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1. Introduction 
 
Large scale datasets such as County Assessor’s geodatabases offer novel opportunities to 
investigate spatial phenomena at much finer levels of resolution than in the past. Spatial 
spillovers, urban infill, renovation price effects and proximity to investment\amenity zones can 
now be examined at the parcel level, opening up new avenues for the bulk identification of 
specific development opportunities. The central purpose of this paper is to develop an approach 
to analyzing such data in an efficient manner. Our approach starts with Gaussian Process 
Regression (GPR), which is well known prediction tool for analyzing spatial datasets. Moreover, 
the smooth nature of its prediction surfaces is particularly well suited for identifying the local 
marginal effects (LME) of key explanatory variables [as developed in Dearmon & Smith (2016, 
2017)]. It is these effects that will allow an examination of more fine-grained spatial phenomena, 
such as the local development opportunities mentioned above. 
 
However, the application of such GPR methods to large data sets has thus far been limited by the 
need to invert large dense covariance matrices. Thus, it is not surprising that this practical 
limitation has led to a variety of methods for approximating GPR models by more efficiently 
computable versions [as reviewed for example in Chen et al. (2017)]. In the present paper, we 
focus on one of the most promising of these approaches, namely the development of a 
hierarchical covariance approximation to GPR by Jie Chen ([C1] = Chen et al, 2017; [C2] = 
Chen & Stein, 2017), which we here denote by GPR-HCA This hierarchical extension of 
Nyström’s low-rank approximation yields dramatic improvement in both speed and accuracy of 
predictions. In fact, this approximation allows matrix inversions that achieve the optimal 
efficiency level of ( )O n  , i.e., are linear in the matrix dimension, n. Of equal importance, these 
approximations are guaranteed to yield positive definite matrices that generate well-defined 
Gaussian Processes. So, from a methodological perspective, our central objective is to extend 
such approximations to the analysis of local marginal effects in large-data contexts. 
 
To do so, we begin in Section 2 with a review of the standard Gaussian Process Regression 
model, and in particular, its associated local marginal effects. In Section 3, we then develop the 
GPR-HCA method in detail. One contribution of this paper is to give an explicit probabilistic 
interpretation of this method, which we illustrate for two- and three-level hierarchies. In addition, 
we highlight some of the key auxiliary tools proposed by Chen ([C1],[C2]) which are 
particularly useful for our LME extensions. In Section 4, we test both the accuracy and 
scalability of this hierarchical approach by constructing a simple two-variable simulation model 
that allows for visual as well as numerical comparisons with other methods. Here we begin by 
comparing GPR-HCA with the standard Gaussian Process Regression model (GPR-FULL) over 
sample sizes small enough to allow the full version to be run. In addition, we compare GPR-
HCA with two other large-scale prediction models for sample sizes up to half a million. Of 
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particular relevance is the Nearest-Neighbor approximation of Gaussian Processes (NNGP) first 
introduced by Datta et al. (2016), which also yields covariance approximations that are linear in 
matrix dimension and generate well-defined Gaussian Processes. In addition, we also compare 
GPR-HCA performance with one of the standard machine learning algorithms, namely the 
Generalized Boosted Models (GBM) algorithm of Ridgeway (2007). In all cases we find 
comparable predictive performance, and much improved time costs over GPR-FULL in 
particular. However, while such comparative tests are important, they are not of primary interest 
for our present purposes. More important is the technical extension of GPR-HCA to the 
evaluation of LME’s for large data sets. Within the same simulation framework, such estimated 
LME’s are shown to accurately replicate the derivatives of well-behaved functions corrupted by 
noise. In Section 5, we turn to an empirical application and apply these HCA-tools to tackle the 
difficult and often ill-behaved relationship between house prices and attributes using data 
obtained from nearly a decade’s worth of County Assessor’s databases in Oklahoma County. In 
particular, we focus on two distinct regions of Oklahoma County; one just north of downtown 
where spatial spillovers appear to be present and the other a small, wealthy municipality, located 
further north, where spatial infill opportunities appear to exist. We investigate and analyze such 
phenomena using GPR-HCA, and provide confirmatory evidence of our findings using building 
permit data. Finally, we conclude in Section 6 with a brief discussion of several possible 
extensions of this work that are of both practical and technical importance. 
 
 
2. Gaussian Process Regression 

 

Given a spatial process with response variable, lY  , on a domain, 1{ ( ,.., )} d
l l ldS x x x= = ⊆   of 

possible explanatory variables [including the spatial coordinates of location, l ], we start by 
assuming that stochastic variations in observed values of lY  about their common mean, µ , are 
governed by a underlying (latent) zero-mean Gaussian process, :f S → , with observed values 
(measurements) corrupted by independent additive Gaussian noise, 
 
(1) 2( ) , ~ (0, )l l l lY f x Nµ ε ε σ= + +   
 
In essence this implies that latent responses, ( : 1,.., )lf f l n= = , at any finite set of locations with 
associated explanatory variables, ( : 1,.., )lX x l n= =  are multi-normally distributed as 
 
(2) ~ [0 , ( , )]nf N K X X   
 
with covariance matrix, ( , ) [ ( , ) : , 1,.., ]i jK X X k x x i j n= = , generated by a kernel function, 

( , ) [ cov( , )]l h l hk x x f f≡ ,  depending only on the attribute profiles of response variates. By (1) this 
implies that the resulting observed responses, ( : 1,.., )lY Y l n= = , are distributed as 
 
(3) 2~ [ 1 , ( , ) ]n nY N K X X Iµ σ+    
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where 1n  and nI  denote respectively the unit vector and identity matrix of size n. To model 
spatial covariance, we here employ the standard (anisotropic) squared exponential (SE) kernel 
function:  
 
(4) 2

2
1

1
2( , ) exp ( )

i

d
l h li hii

k x x v x xτ=
 = − − ∑  

 
where v  denotes the common variance of all responses, i.e., var( ) ( , )l l lf k x x v= = , and where 
each length-scale parameter, 0jτ > , governs the degree to which variable, jx , influences 
covariance. 
 
 With these assumptions, the fundamental Gaussian Process Regression (GPR) problem is 
to obtain the predictive (conditional) distribution of latent responses, * *( )f f X= , at tn  test 
locations with attributes, * *( : 1,.., )l tX x l n= = , given observed responses, 1( ,.., )nY Y Y= , at n 
training locations with attributes, ( : 1,.., )lX x l n= = . If we start with the joint distribution, 
 

(5) * * **
2

*

0 ( , ) ( , )
~ ,

( , ) ( , )1
tn

nn

K X X K X Xf NY K X X K X X Iσµ
     

      +     
  

 
then the desired (conditional) predictive distribution is well known to be multi-normal 
 
(6) [ ]* * *| ~ ( | ),cov( | )f Y N E f Y f Y   
 
with conditional mean and covariance, 
 
(7) 2 1

* *( | ) ( , )[ ( , ) ] ( )nE f Y K X X K X X I Yσ µ−= + −   
 

(8) 2 1
* * * * *cov( | ) ( , ) ( , )[ ( , ) ] ( , )nf Y K X X K X X K X X I K X Xσ −= − +   

 
As developed in a previous paper Dearmon & Smith (2017), we also consider local marginal 
effects (LME), 
 
 

(9)  2 1* *

* , * ,

( | ) ( , ) [ ( , ) ] ( ) , 1,..,l
n t

l j l j

E f Y K x X K X X I Y l n
x x

σ µ−∂ ∂
= + − =

∂ ∂
 

 
 

capturing the expected impact of small changes in individual attributes, 1,..,j d= , such as the 
impact of an additional square foot on the expected sales price of a given house with a specific 
set of attributes.  For purposes of model calibration and prediction, a key scaling issue that arises 
is the size of the inverse to be calculated in (7), (8) and (9). 
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3. Hierarchical Covariance Approximation 
 
Assuming that n  is large, the objective of Chen’s procedure is to construct a hierarchical 
approximation to the n -square covariance matrix, K . The approach starts by partitioning domain 
S  into a collection of basic subdomains, , 1,..,iS i b= , where each subset of sample points,  

1[ ,.., ]
ii i i inX S X x x= ∩ = , is sufficiently small to ensure that the associated covariance matrix, 

( , )ii i iK K X X= , can easily be inverted. (Note that for notational simplicity, we have now 
dropped references to individual spatial locations, l ). The second step is to approximate the 
covariances,  
 
(10) ( , ) [ ( , ) : , ] , , 1,.., ( )ij i j i j i i j jK K X X k x x x X x X i j q i j= = ∈ ∈ = ≠   
 
between distinct subdomains in terms of their mutual covariances with smaller sets of  
“landmark” points.1 These concepts are best illustrated by simple examples.  
 
3.1 Two-Level Hierarchical Example   
 

The simplest example involves a partitioning of S  into two subdomains, 1S  and 2S , as illustrated 
in Figure 1 below, where for graphical convenience we show only the spatial coordinates ( 2d = ).  
 
 
 
 
 
 
 
 
 
 
 
 
To approximate the covariances between points in these two subdomains, one selects a small 
representative subset of points, 1 1 2[ ,.., ]

rr r r nX x x X X= ⊂ ∪ , designated as landmark points for 1X  
and 2X . In this case, rX , is associated with the full domain, 1 2 rS S S S= ∪ ≡ . Moreover, given the 
hierarchical relations among these three domains (with respect to set containment,⊆ ), Figure 1 can 
also be represented as a two-level tree structure with root, rS , and leaves, 1 2( , )S S , as shown in 
Figure 2. This underlying tree structure is of fundamental importance in the recursive calculation of 
the covariance approximations discussed below.  
 
In terms of these landmark points, Chen’s hierarchical approximation to 12K  in (10) is given by 
Nyström’s ( rn -rank) approximation, 

 
1 These are also referred to as “inducing” points (as for example in Rasmussen & Quinonero-Candela, 2005). 

Sr 

 S1 S2 

 Sr 

 S2 

 S1 

Figure 1. Two-Level Partition Figure 2. Tree Representation 
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(11) 1 1

12 1 2 1 2 21( , ) ( , ) ( , ) ( )H h T
r rr r r r r rK K K K K X X K X X K X X K− −= = =  

 
where H denotes “hierarchical”. Note from the positive definiteness of the full covariance 
matrix, K , that 1

rrK −  is well defined and is also positive definite. In these terms, the full 
hierarchical approximation of K is given by 
 

(12) 
1

11 12 11 1 2
1

21 22 2 1 22

H H
H r rr r

H H
r rr r

K K K K K K
K

K K K K K K

−

−

   
= =   
   

  

 
This is essentially the example in expression (4) of [C2] with only two subdomains. Note also 
from the positive definiteness of the block diagonal structure, that even though the off-diagonal 
approximations are not of full rank, it is not surprising that the overall approximation is of full 
rank. What is far less obvious is that this approximation is actually positive definite, i.e., is itself 
a full-rank covariance matrix. While the proof of positive definiteness in this two-level case is a 
simple consequence of Schur Complementarity ([C1], Theorem 3), the higher-level cases 
developed below are considerably more subtle.  
 
Probabilistic Interpretation.  
 
With this is mind, it is instructive to develop a direct probabilistic approach to these hierarchical 
approximations, i.e., a full-dimensional Gaussian probability model with precisely this 
covariance, HK . To do so, we start with the latent process, ~ (0, )f N K , in (2) and let

( ) , 1,2,i if f X i r= = . To approximate the covariance, 12K , between 1f  and 2f  in terms of their 
relations with rf  , we then consider their conditional means and covariances 
 
(13) 1( | ) , 1,2i r ir rr rE f f K K f i−= =   
 
(14) 1cov( | ) , 1,2i r ii ir rr rif f K K K K i−= − =   
 
which are essentially obtained from (7) and (8) by setting 2 0σ = . A key feature of the multi-
normal distribution is that while the conditional mean in (13) depends on the value of rf , the 
conditional covariance in (14) does not. This plays a crucial role in the following construction. 
As a first step, if we now designate the following zero-mean version of |i rf f  as a centered 
conditional,  
 
(15) 1

| ~ (0 , ) , 1,2
ri r n ii ir rr riZ N K K K K i−− =  

 
then since rf  does not appear in the distribution of |i rZ  , we may choose 1|rZ  and 2|rZ to be 
independent not only of one another but also rf  . For notational consistency, we also let
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~ (0 , )
rr n rrZ N K denote a version of rf  that is independent of both 1|rZ  and 2|rZ , so that by 

construction the random vector, 1| 2|( , , )r r rZ Z Z Z= , is multi-normal2 with: 
 

(16) 
1

2

1
1| 11 1 1

1
2| 22 2 2

0

~ 0 ,

0
r

nr r rr r

r n r rr r

r rrn

Z K K K K
Z Z N K K K K

Z K

−

−

    −       = −                  

   

 
The desired probability model can then be formed as linear combinations of these independent 
basis vectors. If we now define the coefficient matrices, 
 
(17) 1 , , 1,2,ij ij jjA K K i j r−= =    
 
then the appropriate hierarchical model, 1 2( , )H H H= , for the present case is given by 
 
(18) 1 1| 1r r rH Z A Z= +   
 
(19) 2 2| 2r r rH Z A Z= +  
 
where each vector of latent variables, ( : 1,.., )i ij iH h j n= = , represents a hierarchical version of 
the original latent responses, ( : 1,.., )ijf j n= , in the full model (1).  Intuitively, it is the second 
terms in these expressions (both containing rZ ) that govern the covariances between random 
vectors 1H  and 2H . As we shall see below, the first terms then serve to maintain the desired 
marginal distributions of 1H  and 2H . Note also that since (18) and (19) can be written in matrix 
form as 
 

(20)  1

2

1|
11

2|
2 2

0
0

r
n r

r
n r

r

Z
I AHH Z

H I A
Z

 
    = =         

 

  

it follows that H  is a linear transformation of Z, and thus is also multi-normally distributed.3 So 
if it can be shown that cov(H) = HK , then since ( ) 0E Z =  by construction, we will obtain a well-
defined probability model 
 
(21) ~ (0 , )H

nH N K   
 

 
2 Note that whenever i rX X∩ ≠ ∅ , the conditional covariance matrix, 1

ii ir rr riX X X X−− , in (14) must be singular.  
But as will be seen in footnote 3 below, this has no substantive consequences for the model constructed. 
3 As seen in (22) below, the random vectors, 1H  and 2H  , have full rank covariance matrices, and thus are properly 

multi-normally distributed even when 1|rZ  and 2|rZ are singular multi-normal [see for example Anderson (1958, 
Theorem 2.4.5)]. 
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with the desired covariance matrix, HK . It is this hierarchical model, H, that will replace f  in 
expression (2) of the original model. So, all that remains to be shown is that this hierarchical 
model has the desired covariance structure. These same observations will continue to hold in 
more complex examples, and shall not be repeated.  
 
In the present case, we begin by observing that expressions (14) through (18), together with the 
independence of the Z components, imply that 
 

(22) 1
1 1| 1 11 1 1 1 1cov( ) cov( ) cov( ) ( ) cov( ) T

r r r r rr r r r rH Z A Z K K K K A Z A−= + = − +   
 

                          1 1 1
11 1 1 1 1 11 11( ) ( )( ) h

r rr r r rr rr rr rK K K K K K K K K K K− − −= − + = =   
 

and similarly, that 22 22cov( ) hH K= . Moreover, the independence and zero-mean properties of the 
Z components also imply that  
 

(23) 1 2 1 2 1| 1 2| 2cov( , ) [ ] [( )( ) ]T T
r r r r r rH H E H H E Z A Z Z A Z= = + +   

 

        1 2 1 2 1 2[( )( ) ] ( ) cov( )T T T T
r r r r r r r r r r rE A Z A Z A E Z Z A A Z A= = =   

 

        1 1 1
1 2 1 2 12( )( )( ) h
r rr rr rr r r rr rK K K K K K K K K− − −= = =  , 

    
which together with 2 1 1 2cov( , ) cov( , )TH H H H=  yields the desired result, cov( ) HH K= . 
 
3.2 Three-Level Hierarchical Example 
 
If the full sample of locations, X S⊂ , is extremely large, then each of the subsets, 

, 1,2i iX S i⊂ = , may also be large. Suppose for example that S  was partitioned into four 
smaller subdomains, 1 2 3 4( , , , )S S S S , as shown in Figure 3 below. While one could in principle 
use the same set of landmark points, r rX S S⊂ = , to approximate covariances among the points, 

, 1,..,4i iX X S i= ∩ = , it is now possible to refine these approximations. In the present spatial 
setting, it is reasonable to suppose that points in adjacent domains, say iS  and jS  are more 
closely related (have higher covariances) than other point pairs. If so, then a better approximation 
to covariances between iS  and jS  is obtained by using only landmark points in i jS S∪ . 
 
 
 
 
 
 
 
 
 
 

 S1 

 Sr 

 S4 

 S3 

 S6 

 S5 

 S2 

 Sr 

 S4  S1 

 S5  S6 

 S2  S3 

Figure 3. Three-Level Partition Figure 4. Tree Representation 
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To model such relations, we first recall from the hierarchical tree structure in Figure 2 above that 
subdomains 1S  and 2S  are also called children of the parent domain, rS . In these terms, the 
construction in (18) and (19) can be viewed as a “parent-child” relationship. Following Chen 
[C1, sect. 2.2]), we refine covariance approximations by extending this type of relationship. If 
we let 5 1 2S S S= ∪  and 6 3 4S S S= ∪ , then as seen in Figures 3, 1 2( , )S S  and 3 4( , )S S  are the 
respective children of 5S  and 6S .  If landmark points, 1[ ,.., ]

ii i i n iX x x S= ∈ , are chosen for 
5,6i = , then these can in principle be used to approximate covariances between their respective 

children. Similarly, if we again designate the root domain by 5 6rS S S S= = ∪ , then the 
subdomains 5 6( , )S S  are themselves children of rS . So, if we again choose landmark points for 
this parent domain, 1[ ,.., ]

rr r r n rX x x S= ∈ , then these can also be used to approximate covariances 
between children in 5X  and 6X . These nesting relationships can alternatively be represented by 
the tree structure in Figure 4, where the basic partition domains, 1 2 3 4( , , , )S S S S , at the lowest 
level again constitute the leaf nodes of the tree with root node, rS , and intermediate nodes, 5S  
and 6S . Every link between nodes now represents a parent-child relation.  
 
Extended Probabilistic Interpretation.  
 
To extend the probabilistic interpretation of the two-level hierarchical covariance approximation 
above, we start at the upper level and define hierarchical random vectors for 5S  and 6S  
[paralleling (18) and (19) above] as, 
 
(24) | , 5,6ir i r ir rH Z A Z i= + =   
 
where the centered conditionals, |i rZ , and coefficients, irA , have exactly the same meaning as in 
(15) and (17) [with (5,6) replacing (1,2)]. So in particular, these upper-level variables are capturing 
relations between the in  landmark points in iX  and the rn  landmark points in rX . The desired 
hierarchical model, 1 2 3 4( , , , )H H H H H= , is then defined at the lower level by:  
 
(25)      |5 5 5 |5 5 5| 5 |5 5 5| 5 5( ) , 1,2i i i r i i r r r i i r i r rH Z A H Z A Z A Z Z A Z A A Z i= + = + + = + + =   
 
(26)         |6 6 6 |6 6 6| 6 |6 6 6| 6 6( ) , 3,4i i i r i i r r r i i r i r rH Z A H Z A Z A Z Z A Z A A Z i= + = + + = + + =   
 
The parentheses in second equalities in (25) and (26) serve to highlight the recursive nature of 
these definitions, while the last equalities exhibit the linear relations between H  and hierarchical 
family of basis vectors, 1|5 2|5 3|6 4|6 5| 6|{ , , , , , , }r r rZ Z Z Z Z Z Z Z= , shown in Figure 5 below. As an 
extension of the two-level model in (18) and (19), we now see from (25) for example that the 
second terms involving 5|rZ  reflect the covariance relations between 1H  and 2H .  Similarly, the 
last terms involving rZ  in both (25) and (26) reflect additional covariance relations among all 
four components of  1 2 3 4( , , , )H H H H H= . 
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For this three-level example, the hierarchical approximation, HK , to ( , )K K X X= , can be 
defined by specifying the matrix cells shown in Figure 6 (together with symmetry). Following 
expression (16) in [C1], there are only three types of covariance expressions to be considered, 
namely within domains (first-level interactions), between adjacent domains (second-level 
interactions) and between non-adjacent domains (higher-level interactions), as can be illustrated 
by 11 12, ,H HK K  and 13

HK :   
 

(27) 11 1 1 11cov( , )HK H H K= =  
 

(28) 1
12 1 2 15 55 52cov( , )HK H H K K K−= =   

 

(29) 1 1 1
13 1 3 15 55 5 6 66 63cov( , )H

r rr rK H H K K K K K K K− − −= =   
 
But (27) follows from the argument in (22) together with the recursive nature of (25). A first 
application of (22) [to expression (24)] yields 5 55cov( )rH K= . But the independence of 1|5Z  and 

5 5| 5( )r r r rH Z A Z= +  together with a second application of (22) [to the first equality in (25)] shows 
that 
 

(30) 1 1 1
1 1|5 15 5 11 15 55 51 15 55 55 55 51 11cov( ) cov( ) cov( ) ( ) ( ) ( )rH Z A H K K K K K K K K K K− − −= + = − + =   

 
Moreover, since 1|5Z , 2|5Z  and 5 5| 5( )r r r rH Z A Z= +  are mutually independent, it also follows that 
 
(31) 1 2 1|5 15 5 1|5 25 5 15 5 52cov( , ) cov[( ),( )] cov( )r r rH H Z A H Z A H A H A= + + =   
 

                                1 1 1
15 55 55 55 52 15 55 52( ) ( )K K K K K K K K− − −= =   

 
Finally, since all components of Z are independent, the same argument shows that 
 
(32)  1 3 1|5 15 5| 15 5 3|6 36 6| 36 6cov( , ) cov[( ),( )]r r r r r rH H Z A Z A A Z Z A Z A A Z= + + + +   
 

                      1 1 1 1
15 5 6 63 15 55 5 6 66 63cov( ) ( )( ) ( )( )r r r r rr rr rr rA A Z A A K K K K K K K K K− − − −= =   

 

                      1 1 1
15 55 5 6 66 63r rr rK K K K K K K− − −=    

 
So again, we see that cov( ) HH K= . 

 Zr 

Z5|r Z6|r 

Z1|5 Z2|5 Z3|6 Z4|6 

  

Figure 5. Random Basis Vectors Figure 6. Hierarchical Covariance Matrix 
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3.3 General Modeling Scheme 

The above examples should make it sufficiently clear that the general hierarchical model consists 
of a family of random vectors, ( : 1,.., )iH H i b= = , where for each basic subdomain, iS  , of  S 
(i.e., leaf of the associated tree), the random vector, iH , is a nested linear combination of the 
basis vectors, Z, such as in Figure 5 above. In particular, if for each node, 1i , in the tree we now 

designate the unique path, 1 2 1m mi i i i r−→ → → → → , of successive parents (ancestors) up to the 
root node, r , as the root path for 1i , then the appropriate form of iH  for each leaf node, i  , with 

root path, 1 2 1m mi i i i i r−→ → → → → → , now takes the form: 

(33) ( )( )( )( )1 1 1 2 1 2 1 1| | | |m m m m m mi i i i i i i i i i i i i i r i r rH Z A Z A Z A Z A Z
− −

= + + + + 
   

In terms of this notation, the desired covariance for iH  [given by the top half of expression (14) 
in [C1] for a representative point pair, ( , )x x′ , in iX ] is simply the kernel covariance, 

(34) cov( ) ( , )i i i iiH k X X K= =   

In addition, the desired covariance between any pair of leaf vectors, iH  and jH , with least 
common ancestor, s  [possibly root, r, itself] and root paths 

(35) 1 2 1 1p p mi i i i i s h h r−→ → → → → → → → →    

(36) 1 2 1 1q q mj j j j j s h h r−→ → → → → → → → →    

is given [in terms of expression (16) in [C1] for point pairs, ix X∈  and jx X′∈ ]  

(37)  
1 1 1 1 2 2 2 2 1 1 1 1

1 1 1 1 1cov( , )
p q q qi j i i i i i i i i i s s s s j j j j j j j j jH H K K K K K K K K K K K− − − − −=     

Note in particular that hierarchical covariances in (12) for our two-level example and in (27) 
through (29) for our three-level example are both instances of (34) and (37). In Appendix 1 it is 
shown that the hierarchical model in (33) continues to exhibit this covariance structure in all 
cases, and thus provides a general probabilistic formulation of hierarchical covariance matrices. 
This is of particular importance in that such matrices are themselves exact covariance matrices 
(as observed in [C2, p.5]), and need not themselves be interpreted as “approximations”.  

 

3.4 Efficient Algorithms and Storage 

While the probabilistic development above provides a more concrete interpretation of 
hierarchical covariance matrices, it cannot be overemphasized that the real power of these 
hierarchical structures is their computational efficiency, which allows Gaussian Process 
Regression models to be extended to large data sets. Rather than storing the entire kernel matrix 
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in memory, much smaller block diagonal matrices (covariances of leaves, iH ), are stored along 
with even smaller matrices found at the parent nodes of the space partitioning tree. Omitting off-
diagonal blocks of the covariance matrix (covariances between leaf pairs, iH  and jH ), 
generates significant gains in scalability since these omitted blocks are only calculated on an as-
needed basis using the appropriate tree traversal.   

This may appear to simply trade the problem of storage with that of drastically increased 
calculation requirements. But careful inspection shows that this computation issue is not as 
serious as one might expect. Referring back to equation (37), suppose that leaves 𝑗𝑗 and 𝑘𝑘 share 
the same parent node, 𝑗𝑗1. Then the covariance between 𝐻𝐻𝑖𝑖 and 𝐻𝐻𝑘𝑘 is given by  

(38) 
1 1 1 1 2 2 2 2 1 1 1 1

1 1 1 1 1cov( , )
p q q qi k i i i i i i i i i s s s s j j j j j j j j kH H K K K K K K K K K K K− − − − −=    

which is seen to differ from (37) by only the last element,
1j kK . This type of overlap suggests that 

computational procedures can be recursively structured to avoid repeated calculations of 
common products such as in (37) and (38). Such recursive procedures are formalized in [C1] and 
[C2]. 

While the full set of procedures can be found in these references, the three most basic operations 
are matrix-vector products (O.1), matrix inversion (O.2), and determinant calculations (O.3). For 
our present purposes, the application these operations is best illustrated in terms of the log 
likelihood function, 

(39) 11 1
2 2 2( | ) log[det( )] log(2 )nL y C y C yθ θθ π−′= − − −   

 

for a multinormal random vector, ~ (0, )y N Cθ  with hierarchical covariance matrix, Cθ  
parameterized by θ . Such likelihood calculations are performed many times in the estimation of 
θ , and require efficient methods for large scale datasets. Having constructed and stored the 
matrix, Cθ , within the HCA framework, one calculates det( )Cθ  by the determinant operation 
(O.3) [which actually calculates the log determinant directly]. One then constructs 1Cθ

−  by the 
inverse operation (O.2). Finally, this is followed by the calculation of 1C yθ

−  using matrix-vector 
product operation (O.1), which in turn reduces the quadratic form, 1y C yθ

−′ , to a simple inner 
product of n-vectors.  
 
In addition to these three main operations which are used exclusively for calculations with training 
data ( , )y X , there are also more specialized operations designed for calculations involving 
covariances, *( , )K X X  with tn  prediction points, *X . In particular, there is a matrix-vector 
product operation (O.4) for calculating expressions such as the conditional means in (7) and local 
marginal effects in (9), while a quadratic form operation (O.5) is used for calculating the 
conditional covariances in (8). Here it should be noted that while these operations were originally 
developed in [C2] for the vector case of single prediction points ( 1tn = ), such procedures are 
readily extendable to matrices. Hierarchical procedures such, as O.4 and O.5, avoid the need to 
form full tn n×  covariance matrices, *( , )K X X .  
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To make matters more concrete, we conduct a series of simple experiments (using Matlab 
R2018b and GPStuff (Vanhatalo et al. (2013)). Results of these experiments are displayed in 
Figure 1 below (with HCA = GPR-HCA and FULL = GPR-FULL).  For HCA (where we use 
150 landmark points and a maximum of 1000 observations per leaf) we consider sample sizes 
ranging from 2,000 to 128,000 observations. For FULL we cap the number of observations to 
32,000 for Storage and 16,000 for the Matrix Inverse Operation (which uses an efficient mex 
file4). As shown in Figure 7, FULL has a dramatic acceleration of costs with increasing sample 
size, while HCA’s storage and operations are linear in the number of samples.   These findings 
are consistent with [C1] and [C2] where it is shown that as long as the maximum number of 
landmark points on each level of the hierarchy is held constant, the overall costs of both 
computation and storage are linear in the number of samples, n. 
 
 
 
 

 

 

 

 

 

 

 
 
Finally it should be noted that large kernel matrices tend to be ill-conditioned, and in particular, 
may lose their positive definiteness when inverted. In expression (3) above, the addition of 
measurement-error variance, 2

nIσ , to matrix K  tends to counteract this ill-conditioning for the 
diagonal blocks of hierarchical covariance matrices, HK , such as 11K  and 22K  in expression 
(12) above. But this is not true of off-diagonal “landmark” covariance matrices such as rrK in the 
same expression. So following Chen [C1, section 4.3] we add small regularizing effects to these 
matrices (which are similar in form to 2

nIσ ).  
 

3.5 Parameter Estimation  

Given this hierarchical covariance approximation structure, together with a set of observed 
responses, 1( ,.., )ny y y ′= , and associated attributes, 1[ ( ,.., ) : 1,.., ]l l ldX x x x l n= = = , the 
estimation of mean and covariance parameters for GPR-HCA proceeds along standard lines. 
First, given that our primary interest is in covariance estimation, we employ the simple kriging 

 
4 Blake, Eric (2015). Fast and Accurate Symmetric Positive Definite Matrix Inverse, Matlab Central File Exchange. 

Figure 7. Computation and Storage Comparisons of Matrix  
                 Inversion for HCA versus FULL 
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conventions of estimating the common mean, µ , of responses in (1) by their sample mean, 
1

i iny y= Σ . In this way, we can focus on response deviations about this sample mean, and 

proceed to estimate the covariances kernel parameters, 1( , ,.., )dv τ τ  in (4), together with 

measurement variance, 2σ , in (1). Thus by letting 2
1( , ,.., , )dvθ τ τ σ=  denote the full vector of 

parameters to be estimated, and making the parameter dependency of K  explicit by writing Kθ  
in (3), we now treat Y in (3) as a deviation vector with distribution, 2[0 , ( , ) ]n nN K X X Iθ σ+ , so 
that the log likelihood function in (37) takes the more explicit form,  

(40)    2 2 11 1
2 2 2( | , ) log(det[ ( , ) ]) [ ( , ) ] log(2 )n

n nL X y K X X I y K X X I yθ θθ σ σ π−′= − + − + −                               

In these terms our (positive) parameters, ( : 1,.., 2)i i dθ θ= = + , are postulated to have 
independent log-Gaussian priors, (ln )ip θ , yielding a log posterior density of the form: 

(41) 2

1
log ( | , ) log ( | , ) (ln ) log ( )d

ii
p y X p y X p p yθ θ θ+

=
= + −∑   

              2

1
( | , ) (ln ) log ( )d

ii
L y X p p yθ θ+

=
= + −∑   

It is this energy function that is maximized to obtain maximum a-posteriori (MAP) estimates, θ̂  , 
of all parameters. In the numerical simulations and applications to follow, all parameter priors 
are assumed to have the common form, log ~ (2,9)i Nθ , which essentially yields vague priors 
with conservative mean values for both length scales and variances. 

The estimation procedure for this GPR-HCA model was programmed in Matlab, and optimized 
using Matlab’s fmincon routine. Matlab code is available from the authors. 
 

4. Simulation Analyses  

To investigate the behavior of GPR-HCA, we begin with a simple simulation model that allows 
us to explore the computational efficiency of this method, well as its predictive accuracy. To do 
so, we employ the following two-variable model with Gaussian noise,  

(42) [ ]2 1 2 1cos(8 3.5) .8 sin(4 ) cos(2 6.66) , ~ (0, )y x x x x Nε ε γ= − + + + +   

defined over the unit square 2
1 2( , ) [0,1]x x ∈ . Unless otherwise noted, the noise variance, γ , is set 

to 0.25. For our later purposes, the associated local marginal effects for this model are given by: 
 

(43) ( )2 1 2 1
1

[ ] 3.2 cos(4 ) 1.6sin 2 6.66E y x x x x
x

∂
= − +

∂
  

(44)   2 1 1 2
2

[ ] 8 sin(8 3.5) 3.2 cos(4 )E y x x x x
x

∂
= − − +

∂
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This two-variable setup allows the model mean, ( )E y , to be displayed visually as in Figure 8(a). 
This not only provides a contextual feel for the underlying relationship, but also allows a direct 
comparison with the estimated mean, ˆ ( )E y , in Figure 8(b) [to be discussed later].  

 

 

 

 

 

 

 

 

 

 

While the most natural benchmark for comparison is in terms of the full model (GPR-FULL), 
this estimation procedure is constrained to small sample sizes (at most 15,000 samples) rendering 
such comparisons infeasible on larger datasets. Consequently, we also employ the more scalable 
algorithms, NNGP and GBM, as mentioned in the in the introductions. This allows scalability 
comparisons at much larger sample sizes. 

In Section 4.1, we begin by comparing the scalability and accuracy of GPR-HCA with GPR-
FULL (again denoted as HCA and FULL) over a limited range of simulated sample sizes from 
model (42), and then consider more extended-range comparisons with GBM and NNGP in 
Section 4.2. Finally, we examine both the scalability and accuracy of Local Marginal Effects for 
GPR-HCA in Section 4.3. 
 

4.1   Limited-Range Comparisons with GPR-FULL 

Here it is instructive to compare these two methods both with respect to parameter estimation 
and out-of-sample predictions.  
 
Parameter Estimation. Turning first to the relative scalability of parameter estimation 
procedures, the computation times for estimating parameters, 2

1 2( , , , )vθ τ τ σ= , by both HCA 
and FULL are shown in Figure 9 for a selected range of sample sizes up to 15000.  Here (as in all 
examples to follow) HCA is parameterized using leaves of maximum size 1000 together with 
150 landmark points at each hierarchical level. From this figure it is evident that even for sample 
sizes as small as a few hundred, HCA is already orders of magnitude faster than FULL. 
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To gauge the similarity of parameter estimates for these two methods, it is instructive to compare 
the energy functions (41) generated by HCA and FULL for a specific case (using a training set of 
2117 points). Following Chen and Stein [C2, Figure 5], we focus on a subplot of the 1 2( , )τ τ  
plane, holding all other parameters at their optimal values. Results for these two key parameters 
are shown for FULL and HCA in Figures 10(a) and 10(b), respectively, where length scales are 
plotted in terms of their log values, 1ln( )τ  and 2ln( )τ , and where the large dot in each figure 
denotes the optimal parameter values. Here it is clear that with only 150 landmark points, the 
energy functions are virtually identical in shape and size. More generally, it appears from further 
simulations with this model (as well as those in Chen & Stein [C2]) that there is little to be 
gained by further increases in the number of landmark points. 

 

 
 
 

 

 

 

 

 

 

Out-of-Sample Prediction. With respect to predictions, comparable batch-sample procedures 
were carried out for a range of random test samples up to 350K. Computation times for HCA and 
FULL are shown in Figure 11(a) [where the linearity of computation times for FULL as well as 
HCA results from the batch nature of such computations]. While such times are seen to be about 
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twice as large for FULL in the present illustration, such times depend critically on the size of the 
training set used (and for large training sets are of course infeasible for FULL).  

 

 

 

 

 

 

 

 

 

 

 

 
Turning to the comparison of mean absolute errors in Figure 11(b), these errors are in fact so 
close in values that the blue curve for FULL cannot even be seen. So for predictions as well as 
parameter estimates, the key point is again that even in the range where the full version of GPR 
is feasible, the present hierarchical covariance approximation is not only dramatically faster, but 
also appears to exhibit no substantial loss of accuracy. In the present example it is also of interest 
to note that these mean absolute errors are remarkably small. In fact, for the model in (42) with 
normal errors, the absolute deviations of similated values about the mean are well known to be 
distributed as a “folded normal” with mean 2 /γ π  , which for the present case of 0.5γ =  
yields 0.3989. So it should be clear that the prediction errors above are almost entirely due to 
fluctuations generated by the model error term itself. 
 
4.2   Extended-Range Comparisons with NNGP and GBM 
 
As should be evident from Figure 9, the linear scalability properties of GPR-HCA allow for the 
analysis of data sets vastly larger than those feasible for GPR-FULL.5 So for larger data sets, it is 
appropriate at this point to compare HCA with other well-known linearly scalable prediction 
models, namely NNGP and GBM, as mentioned above. Computation times (averaged across 3 
different runs) over a selected range of sample sizes up to n =500,000 are shown for HCA, 
NNGP, and GBM in Figure 12(a).6 These times also include predictions for a randomly selected 

 
5 In fact, the temperature application of Chen and Stein [C2] involves more than 2 million observations. 
6 The explicit samples sizes shown are [10,000, 20,000, 40,000, 80,000, 160,000, 320,000, 500,000]. 
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set of 10,000 out-of-sample points.7  Using these points, the relative prediction accuracy is then 
compared in terms of mean absolute errors (MAE), as shown in Figure 12(b).  

 

 

 

 

 

 

 

 

  

 

 

 

The key feature of the computing-time plots in Figure 12(a) is their approximate linearity, which 
underscores the demonstrable fact that all three procedures have complexity of order ( )O n . 
However, it should be stressed that the relative magnitudes of these computation times are more 
difficult to compare. On the one hand, both the both the NNGP and GBM models involve many 
alternative specifications, as well as tuning parameters that have not been fully optimized. In 
particular, the present version of NNGP used is the conjugate version (spConjNNGP) in the R 
package, spNNGP, with default settings including an exponential specification of the kernel 
function [as documented in Finley et al., 2020]. With respect to GBM, the cross-validation method 
used to gauge iteration numbers involves many repetitions of model estimations (and can be 
replaced by faster but less accurate methods). On the other hand, it should be emphasized that both 
NNGP and GBM have been written in optimized C\C++ code, which is well known to be 
dramatically faster than the Matlab code used here for HCA.  

Turning next to the relative accuracy of such predictions, it is clear from Figure 12(b) that for 
this simulation example, HCA is uniformly more accurate than both NNGP and GBM. 
Moreover, while the MAE values exhibited by HCA are almost identical to the model 
fluctuations themselves (as mention at the end of Section 4.1 above), those of both NNGP and 
GBM are noticeably higher.  However, it must again be emphasized that there is a speed-
accuracy tradeoff here, especially for GBM. We elected to use 10,000 trees for GBM, which is a 
typical size in practice. The results for 100,000 trees (not shown) yield predictions very close to 

 
7 Computation times for HCA automatically include calculations of Local Marginal Effects at each prediction point 
(which are not directly relevant for either NNGB or GBM). But these add little in the way of time differences.   

Figure 12. Comparisons of GPR-HCA with both NNGP and GBM in terms of 
                   (a) Computing Times, and (b) Mean Absolute Errors 
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HCA, though with computing times that are actually slower than HCA. For NNGP, we have 
increased the default value of k=2 to k=5 in the k-fold cross-validation procedure for estimating 
covariance parameters. But even larger values appear to have little effect on prediction accuracy. 
However, it should also be noted that, unlike expression (4) above, the kernel functions 
employed in NNGP are isotropic, and thus somewhat less flexible than (4) for prediction 
purposes. In summary, the essential message of Figure 12 from our point of view is that the 
present hierarchical covariance approximation method is competitive with existing alternative 
models both in terms its scalability and prediction accuracy. 

To gain further appreciation for the accuracy of this method, the two-dimensional nature of our 
present simulation model allows a direct visual comparison of the contours of ( )E y  in Figure 
8(a) above with the estimated contours, ˆ ( )E y , for GPR-HCA as shown in Figure 8(b) above (for 
a training sample of 12,569 observations and 150 landmark points).8 Here the remarkable 
similarity of these contours underscores the ability of GPR-HCA to faithfully capture the full 
structure of the underlying model. 
 

4.3 Scalability and Accuracy of Local Marginal Effects  

As detailed in Dearmon & Smith (2017), a key attractive feature of GPR-FULL is its ability to 
predict not only ( )E y  values at out-of-sample points but also to estimate the local rates of 
change of these values with respect to key explanatory variables, i.e., the Local Marginal Effects 
(LMEs) given by expression (9) above. In particular, for the specific squared exponential kernel 
in expression (4), it follows by direct calculation that for prediction points, * *[ : 1,.., ]iX x i q= = , 
 

(45)  *

* ,

( , )l

l j

K x X
x

∂
=

∂
 2

1
*1 *1 * *[ ( , )( ),.., ( , )( )] , 1,..,

j
l lj j l q lj qjk x x x x k x x x x j d

τ
= − − − =   

 
Here we consider how well the present more scalable GPR-HCA version captures these same 
effects. With respect to computation times for LME predictions, it is enough to note that these 
times now depend not only on the particular batch scheme employed, but also on the number of 
explanatory variables considered. Other than these more complex dependencies, the results for 
our simulation model (not shown) continue to be linear, and are qualitatively similar to the linear 
graph for HCA predictions in Figure 11(a). 
 
Of more interest for our present purposes is the accuracy of these LME predictions. As with the 
comparisons of ( )E y and ˆ ( )E y  in Figure 8 above, the quality of LME predictions is best seen 
visually. In Figures 13 and 14 below we compare contour plots of the exact LMEs for this 
simulation model with their associated predictions based on GPR-HCA. If the true partial 
derivatives with respect to each variable, jx  , [given in (43) and (44)] are denoted by

 
8 These predictions are computed for a regular grid of points in 2[0,1] and, in a manner similar to Figure 8(a), 
contours are then interpolated and plotted using the Matlab program, contour.m. Similar procedures are used to 
obtain Figures 13(b) and 14(b) below. 
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( | )jLME y x , and if the associated estimates based on HCA [obtained from  (9) together with 

(45)] are denoted by ( | )jLME y x , then the contour plots for 1( | )LME y x and  1( | )LME y x are 

shown in Figure 13, and those of 2( | )LME y x and  2( | )LME y x are shown in Figure 14.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These two figures suggest that the ability of GPR-FULL to capture local marginal effects is 
indeed well preserved by GPR-HCA (even with only 150 landmark points at each hierarchy 
level). Moreover, while the smooth nature of our present two-dimensional example allows these 
derivatives to be easily plotted and visualized, the empirical example developed in the next 
section shows that such local marginal effects can also be identified in more realistic multi-
dimensional applications.   
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Figure 13. Contour plot of (a) , and (b)   
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5. Empirical Application: Housing Prices in Oklahoma County  
 
In this final section, GPR-HCA is applied to residential parcels found in the Oklahoma County 
Assessor’s Database. As seen in Panel (a) of Figure 15 below, Oklahoma County is centrally 
located within the state and contains several cities including Edmond, Bethany, and Nichols Hills 
as well as the largest portion of the state capital, Oklahoma City. From a real estate perspective, 
Oklahoma City represents a secondary or tertiary investment market; significant heterogeneity 
exists across parcels, more than would typically be present in a dense tier-one urban corridor.  
 

 
 
 

    
 

 

 

 
  
 
 
 
The spatially varying size of census tracts seen in Panel (b) is suggestive of this heterogeneity. 
The downtown core is found in the densest area of tracks. But this density dissipates as one 
moves outwards towards the borders of the county, especially to the North and East.  This 
heterogeneity presents some unique modeling challenges; challenges that are very much absent 
from our well-behaved simulation above. 
 
Technical Considerations. Consequently, some key enhancements are necessary to improve 
HCA’s effectiveness for this real-world application. Of particular concern is the stability of the 
optimization routine– an issue previously noted by Chen and Stein (2017). After much 
investigation, we find that Matlab’s inv function is not sufficiently accurate for our exercise; 
replacing inv by Matlab’s more robust backslash operator in all HCA algorithms drastically 
improves the stability (and reproducibility) of the optimization routine. As a secondary 
enhancement, a more judicious and careful selection of landmark points is conducted. Rather 
than using a random draw of points, we opt for k-means clustering on our x values scaled by 
preliminary lengthscale estimates.9  The number of clusters is set to the desired number of 
landmark points, and the training point nearest the centroid of each cluster is selected as the 
landmark point for that cluster. This ensures a diverse spread of points across the appropriate 
region of the tree. 10  
 

 
9  The use of k-means for choosing landmark (or inducing) points is quite common in the literature (Park and Choi, 
2010; Hensman et al., 2015). 
10 Changes of a more indirect nature are to allow tree indexing on different sets of attributes. For our present 
purposes, we partitioned on all variables, except sale year, which made the grouping more spatial than temporal. 

Figure 15.  (a) Map of Counties in Oklahoma, (b) Map of Census Tracks  
                    in Oklahoma County. 
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When higher numbers of landmark points are desired for increased prediction accuracy, a two-
stage estimation procedure may be warranted. Here we have found that by using a small number 
of landmark point in a first stage to obtain initial parameter estimates, convergence times for a 
larger number of landmark points in a second stage can be substantially reduced.   
 
Housing Data.  Data for this application are taken from the Oklahoma County Assessor’s 
database from 2010 to 2018 (as well as 2019 for building permit information); most of these are 
certification databases required for assessments. To minimize data errors and outlier events, we 
focus on residential sales greater than $20,000 and involving house of more than 100 square feet. 
The training dataset consists of 110,837 residential sales, and is used to predict sales prices for 
220,030 parcels if sold in 2018.  For purposes of this exercise, just eight explanatory variables 
are used for price prediction: sale date, locational coordinates, lot size, square feet, year built, 
neighborhood code, and subdivision id.11 Summary statistics for these datasets are provided in 
Table 1.  Prediction data are, on average, associated with older, smaller homes located in more 
established neighborhoods. Sales data are consistent with the idea of suburban residential 
development where substantial numbers of new, large homes are developed and sold, pushing up 
the square feet and year built.  
 
 

Training Dataset 
 Price Sale 

Date 
Cx Cy Square 

Feet 
Lot 
Size 

Year 
Built 

Neighborhood 
Code 

Subdivision 
ID 

Mean 173,140 201383 2111552 199294 1,839 0.291 1978 3146 15132 
Std. Dev. 158,939 259 29468 33302 863 0.33 27 1117 5063 
Min 20,500 200906 2065510 137578 188 0.02 1889 1001 1160 
Max 5,200,000 201806 2224110 264539 20,021 3 2018 4944 26724 

Prediction Dataset 

  Sale 
Date 

Cx Cy Square 
Feet 

Lot 
Size 

Year 
Built 

Neighborhood 
Code 

Subdivision 
ID 

Mean  201806 2113115 191884 1715 0.302 1971 2905 14100 
Std. Dev.  0 29491 32029 886 0.353 25 1089 4859 
Min  201806 2065510 137578 502 0.034 1889 1001 1160 
Max  201806 2224110 264490 20021 2.999 2018 4944 26724 

 
 Table 1. Summary Statistics       
   
 
Turning next to model results, we begin in Figure 16 with a spatial comparison of GPR_HCA 
predictions and corresponding Assessor assigned market values for each of the 220,030 parcels.  
 

 
11 Assessor data also provides estimates of market value for each parcel. These are only used in the assessment of 
predictive model performance.  
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From a visual perspective, the GPR_HCA predictions are seen to match quite well with County 
Assessor’s Market Values (with mean predicted value, $167,000, slightly higher than the 
Assessor values ($163,000). This is also seen by a comparison with GBM in Figure 17 below. 
Here the blue histogram plots error frequencies for GPR_HCA and the red histogram plots those 
of GBM (with 100K trees) for the same data. Here it is clear that GPR_HCA is much more 
concentrated around zero, with a Mean Absolute error of $22,958 versus $30,732 for GBM.  
 
However, the plot of Assessed versus Predicted Values in Panel (a) [again with blue denoting 
GPR_HCA prediction] shows that for very expensive homes (above $2 million) GPR_HCA 
exhibits some underestimation errors that are noticeably more extreme than GBM. This is even 
more dramatic at the low end where a few GPR_HCA estimates are actually negative. We return 
to this issue in the concluding remarks. But for the present we simply note that these outliers 
involve less than 0.1% of the entire sample. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 16.  (a) Sales Values predicted by GPR_HCA, (b) Oklahoma County Assessor 
Market Values [the yellow and green boxes are discussed below] 

Figure 17. (a) Predicted versus Assessed Values in millions of dollars, where blue 
points denote GPR_HCA predictions and red points denote GBM predictions, (b) 
Histogram of GPR_HCA prediction errors in thousands of dollars, and (c) GBM 
prediction errors in thousands of dollars. 
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Local Marginal Effects.  Finally, we turn to the analysis of local marginal effects, which 
represents a key contribution of this current work. For this empirical exercise we focus on the 
Local Marginal Effect of Square Feet (LME_sqft), which represents the estimated impact of an 
additional square foot on sales price, given the other attributes of a house. We obtained estimates 
of LME_sqft for all 220,030 prediction parcels. The overall distribution of these values, shown 
in Panel (a) of Figure 18, is seen to be roughly normally distributed about a mean value of 
$64.55 (which is just below the low-end of per square foot remodeling costs of adding new 
square feet12).  We also show the spatial distribution of LME_sqft values in Panel (b). A 
comparison with Figure 16 above suggests that such magnitudes are sensitive to location, and 
that larger magnitudes of LME_sqft are roughly associated with higher home prices.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
More importantly, with the finer resolution implicit in LME analysis, we can now uncover more 
nuanced and detailed economic phenomena that would have been obscured by less granular 
methods. As examples, we focus on two smaller areas within Oklahoma County which appear to 
involve somewhat different aspects of economic development. In view of space limitations, we 
provide only an informal examination of these aspects. 
 
We begin with the densely populated area of Oklahoma City shown in Figure 19 (corresponding 
to the green box in Figures 16). Here residences are characterized by small lots laid out on a 
fairly uniform grid. The top two panels show predicted and assessed values in this area, again 
reflecting the goodness of fit seen at the county-wide level Figure 16 [where the smaller prices in 
the legend of panel (b) here reflect the sparsity of homes above $1 million in this area]. The most 

 
12 A cursory search suggests that the lower bound on a room addition is about $80 per square foot (as for example in 
https://www.ownerly.com/home-improvement/home-addition-cost/, https://www.homeadvisor.com/cost/additions-
and-remodels/build-an-addition/ , and https://www.homelight.com/blog/room-addition-cost/ ) . 
 

Figure 18. (a) Frequency distribution of LME_Sqft for the 220,030 prediction 
parcels in Oklahoma County (with positive values in shades of red, and negative 
values in blue). (b) Spatial distribution of LME_Sqft for these parcels (boxes are 
repeated from Figure 16) 
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expensive homes in the southeast corner are just north of downtown, and consist of the two 
historic neighborhoods, Heritage Hills and Mesta Park. (The red neighborhoods further north, 
Edgemere and Crown Heights, are also historic areas).  Turning to estimates of LME_sqft in 
panel (c) [corresponding to the green box Figure 18] we see that within the highest price 
Heritage Hills area (denoted by the yellow ellipse), there are a number of negative LME_sqft 
values shown in blue. This is indicative of the large homes found in this historic neighborhood, 
where further expansion is evidently less attractive. In fact, the largest house in our training 
dataset, at a size of over 20,000 square feet, is located in this neighborhood.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
But on the north and west peripheries of this area one sees more uniform positive values of 
LME_sqft, where proximity to both this higher priced housing area and downtown appear to 
offer attractive expansion opportunities. This is further supported by data on building permits for 

Figure 19. (a) Sales Values predicted by GPR_HCA, (b) Oklahoma County Assessor Market 
Values, (c) LME_sqft estimates (with yellow ellipse denoting the highest priced area), and (d) 
Building Permits issued in 2018-2019. 
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the same period13 [panel (d)] which show that such permits are most highly concentrated in the 
same area. As one moves further away to the north and west, both LME_sqft values and the 
density of building tend to decrease. Taken together, the results are strongly suggestive of the 
spatial-spillover effects widely studied in the housing literature [see for example, in Defusco et 
al. (2018)]. But while such effects are typically analyzed at a broader regional scale,14 the present 
results suggest that LME analysis can provide meaningful information at the local neighborhood 
level. 
 
While spatial spillovers are associated with trends in LME_sqft values at the neighborhood level 
and higher, there are also more localized development opportunities associated with individual 
homes or parcels. One type of local development, referred to in the planning literature as spatial-
infill development (Landis et al., 2006; Daisa and Parker, 2009; McConnell and Wiley, 2010), 
includes both the development of vacant land in nearly built-up areas and the redevelopment of 
underutilized parcels. Such development is driven less by spatial trends in housing prices than by 
local variation in such prices. Adjacent parcels exhibiting a high degree of price variation may 
have significant differences that can be exploited by developers for profit. For commercial 
properties, an empty parcel of land sandwiched between two urban high rises is the most obvious 
example.15 For residential properties, such differences can be more subtle. For example, older 
and smaller homes might actually be demolished to make room for more stately homes, provided 
their locations are in highly desirable areas. Here one might expect smaller homes to exhibit 
positive LME_sqft effects on price, especially when in close proximity to larger more expensive 
homes. Moreover, if these larger homes themselves tend to be overbuilt, the effect of an 
additional square foot might in fact be negative, leading to high local variation in such values. 
 
In our present data, a good example is provided by the small city of Nichols Hills just north of 
Oklahoma City as shown in panel (b) of Figure 21 below (the slightly larger region shown in the 
other three panels corresponds to the yellow boxes in Figures 16 and 18). The median housing 
value ($686,300) in this wealthy community is more than four times that of Oklahoma City. The 
highest priced homes (over $1 million) in Panel (a) are seen from Panel (b) to be clustered 
around the golf course on the left and the smaller park on the right. The corresponding values of 
LME_sqft in Panel (c) exhibit much more extreme volatility than those of Figure 20 above, and 
in particular, contain many more negative values. The large size of these homes is also evident 
from the large lots seen in this area. Finally, the building permits shown in Panel (d) are seen to 
be clustered in and around this same area. So, as indicated the discussion above, the presence of 
such price volatility may indeed be creating new opportunities for development.  
 
While such conjectures clearly require further analysis, the purpose of these examples is mainly 
to illustrate how this GPR-HCA model and its corresponding LME estimates can in principle be 
used to quickly identify possible areas for new development in large data sets. Finally, while we 
have here focused explicitly on the identification of development opportunities in a real estate 
context, it should be clear that a wide range of additional spatial applications are possible. 

 
13 This building permit data is taken from the County Assessor’s database, with dates issued in 2018 or later. 
Building costs for permits in our data set all exceed $5,000. 
14 One exception is the recent paper by Cohen and Zabel (2020) which analyzes such spillover effects at the census 
tract level in the Greater Boston Area. 
15 Such situations do not usually occur in tier-one markets. 
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6. Conclusions and Directions for Further Research 
 
In this paper we have systematically developed the hierarchical covariance approximation to 
Gaussian process regression (GPR-HCA) created by Chen and his co-workers ([C1], [C2]), and 
have extended this method to include analyses of the local marginal effects (LMEs) generated by 
this model. Our main objective has been to show how this scalable extension of GPR can be 
applied to large spatial data sets, such as county assessor data. In particular, we have applied this 
model to county assessor data for three adjacent counties in Oklahoma, where it was shown that 
the estimates of both price predictions and local marginal effects generated by GPR-HCA can be 
used to analyze such data at scales never before possible with standard GPR. 

However, the present analysis leaves certain important questions unanswered. A first issue 
relates to the apparent instability of predictions for extreme values. Investigations with smaller 
subsets of the Oklahoma data show that this is a problem with GPR_FULL itself, and is not 
simply a feature of GPR_HCA. In the case of negative predictions, it should be noted that (as 
with ordinary regression) the fundamental Gaussian assumption itself necessarily allows negative 
predictions. The standard approach here is to analyze the log of the dependent variable, and 
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Figure 21. (a) Sales Values predicted by GPR_HCA, (b) Street Map of Nichols Hills, 
(c) LME_sqft estimates, and (d) Building Permits issued in 2018-2019. 
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convert back to make predictions. But conditional means of log-normal variates do not exhibit 
the same scalability properties as those of normal variates, and would require extensive parallel 
computing in order to be implemented for large data sets. However, for housing prices in 
particular, one possible alternative is to replace standard conditional-mean prediction with 
predictors more closely related the common real estate practice of forming offer prices based on 
weighted averages of recent similar sales (known as “comps”).  Initial results using GPR 
covariances as “similarity weights” appears to be promising, and will be reported in a subsequent 
paper. 

A more fundamental issue that has important consequences for both practitioners and researchers 
is the treatment of uncertainty in statistical decision making. For example, with respect the 
parcel-level investment decisions discussed in our Oklahoma application, measures of 
uncertainty could help individuals sift through thousands of parcels to identify investment 
opportunities with higher risk-adjusted rates of return.  

But while the GPR model itself does allow for some degree of uncertainty in terms of the 
predictive distribution in expressions (6) – (8) above, no corresponding posterior distributions 
are available for either the derivatives of these predictions [i.e., the LMEs effects in expression 
(9)], or for the basic parameter estimates, θ̂  , underlying the model itself. While it is in principle 
possible to use GPR-HCA to approximate posterior distributions for all such quantities in terms 
of Markov Chain Monte Carlo methods, such an approach currently requires extensive use of 
parallel computing across many servers. Thus, a key task remaining for desktop applications is to 
develop direct approximations to the posterior distributions of both parameter estimates and 
LMEs. One possibility here is the following two-stage approach. First, by applying standard 
asymptotic likelihood approximations to the joint posterior distribution of θ̂  (and employing 
certain extensions of the computational procedures sketched in Section 3.4), it is possible to 
obtain scalable approximations of this distribution. Second, by employing the Delta method to 
LMEs (as continuously differentiable functions of θ ), it is possible to obtain corresponding 
scalable approximation of LME posteriors as well. This approach will be developed in detail in a 
subsequent paper. 
 
A final question relates to model uncertainty itself. In the present paper, we have implicitly 
assumed that all key explanatory variables are known, and that only their relative contributions 
remain to be determined. However, in a previous paper (Dearmon & Smith, 2016), the GPR 
model was combined with Bayesian model averaging (BMA) to allow both predictions and 
LMEs to be averaged over sub-models involving different possible subsets of variables. Such 
GPR-BMA models are of course even more limited in terms of scalability. But the present GPR-
HCA model is directly extendable to this BMA framework, and will be developed in a 
subsequent paper.  
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APPENDIX 1 
 
To show that expressions (34) and (37) are indeed the actual covariances of the random vectors 
in expression (33) of the text, it is convenient to introduce further simplifying notation. For each 
possible root path, 1 2 1m mi i i i r−→ → → → → , let 

1 2 mi i i rH


 be defined recursively for paths of 
length one by 
 
(A.1) 

1 1 1|i r i r i r rH Z A Z= +   
 
[as in (18) of the text] and for longer paths by 
 
(A.2)   

1 2 1 2 1 2 2|m mi i i r i i i i i i rH Z A H= +
 

  
 
Then, (A.1) together with the argument in (14) through (17) of the text again shows that for paths 
of length one, 
 
(A.3) 

1 1 1
cov( )i r i iH K=   

 
So if it hypothesized that  
 
(A.4) 

1 1 1
cov( )

mi i r i iH K=


  
 

https://online.flippingbook.com/view/348632/
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holds for all paths of length m, then for paths of length 1m +  it follows from the independence of 
1 2|i iY and 

2 1mi i rH
+

, together with (A.4) that [again from the argument in (14) through (17) in the 
text], 
 
(A.5) 

1 2 1 1 2 1 2 2 1|cov( ) cov( )
m m mi i i i r i i i i i i rH Y A H

+ +
= +

 

  
 

 
1 2 1 2 2 1 2 1|cov( ) cov( )

mi i i i i i r i iY A H A
+

= +


  
 
 

1 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1

1 1 1( )[ ]( )i i i i i i i i i i i i i i i i i iK K K K K K K K K− − −= − +   
 

1 1 1 2 2 2 2 1 1 2 2 2 2 1

1 1
i i i i i i i i i i i i i iK K K K K K K− −= − +   

 
1 1i iK=   

 
So by induction, (A.4) must hold for all m. But for any leaf, i , with root path, 

1 mi i i r→ → → → , this implies at once that 
 
(A.6) 

1
cov( ) cov( )

mi i i i r i iH H K= =


  
 
and thus that expression (39) in the text must hold.  
 
It remains to establish expression (37) in the text for any distinct leaves, i  and j  with root paths 
as in (35) and (36) (where again this taken to include the case, s r= ). To do so, we first expand 

1 1p mi i i i s h h rH H=
 

 and 
1 1q mj j j j s h h rH H=
 

 as follows: 
 
(A.7) 

1 1 1 2 1 1 2 2 3 1 1 2 1 1 1 2 1| | |( ) ( ) ( )
p p p p mi i i i i i i i i i i i i i i i i i i s i i i i i s s h h rH Y A Y A A Y A A A Y A A A H
−

= + + + + +


     
 
(A.8) 

1 1 1 2 1 1 2 2 3 1 1 2 1 1 1 2 1| | |( ) ( ) ( )
q q q q mj j j j j j j j j j j j j j j j j j j s j j j j j s s h h rH Y A Y A A Y A A A Y A A A H
−

= + + + + +


     
 
Next recall that since the random variables 

1 1 2 1 1 2 1| | | | | |( , ,..., , , ,..., , )
p q mi i i i i s j j j j j s s h h rY Y Y Y Y Y H



 are all 

independent, it follows [as for example in (31) of the text] that all covariance terms between iH  
and jH  are zero except for the shared term involving 

1 ms h h rH


, so that, 
 
(A.9) 

1 1 2 1 1 1 2 1
cov( , ) cov[( ) , ( ) ]

p m q mi j i i i i i s s h h r j j j j j s s h h rH H A A A H A A A H=
 

    
 

        
1 1 2 1 2 1 1

( )cov( )( )
p m qi i i i i s s h h r s j j j j jA A A H A A A=



     
 
But this implies at once from (A.5) that 
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(A.10)  
1 1 2 2 1 1

cov( , ) ( )
p qi j i i i i i s ss s j j j j jH H A A A K A A A=   

  
 
and thus that expression (37) must hold. 
 


