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                                                                   ABSTRACT 
 

Statistical methods of spatial analysis are often successful at either prediction or explanation, but 
not necessarily both.  In a recent paper, Dearmon and Smith (2015) showed that by combining 
Gaussian Process Regression (GPR) with Bayesian Model Averaging (BMA), a modeling 
framework could be developed in which both needs are addressed. In particular, the smoothness 
properties of GPR together with the robustness of BMA allow local spatial analyses of individual 
variable effects that yield remarkably stable results. However, this GPR-BMA approach is not 
without its limitations. In particular, the standard (isotropic) covariance kernel of GPR treats all 
explanatory variables in a symmetric way that limits the analysis of their individual effects. Here 
we extend this approach by introducing a mixture of kernels (both isotropic and anisotropic) 
which allow different length scales for each variable. To do so in a computationally efficient 
manner, we also explore a number of Bayes-factor approximations that avoid the need for costly 
reversible-jump Monte Carlo methods.  
 
To demonstrate the effectiveness of this Variable Length Scale (VLS) model in terms of both 
predictions and local marginal analyses, we employ selected simulations to compare VLS with 
Geographically Weighted Regression (GWR), which is currently the most popular method for 
such spatial modeling. In addition, we employ the classical Boston Housing data to compare VLS 
not only with GWR, but also with other well-known spatial regression models that have been 
applied to this same data. Our main results are to show that VLS not only compares favorably 
with spatial regression at the aggregate level, but is also far more accurate than GWR at the local 
level. 
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1. Introduction 
 
Gaussian Process Regression (GPR) with Bayesian Model Averaging (BMA) is a powerful 
analytical method for modeling spatial data in contexts where little is known about either 
functional forms or relevant variables. In a previous paper, Dearmon and Smith (2015) [DS], 
compared the GPR-BMA method to a range of alternative approaches using both actual and 
simulated spatial data sets. This method was shown to outperform other approaches with respect 
to the identification of relevant predictor variables. In addition, the differentiability of GPR-
BMA predictors was shown to allow local marginal estimates of individual variable effects to be 
calculated explicitly. While other methods can be used to study such effects, most notably 
Geographically Weighted Regression (GWR), it is shown below that the smooth nature of GPR-
BMA predictors yields more stable estimates of these effects.  Thus, the main objective of the 
current paper is to extend model averaging to include kernel averaging and to demonstrate its 
usefulness for local marginal analysis in terms of selected simulations and empirical 
applications. Here we focus on the well-known Boston Housing data, and show that GPR-BMA 
allows this data to be analyzed at a new level of spatial detail. 
 
To do so, we start by observing that the standard isotropic version of GPR-BMA applied in [DS] 
is somewhat limited in terms of local marginal analysis. In particular, this model treats all 
variables symmetrically in terms of their influence on covariance. Thus a secondary objective of 
this paper is to relax this isotropy assumption in a manner that allows individual marginal 
influences of variables to be identified more directly (when warranted by the data).  The simplest 
anisotropic extension of this model is to introduce separate directional length-scale effects for 
each variable (Section 5.1 in Rasmussen and Williams, 2006 [RW]). But there are several well-
known difficulties with this extension. From a computational viewpoint, Monte Carlo estimation 
with individual length scales requires costly reversible-jump methods. Moreover, for cases 
involving many candidate variables, the simpler isotropic model with its common length scale 
for all variables is not only more efficient in terms of model selection, but often produces 
superior results. These observations suggest that the standard Bayesian method for resolving 
model uncertainty, namely model averaging, be extended to allow for kernel uncertainty as well. 
To do so, we broaden the definition of candidate models to include isotropic versus anisotropic 
specifications of covariance kernels. To distinguish this extended version from (isotropic) GPR-
BMA, we designate the present model as the Variable Length Scale (VLS) model. By applying 
VLS to both simulated and empirical data, this extended version of Bayesian model averaging is 
shown to yield more robust results than either specification by itself.  
 
A third objective of this paper is to increase the efficiency of BMA simulations in the VLS 
model by exploring methods for approximating Bayes factors. Such approximations not only 
avoid the need for costly reversible-jump methods in anisotropic cases, but more generally, 
require only single posterior estimates for each model considered. The best known method 
utilizes the Bayes Information Criterion (BIC) based on maximum-likelihood estimates of 
parameters.  A recent scaled-prior version of this BIC approximation (SPB), proposed by Bollen 
et al., (2012), reweights this approximation to allow a fuller range of complex models to be 
considered. Our final approach involves a more direct application of the Laplace method 
underlying all these approximations, and utilizes maximum aposteriori (MAP) estimates of 
posterior mode values of parameters rather than maximum likelihood estimates. These three 
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approaches are compared in terms of selected simulations. Our preliminary findings here suggest 
that while BIC is the most efficient procedure for large sample sizes, SPB and MAP appear to be 
more effective in identifying true models. 
 
To develop these results, we begin in the next section with a brief overview of Gaussian Process 
Regression and Bayesian Model Averaging. This is followed in Section 3 with a development of 
the Variable Length Scale model. In Section 4, this model is compared with Geographically 
Weighted Regression in terms of two selected simulation models that exhibit isotropic and 
anisotropic structures, respectively. Finally, this Variable Length Scale model is applied to the 
classic Boston Housing data in Section 5. 
 
 
2. Gaussian Processes 
 
We start with a spatial process characterized by some response variable, ly  , at each spatial 

location, l , together with a set of possible explanatory variables, 1 2( , ,..., )l l l lkx x x x , [which are 
implicitly taken to include spatial identifiers of location, l  , such as latitude and longitude]. Our 
fundamental assumption is that stochastic variations in ly  over space are governed by a zero-
mean stationary Gaussian process, which in essence implies that the joint realization of 
responses, ( : 1,.., )ly y l n  , at any finite set of n locations with associated explanatory 

variables, ( : 1,.., )lX x l n   is multinormally distributed as 
 
(2.1) ~ [0 , ( , )]ny N c X X   
 
The underlying covariance matrix,  
 

(2.2) 
1 1 1

1

( , ) ( , )
( , )

( , ) ( , )

n

n n n

c x x c x x
c X X

c x x c x x

 
 
 
 


  


 

 
is assumed to be generated by a kernel function, ( , ) cov( , )l h l hc x x y y ,  depending only on the 
attribute profiles of response variates. Spatial stationarity implies a constant mean over space, 
which for convenience is typically set equal to zero.1 In essence, such processes are thus driven 
almost entirely by their covariance structure. In the standard isotropic version of this model, the 
covariance kernel is given by the squared exponential function, 
 

(2.3) 2 2
2 2

1
1 1

2 2
( , ) exp || || exp ( )

k

iso l h l h li hii
c x x v x x v x x  

            , 

 
which essentially hypothesizes that the covariance between responses decreases as the 
(Euclidean) distance between their x-attribute profiles increases. In particular, this implies that 
such covariances are spherically symmetric in all x-variables. As for the parameters of this 
                                                 
1 More generally the process can be viewed as deviations about some pre-specified mean, as discussed for example 
in Seeger (2004). 
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model, note first that if l hx x  then the exponential term collapses to unity, so that parameter v  

is seen to be the common variance of all responses, i.e., var( ) ( , )l l ly c x x v  . The parameter, , 
is of central importance for this kernel function, and will be discussed further below.  
 
For our present purposes, the appropriate anisotropic extension of this model is given by 
 

(2.4) 2
2

1
1

2
( , ) exp ( )

i

k

aniso l h li hii
c x x v x x

      , 

 

where v  has the same interpretation, and where each positive weight, 0i  , is designated as the 

length scale for variable ix . In these terms, the isotropic model above is characterized by a 
common length scale,   , for all explanatory variables. While length scales are often interpreted 
as “fluctuation rates” (where shorter length scales imply more rapid variation [RW,p.4]), the 
important point to stress is that variables with larger length scales must necessarily have less 
influence on covariance. Here it should also be stressed that such interpretations are only 
meaningful when variables are standardized to eliminate differences in measurement units. This 
standardization assumption will thus be implicit in all analysis to follow. 
 
2.1 Gaussian Process Regression (GPR) 
 
Within this Gaussian process framework, the central task has traditionally been to use a given set 
of data observations, 1 1( ,.., ), ( ,.., )n ny y y X x x      , to predict unobserved responses, ly  , at 

locations l  with attributes, lx . To do so, one additional distinction is typically made between 
observed and unobserved realizations of the process, namely that the observed data are also 
subject to observation errors. In particular, it is assumed that at each datum location, l , 
 
(2.5) 2, ~ (0, )l l l ly y N       ,   1,..,l n   
 
where ly  is the process response at l and where the observation error, l , is assumed to be 

independent of ly  and all other observations. Thus the joint distribution of observations, y  , is 
taken to be 
 
(2.6) 2~ [0 , ( , ) ]n ny N c X X I    
 
In these terms, the fundamental relation between observed and unobserved responses for 
prediction purposes is then given (as in expression (2.21) of [RW]) by 
 
 

(2.7) 
2

0 ( , ) ( , )
~ ,

0 ( , ) ( , )
l l l l

n l n

y c x x c x X
N

y c X x c X X I
     
            


     

 
As is well known, the conditional distribution of ly  given y  must then be of the form, 
 



5 
 

(2.8) | , , ~ ( | , , ),var( | , , )l l l l l ly x y X N E y x y X y x y X  
       

 
where 
 
(2.9) 2 1( | , , ) ( , )[ ( , ) ]l l l nE y x y X c x X c X X I y         

 
and 
 
(2.10) 2 1var( | , , ) ( , ) ( , )[ ( , ) ] ( , )l l l l l n ly x y X c x x c x X c X X I c X x          

 
In particular, the conditional expectation in (2.9) provides the desired mean prediction of ly  , 
which forms the corner stone of Gaussian Process Regression (GPR).  More generally, the same 
derivation applies to vectors of unobserved responses, ( : 1,.., )ly y l m  . For our later purposes 

it is also important to note from (2.9) that measurement-error variance, 2 , acts formally as a 
“smoothing” parameter for mean predictions. In particular, if 2  is too close to zero, then (2.9) 
tends to over-fit the sample data.2 Similarly, very large values 2  tend to dominate the 
covariance structure in (2.6), effectively over-smoothing all mean predictions in (2.9). This is of 
particular importance when one considers the local marginal effects of such predictions, to which 
we now turn.  
 
2.2 Local Marginal Effects Analysis 
 
To develop the local marginal effects of individual variables based on (2.9), observe first that if 
we employ the following simplifying notation,  
 
(2.11) 2( , ) ( , ) nK X X c X X I       
 
and expand (2.9) as follows, 
 
(2.12)  1 1( | , , ) ( , ) ( , ) [ ( , ) : 1,.., ] ( , )l l l l hE y x y X c x X K X X y c x x h n K X X y             

                                     
then the marginal effect of each explanatory variable, ix , at location l  is given by the partial 
derivative, 
 
(2.13) 1( | , , ) [ ( , ) : 1,.., ] ( , )il l l l h

li lix xME E y x y X c x x h n K X X y     
     

 
For the anisotropic kernel, anisoc , in (2.4) we see in particular that 
 

                                                 
2 As is well known, GPR becomes an exact interpolator at data points when 2 0  . This can be seen by evaluating 

(2.9) at all data points ( , )y X  and observing that 1( | , , ) ( , )[ ( , ) 0]E y X y X c X X c X X y y          . 
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(2.15) 2
2

1
1

2
( , ) exp ( )

j

k

aniso l h lj hjjli lix xc x x v x x 


 
 

       

 

                                   2 2
2

1
1 1

2
exp ( ) ( )

j i

k

lj hj hi lij
v x x x x  


        

 
                                   2

1 ( ) ( , )
i

hi li aniso l hx x c x x      

 
and similarly, for the isotropic kernel, isoc , in (2.3), that 
 
(2.16) 2

1( , ) ( ) ( , )iso l h hi li iso l h
lix c x x x x c x x  

     

 
These expressions will thus allow marginal effects of all variables to be calculated in closed 
form. Here it should be emphasized that since all variables are assumed to be standardized, the 
specific magnitudes of such effects are of less importance for our purposes than their signs,3 as 
discussed further in Section 4.1 below. 
 
 
3. Bayesian Model Averaging and Variable Selection 
 
While the above framework implicitly treats all k explanatory variables, 1( ,.., )l l lkx x x , as being 

relevant for predicting ly , it should be clear that a fundamental part of any such analysis is to 
determine which variables are “most relevant”. The approach adopted in [DS] (following Chen 
and Wang, 2010) was to treat each subset of these variables as a potential model, and to allow 
the observed data to reveal which of these models is most relevant. More precisely, this amounts 
to treating the above Gaussian process as a Bayesian prior model of responses, and then deriving 
the posterior probabilities of each potential model given these observations. Here we extend this 
approach by allowing for uncertainty about the covariance kernel of each model as well as the 
variables included. To formalize these ideas, we now characterize each model, M , as an ordered 
pair 
 
(3.1) ( , )M MM c V   
 
where Mc  is a possible covariance kernel type for M, and where {1,.., }MV k denotes set of 
explanatory variables in model M . While many covariance kernel types are possible for 
Gaussian processes (as elaborated for example in Chapter 4 of [RW]), we focus only on the 
isotropic and anisotropic kernels in (2.3) and (2.4) above, so that { , }Mc iso aniso .  If the 

number of explanatory variables, | |M Ms V , is designated as the size of model M,  the kernel 

parameters, M  , of this model are seen from (2.3) and (2.4) to be specified as follows: 

                                                 
3 It is often argued that standardizing allows the relative sizes of such effects to be more comparable (in a manner 
similar to the beta coefficients of standardized regression). But such interpretations have been criticized on many 
grounds (as summarized for example in Gelman and Pardoe, 2007), so that we choose to focus only on directions of 
change.  



7 
 

 

(3.2) 
2

2
1

( , , ) ,
( , ,.., , ) ,

M

M
M

s M

v c iso
v c aniso

 


  


  
  

 
At this point it should be noted that since isoc  appears to be simply the special case of anisoc  in 
which all length scale parameters are the same, one may ask why the above distinction is useful. 
Here the key observation to be made is that even when 1 Ms    in aniso , the dimension of 

this parameter space is still 2 Ms  whereas the dimension of iso  is always 3 , regardless of 

model size, Ms  .  As will be seen below, this implies that in cases where the data suggests that all 

length scales are roughly the same, isoc  will provide a more powerful (and computationally 

efficient) model than anisoc . This extended notion of models forms the central element of our 
present Variable Length Scale (VLS) model. 
 
The task remaining is to develop the full Bayesian structure of this VLS model in a manner 
paralleling [DS]. Here we start with the joint probability, ( , , )Mp y M  , of any observed data 

vector, y , together with a parameterized model ( , )MM  . Note also that the relevant 

explanatory-variable data, MX  , consist precisely of those columns of X  that correspond to 

variables in MV  . For notational simplicity, we shall take MX  to be implicit in every model 
specification. With these conventions, we now consider the probability decomposition,4  
 
(3.3) ( , , ) ( | , ) ( | ) ( )M M Mp y M p y M p M p M     
 
The conditional likelihood, ( | , )Mp y M  , on the right hand side is precisely the Gaussian- 

process prior developed above. The conditional prior on parameters, ( | )Mp M , and the model 
prior, ( )p M , both remain to be specified. Following standard conventions, we treat all candidate 
models as equally likely apriori, so that relevant distinctions between models can be attributed 
entirely to the observed data. Our discussion of parameter priors is deferred to the next section.  
 
 
3.1 Bayes Factor Approximations 
 
In contrast to [DS] we no longer focus on the conditional distribution, ( | , )Mp y M  , obtainable 

from (3.3). Rather we now integrate out M  and focus directly on the joint distribution,  
 

(3.4) ( , ) ( , , ) ( ) ( | , ) ( | )
M M

M M M M Mp y M p y M d p M p y M p M d
 

           

 
which in turn implies that  
 

                                                 
4 Following standard practice, we take p to represent both mass functions (such as for M) and density functions 
(such as for y ). 
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(3.5) 
( , )

( | ) ( | , ) ( | )
( ) M

M M M

p y M
p y M p y M p M d

p M 
    

    

 
By evaluating these intergrals, the desired relative posterior model probabilities for any models 

1M  and 2M , based on data, y , can then be obtained [under our hypothesis that 1 2( ) ( )p M p M ] 
from the simple identity 
 

(3.6) 
1 1 1

1

2 2 2
2

1 1
1 1 1

2 2 2 2 2

( | , ) ( | )( | ) ( , ) ( | )

( | ) ( , ) ( | ) ( | , ) ( | )
M

M

M M M

M M M

p y M p M dp M y p M y p y M

p M y p M y p y M p y M p M d





  

  
  




  
   

  

 
These relative posterior model probabilities are thus determined entirely by the ratios, 

1 2( | ) / ( | )p y M p y M  , designated as the Bayes factors for model pairs, 1 2( , )M M . However, 
exact evaluation of the integrals in these Bayes factors is seldom possible. Here there are several 
approaches. By employing appropriate conjugate priors, one can in some cases obtain tractable 
integral forms, as for example in Fernandez, Ley and Steel, (2001). But the most common 
approach is to apply Laplace’s method to obtain approximations of these integrals, as developed 
for example in Raftery (1995) and more recently in Bollen, Ray, Zavisca, and Harden (2012) 
[BRZH]. In particular, a range of such approximations are summarized in [BRZH]. Here we 
compare three of these approximations in our simulation analyses below. 
 
The most general approximation of (3.5), which is essentially a direct result of Laplace’s 
method, is given in natural log terms as follows. If the number of distinct parameters in each 
model M  is denoted by Mq  (so that 3Mq   for M isoc c  and 2M Mq s   for M anisoc c ), then,5 
 

(3.7) 1
2 2ln ( | ) ln ( | , ) ln ( | ) ln(2 ) ln det ( )M M M
Mqp y M p y M p M H         

  
    

 

where M


is an estimate of the posterior parameter mode obtained by maximizing the first two 

terms on the right hand side [given data ( , )y X ] , i.e.,  
 

(3.8) arg max [ln ( | , ) ln ( | )]
MM M Mp y M p M   


   

 

and where det[ ( )]MH 


 is the determinant of the (negative definite) Hessian matrix  
 

(3.9) 
2

( ) [ln ( | , ) ln ( | )]M M M
M M

H p y M p M  
 


 
 

   

 

evaluated at the maximum, M


. In terms of (3.8), it is natural to refer to approximation (3.7) as 
the maximum-a-posteriori (MAP) approximation.  
                                                 
5 While degrees of approximation, “  ”, are here left unspecified, this general integral approximation is the sharpest, 

and is of order 1( )O n .   
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Note finally that this MAP approximation requires the specification of a prior distribution, 

( | )Mp M , for M . Here we start by observing that all parameters in the present framework are 
positive. So in the context of Gaussian processes it is most natural to assume that the logs of all 
parameters have normal priors as well. As in  Chen and Wang (2010), we assume that parameters 
are independent apriori with very “diffuse” marginals, where in particular it is assumed for 

M anisoc c  that 
 

(3.10) 2

1
( | ) ( ) ( ) ( )Ms

M ii
p M p v p p  


    

 
with log normal marginal distributions derivable from6 
 

(3.11)    
2

ln ~ ( 3,9) ,
ln ~ ( 3,9) , 1,..,
ln ~ ( 3,9) ,

i M

v N
N i s
N





 


  

 
The assumptions are the same for M isoc c  with    replacing i  in (3.11).  
 
There is, however,  a second approximation which involves no explicit priors at all, namely the 
well known Bayes information criterion (BIC),7 
 

(3.12) 2
ˆln ( | ) ln ( | , ) ln( )M

Mqp y M p y M n    

 

where the MAP estimator, M


, is now replaced by the maximum likelihood estimator,  
 

(3.13) ˆ arg max ln ( | , )
MM Mp y M     

 
Roughly speaking, this approximation is obtained by keeping only the largest terms in the Taylor 
series expansion underlying Laplace’s integral approximation. 
 
However, the BIC approximation can also be obtained by assuming a specific type of 
multinormal prior distribution for parameters, known as the “unit information” prior. Since this 
approach to BIC forms the basis for our third and final approximation, we start by noting [as in 
(3.11)] that multinormal priors are only reasonable for the logs of our positive parameters. 
Hence, to develop this approach, it is necessary reparameterize our model in terms of log 
parameter values,  
 

                                                 
6 An alternative specification of priors for the kernel parameters in (2.3) and (2.4) is the gamma distribution [as 
discussed, for example, in Neal (1997)]. However, the log normal specifications in (3.11) are not only more 
convenient for our present purposes, they are also qualitatively similar to a gamma (in the present case, with shape 
and scale parameters of roughly 0.17 and 24, respectively). 
7 This form is taken from expression (9) in [BRZH]. As they point out, the usual expression for BIC multiplies this 
by -2. 
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(3.14) 
2

2
1

(ln ,ln ,ln ) ,
ln

(ln ,ln ,..,ln ,ln ) ,
M

M
M

s M

v c iso
v c aniso

 


  


  
  

 
which amounts simply to replacing each parameter value, i , in (2.3) and (2.4) with the 

equivalent representation, ln ie  . In these terms, the unit information prior for ln M  is given by a 

multinormal distribution with any choice prior mean, ln o , and with covariance matrix, 
 

(3.15)  1
1cov(ln | ) (ln )MM onM I 


      

 

based on observed Fisher Information evaluated at ln M , i.e., by 
 

(3.16) 


2

ln ln
(ln ) [ ln ( | ,ln )]

ln ln M M
Mo M

M M

I p y M   
 





 

 
  

 

where ln M  is obtained by replacing M  with ln M  in the maximization problem, (3.13). Here 
it is important to note that this reparametrization has no effect on the resulting value for BIC in 
(3.12). In particular, it follows from the invariance of maximum likelihood estimators that 

 ˆ( | ,ln ) ( | , )M Mp y M p y M   , and moreover that 
 

(3.17)  ˆln lnM M    
 
For our later purposes, it is also important to note that (3.16) can be calculated directly from the 
log-likelihood expression, ln ( | , )Mp y M  , in (3.13) without the need for explicit log 
transformations. In particular, it can be shown that if   
 

(3.18) 
2

ˆ
ˆ( ) [ ln ( | , )]

M M
o M M

M M

I p y M   
 





 

 
  

 
denotes the corresponding observed Fisher information matrix for the original log-likelihood, 

ln ( | , )Mp y M  , then each cell, (ln )Mo ijI  , of the matrix in (3.16), can be calculated entirely in 

terms of ( :1 1,.., )M Mi Ms    as follows, 
 

(3.19)  ˆ ˆ ˆ(ln ) ( )Mo ij Mi Mj o M ijI I      

 
With these preliminaries, our final approximation is motivated in [BRZH] by the observation that 
in many parametric settings (such as regression) the second “penalty” term in BIC tends to 
heavily favor models with fewer parameters (usually involving fewer explanatory variables).8 

                                                 
8 While this appears to be less true in the present nonparametric setting, the variation of BIC proposed by [BRZH] 
continues to perform better than BIC in our simulation studies below. 
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These authors proposed a rescaling of this prior covariance which places more weight on the 
likelihoods of individual models (which are higher for more complex models). In particular, if 
we now let 
 

(3.20)    (ln ) (ln ln ) (ln )(ln ln )M M M Mo o og I           ,  
 
then this rescaling yield the following scaled-prior BIC (SPB) approximation of ln ( | )p y M : 
 

(3.21) 
   

  
2

1
2

ln ( | ,ln ) 1 ln( ) ln (ln ) , (ln )
ln ( | )

ln ( | ,ln ) (ln ) , (ln )

M M MM M

M M MM

Mqp y M q g q g
p y M

p y M g q g

  

  

     
 





 

 
To be consistent with our choice of priors in (3.11) above, we here set the prior mean vector, 
ln o , in  (3.15) equal to -3 for all analyses to follow.    
 
 
3.2 Metropolis-Hastings MCMC 
 
Given these three approximations, MAP, BIC, and SPB, one could in principle simply calculate 
values of ( | )p y M  for all possible models, and take the highest of these to be the model of 
choice. But for even modest numbers of potential explanatory variables, the number of possible 
models (for even a single kernel) can be prohibitive. Moreover, while there are methods for 
reducing this number [such as the “Occam’s window” procedure of Raftery and Madigan 
(1994)], our present objectives are somewhat different. Here we are primarily interested in (i) 
identifying those explanatory variables that are statistically most relevant for responses, y, and 
(ii) estimating the local marginal effects of these variables. With respect to objective (i) in 
particular, note that if a given variable were to appear in many models exhibiting high model 
probabilities in (3.6), then even though this variable may not be included in the most probable 
model, it might still be very relevant for predicting y. So our present approach is to simulate a 
stochastic search process over the model space which generates model frequencies that 
approximate model probabilities, and at the same time allows Bayesian averaging over those 
models visited. This not only provides a natural statistical measure of variable relevance, but also 
yields more robust estimates of both the predicted responses and local marginal effects of these 
explanatory variables. 
 
This procedure was developed in [DS] for models differing only in terms of included variables, 
i.e., MM V . So our objective here is to extend this procedure to models including kernel 

uncertainty as well. As above, we again suppress explanatory variables MX in each model 
specification, and let ˆ ( | )p y M  denote the (exponentiated) approximations of the probabilities, 

( | )p y M , for either MAP, BIC or  SPB as in expressions (3.9), (3.12) and (3.21) above. If we 
now denote the (finite) set of possible models by 
 
(3.22)  ( , ) : { , }, {1,.., }M M M MM c V c iso aniso V k      
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then the desired approximation of relative model probabilities for any 1 2,M M   is given [as 
in (3.8)] by 
 

(3.23) 1 1

2 2

ˆ ˆ( | ) ( | )
ˆ ˆ( | ) ( | )

p M y p y M

p M y p y M


 
 

  

 
Here it should be noted (from exponentiation) that all probabilities, ˆ ( | )p y M , are necessarily 
positive, so that (3.23) is well defined. In this setting, we now employ the Metropolis-Hastings 
(M-H) method to construct a Markov Chain Monte Carlo (MCMC) process on   with unique 
steady-state distribution, ˆ{ ( | , ) : }p M y X M   . 
 
For any Markov process,   , on   with transition probabilities, { ( | ) : , }j i i jM M M M  ,  

the standard sufficient condition for ˆ ( | )p M y  to be the unique steady state of   is that these 
transition probabilities satisfy the following “detailed balance” condition, 
 
(3.24) ˆ ˆ( | ) ( | ) ( | ) ( | )i i j j j ip M y M M p M y M M          

 
for all distinct ,i jM M  . Moreover, from the positivity of model probabilities, condition 

(3.24) in turn requires the “symmetric positivity” condition that 
 
(3.25) ( | ) 0 ( | ) 0 , ,i j j i i jM M M M M M       

 
The M-H approach to satisfying this condition is to decompose these transition probabilities into 
a proposal process, pr, and an acceptance process, a, as follows, 
 
(3.26) ( | ) ( | ) ( ; )j i j i j iM M pr M M a M M    

 
In this context, if the proposal process, pr  , is chosen to satisfy symmetric positivity, i.e., if  
 
(3.27) ( | ) 0 ( | ) 0 , ,i j j i i jpr M M pr M M M M      

 
and if the acceptance process is defined in terms of pr   by 
 

(3.28) 
ˆ ( | ) ( | )

( ; ) min 1 ,
ˆ ( | ) ( | )

j i j
j i

i j i

p M y pr M M
a M M

p M y pr M M

    
  




  

 
then it is a simple matter to verify that the detailed balance condition (3.24) is automatically 
satisfied. So all that remains is to construct a proposal process satisfying (3.27).  
 
If we employ the simplifying notation, ( , )i i iM c V , then the desired proposal process, pr , takes 
the form, 
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(3.29) ( | ) ( , | , ) , ,j i j j i i i jpr M M pr c V c V M M    

 
The key point to note here is that for any set of variables, {1,.., }iV k , both kernel types 
{ , }iso aniso  are equally well defined in terms of (2.3) and (2.4), so that either can in principle be 
proposed in any situation. With this in mind, the proposal procedure used here consists of two 
steps that are designed to allow variable switching to occur more frequently than kernel 
switching. In the first step, variable switching is chosen with probability .9 and kernel switching 
otherwise. Since only two kernel types are used, kernel switches are completely determined. For 
variable switching we again adopt the “birth-death” proposal process, Vpr  , detailed in [DS]. As 

shown there, if the set, iV , is equivalently defined by an indicator vector, i , of dimension k with 

( ) 1i ih h V    , then the set of feasible proposal sets consists precisely of those sets, jV , 

which differ from iV  by exactly one variable, i.e., for which 1 | | 1k
h j i     . From this it 

follows that 
 
(3.30)    1( , | , ) 0 ( )& ( | | 1) ( )& ( )k

j j i i j i h j i j i j ipr c V c V c c or V V c c           

 
where the first bracket corresponds to variable switching and the second is kernel switching. But 
since all operations on the right hand side are seen to be symmetric in indices i  and j  (where, 

for example, | | | |i j j i       ), it follows that the left hand side must also be symmetric, and 

thus that symmetric positivity condition (3.27) must hold.  
 
3.3 Model Probabilities and Variable-Inclusion Probabilities 
 
The above MCMC process is thus guaranteed to generate a sequence of visited models with 
frequencies converging to the posterior probabilities of these models. After an initial “burn in” 
sequence, the subsequent sequence of models, say 
 
(3.31) { ( , ) : 1,.., }s s sM c V s N    
 
can thus be treated as (approximate) samples from the steady-state distribution over models. If 
the indicator functions { : }M M  are defined for sequence,  , by  
 
(3.32) ( ) 1 , 1,..,M ss M M s N       
 
and if we again employ the notational convention in (3.23) that ˆ ( | )p M y  denotes the 
approximation of ( | )p M y  under either MAP, BIC or SPB, then we may obtain natural  relative-
frequency estimates of these probabilities in terms of   as follows, 
 

(3.33) 
1

1ˆ ( | , ) ( )
N

MsNp M y s


     

 
where, of course, ˆ ( | , ) 0p M y    unless model M  appears at least once in  .  In turn, one 
can employ (3.33) to obtain estimates of kernel probabilities. In particular, if  
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(3.34) ( ) 1 , 1,..,iso ss c iso s N      
 
then the isotropy and anisotropy probabilities, ˆ ( | )p iso y  and ˆ ( | )p aniso y , can be estimated, 
respectively, by 
 

(3.35)  
1

1ˆ ( | , ) ( )
N

isosNp iso y s


    

 
and  
 
(3.36) ˆ ˆ( | , ) 1 ( | , )p aniso y p iso y      
 
Of more importance for our present purposes are estimates of posterior variable-inclusion 
probabilities, ˆ ( | )p i y , for each variable, 1,..,i k , which can be obtained using variable 
indicators,  
 
(3.37) ( ) 1i ss i V      
 
as follows, 
 

(3.38) 
1

1ˆ ( | , ) ( )
N

isNp i y s


     

 
As in [DS], these inclusion probabilities provide a natural statistical measure of relevance for 
each variable, which (unlike p-values) is larger for more relevant variables. 
 
3.4 Bayesian Model Averaging of Predictions and Marginal Effects 
 
Finally, the model sequence,  , can also be used to obtain more robust estimates of both 
predictions and marginal effects. By again employing the same “hat” notation for a 

representative approximation method, MAP, BIC or SPB, we now let ŝ  denote the relevant 

parameter estimates of 
sM  for each model sM visited under that approximation method. So in 

particular, ŝ  denotes the posterior mode estimates in (3.8) under MAP, and denotes the 
maximum likelihood estimates in (3.12) and (3.21), respectively, under BIC and SPB (where for 

notational simplicity we take ŝ  to represent the log value, ln s  in SPB).  
 
If the corresponding predictions at each location l  are denoted by 
 

(3.39) 1ˆˆ ( | , , , , ) ( , ) ( , )
s s s sl l s s M l M M ME y x y X M c x X K X X y       , 

 
then the resulting BMA prediction based on model sequence,  , is given by 
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(3.40) 
1

1 ˆˆ ˆ( | , , ) ( | , , , , )
N

l l l l s ssNE y x y X E y x y X M 


       

 
Similarly, if the corresponding marginal effect of each variable, , 1,..,ix i k , at location l  is 
defined (as in [DS]) by 
 

(3.41) 
ˆˆ ( | , , , , ) ,

0 ,
si

s

s
l l s s Mx

il

M

E y x y X M i V
ME

i V




  



  

 
then the resulting BMA marginal effect  based on model sequence,  , is given by 
 

(3.42)  
1

1
sN

il il
sNME ME


    

 
As mentioned in the introduction, these BMA marginal effects will form the main focus of our 
subsequent analysis. So it is of particular importance to develop some measure of “posterior 
credibility” for at least the directions (signs) of these effects. But the posterior distributions of 
both mean responses, and their partial derivatives are only obtainable in terms of the posterior 
distributions of the parameters, M  , defining these values. Moreover, unlike the two-stage 

MCMC procedure in [DS] which generates samples of M from this posterior distribution, all 
parameters here have been integrated out in (3.4) and (3.5). So there is no direct sampling 
mechanism for approximating posterior distributions of marginal effects. 
 
But in a manner similar to our asymptotic approximations of posterior model probabilities (using 
MAP, BIC, or SPB), it is possible to obtain asymptotic approximations of the posterior 
distribution of M , and to sample marginal effects based on this distribution. Here our initial 
approach was to follow the general recommendations in Gelman, et al. (2013, Section 13.3) by 
applying a multinormal approximation to the log posterior, ln M . However, experimentations 
with such approximations revealed that local marginal effects are particularly sensitive to 
measurement-error variance, 2  (as mentioned at the end of in Section 2.1 above). In particular, 
variations in such effects for any given model, M, tend to be magnified by only small deviations 
from the maximum likelihood estimate, 2ˆM . So for purposes of the present analysis, we choose 

to treat 2ˆM as the optimal value of this smoothing parameter, and consider only variations in the 

kernel parameters, 2{ }c
M M    . In this setting, both the posterior mean and mode of ln c

M  
are identical under asymptotic normality, and are thus asymptotically approximated by 
 ˆln ln

c
c

M M  . Similarly, (following Gelman et al., 2013) posterior covariances for unimodal 
distributions are generally well approximated by the inverse of observed Fisher Information (i.e., 
by the local curvature of the log likelihood around the mode). This yielding a posterior 
approximation of the form, 
 

(3.43) ˆ ˆln ~ ln ,cov(ln )c c c
M M M

approx
N   
    

 



16 
 

where ˆln c
M  is simply the sub-vector of  2ˆ ˆ ˆln (ln ,ln )c

M M M    in (3.17), and where ˆcov(ln )c
M  is 

the corresponding sub-matrix of  the inverse, 1ˆ(ln )o MI   , of the observed Fisher Information in 

(3.19) [given 2ˆM ]. 
 
By drawing samples, ln c

M , from these multinormal distributions and transforming back to the 

model parameters, 2ˆ( , )c
M M M    with exp(ln )c c

M M  , we can construct corresponding samples 
from the posterior distributions of both mean predictions (3.39) and marginal effects (3.41) for 
each visited model, M .  For marginal effects in particular, if we now write M   whenever 
model M appears in sequence  , and if we draw, say, 1000MS   samples from (3.43) and 

transform to parameter samples ( : 1,.., )s
M Ms S  , then in terms of (3.41) above, we can 

construct corresponding marginal-effect samples 
 

(3.44) 
( | , , , , ) ,

0 ,
i

s
l l M Ms x

ilM
M

E y x y X M i V
ME

i V


 

 



  

 
Similarly, we can employ (3.39) to construct prediction samples, and can in principle then 
construct standard credibility intervals based on these sample frequencies. But here our main 
interest focuses on marginal effects, where such credible intervals are somewhat more difficult to 
interpret directly (in view of the standardization of explanatory variables mentioned at the end of 
Section 2). Thus to evaluate these effects, we begin by observing that standardizations have no 
influence on the signs of such effects. Moreover, since the overall relevance of individual 
variables has already been gauged in terms of variable inclusion probabilities (VIPs), it is the 
signs (directions) of their local effects on mean responses that are of most interest. With this in 
mind, our main objective is to construct a measure of the “sign credibility” of estimated marginal 
effects. 
 
While many approaches are in principle possible here, the most sensible (to us) is simply to 
estimate the posterior probability of such signs. In particular, if in terms of (3.44) we now let 

( )M ilMp ME  denote the posterior probability distribution of marginal effects, ilME  , in model M, 

and let ilMS   (resp.,  ilMS  ) denote the number of positive (resp., negative) values of samples, 
s
ilMME , in (3.44) then the natural posterior estimates of these signs are given by 

 

(3.45) ˆ ( 0) ilM
M ilM

M

S
p ME

S



   ,   and     

(3.46) ˆ ( 0) ilM
M ilM

M

S
p ME

S



    

 
i.e., by the fractions of sampled marginal effects that are positive (or negative). Finally, by using 
the estimated model probabilities in (3.33), we can then obtain the following overall (BMA) 
estimates of posterior sign probabilities: 
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(3.47) ˆ ˆ ˆ( 0) ( 0) ( | , )il M ilMM
p ME p ME p M y


   

  ,   and 

 
(3.48) ˆ ˆ ˆ( 0) ( 0) ( | , )il M ilMM

p ME p ME p M y


   
   

 
While it is evident that this procedure for determining “sign credibility” involves a number of 
assumptions, our simulations below show that it does indeed provide reasonable results. In 
particular, the estimated signs of marginal effects for relevant variables turn out to have sign 
probabilities exceeding .95 in most cases where these effects are not too close to zero. 
 
 
4.0 Simulation Analyses 
 
In this section we develop two simulation models that are specifically designed to test the ability 
of the VLS model to detect differences between spatial isotropic and anisotropic processes.  
The general form of these simulated processes is as follows, 
 
(4.1) 1 2( , ) , ~ (0,0.25)l l l l l

iid
y x x N      

 
where the use of only two explanatory variables in the mean-value function,   , allows results to 
be mapped and analyzed visually as well as numerically. In addition, these mean-value functions 
are chosen to be continuously differentiable to allow local marginal analyses to be tested against 
actual partial derivatives at each location. As in [DS], the random spatial errors, l  are thus 

chosen to be sufficiently small [ var( ) 0.25l  ] to ensure that these functional specifications 
always dominate residual noise.9  
 
Within this framework, our isotropic simulation model is chosen to have the following mean-
value function, 
 
(4.2) 1 2 1 2( , ) 2sin(2 ) 2sin(2 )iso l l l lx x x x    
 
which is clearly symmetric in 1lx  and 2lx  .  So there should be no discernible difference between 
the length scales of these two variables as identified by VLS. In addition, the local marginal 
effects of both 1x  and 2x  are identical, and are given by 
 
(4.3) 1 2( , ) 4cos(2 ) , 1,2iso l l liix x x x i

     

 
The anisotropic simulation model has the more complex form 
 
(4.4)   1 2 1 2 1 2

1
2( , ) 2sin(2 ) sin sin(4 )sin( )aniso l l l l l lx x x x x x      

 

                                                 
9 The spatial errors in the simulations of [DS] were also chosen to be spatially autocorrelated. But this additional 
refinement turned out to make no discernible difference in the results, and has now been dropped. 
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involving an interaction term. Note also from the first term that values of 1x  are more influential 

than 2x .  In particular, the local marginal effects of each variable are now given by 
             
(4.5)      1 2 1 1 2

1
( , ) 4cos 2 4cos 4 sinaniso l l l l l

lx x x x x x
     

 

(4.6)      1 2 2 1 2
2

1 1
2 2( , ) cos sin 4 cosaniso l l l l l

lx x x x x x
     

 
In our simulation analyses below, it is important to compare VLS with the alternative kernel-based 
family of Locally Weighted Regression (LWR) models that are specifically designed to estimate 
local marginal effects. As mentioned in the Introduction, we focus here on Geographically 
Weighted Regression (GWR), which is by far the most commonly used method for spatial 
applications. 
 
4.1 Geographically Weighted Regression 
 
Since this method is available in many software packages, we simply use the “off the shelf” 
version that is currently available in ArcMap. Moreover, since there is an extensive literature on 
this technique [most notably, the monograph by Fotheringham, Brunsdon and Charlton (2002)] 
we sketch only those aspects needed for our present comparison.10 In terms of the observed data 
( , )y X  given above, this approach directly estimates both predictions and local marginal effects 
at each location, l , by means of a weighted regression scheme of the form 
 

(4.7)   2

1
min ( ) ( )

l

n

j j l lj
y x w j 


     

 
where the spatial kernel weights, ( )lw j , emphasize those locations, j, closest to location, l . To 
facilitate the present comparison with VLS, the spatial kernel is chosen to have the squared 
exponential form, 
 
(4.8) 2 2( ) exp( / )l ljw j d b    

 
which is seen to parallel our present use of the squared exponential covariance kernel in (2.3) 
and (2.4) above (and which is also the default choice in ArcMap).  However, it is important to 
emphasize that while “distances” in the covariance kernels of VLS involve all explanatory 
variables, distances, ijd , in (4.8) involve only the spatial coordinates of  locations i  and j . 

Finally, the parameter 0b   is usually designated as the bandwidth of the kernel, and plays a 
role somewhat analogous to length scales (restricted to spatial coordinates). The choice of an 
appropriate bandwidth is typically carried out by standard “leave-one-out” cross-validation 
techniques.11   

                                                 
10 Here it should be noted that GWR appears to have been introduced independently by both Brunsdon, 
Fotheringham, and Charlton (1996) and McMillen (1996). So while our present approach (using ArcMap software) 
is based on the former approach [as summarized in their 2002 monograph above], the reader is also referred to the 
excellent papers by McMillen (2010, 2012) and McMillen and Redfearn (2010). 
11 See for example Brunsdon, Fotheringham, and Charlton (1996, Section 3.2). 
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Given this basic GWR model, the desired beta coefficients, 1( ,.., )l l lk    , are estimated by 
ordinary least squares to obtain the closed-form solution: 
 

(4.9) 1ˆ ( )l l lX W X X W y         
 
where lW  is a diagonal matrix with components, ( ), 1,..,lw j j n . With these estimates, the 

mean response prediction, ( | , , )l lE y x y X , at location l  is simply the standard regression 
prediction,12 
 

(4.10) 
1

ˆ ˆˆ ( | , , )
n

l l l lj ljj
E y x y X X x 


      

 
So the desired local marginal effects of variable, ix , at location l  are simply the estimated beta 
coefficients themselves, i.e., 
 

(4.11) 
1

ˆ ˆ ˆˆ ( | , , ) ( )
n

l l lj lj li li liji i ix x xE y x y X x x  


  
       

 
In this setting, the “sign credibility” of such marginal effects is now replaced by p-values for 
local “pseudo t-tests” of these betas.13  In doing so, however, it should be emphasized that such 
tests are well known to be unstable in the presence of either small samples ( 150)n   or 
multicollinearity, where the usual convention (as for example in ArcMap) is to require that the 
condition number (ratio of maximum and minimum eigenvalues) of the postive semidefinite 
matrix lX W X  not exceed 30. But since 150n   in the simulations used for comparisons below, 
and since almost all condition numbers turn out to be well less than 30,14 the present simulations 
appear to provide a reasonably fair comparison with GWR. 
 
4.2 Simulation Results 
 
For all simulations conducted, the range of values chosen for the explanatory variables in (4.2) 
and (4.4) was 2 2, 1,2ix i    . A series of 12 sample sizes were chosen, ranging from 40n   
to 150n   in increments of 10. For each sample size, a set of 20 simulations were conducted in 
which n values of 1x  and 2x  were randomly drawn from the interval [-2,2]. Values of y were 
then simulated from models (4.2) and (4.4). For testing purposes, three irrelevant variables 

3 4 5( , , )x x x  were also drawn randomly from [-2,2], and both VLS and GWR were then applied to 

each of these data sets 1 2 3 4 5{( , , , , , ) : 1,.., }i i i i i iy x x x x x i n . However, our initial investigations 

                                                 
12 See Harris, Fotheringham, Crespo, Charlton (2010) for further elaboration on GWR predictions. 
13 Most tests focus on the overall (average) relevance of explanatory variables in this context, such as the 
nonparametric test developed by McMillen and Redfearn (2010). However, since practitioners often tend to rely 
local pseudo t-tests for betas [as for example in Mennis and Jordan (2005) and Matthews and Yang (2012)] which 
do appear in other software [such as GWR4 (https://geodacenter.asu.edu/gwr_software)], we choose this method for 
purposes of comparison. (See footnote 21 below for further discussion.) 
14 Only one of the 1681 local predictive regressions has a condition number above 30 (and this with value 30.92). 
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showed that GWR was so sensitive to the presence of irrelevant variables, that a reasonable 
comparison was only made possible by dropping the irrelevant variables from the GWR 
applications.15 In contrast, such variables had almost no effect on VLS results. In fact the VIPs in 
Table 4.1 below show that for the post burn-in sample sequence,  , in (3.31) above, these 
irrelevant variables were virtually eliminated by the Metropolis-Hastings procedure. 
  
The same out-of-sample prediction set was used for each simulation, and consisted of a regular 
grid of points on the square [ 2,2] [ 2,2]   , spaced at intervals of 0.1. This produced a set of 

21681( 41 )  prediction points which (as seen in Figures 4.1) allowed the prediction surfaces to 
be interpolated and plotted in full detail. With these preliminary observations, we turn now to the 
results of these simulations. 
 
Predictions and Variable Relevance 
 
The prediction results for both Sim 1 (isotropy) and Sim 2 (anisotropy) can be seen most vividly 
by examining y-predictions for  typical simulation runs at sample size, 150n  , as shown in 
Figure 4.1 below (using the SPB approximation method).16 Here plots of the true mean-value 
functions in (4.2) and (4.4) are shown in the middle panels, (b) and (e), of Figure 4.1, 
respectively. The corresponding prediction results for GWR are shown on the left [panels (a) and 
(d)], and those for VLS are shown on the right [panels (c) and (f)]. Here it is seen that both GWR 
and VLS are able to capture the overall surface pattern quite well, especially in the simpler 
isotropic case (which is symmetric in the two explanatory variables). However, it is also clear 
that VLS does a noticeably better job of capturing the finer details, especially for the more 
complex anisotropic case. This contrast will be even more dramatic in the marginal-effect results 
below. 
 
 
 
 
But for the present, we focus on certain more detailed aspects of VLS, and in particular, on the 
relative performance of the three Bayes-factor approximation methods (MAP, BIC, SPB). The 
first question of interest relates to how well these three methods predict the y response in Sim 1 
and Sim 2. In Figure 4.2 below, these results are summarized for each sample size in terms of 
Root Mean Squared Error (RMSE), where the results shown are averaged over the 20 
simulations at each sample size. Here all three methods are seen to be roughly comparable, and 
exhibit the same degree of improvement at larger sample sizes.17 
 
 
 
 

                                                 
15 Such problems with GWR are well known, and the ArcMap documentation recommends that preliminary OLS 
regressions be done in an attempt to identify and remove irrelevant variables. 
16 We use Vanhatalo et. al.’s (2013) GPstuff package to conduct GPR runs and D’Errico’s (2014) adaptive robust 
numerical differentiation for Hessian evaluation. 
17 The only exception here is the one outlier case at sample size 60n   in Sim 2, where SPB is performing 
noticeably worse than both MAP and BIC. Here it appears that larger numbers of simulations would be warranted. 

Figure 4.1 

Figure 4.2 
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Next we observe that VLS successfully identifies the isotropic and anisotropic nature of Sim 1 
and Sim 2, respectively, but that again, both SPB and MAP do substantially better than BIC in 
identifying the isotropy in Sim 1.  
 
 
 
 
 
In terms of length scales, VLS does equally well in distinguishing between the isotropic and 
anisotropic cases. As seen in Figure 4.4 below (using only SPB)18, the estimated length scales of 
both explanatory variables, 1x  and 2x , are almost identical, as expected. In addition, the more 

influential nature of 1x  in Sim 2 is here reflected by a substantially shorter length scale than 2x  
across all sample sizes. While length-scale results for the irrelevant variables are not shown, it 
suffices to say that for all irrelevant variables 3 4 5( , , )x x x , length scales were much larger than 

those of 2x  in Figure 4.4  for all sample sizes (and all models for which that variable was 
included).  
 
 
 
 
 
But much sharper (and more easily interpretable) results for variable relevance are given in terms 
of variable inclusion probabilities, as shown in Table 4.1 below (for three representative sample 
sizes). In particular these results show that for both Sim 1 and Sim 2, the relevant variables 

1 2( , )x x  were present in virtually all models of the post burn-in sequences,  . However, there 
are considerable differences between the three Bayes-Factor approximation method (MAP, BIC, 
SPB), with respect to the irrelevant varaibles, 3 4 5( , , )x x x . In particular, BIC exhibits by far the 
worst performance in this respect, and certain irrelevant variables are included in more than 30% 
of the models in  . Here it is clear that in almost all cases, SPB is doing the best in this regard 
(especially in the more complex anisotropic case where irrelevant variable inclusion is reduced 
to less than 1% at larger sample sizes).  
 
 
 
 
 
 
Because we are only concerned with local marginal effects of the most relevant variables, we 
have adopted SPB as the default choice for the empirical analysis in Section 5 below. In addition, 
it is for this reason that the SPB approximation was used in constructing Figure 4.1 above, 
together with Figure 4.5 below. 
 

                                                 
18 Here both BIC and MAP yield almost identical results to SPB. 

Figure 4.3 

Figure 4.4 

Table 4.1 
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Local Marginal Effects 
 
Finally we turn to a consideration of the local marginal effects that form the central focus of the 
present paper. As a parallel to Figure 4.1 above, we begin with a graphical comparison (Figure 
4.5 below) of both VLS and GWR marginal effects for Sim 2 with the true marginal effects of 
variables 1x  and 2x  in expressions (4.5) and (4.6), respectively.19  Here we again focus on the 
same representative sample of size 150 (using SPB) in Figure 4.1 above. 
 
 
 
 
 

Notice first that the true marginal effects in this anisotropic model are substantially different 
between 1x  and 2x . In particular, it can be seen from the vertically elongated contours of aniso in 

panel (e) of Figure 4.1 that the marginal effect (ME2) of 2x  is relatively small, with more 
fluctuations around zero.20  
 

For the most important variable, 1x , we see from panel (a) of Figure 4.5 that GWR is still able to 
capture the overall qualitative nature of the true marginal effect pattern (ME1) in panel (b). But it 
is again clear that VLS in panel (c) is able to pick up the finer details of this pattern with much 
greater precision. However, the most dramatic differences between these two methods are seen 
when comparing their performance on variable, 2x . Here it is evident from panel (d) of  Figure 
4.5 that GWR is simply not able to detect the more subtle (and rapid) variations of these 
marginal effects (ME2).21 In marked contrast, the true pattern in panel (e) continues to be 
reflected in the VLS results of panel (f). So this example serves to underscore the differences in 
sensitivity between these two approaches.  Note finally that even VLS is unable to detect the 
very intricate pattern variations near the upper boundary of panel (e), and like all interpolation 
methods, is limited by pattern “edge effects”.   
 
These results are also supported by the corresponding significance and credibility levels for 
estimates in each case. Turning first to GWR, rather than complicating these figures with exact 
contours of significance levels, we have simply plotted local t-values in Sim 2 against their 
corresponding beta values 1x  and 2x  in panels (a) and (b) of Figure 4.6 below. Here we have 
also included horizontal lines to indicate the sets of significant values for the standard “default” 
range, | | 2t  .22 Here it is seen that betas for unstable case of 2x  are insignificant over a much 

                                                 
19 Recall that the (essentially one-dimensional) marginal effects for the separable symmetric model in Sim 1 are far 
less interesting from a spatial viewpoint, and will be considered only in terms of relative fit (for VLS) below. 
20 The shapes of these ME2 contours can best be seen by visually verifying that the contour-tangency points on any 

vertical line in the aniso plot [panel (e) in Figure 4] correspond precisely to the ME2 = 0 contour, which is the second 

lowest (coolest) contour in panel (e) of Figure 4.5. 
21 Examinations of different sample patterns for this case produce the same qualitative results for GWR, and in 
addition, exhibit rather extreme variations from sample to sample. 
22 Such default levels of significance are no doubt inflated, and should in principle be corrected by estimating 
“effective degrees of freedom” [as is typically done for tests of average beta values in GWR (Leung, 2000)]. So in 
the present setting such levels are best viewed as simply a benchmark for comparison with VLS. 

Figure 4.5 
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broader range of beta values than for 1x  . Even more telling is the fact (hard to guage from the 

figure) that while 86.3% of the beta values for 1x  are significant, only 27.2% of the beta values 

for 2x  are significant. So these default levels of significance provide some indication that the 

results for 2x  should be interpreted with caution. However, it should also be noted that the 

extremely negative values of beta for 2x  are all very “significant”, even though they are way 
below the actual minimum partial slope value of -0.5.  
 
 
 
 
 

To compare these significance results with VLS, the sign probabilities of each marginal effect 
for variables 1x  and 2x  are plotted in panels (c) and (d) of Figure 4.6. Here the dots above the 
horizontal lines at .95 identify values that are credible at the 95% level or above. Note that (as 
stated at the end of Section 3.4) the tapering of these scatter plots around zero shows that less 
credible marginal effects tend to be those with values closer to zero. However, what is more 
difficult to guage from the figure is the overwhelming concentration of values at the upper end. 
In fact, the percentages of marginal effect values with sign probabilities above .95 are 83.5% for 

1x , and 72.2% for 2x . So with respect to 2x  in particular, these results are seen to be consistent 
with the qualitatively better fit in panel (f) than in panel (d) of Figure 4.5. 
 

Finally, as with prediction and variable relevance above, it remains to consider the relative 
marginal-effect performance of our three Bayes-factor approximation methods (MAP, BIC, 
SPB), as shown in Figure 4.7 below. Here again it is clear that these estimates are roughly 
comparable across all methods.23 This is especially true at larger samples sizes ( 80n  ), where 
all three methods again produced much sharper results.24  
 
 
 
 
 
5. Empirical Application: Boston Housing  
 
In this final section we apply VLS to a standard spatial data set, namely the Boston housing data 
first studied by Harrison and Rubinfeld [HR] (1978) . These authors employed multiple 
regression (OLS) to identify the effect of “demand for clean air” on median housing prices for 
each of the 506 census tracts in Boston (at the time of the 1970 census). But the first explicit 
attempt to analyze this data from a spatial perspective was that of Pace and Gilley (1997), who 
collected centroid data for these tracts and applied a spatial errors model with weight matrix 
based on centroid distances. More recently,  Deng (2008) has analyzed this same dataset using a 

                                                 
23 For purposes of RMSE comparisons with (4.3),(4.5) and (4.6), marginal effects of (dimensionless) standardized 
variates have been rescaled [multiplied by their sample standard deviations] to approximate their original 
dimensions.  
24 Note that the effects of the single outlier case for n = 60 in Sim 2 of Figure 4.2 are reflected by the corresponding 
marginal results of panel (b) in Figure 4.7. But here, MAP seems to have been slightly affected as well as SPB. 

Figure 4.6 

Figure 4.7 
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spatial lag model in which the underlying weight matrix explicitly incorporates certain types of 
anisotropies based on this data. So one objective of our present analysis is to compare the 
variables found to be significant in these two spatially-oriented studies with those found to be 
most relevant in terms of our present variable-inclusion probabilities. However, our main 
objective is to explore this data set at a finer level of spatial detail by focusing on the local 
marginal effects of relevant explanatory variables.  
 
To do so, we begin by summarizing the original [HR] model, with the median value (MV) of 
housing in each tract as the dependent variable, and with nitrogen-oxide (NOX) representing the 
air-quality variable of interest. The additional 13 control variables include particulate 
concentrations (PART), average number of rooms (RM), proportion of structures built before 
1940 (AGE), black population proportion (B), lower status population proportion (LSTAT), 
crime rate (CRIM), proportion of area zoned with large lots (ZN), proportion of nonretail 
business areas (INDUS), property tax rate (TAX), pupil-teacher ratio (PTRATIO), location 
contiguous to the Charles River (CHAS), weighted distances to the employment centers 
(DIS), and an index of accessibility to radial roads (RAD). As with many regressions, a number 
of these variables were transformed for purposes of analysis.25 Subsequently, Pace and Gilley 
(1997) added the spatial coordinates, latitude (LAT) and longitude (LON), together with a full 
quadratic specification of these two variables (i.e., LAT2, LON2, LAT*LON) for their spatial 
analysis. In this light, one important additional feature of VLS is that such nonlinearities are 
implicitly captured by this flexible nonparametric model. So in the analysis to follow, the 
original variables (including LAT and LON) will be used for VLS analyses. The only variable 
that requires further comment is black proportion, B. If for convenience we now use BP to 
denote the proportion (fraction) of tract population that is Black, then the actual specification of 
explanatory variable, B, above is B = (BP - .63)2. However, it was possible to recover the 
original variable, BP, from the 1970 census, and it is this variable that is used in our present 
analysis. 
 
5.1  Global Predictions and Variable Relevance 
 
Here we begin with global results including both mean predictions of median housing prices and 
identification of relevant variables. The relevant data on median housing prices for Boston 
census tracts is shown on the left panel in Figure 5.1 below (and is one of the first spatial 
representations of this classical data set that has appeared).26 The right panel shows the mean 
predictions generated by VLS using SPB,27 which are almost indistinguishable from the original 
data (at this level of choropleth approximation). So even though these are necessarily in-sample 
predictions,28 they do provide empirical support for the predictive accuracy of this method, as 
seen in the simulation studies above.  

                                                 
25 The variables MV, LSTAT, DIS, and RAD were transformed to natural logs. In addition, NOX was transformed 
to NOX2 , and B was transformed as discussed in the text. 
26 The present shapefile of 1970 Boston census tracts was extracted from the digital boundary files of the National 
Historical Geographic Information System (NHGIS). A similar shapefile was developed by Roger Bivand, and is 
now available as part of the spdep package in R.  
27 Results for MAP are very similar here and are not shown. 
28 Note that out-of-sample predictions are of limited use in studies of this type, where the given 506 census tracks 
form contiguous spatial units. However, for studies involving geocoded point data (such as individual housing 
sales), it is clear that out-of-sample predictions would be far more appropriate. 
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But unlike the simulation examples above, it is more difficult to compare these prediction results 
with GWR. The main difficulty here relates to the nature of this Boston housing data itself, 
which in many cases is spatially far coarser that individual census tract units. In particular, for 
the key explanatory variable, NOX, there are only 81 distinct values. Moreover, these are in 
contiguous patches (shown in Fig 5.2a below for the central Boston area) that constitute a higher 
level of aggregation than census tracts.29 
 
 
 
 
 

The situation is even worse for variables like RAD, where each Town in the Boston area was 
assigned a unique value (as shown for the central Boston area in Fig 5.2b). The local collinearties 
created by such variables make it very difficult to apply GWR to this dataset.30 So for purposes 
of comparison with VLS, we have employed a more robust version of GWR constructed by 
James LeSage 31, which employs pseudo inversion to circumvent problems of singular (or almost 
singular) matrices. This allows approximate predictions to be constructed as in (4.8) and 
compared with those of VLS. The results of this comparison are shown for the central Boston 
area in Figure 5.3 below (which is the area of most interest for our subsequent analysis). In 
particular, prediction residuals for VLS (using SPB) and GWR are shown for each tract in panels 
(a) and (c),32 respectively, with true median values in panel (b).33 This local comparison is 
sufficient to indicate that even with robust pseudo-inversion techniques, the predictions obtained 
by GWR are far less reliable. Moreover, even for those explanatory variables exhibiting distinct 
values for each tract, the beta estimates obtained by pseudo-inversion are generally not 
interpretable. So in the local analysis of marginal effects below, we will focus only on VLS. 
 
 
 
 
 
Given these general prediction results, we turn next to the identification of relevant variables. 
Recall that for VLS, such identification is in terms of variable inclusion probabilities (VIP). In 
Table 5.1 below, we compare these VIPs in panel (b) [using both SPB and MAP] with the spatial 

                                                 
29 As discussed in Bivand (2015), this NOX data is based on measurements in 122 meteorological (TASSIM) zones 
that were in turn “copied out” to more aggregate collections of census tracts. 
30 In ArcMap, for example, the condition-number restrictions mentioned in Section 4.1 above only allow GWR to be 
run with small subsets of the Boston variables. 
31 The GWR program, gwr.m, is part of his Matlab Econometrics Toolbox (Version 7, 2012). 
32 The common residual scale for VLS and GWR is in median-value units with white = ±2, and with increments of 2 
units on either side. 
33 In this enlarged map it can also be seen that a number of census tracts are missing (including downtown Boston 
itself). As noted by Bivand (2015), this is in part due to missing data or to small number of housing units in these 
tracts.   

Figure 5.2a Figure 5.2b 

Figure 5.1a Figure 5.1b 

Figure 5.3 
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regression estimates and significance levels for each variable obtained by both Pace-Gilley and 
Deng in panel (a). As mentioned in the introduction to Section 5, none of the transformations of 
variables (in footnote 28) were used in VLS. So the variable labels in panels (a) and (b) differ in 
this respect. For convenience, these variables are ordered in terms of their VIP values (for SPB) 
from highest to lowest. As shown by the horizontal lines in the tables, there is close agreement 
between variables significant at the .05 level in panel (a) and variables with VIP 0.95  in panel 
(b). The only exceptions here are RAD and PTRATIO (the latter for SPB only), with VIPs well 
below .95. Like RAD in Figure 5.2 (b), PTRATIO is also constant in each town, so that both 
represent categorical variables that are spatially step functions. So while VLS is clearly more 
robust than GWR with respect to such variables, they can in some cases conflict with the 
continuity assumption underlying VLS (and in particular its GPR component). Finally, to 
compare the directions of influence for each variable, we have also included the average values 
of Marginal Effects (Avg. ME) across all 506 census tracts.34 Here there is essentially complete 
agreement in signs between the two panels. 
 
 
 
 
5.2 Local Marginal Effects 
 
With respect to local marginal effects, we begin by observing that such effects are far more 
tenuous for variables at higher levels of spatial aggregation than census tracts. In particular, the 
NOX variable of most interest to [HR] falls into this category. So rather than attempt to 
reaggregate such data at the level of “NOX zones”, we focus here on several variables that are 
well defined at the census-tract level. The two variables we have chosen to examine are Black 
Proportions (BP) and AGE.  
 
Local Analysis of BP Effects 
 

As mentioned above, this variable is of particular interest because it was originally specified as a 
quadratic expression, (BP - .63)2. As stated by [HR], this was done in order to capture not only 
the general negative effect of BP on median housing values, but also its slight positive effect in 
areas with very high concentrations of Black population. One may ask why a quadratic term in 
BP was not used in their regression. The answer seems to be that (even with standard zero 
centering of the quadratic term) this nonlinear effect is not significant. Only by prespecifying an 
appropriately calibated form can such a small effect be picked up. So in the present setting, it is 
of interest to ask whether such slight nonlinear effect can be identified by the marginal effects of 
BP estimated in VLS. To do so, we have plotted in Figure 5.4 all BP values (in percent terms) 
against their marginal effect values, ME_BP, obtained from an application of VLS.35 
 
 
 
 

                                                 
34 Note that the zero values for LAT and CHAS reflect the fact that neither of these variables were included in any 
model of sequence .  
35 As stated above, all VLS applications in this section use the SPB approximation of Bayes Factors. 

Table 5.1 

Figure 5.4 
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Here we have included only those ME values that are credible at the 95% level (eliminating 
mostly values close to zero).  While the vast majority of these credible BP marginal effects are 
negative, there are a couple of tracts with very high BP and positive ME_BP. These two tracts 
(805 and 818) are in South Boston where Blacks are most heavily concentrated, and are thus 
fully consistent with the hypothesis of [HR]. So this small effect does indeed seem to be picked 
up by VLS. But much more interesting is the cluster of positive marginal effects in the upper 
left-hand corner of Figure 5.4. This represents the opposite extreme where Black proportions are 
among the lowest – a phenomenon that seems to have been missed by [HR]. To gain further 
insight, we focus on one of these tracts (3542), as shown by the small circle in Figure 5.4. This 
tract, which is just west of Havard Square in Cambridge (as shown on the left in Figure 5.5 
below) has the highest 1970 median housing prices in this data set, and has a Black proportion of 
less than 2%. (The red color of this tract on the right in Figure 5.5 reflects its high positive 
ME_BP value, while blue shades denote tracts with negative ME_BP values). As for the socio-
economic profile of this tract, more than half of all adults (25 and older) were college graduates 
in 1970. This, together with its proximity to Harvard, suggest that most heads of households 
were upper-middle-income professionals. If so, then the positive marginal effect of BP found 
here might well reflect a very different population dynamic than in South Boston.36 In any case, 
this example serves to illustrate how VLS can identify local variations in the spatial fabric that 
allow deeper levels of analysis. 
 
 
 
 
Local Analysis of AGE Effects 
 

An even more dramatic example is provided by the AGE variable (as measured by the proportion 
of housing units builts before 1940). Here again we focus only on the central area of Boston, 
where some of the oldest residential areas can be found.  As seen in Figure 5.6b below, most of 
the marginal effects for AGE are negative (shades of blue), indicating that that higher 
proportions of older homes tend to detract from median value. However, aside from the pink area 
around MIT (with values so close to zero that none exceed 80% credibility),37 there is seen to 
one striking exception right in the heart of Boston’s South End district. This census tract (709), 
with 80% Black population and all houses built before 1940, appears to be something of an 
anomaly – with a positive marginal AGE effect in the top 3% of all census tracts. However, 
further investigation reveals that this area contains the single “largest urban Victorian 
neighborhood in the country”.38 Moreover, the South End Historical Society was created in 1966 
precisely to preserve this area, as shown by the brown boundary in Figure 5.6a (later designated 
as the Boston Landmark District). Tract 709 is seen to lie entirely inside this area, as shown by 
the red boundary in Figure 5.6b.  Such preservation efforts led in turn to an influx of middle 
income families seeking to purchase and restore these houses – which may very well have been 
reflected in the 1970 census. So it would appear that these VLS estimates of local marginal AGE 
                                                 
36 By way of contrast, fewer than 40% of all adults in tracts 805 or 818 were even high school graduates. 
37 Aside from this MIT area, all other marginal effects in Figure 5.6b are credible at the 95% level. 
38 See for example “A Short History of Boston’s South End” by Arlene Vadum (available online at 
http://www.south-end-boston.com/History). 
 

Figure 5.5 
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effects again reveal meaningful spatial variations that are by no means apparent from more 
conventional methods of analysis.  
 
 
 
 
 
6. Concluding Remarks 
 
In this paper we have extended the basic GPR-BMA framework in [DS] to include alternative 
kernel choices for candidate models, as well as Bayes-factor approximations to expedite the 
process of stochastic model search in this extended framework. In particular, the inclusion of 
anisotropic kernels with individual length scales for candidate variables allows sharper 
identification of their local marginal effects.  By employing selected simulations,  this Variable 
Length Scale (VLS) model was shown to yield predicted responses and local marginal effects 
that are far more accurate than the currently prevailing method for doing so, namely 
Geographically Weighted Regression (GWR). In terms of Bayes-factor approximations 
(BIC,SPB,MAP) for VLS, it was found that both SPB and MAP tended generally to outperform 
BIC. However, this difference was noticeably reduced for larger samples sizes. This together 
with its relative computational simplicity, suggest that BIC may well turn out to be the better 
choice for larger sample sizes. 
 
In addition, both VLS and GWR were applied to the classical Boston Housing data, where VLS 
was shown to yield far more reliable (in-sample) prediction. In addition, VLS was shown to yield 
VIP results (together with average marginal-effect estimates) that are qualitatively very 
comparable to results obtained by previous spatial regression analyses of this data. In terms of 
local marginal analyses, where spatial regression methods cannot be applied, the lumpy nature of 
the Boston data also precluded any meaningful estimation by GWR. So the more robust nature of 
VLS is made fully evident by this application. In particular, several specific examples were 
developed to show that VLS allows deeper levels of local analysis than is possible by these other 
methods. 
 
However, a number of research directions remain to be explored. Chief among these is the 
pragmatic issue of scalability. Even with Bayes-factor approximations, the VLS model continues 
to be computationally very costly (orders of magnitude more costly than either spatial regression 
or GWR). One approach here is to reduce the number of prior candidate models for VLS, using 
methods such as the “Occam’s window” procedure of Madigan and Raftery (1994). More 
promising, perhaps, are the numerous data-reduction techniques currently used for reducing the 
costs of large matrix calculations. These range from simple random subsampling of the data to 
more complex methods of identifying “best representative subsamples”, such as the recent 
“variational Bayes” approaches of Hensman et al. (2013) and Gal et al. (2014). 
 
Aside from computational efficiency, we are also exploring extensions of VLS that would 
broaden the application domain of this model.  One direct extension would be to increase the 
range of covariance kernels considered. More generally, such extensions might include 

Figure 5.6 



29 
 

relaxations of spatial stationarity in terms of “multiple kernels” with possible interactions similar 
to Lloyd et al. (2014).  
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(a) SIM1_Y_GWR (b) SIM1_Y_True (c) SIM1_Y_VLS

(d) SIM2_Y_GWR (e) SIM2_Y_True (f) SIM2_Y_VLS

Figure 4.1. Prediction Results for Simulations
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Figure 4.2. Comparative Prediction Fits 

Figure 4.3. Comparative Prediction Fits 

Figure 4.4. Length Scale Comparisons 
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(b) SIM2 ME1 True (a) SIM2 ME1 GWR (c) SIM2 ME1 VLS 

(e) SIM2 ME2 True (d) SIM2 ME2 GWR (f) SIM2 ME2 VLS 

Figure 4.5. Comparison of Marginal Effects 
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Figure 4.6. GWR Significance versus VLS Credibility 
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Figure 4.7. Comparisons of Local Marginal Effects 

(a) ME_X1 for SIM 1 (b) ME_X1 for SIM 2 

(c) ME_X2 for SIM 1 (d) ME_X2 for SIM 2 
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5,000 - 15,000

15,000 - 20,000

20,000 - 30,000

30,000 - 40,000

40,000 - 50,000

 

(a) Median Values 1970 (b) Predicted Median Values 

Figure 5.1. Comparison of Median Values with Predictions 
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(a) NOX Constancy  (b) RAD Constancy 

Figure 5.2. Variables with Higher Aggregation Levels  
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Figure 5.3. Residual Comparison for Central Boston

(a) VLS Residuals  (b) TrueMedian Values (c) GWR Residuals  
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Figure 5.4. Marginal Effects of BP
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Figure 5.5. Tract 3542 near Harvard Square 

(a) LANDMARK DISTRICT (b) AGE Marginal Effects 

Figure 5.6. Census Track 709 
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Tables 
 
 

   SPB BIC MAP SPB BIC MAP SPB BIC MAP

S
im

u
la

ti
on

 1
 

Relevant 
x1 1 1 1 1 1 1 1 1 1 

x2 1 1 1 1 1 1 1 1 1 

Irrelevant 
x3 0.050 0.102 0.008 0.000 0.030 0.001 0.000 0.018 0.000 

x4 0.050 0.102 0.008 0.000 0.034 0.002 0.000 0.015 0.000 

x5 0.051 0.142 0.019 0.000 0.034 0.002 0.000 0.014 0.000 

 n 50 50 50 100 100 100 150 150 150 

 

   SPB BIC MAP SPB BIC MAP SPB BIC MAP

S
im

u
la

ti
on

 2
 

Relevant 
x1 1 1 1 1 1 1 1 1 1 

x2 0.985 0.999 0.996 1 1 1 1 1 1 

Irrelevant 
x3 0.009 0.300 0.090 0.003 0.169 0.040 0.003 0.200 0.050 

x4 0.063 0.367 0.176 0.002 0.161 0.044 0.006 0.197 0.050 

x5 0.013 0.313 0.093 0.033 0.200 0.073 0.000 0.154 0.028 

 n 50 50 50 100 100 100 150 150 150 

 

Table 4.1. Variable Inclusion Probabilities (VIP) 
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  Deng Pace and Gilley 

Variable 
 

t 
 

t 

CRIM -0.007 6.513 -0.007 -6.830 

RM2 0.009 8.613 0.009 8.390 

AGE 0.000 -0.478 -0.002 -3.320 

lnDIS -0.032 -0.203 -0.187 -2.630 

TAX -0.001 -4.364 0.000 -3.510 

B 0.000 3.765 0.001 5.990 

lnLSTAT -0.017 -10.063 -0.246 -11.350 

NOX2 -0.221 -2.469 -0.369 -2.370 

LON     -262.610 -1.380 

PTRATIO -0.014 -3.379 -0.017 -3.090 

lnRAD 0.011 5.183 0.073 3.720 

INDUS -0.003 -1.510 -0.001 -0.350 

ZN 0.000 2.344 0.001 1.810 

LAT   555.950 1.990 

CHAS -0.018 -0.686 -0.012 -0.450 

 

0.513 0.800 

 

  SPB Estimates MAP Estimates 

 Variable  VIP Avg. ME  VIP Avg. ME 

CRIM 1.000 -0.053 1.000 -0.056 

RM 1.000 4.917 1.000 4.915 

AGE 1.000 -0.074 1.000 -0.075 

DIS 1.000 -1.168 1.000 -1.136 

TAX 1.000 -0.016 1.000 -0.015 

BP 1.000 -0.036 1.000 -0.029 

LSTAT 1.000 -0.352 1.000 -0.347 

NOX 1.000 -2.972 1.000 -2.477 

LON 0.995 -8.722 0.998 -8.084 

PTRATIO 0.796 -0.258 0.987 -0.304 

RAD 0.270 0.029 0.570 0.061 

INDUS 0.164 -0.013 0.225 -0.011 

ZN 0.003 0.000 0.171 0.000 

LAT 0.000 0.000 0.352 0.848 

CHAS 0.000 0.000 0.000 0.000 
ISO. 

PROB. 
0.000 0.000 

 

Table 5.1. Variable Relevance comparisons 

(a) Spatial Regression Results (b) VIP results for VLS 


