there has been little empirical work done to date. This is in large part due to the
conspicuous absence of ‘local agglomeration’ measures. While the present cluster-
scheme model is not itself numerical, it nonetheless suggests a number of possibilities
for such measures.

The simplest are of course binary variables indicating the ‘presence’ or ‘absence’ of
agglomeration. Indeed, the above definition of cb choice cities yields precisely a binary

variable of this type on the set of cities, U. Hence, given appropriate socio-economic
data for cities, U 2 U, one could in principle test for significant predictors of industrial
presence in these cities by employing standard logit or probit models.

Alternatively, one may focus directly on the individual clusters for each industry.
Here, one might characterize the degree of local agglomeration for each industry in
terms of the contribution of these clusters to the industry as a whole. Natural

candidates include the fraction of industry establishments or employment in each
cluster. Given the availability of data at the municipality level, one could in principle
aggregate such data to the cluster level and use this to identify predictors of local
agglomeration by more standard types of linear regression models. As one illustration,
in Japan, data on education levels (among others) are available at the municipality level.

Thus, by employing appropriate summary measures, ‘education accessibility’ across
cluster municipalities can be defined. Then, by treating ‘industry’ as a categorical
variable, one can attempt to compare the relative importance of these local
accessibilities in attracting various industries. Regression analyses of this type will be
presented in subsequent work (Mori and Smith, 2012).
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Appendix

Formal analysis of d-convex solids

To develop formal properties of d-convex solids, we require a few additional
definitions. First, for any path, � ¼ ðr1, r2, :::, rn�1, rnÞ 2 Pðr1, rnÞ, let ~� ¼
ðrn, rn�1, . . . , r2, r1Þ 2 Pðrn, r1Þ denote the reverse path in P. Next, for any two paths,
� ¼ ðr1, . . . , rnÞ, �

0 ¼ ðr01, . . . , r0mÞ 2 P, with rn ¼ r01, the combined path,
�  �0 ¼ ðr1, . . . , rn, r

0
2, . . . , r0mÞ 2 P is designated as the concatenation of � and �0. It

then follows by definition that the length of any concatenated path, �  �0, is simply
the sum of the lengths of � and �0, i.e. that lð�  �0Þ ¼

Pn�1
i¼1 dðri, riþ1Þ

þdðrn, r
0
2Þ þ

Pm�1
i¼2 dðr0i, r

0
iþ1Þ ¼

Pn�1
i¼1 dðri, riþ1Þ þ

Pm�1
i¼1 dðr0i, r

0
iþ1Þ ¼ lð�Þ þ lð�0Þ. Using

this and (3.5)–(3.8), it is convenient to establish the following well-known properties
of d-convex sets, as in Definition 3.1 of the text. First, we show that for the d-
convexification function, cd : R! R, in (3.8), the naming of this function is justified by
the fact that:

Proposition A.1 (d-Convexification): For all S 2 R, the image set, cdðSÞ, is d-convex.

Proof: For any r1, r2 2 cdðSÞ and shortest path, � 2 Pdðr1, r2Þ, it must
be shown that �h i � cdðSÞ But by definition, ri 2 cdðSÞ ) ri 2 IkiðSÞ for
some ki, i ¼ 1, 2: Hence, by (3.6), it follows that fr1, r2g � Ik1þk2 ðSÞ . Thus, �h i �
IðIk1þk2 ðSÞÞ ¼ Ik1þk2þ1ðSÞ � cdðSÞ. g

Next, we show that the d-convex hull, cdðSÞ, can be characterized as the unique
smallest d-convex superset of S. More precisely, if Rd denotes the family of all d-convex
sets in R, then we have:

Proposition A.2 (minimality of d-convexifications): For all S 2 R,

cdðSÞ ¼ \fC 2 Rd : S � Cg : ðA:1Þ

Proof: By Proposition A.1, cdðSÞ 2 Rd, and by (3.5)

S � IðSÞ � cdðSÞ ðA:2Þ
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Hence, it suffices to show that for all sets, C, with C 2 Rd and S � C, we must have
cdðSÞ � C. By the definition of cdðSÞ this in turn is equivalent to showing that IkðSÞ � C
for all k 
 1. But by (3.4),

S � C)
[
r, s2S

Iðr, sÞ �
[
r, s2C

Iðr, sÞ ) IðSÞ � IðCÞ : ðA:3Þ

Moreover, by (3.3) and (3.4) together with the definition of d-convexity, it follows
that

C 2 Rd ) IðCÞ ¼
[
r, s2C

Iðr, sÞ � C : ðA:4Þ

Hence, we may conclude from (A.3) and (A.4) that IðSÞ � C. Finally, since the same
argument shows that IkðSÞ � C 2 Rd ) Ikþ1ðSÞ ¼ I½IkðSÞ� � C, the result follows by
induction on k.g

Finally, using these two results, we show that d-convex sets can be equivalently
characterized as the fixed points of the d-convexification mapping, cd : R! R:

Proposition A.3 (d-convex fixed points): For all S 2 R,

S 2 Rd , cdðSÞ ¼ S : ðA:5Þ

Proof: If cdðSÞ ¼ S then S 2 Rd by Proposition A.1. Conversely, if S 2 Rd then
S � cdðSÞ by (A.2), and cdðSÞ � S by Proposition A.2, hence cdðSÞ ¼ S.g

This in turn implies that the family, Rd, of d-convex sets can be equivalently defined
as in Expression (3.9) of the text. But while this definition provides a natural parallel to
the case of d-convex solids developed below, the more useful interval characterization of
Rd in Expression (3.10) of the text, can easily be obtained from Proposition A.3 as
follows:

Corollary (interval fixed points): For all S 2 R,

S 2 Rd , IðSÞ ¼ S : ðA:6Þ

Proof: Since S 2 Rd ) IðSÞ � S by (A.4) (with C ¼ S), and since S � IðSÞ holds for all
S [by (3.5)], it follows on the one hand that S 2 Rd ) IðSÞ ¼ S. Conversely, since
IðSÞ ¼ S) IkðSÞ ¼ S for all k 
 1 (by recursion on k), it follows from (3.8) and
Proposition A.3 that IðSÞ ¼ S) cdðSÞ ¼ S) S 2 Rd.g

Given these properties of d-convex sets, one objective of this appendix is to show that
each of these properties is inherited by d-convex solids. To do so, we begin with an
analysis of solid sets as in Definition 3.2 of the text. First, in a manner paralleling
Proposition A.1, we show for the solidification function, � : R! R, defined by (3.12),
the naming of this function is justified by the fact that:

Lemma A.1 (Solidification): For all S 2 R, the image set, �ðSÞ, is solid.

Proof: If V ¼ �ðSÞ ¼ S [ S0, then it must be shown that for all r 2 RnV there is some
path, � 2 Pðr, �RÞ with �h i \ V ¼1. But for any r 2 RnV ¼ RnðS [ S0Þ, it follows that
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r 2 RnS and r=2S0, so that by the definition of S0 in (3.11), it must be true that there is
some boundary region, �r 2 �R, and path, � 2 Pðr, �rÞ with �h i \ S ¼1. Next, we show
that �h i \ S0 ¼1 as well. To do so, suppose to the contrary that �h i \ S0 6¼1, so that
for some r0 2 S0, � ¼ ðr, . . . , r0, . . . , �rÞ ¼ �1  �2 with �1 2 Pðr, r0Þ and �2 2 Pðr0, �rÞ.
Then, again by the definition of S0 it must be true that �2h i \ S 6¼1, which contracts
the fact that �2h i � �h i and �h i \ S ¼1. Hence, 1 ¼ ð �h i \ SÞ [ ð �h i \ S0Þ ¼

� \ ðS [ S0Þ ¼ �h i \ V, and the result is established.g

If the family of all solid sets in R is denoted by R� ¼ fS 2 R : S0 ¼1g, then we next
show that these sets are precisely the fixed points of the solidification function:

Lemma A.2 (solid fixed points): For all S 2 R,

S 2 R� , �ðSÞ ¼ S : ðA:7Þ

Proof: If S 2 R� then S0 ¼1, so that �ðSÞ ¼ S by (3.12). Conversely, if �ðSÞ ¼ S, then
by Lemma A.1, S 2 R�.g

As a parallel to (A.6), this in turn implies that the family of solid sets in R can be
equivalently defined as follows:

R� ¼ fS 2 R : �ðSÞ ¼ Sg : ðA:8Þ

Finally, solid sets also exhibit the following nesting property:

Lemma A.3 (solid nesting): For all S,V 2 R,

S � V ) �ðSÞ � �ðVÞ : ðA:9Þ

Proof: Since S � V � V [ V0 ¼ �ðVÞ, it suffices to show that S0 � �ðVÞ. Hence,
consider any r 2 S0 and observe from the above that r 2 V) r 2 �ðVÞ. Hence, it
remains to consider r 2 S0nV. Here, we show that r must be in V0. To do so, observe
first that r=2V) r 2 RnV. Moreover, r 2 S0 implies that for any path, � 2 Pðr, �RÞ we
must have �h i \ S 6¼1. But S � V then implies �h i \ V 6¼1. Hence, r 2 V0 � �ðVÞ,
and the result is established. g

With these properties of solid sets, we are ready to analyze d-convex solids in R. As
asserted in the text, our key result is to show that d-convexity is preserved under
solidifications:

Theorem A.1 (Solidification invariance of d-convexity): For all d-convex sets, S 2 R, the
image set, �ðSÞ, is also d-convex.

Proof: Suppose to the contrary that for some d-convex set, S, the image set �ðSÞ is not
d-convex. Then, there must exist some pair of elements, r1, r2 2 �ðSÞ ¼ S [ S0, and some
shortest path, � 2 Pdðr1, r2Þ, with �h i \ ½Rn�ðSÞ� 6¼1. But if fr1, r2g � S then by the d-
convexity of S we would have �h i � S � �ðSÞ. So at least one of these elements must be
in S0. Without loss of generality, we may suppose that r1 2 S0 and that r is some
element of �h i \ ½Rn�ðSÞ�, so that � ¼ ðr1, . . . , r, . . . , r2Þ ¼ �1  �2 with �1 2 Pðr1, rÞ and
�2 2 Pðr, r2Þ. But then we must have S \ �1h i 6¼1. For if not then we obtain a
contradiction as follows. Since r=2�ðSÞ ) ½r 2 RnS and r=2S0�, there must be some path,
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�3 2 Pðr, �RÞ with �3h i \ S ¼1. Hence, the combined path, �1  �3 2 Pðr1, �RÞ, then

satisfies �1  �3h i \ S ¼1, which contradicts the hypothesis that r1 2 S0. Thus, we may

assume that there is some s1 2 S \ �1h i and consider the following two cases:

(i) Suppose first that r2 is also an element of S0. We then show that this

contradicts the hypothesized shortest path property of � as follows. Observe

first that if ~�2 2 Pðr2, rÞ denotes the reverse path for �2 2 Pðr, r2Þ above, then
the same argument used for �1 2 Pðr1, rÞ above now shows that there must be

some s2 2 S \ ~�2h i ¼ S \ �2h i, so that � ¼ ðr1, . . . , s1, . . . , r, . . . , s2, . . . , r2Þ ¼

�01  �
0
2  �

0
3 �04 with �01 2 Pðr1, s1Þ, �

0
2 2 Pðs1, rÞ, �

0
3 2 Pðr, s2Þ, and

�04 2 Pðs2, r2Þ. These paths are shown in Figure 18.

But if we choose any shortest path, �05 2 Pdðs1, s2Þ (as in Figure 18), then it follows

from the d-convexity of S, together with s1, s2 2 S and r=2S that lð�05Þ < lð�02  �
0
3Þ [since

every shortest path in Pdðs1, s2Þ lies in S, and �02  �
0
3

� �
6� S]. Hence, for the path,

�0 ¼ �01  �
0
5  �

0
4 2 Pðr1, r2Þ, we must have lð�0Þ ¼ lð�01Þ þ lð�05Þ þ lð�04Þ < lð�01Þþ

½lð�02Þ þ lð�03Þ� þ lð�04Þ ¼ lð�01  �
0
2  �

0
3  �

0
4Þ ¼ lð�Þ which contradicts the shortest path

property of �.

(ii) Finally, suppose that r2 2 S, and for the point s1 2 S \ �1h i above, consider the
representation of � as � ¼ ðr1, . . . , s1, . . . , r, . . . , r2Þ ¼ �

0
1  �

0
2  �2 with

�01 2 Pðr1, s1Þ, �
0
2 2 Pðs1, rÞ, and �2 2 Pðr, r2Þ, as shown in Figure 19.

Then, we again show that this contradicts the shortest path property of � as follows.

For any shortest path, �06 2 Pdðs1, r2Þ (as in Figure 19), the d-convexity of S, together

with s1, r2 2 S and r=2S, now implies that lð�06Þ < lð�02  �2Þ. Thus, for the path,

�00 ¼ �01  �
0
6 2 Pðr1, r2Þ, we must have lð�00Þ ¼ lð�01Þ þ lð�06Þ < lð�01Þ þ ½lð�

0
2Þ þ lð�2Þ� ¼

lð�01  �
0
2  �2Þ ¼ lð�Þ which again contradicts the shortest path property of �. Hence,

for each pair of elements, r1, r2 2 �ðSÞ ¼ S [ S0, there can be no shortest path,

� 2 Pdðr1, r2Þ, with �h i \ ½Rn�ðSÞ� 6¼1, so that �ðSÞ is d-convex.g

With this result, we can now establish parallels to Propositions A.1, A.2 and A.3

above for d-convex solids, as in Definition 3.3. First, we show that for the d-convex

solidification function, �cd : R! R, in (3.13), the naming of this function is justified by

the fact that:

Theorem A.2 (d-convex solidification): For each set, S 2 R, the image set, �cdðSÞ, is a

d-convex solid.

′

S

r1

S 0

s1 r

s2
r2

ρ1′
ρ2

′ρ5

′ρ4

′ρ3

Figure 18. Example (i).
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Proof: First observe from Definition 3.3 that we may use Expressions (A.6) and (A.7)
to define the family of all d-convex solids in equivalent terms as

R�d ¼ R� \ Rd : ðA:10Þ

Hence, it suffices to show that �cdðSÞ 2 Rd \R� . But by Proposition A.1, it follows
that cdðSÞ 2 Rd, and hence as a direct consequence of Theorem A.1 that
�cdðSÞ ¼ �½cdðSÞ� 2 Rd. Moreover, since cdðSÞ 2 R also implies from Lemma A.1 that
�½cdðSÞ� 2 R�, it then follows that �cdðSÞ 2 R�d.g

Next, as a parallel to Proposition A.2, we now have:

Theorem A.3 (minimality of d-convex solidifications): For each set, S 2 R,

�cdðSÞ ¼ \fC 2 R�d : S � Cg : ðA:11Þ

Proof: First observe from Theorem A.2 that �cdðSÞ 2 R�d and from Expression (A.2)
that S � cdðSÞ � �½cdðSÞ� ¼ �cdðSÞ (since by definition, V 2 �ðVÞ for all V). Hence, it
suffices to show that �cdðSÞ � C whenever S � C 2 R�d. But by Proposition A.2,
C 2 R�d � Rd and S � C imply that cdðSÞ � C. Moreover, since C 2 R�d � R� , we
obtain the following conclusion from Lemma A.3 together with Lemma A.2, and the
result is established.

cdðSÞ � C) �½cdðSÞ� � �ðCÞ ¼ C) �cdðSÞ � C� ðA:12Þ

Finally, we may use these results to show that d-convex sets are equivalently
characterized as fixed points of the d-convex solidification function, c�d : R! R:

Theorem A.4 (d-convex solid fixed points): For all S 2 R,

S 2 R�d , c�dðSÞ ¼ S : ðA:13Þ

Proof: If c�dðSÞ ¼ S then by Theorem A.2, S 2 R�d. Conversely, if S 2 R�d then since
S 2 R�d � Rd implies from Proposition A.3 that cdðSÞ ¼ S, we may conclude from
Lemma A.2 that c�dðSÞ ¼ �½cdðSÞ� ¼ �ðSÞ ¼ S, and the result is established.g

S

r1

S 0

s1 r

r2

ρ2
′ρ6

′ρ2

ρ1′

Figure 19. Example (ii).
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