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We employ a unique data set to examine the spatial clustering of about 1700 private R&D labs in Califor- 

nia and in the U.S. Northeast Corridor. Using these data, which contain the R&D labs’ complete addresses, 

we are able to more precisely locate innovative activity than with patent data, which only contain zip 

codes for inventors’ residential addresses. We avoid the problems of scale and borders associated with 

using fixed spatial boundaries, such as zip codes, by developing a new point-pattern procedure. Our mul- 

tiscale core-cluster approach identifies the location and size of significant R&D clusters at various scales, 

such as a half mile, 1 mile, 5 miles, and more. Our analysis identifies four major clusters in the Northeast 

Corridor (one each in Boston, New York–Northern New Jersey, Philadelphia–Wilmington, and Washington, 

D.C.,) and three major clusters in California (one each in the Bay Area, Los Angeles, and San Diego). 
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1. Introduction 

Popular accounts suggest that research and development (R&D)

facilities are highly spatially concentrated into comparatively

few geographic locations such as Silicon Valley and the Route

128 Corridor outside Boston. That R&D labs are geographically

concentrated is immediately evident from examining a national

map of the locations of private R&D establishments ( Fig. 1 ). What

is not immediately clear from the map is whether the spatial con-

centration of R&D is significantly greater than economic activity

in general. Are the clustering of R&D labs in Silicon Valley and in

Cambridge, MA prominent examples or are they simply exceptions

to the rule? The primary purpose of the research addressed in this

paper is whether the spatial pattern of R&D laboratories observed

in Fig. 1 is somehow unusual; that is, is it different from what

we would expect based on the spatial concentration of economic
� We thank Kristian Behrens, Jim Bessen, Satyajit Chatterjee, Gilles Duranton, Ver- 

non Henderson, Andy Haughwout, Jim Hirabayashi, Tom Holmes, Mark Schweitzer, 

Will Strange, Isabel Tecu, and Elisabet Viladecans-Marsal for comments and sug- 
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ctivity? We answer this question by using a new location-based

ata set of private R&D labs together with point pattern methods

o document and analyze patterns in the geographic concentration

f U.S. R&D labs. 

A key issue addressed in this paper is how to measure the

patial concentration of R&D labs. A number of previous papers

ave used a spatial Gini coefficient to measure the geographi-

al concentration of economic activity. Audretsch and Feldman

1996) were among the first to use a spatial Gini approach to show

hat innovative activity at the state level tends to be considerably

ore concentrated than is manufacturing employment. Ellison

nd Glaeser (1997) – hereafter EG – extended the spatial Gini

oefficient to condition not only on the location of manufacturing

mployment but also on an industry’s industrial structure. A

umber of recent studies have used the EG index to measure

he geographic clustering of manufacturing employment at the

ip code, county, MSA, and state levels (see, for example, Ellison

nd Glaeser, 1997; Rosenthal and Strange, 2001 ; and Ellison et al.,

010 ). While the EG index accounts for the general tendency for

conomic activity to concentrate spatially, it nonetheless suffers

rom a number of important aggregation issues that result from

sing a fixed spatial scale. As has been pointed out by Duranton

nd Overman (2005) – hereafter DO – EG indices transform points

n a map (establishments) into units in boxes (such as zip codes,

ounties, metro areas, and states). While this aggregation of the

ata facilities computation, this approach leads to a number of

ggregation issues. The first is known as the modifiable area unit

http://dx.doi.org/10.1016/j.jue.2017.05.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jue
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jue.2017.05.007&domain=pdf
http://www.philadelphiafed.org/research-and-data/publications/working-papers/
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Fig. 1. Location of R&D labs. Source: Directory of American Research and Technology (1999) and authors’ calculations. Each dash on the map represents the location of a single 

R&D lab. In areas with a dense cluster of labs, the dashes tend to sit on top of one another, representing a spatial cluster of labs. 
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roblem (MAUP). These metrics depend upon the boundaries used

o demarcate regions, and conclusions may differ if counties versus

tates, for example, are used as boundaries. The MAUP grows in

everity as the level of aggregation increases. A related issue is

eferred to as “border effects” – each region is considered an

xclusive zone, and the closeness of activity in neighboring regions

s not factored in. While Philadelphia County and Montgomery

ounty border each other and have activity spilling across them,

n a county level analyses they are treated as being as distant from

ach other as they are from Los Angeles County. These partitions

ften lead to underestimations of concentration. 

Rather than using discrete or fixed geographic units, such as

ounties or metropolitan areas, we use continuous measures to

dentify the spatial structure of the concentrations of R&D labs.

pecifically, we use point pattern methods to analyze locational

atterns over a range of selected spatial scales (within a half mile,

 mile, 5 miles, etc.). This approach allows us to consider the

patial extent of the agglomeration of R&D labs and to measure

ny attenuation of clustering with distance more accurately. 1 

Following DO, we look for geographic clusters of labs that rep-

esent statistically significant departures from spatial randomness

sing simulation techniques. We do not assume that “randomness”

mplies a uniform distribution of R&D activity. Rather, we focus

n statistically significant departures of R&D lab locations at each

patial scale from the distribution of an appropriately defined

easure of economic activity (such as manufacturing employ-

ent) at that scale. This is important because studies have shown

hat manufacturing activity is agglomerated at various spatial

cales (e.g., Ellison and Glaeser, 1997; Rosenthal and Strange,

001 ; and Ellison et al., 2010 ) and the large majority of R&D

ctivity is performed by manufacturing firms. Our main results

ake manufacturing employment as the benchmark, but our find-

ngs are robust to alternative benchmarks such as manufacturing
1 Other studies that have used continuous measures of concentration include 

arcon and Puech (2003) for French manufacturing firms; Arbia, Espa, and Quah 

2008) for patents in Italy; and Murata, et al. (2015) for patent citations. Kerr and 

ominers (2015) use continuous measures in a more general model, one applica- 

ion of which uses data on patent citations. See Carlino and Kerr (2015) for a recent 

eview of this literature. 

J  
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a
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t  
stablishments and the total employment of science, technology,

ngineering, and math (STEM) workers. 

While this multiple-scale approach is similar in spirit to that of

O, our test statistics are based on Ripley’s K -function rather than

he “K -density” approach of DO. While the DO approach can reveal

he spatial scale at which concentration occurs, it does not tell us

here in space the concentration occurs. K -functions can easily

e disaggregated to yield information about the spatial locations of

lusters of R&D labs at various spatial scales. We take advantage

f this feature of K -functions to perform the local cluster analysis

n Section 4 . 

We begin the analysis by using global K -function statistics

o test for the presence of significant clustering over a range of

patial scales. Our data set consists of almost 1700 R&D labs in

alifornia and in a 10-state area in the Northeast Corridor of the

nited States. We find strong evidence of spatial clustering at even

ery small spatial scales – distances as small as one-half mile –

nd this clustering tends to exhibit rapid attenuation as scales

ncrease. This pattern is consistent with empirical research on

uman capital spillovers and agglomeration economies. 

Next, we focus on the question of where clustering occurs using

 more refined procedure based on local K -functions. We introduce

 novel procedure called the multiscale core-cluster approach to

dentify the location of clusters and the number of labs in these

lusters. Core clusters at each scale are identified in terms of those

oints with the most significant local clustering at that scale. By

onstruction, core clusters at smaller scales tend to be nested in

hose at larger scales. Such core clusters generate a hierarchy that

eveals the relative concentrations of R&D labs over a range of

patial scales. In particular, at scales of 5 and 10 miles, these core

lusters reveal the presence of the major agglomerations visible

n any map. Our analysis identifies four major clusters in the

ortheast Corridor (one each in Boston, New York–Northern New

ersey, Philadelphia–Wilmington, and Washington, D.C.,) and three

ajor clusters in California (one each in the Bay Area, Los Angeles,

nd San Diego). 

Our work differs from past studies in a number of ways. Rather

han looking at the geographic concentration of firms engaged in

he production of goods (such as manufacturing), we use a new
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Table 1 

Summary statistics. 

Northeast (10-state) 

Variable Mean Std. dev. Median Minimum Maximum 

All zip codes (6044) 

Land area, square miles 29.10 37.61 16.87 0.01 468.16 

Radius ∗ 2.55 1.66 2.32 0.06 12.21 

Total Employment 4307.22 8994.78 10 01.0 0 0.00 194114.00 

Manufacturing employment 557.20 1213.46 76.30 0.00 22808.31 

Total establishments 250.36 370.76 97.00 1.00 6962.00 

Manufacturing establishments 11.39 16.65 4.00 0.00 132.00 

Labs 0.17 0.74 0.00 0.00 13.00 

Zip codes with 1 or more labs (549) 

Land area, square miles 20.95 29.46 12.04 0.06 361.79 

Radius ∗ 2.21 1.34 1.96 0.14 10.73 

Total employment 15736.22 17620.83 11072.00 39.00 194114.00 

Manufacturing employment 2057.08 2166.38 1356.30 0.00 22,808.31 

Total establishments 697.51 574.58 568.50 6.00 6962.00 

Manufacturing establishments 32.40 23.49 26.00 0.00 132.00 

Labs 1.89 1.68 1.00 1.00 13.00 

California 

Variable Mean Std. Dev. Median Minimum Maximum 

All zip codes (1646) 

Land area, square miles 95.56 256.33 17.34 0.01 3806.05 

Radius ∗ 3.84 3.96 2.35 0.06 34.81 

Total employment 5989.95 9758.35 170 0.0 0 0.00 79766.00 

Manufacturing employment 858.14 2394.39 64.50 0.00 27186.00 

Total establishments 467.19 555.17 262.50 0.00 3527.00 

Manufacturing establishments 30.18 61.83 8.00 0.00 776.00 

Labs 0.39 2.01 0.00 0.00 33.00 

Zip codes with 1 or more labs (204) 

Land area, square miles 18.78 37.75 8.19 0.07 385.98 

Radius ∗ 2.02 1.38 1.61 0.15 11.08 

Total employment 19482.47 17300.91 15088.00 0.00 79766.00 

Manufacturing employment 3607.79 5188.27 1569.00 0.00 27186.00 

Total establishments 1173.13 677.45 1065.50 0.00 3527.00 

Manufacturing establishments 94.52 96.32 62.00 0.00 636.00 

Labs 3.16 4.90 1.50 1.00 33.00 

Sources: Author’s calculations using the 1998 editions of the Directory of American Research and Tech- 

nology (1999) and Zip Code Business Patterns. 
∗ Calculated assuming a zip code of circular shape with an area as reported in the data. 
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location-based data set that allows us to consider the spatial con-

centration of private R&D establishments. Rather than focusing on

the overall concentration of R&D employment, we analyze the clus-

tering of individual R&D labs. Our analytical approach also permits

such clustering to be identified at a range of scales in continuous

space, rather than at a single predefined scale. Importantly, the

use of the R&D lab data allows us to more accurately assign labs to

locations since we have their complete addresses; an improvement

on using patent data to measure the location of innovative activity.

This allows us to implement tests for geographic concentration

with very high precision at even the smallest of spatial scales. An

important limitation associated with patent data used in most past

studies to analyze the spatial concentration of innovative activity

is that only the zip codes of the inventors’ residential addresses

are listed on the patent. With patent data, one can only consider

the geographic clustering of innovative activity at the average size

of zip codes, and this is subject to measurement error if inventors

live and work in different zip codes. As shown in Table 1 , the

typical size of a zip code in the Northeast Corridor is about 30

square miles, while the average size is almost 100 square miles

in California. Use of the patent information is further complicated

in that many patents have multiple inventors who often reside in

different locations. Patents do contain information on the assignee

(usually the company that first owned the patent) but researchers

typically do not use the assignee address because this may not

reflect the location where the research was conducted (e.g., it may

be the address of the corporate headquarters and not the R&D fa-

cility). Finally, unlike the K -density approach, our local K -function

b  
ethod can be used to identify where in space clustering is

ccurring; something that is new to the agglomeration literature. 

We also use the global K -function technique to examine the

oncentration of R&D labs in specific two-digit SIC industries

elative to the concentration of labs across all industries. This both

ets a higher bar in our tests of spatial concentration and avoids

 potential measurement issue at very small spatial scales that

ay occur when we use a benchmark that is not point-pattern

ata. We find at small spatial scales (such as within a two- to

hree-block area) that 37 percent of the industries in the North-

ast Corridor are significantly more concentrated compared with

verall R&D labs, and none are significantly more dispersed. In

alifornia, 50 percent are significantly more localized than R&D

abs in general. The rapid attenuation of significant clustering of

abs for many individual industries is consistent with the view that

t least one important component of agglomeration economies

ust be highly localized. 

. Theory and data 

.1. Data 

We introduce a novel data set in this paper, based on the

998 vintage of the Directory of American Research and Technology

1999) , which profiles the R&D activities of public and private

nterprises in the United States. The directory includes virtually all

ongovernment facilities engaged in any commercially applicable

asic and applied research. For this paper, our data set contains
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he R&D establishments (“labs”) associated with the top 10 0 0

ublicly traded firms ranked in terms of research and develop-

ent expenditure in Compustat. 2 These firms represent slightly

ess than 95 percent of all R&D expenditures reported in the 1999

intage of Compustat for 1998. 3 Thus, each lab in our data set

s associated with its Compustat parent firm and information on

ts street address and a text description of its research special-

zation(s) to which we have assigned the corresponding four-digit

tandard Industrial Classification (SIC) codes. Using the address

nformation for each private R&D establishment, we geocoded the

ocations of more than 30 0 0 labs (shown in Fig. 1 ). 

In this paper, we analyze two major regions of the U.S.: the

ortheast Corridor and the state of California. There are 1035 R&D

abs in 10 states comprising the Northeast Corridor of the United

tates (Connecticut, Delaware, Maryland, Massachusetts, New

ampshire, New Jersey, New York, Pennsylvania, Rhode Island, and

irginia, including the District of Columbia – the Washington, D.C.,

luster). There are 645 R&D labs in California. 

Even at the most aggregate level, it is easy to establish that

&D activity is relatively concentrated in these two regions. For

xample, in 1998, one-third of private R&D labs and 29 percent of

rivate R&D expenditures were located within the Northeast Cor-

idor, compared with 22 percent of total employment (21 percent

f manufacturing employment) and 23 percent of the population.

alifornia accounted for almost 22 percent of all private R&D labs

nd 22 percent of private R&D expenditures in 1998 compared

ith 12 percent of total employment (11 percent of manufacturing

mployment) and 12 percent of the population. Together, these

wo regions accounted for the majority of all U.S. private R&D

abs (and private R&D expenditures) in 1998. 4 This concentration

s consistent with Audretsch and Feldman (1996) , who report

hat the top four states in terms of innovation in their data are

alifornia, Massachusetts, New Jersey, and New York. 

In our formal analysis below, we assess the concentration of

&D establishments relative to a baseline of economic activity as

eflected by the amount of manufacturing employment in the zip

ode. These data were obtained from the 1998 vintage of Zip Code

usiness Patterns. Given that the vast majority of our R&D labs

re owned by manufacturing firms, manufacturing employment

epresents a good benchmark. 5 It is possible that owners of R&D

abs locate these facilities using different factors than they use for

ocating manufacturing establishments. We address this concern

y using total employment data at the census block level for

002 from the Longitudinal Employer-Household Dynamics (LEHD)

urvey to identify feasible lab locations within each zip code. 

Table 1 presents summary statistics for zip codes in the North-

ast Corridor and in California for 1998. The average zip code
2 We referenced several additional sources both to cross-check the information 

rovided by this directory and to supplement it when we could not locate an en- 

ry for a Compustat listing. Dalton and Serapio (1995) provide a list of locations of 

.S. labs of foreign-headquartered firms. In some cases, we found information about 

he location of a firm’s laboratories in the “Research and Development” section of 

he firm’s 10-K filings with the Securities and Exchange Commission. The follow- 

ng company databases were also used to supplement or confirm our main sources: 

oover’s Company Records database, Mergent Online, the Harris Selectory Online 

atabase, and the American Business Directory. 
3 Although we cannot know for sure the impact on the analysis of including 

maller labs, if these labs tend to cluster near larger labs as is widely believed, then 

e will underestimate the significance of clustering of R&D labs. Some clusters that 

ail our tests of significance may indeed be significantly clustered in that case as 

ell, and some cluster boundaries may be slightly different than what we identify. 
4 Data for private R&D expenditures are from Table A.39 of National Science 

oundation (20 0 0) . 
5 In Section 5.1 , we develop an alternative benchmark (or backcloth) for analyzing 

&D clustering with respect to STEM workers. In Appendix A, we report results of 

ur analyses using manufacturing establishments as an alternative benchmark. As 

e will see, our main findings are highly robust to the use of alternative backcloths. 

2
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f

n the Northeast Corridor had about 29 square miles of land

rea with a radius of about 2.5 miles in 1998. Since there were

pproximately 6044 zip codes in the Northeast Corridor in 1998,

here is, on average, one R&D facility for every six zip codes in this

art of the country. The average zip code in the Northeast Corridor

ad about 4300 jobs in 1998, 13 percent of which were in manu-

acturing. In California, the average zip code consisted of about 96

quare miles of land area with an average radius of slightly less

han 4 miles. The average zip code in California had almost 60 0 0

obs in 1998, 14 percent of which were in manufacturing. Table

 also provides descriptive statistics for those zip codes containing

ne or more R&D labs. These zip codes are physically smaller

with a radius of about 2 miles in each region) and contain three

o four times more employment. 

.2. Theory 

How do we account for the geographic concentration of R&D

ctivity observed in this paper? Much of the theoretical literature

n urban agglomeration economies has focused on externalities in

he production of goods and services rather than on invention it-

elf. Nevertheless, the three formal mechanisms primarily explored

n the literature – sharing, matching, and knowledge spillovers –

re also relevant for innovative activity. 6 

.2.1. Knowledge spillovers 

Spatial concentration of economic activity facilitates the spread

f tacit knowledge. More than most types of economic activity,

&D depends on knowledge spillovers. A high geographic concen-

ration of R&D labs creates an environment in which ideas move

uickly from person to person and from lab to lab. Locations that

re dense in R&D activity encourage knowledge spillovers, thus

acilitating the exchange of ideas that underlies the creation of

ew goods and new ways of producing existing goods. 

.2.2. Sharing and matching 

Thick factor markets can arise when innovative activity clusters

ocally through the development of pools of specialized workers

e.g. STEM workers) and greater variety of specialized business

ervices (e.g. patent attorneys, commercial labs for product testing,

nd access to venture capital). As Helsley and Strange (2002) have

hown, dense networks of input suppliers facilitate innovation by

owering the cost needed to bring new ideas to fruition. Thick

abor markets also can improve the quality of matches in local

abor markets ( Berliant et al., 2006; Hunt, 2007 ). Also, specialized

orkers can readily find new positions without having to change

ocations (job hopping). 

.2.3. Connection between theory and evidence 

In this paper, we do not attempt to identify the mechanism(s)

nderlying the geographic concentrations of labs we observe.

e abstract from theoretical considerations and simply impose a

tatistical requirement on our tests for localization to determine

hether R&D labs are clustered. This approach is based on a test

f a simple location model (i.e., R&D locations are more clustered

han would be expected from random draws from the distribution

f overall manufacturing employment). 

. Global cluster analysis 

A key question is whether the overall patterns of R&D locations

n the two regions we examine exhibit more clustering than would

e expected from the spatial concentration of manufacturing in
6 See Duranton and Puga (2003) for a more thorough discussion of the micro- 

oundations of urban agglomeration economies. 
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those regions. To address this question statistically, we start with

the null hypothesis that R&D locations are mainly determined

by the distribution of manufacturing employment within a zip

code. Since, the data are at the zip code level it is necessary to

assume that manufacturing employment is uniformly distributed

within a zip code. This assumption is reasonable if zip codes are

sufficiently small. Since we know the street addresses of our labs,

then, at spatial scales smaller than the typical zip code size, these

locations will tend to exhibit some degree of spurious clustering

of labs relative to random locations. 7 In our sample, the radius of

a typical zip code is about 2 miles for zip codes containing at least

one lab ( Table 1 ). Since we are interested in possible clustering

of R&D labs at scales below the average sizes of zip codes, it is

necessary to refine our null hypothesis. To do this, we obtained

total employment data at the census block level for 2002 from the

LEHD survey 8 and use these data to identify feasible lab locations

within each zip code area. 9 Blocks with zero employment are

clearly infeasible (such as public areas and residential zones), and

blocks with higher levels of total employment are hypothesized to

offer more location opportunities. It is also implicitly hypothesized

that accessibility to manufacturing within a given zip code area is

essentially the same at all locations within that zip code. So, even

in blocks where there is no manufacturing, locations are regarded

as feasible as long as there is some type of employment present. 10 

Our basic null hypothesis is the following: 

Hypothesis 1. Lab locations are no more concentrated than man-

ufacturing employment at the zip code level and then no more

concentrated than total employment within each zip code. 

In order to test whether the observed R&D lab locations are

agglomerated relative to the benchmark identified Hypothesis 1,

we generate counterfactual locations consistent with Hypothesis

1 using a three-stage Monte Carlo procedure. In this procedure,

(i) zip code locations are randomly selected in proportion to man-

ufacturing employment levels, (ii) census block locations within

these zip codes are selected in proportion to total employment

levels, and (iii) point locations within blocks are selected ran-

domly. It should be mentioned that actual locations are almost

always along streets and cannot, of course, be random within

blocks. But, as discussed in Section 3.2 below, blocks themselves

are sufficiently small to allow such random effects to be safely

ignored at the scales of most relevance for our purposes. 

By repeating this procedure separately for the Northeast

Corridor (with a set of n = 1035 location choices) and for Cali-

fornia (with n = 645 location choices), one generates a pattern,

X = ( x i = ( r i , s i ) : i = 1 , . . . , n ) , of potential R&D locations that is

consistent with Hypothesis 1 , where ( r i , s i ) represents the latitude

and longitude coordinates (in decimal degrees) at point i . This

process is repeated many times for each R&D location in the data

set. In this way, we can test whether the observed point pattern ,

X 0 = ( x 0 i = ( r 0 i , s 
0 

i ) : i = 1 , . . . , n ) , of R&D locations is “more
7 We thank Duranton for this observation. 
8 More specifically, the LEHD offers publicly available Workplace Area Charac- 

teristic (WAC) data at the census block level as part of the larger LEHD Origin- 

Destination Employment Statistics (LODES) database. 
9 There are two exceptions that need to be mentioned. First, the state of Mas- 

sachusetts currently provides no data to LEHD. So, here we substituted 2011 ArcGIS 

Business Analyst Data for Massachusetts, which provides both geocoded locations 

and employment levels for more than 260,0 0 0 establishments in Massachusetts. 

These samples were aggregated to the census block level and used to approximate 

the LEHD data. While the time lag between 1998 and 2011 is considerable, we be- 

lieve that the zoning of commercial activities is reasonably stable over time. Simi- 

lar problems arose with the District of Columbia, where only 2010 WAC data were 

available. 
10 An additional advantage of using total employment levels at scales as small as 

census blocks is that they are less subject to censoring than finer employment clas- 

sifications. 
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lustered” than would be expected if the pattern were randomly

rawn according to the distribution of manufacturing employment.

.1. K-functions 

The most popular measure of clustering for point processes

s Ripley’s (1976) K- function, K ( d ), which (for any given mean

ensity of points) is essentially the expected number of additional

oints within distance d of any given point. 11 In particular, if

 ( d ) is higher than would be expected under Hypothesis 1 , then

his may be taken to imply clustering of R&D locations relative

o manufacturing at a spatial scale d. For testing purposes, it is

ufficient to consider sample estimates of K ( d ). If for any given

oint i in pattern X = ( x i : i = 1 , . . . , n ) , we denote the number

count) of additional points in X within distance d of i by C i ( d ),

hen the desired sample estimate , ˆ K (d) , is given simply by the

verage of these point counts: 12 

ˆ 
 

O (d) = 

1 

n 

n ∑ 

i =1 

C i (d) . (1)

As described in Section 3 , we draw a set of N point patterns,

 

s = ( x s i : i = 1 , . . . , n ) , s = 1 , . . . , N, and for a selection of radial

istances, D = ( d 1 , . . . , d k ) , we calculate the resulting sample

 -functions, { ̂  K 

s (d) : d ∈ D } , s = 1 , . . . , N. For each spatial scale, d ∈
 , these values yield an approximate sampling distribution of K ( d )

nder Hypothesis 1 . 

Hence, if the corresponding value, ˆ K 

0 (d) , for the observed point

attern, X 

0 , of R&D locations is sufficiently large relative to this

istribution, then this can be taken to imply significant clustering

elative to manufacturing. More precisely, if the value ˆ K 

0 (d) is

reated as one additional sample under H 0 , 
13 and if the number of

hese N + 1 sample values at least as large as ˆ K 

0 (d) is denoted by

 

0 ( d ), then the fraction 

 (d) = 

N 

0 (d) 

N + 1 

(2)

s a (maximum likelihood) estimate of the p-value for a one-sided

est of Hypothesis 1 . 

For example, if N = 999 and N 

0 (d) = 10 so that P (d) = 0 . 01 ,

hen under Hypothesis 1 , there is estimated to be only a one-in-

-hundred chance of observing a value as large as ˆ K 

0 (d) . Thus, at

patial scale d , there is significant clustering of R&D locations at

he 0.01 level of statistical significance. 

.2. Test results for global clustering 

Our Monte Carlo test for clustering was carried out

ith N = 999 simulations at radial distances, d ∈ D =
 0 . 25 , 0 . 5 , 0 . 75 , 1 , 2 , . . . , 99 , 100 } , (i.e., at quarter-mile incre-

ents up to a mile and at one-mile increments from 1 to 100

iles). Before discussing these results, it should be noted that

uarter-mile distances are approximately the smallest scale at

hich meaningful clustering can be detected within our present

patial framework. Recall that since locations consistent with the

ull hypothesis are distributed randomly within each census block,

hey cannot reflect any locational constraints inside such blocks.

or example, if all observed lab locations are street addresses,
11 The term “function” emphasizes the fact that values of K ( d ) depend on distance, 

 . 
12 These average counts are usually normalized by the estimated mean density of 

oints. But since this estimate is constant for all point patterns considered, it has 

o effect on testing results. 
13 At this point it should be noted that since all sample K -functions are subject to 

he same “edge effects” as the observed sample, the presence of edge effects should 

ot influence our test results. 
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hen, at scales smaller than typical block sizes, these locations will

end to exhibit some degree of spurious clustering relative to ran-

om locations. If relevant block sizes are taken to be approximated

y their associated (circle-equivalent) radii, then since the average

adius of the LEHD blocks with positive employment is 0.15 miles

n the Northeast Corridor (ignoring Massachusetts) and 0.13 miles

n California, this suggests that 0.25 miles is a reasonable lower

ound for tests of clustering. In fact, the smallest radius used in

ost of our subsequent analyses is 0.5 miles. 14 

Given this range of possible spatial scales, our results show

hat clustering in the Northeast Corridor is so strong (relative to

anufacturing employment) that the estimated p- values are 0.001

or all scales considered. The results are the same for California

p to about 60 miles, and they remain below 0.05 up to about

0 miles. Thus, our conjecture that private R&D activities exhibit

ignificant agglomeration is well supported by this data. 15 

.3. Variations in global clustering by spatial scale 

Further analysis of these sampling distributions (both in terms

f Shapiro and Wilk, 1965 tests and normal quintile plots (not

hown)) showed that they are well approximated by normal dis-

ributions for all the spatial scales tested. So, to obtain a sharper

iscrimination between results at different spatial scales, we calcu-

ated the z- scores for each observed estimate, ˆ K 

0 (d) , as given by 

(d) = 

ˆ K 

0 (d) − K̄ d 

s d 
, d = { 0 . 25 , 0 . 5 , 0 . 75 , 1 , 2 , . . . , 99 , 100 } 

(3) 

here K̄ d and s d are the corresponding sample means and standard

eviations for the N + 1 sample K -values. 

The z -scores for the Northeast Corridor are depicted in Fig.

 (a), and those for California are shown in Fig. 2 (b). Significance

evels decrease nearly monotonically for California, while in the

ortheast, we see a hump-shaped pattern. The high z -scores are

onsistent with the significance of the Monte Carlo results noted

reviously but add more detailed information about the patterns

f significance. 16 Observe that in both figures, clustering is most

ignificant at smaller scales but exhibits rapid attenuation as scales

ncrease. This pattern is consistent with empirical research on hu-

an capital spillovers and agglomeration economies mentioned in

he Theory Section 2.1 . 17 

.4. Relative clustering of R&D labs by industry 

We believe that the distribution of manufacturing employment

rovides a reasonably objective basis for assessing patterns of

lustering by private R&D facilities. Nevertheless, the reasons for

stablishing an R&D lab in a particular location may differ from

hose that determine the location of manufacturing establish-

ents. For example, R&D labs may be drawn to areas with a

ore highly educated labor force than would be typical for most

anufacturing establishments. Some R&D labs may co-locate not
14 Since mean values can sometimes be misleading, it is also worth noting that 

nly 6.2 percent of all the LEHD block radii exceed 0.5 miles in the Northeast. This 

ercentage is about 4 percent for California. 
15 In addition, it should be noted that since 0.001 is the smallest possible p -value 

btainable in our simulations (i.e., 1 / (N + 1) with N = 999 ), these results actually 

nderestimate statistical significance in many cases. While N could, of course, be 

ncreased, this sample size appears to be sufficiently large to obtain reliable esti- 

ates of sampling distributions under Hypothesis 1 . 
16 The benchmark value of z = 1 . 65 , shown as a dashed line in both Fig. 2 (a) and 

b), corresponds to a p -value of 0.05 for the one-sided tests of Hypothesis 1 in ex- 

ression ( 2 ) above. 
17 See Carlino and Kerr (2015) for a review of the literature on the localization of 

nowledge spillovers. 
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ecause of the presence of spillovers but rather because of sub-

idies provided by state and local governments (as, for example,

hen technology parks are partially subsidized). 

To explore such differences, we begin by grouping all labs in

erms of their primary industrial research areas at the two-digit

IC level. 18 With respect to this grouping, our null hypothesis is

imply that there are no relevant differences between the spatial

atterns of labs in each group (i.e., the spatial distribution of

abs in any given industry is statistically indistinguishable from

he distribution of all labs). The simplest formalization of this

ypothesis is to treat each group of labs as a typical random

ample from the distribution of all labs. More precisely, if n is

he total number of labs (where n = 1035 for the Northeast and

 = 645 for California) and if n j denotes the number of these labs

ssociated with industry j , our null hypothesis for industry j is: 

ypothesis 2. The spatial distribution of R&D labs in industry j is

ot statistically distinguishable from that of a random sample of size

 j from all n labs. 

Such random samples are easily constructed by randomly

ermuting (reordering) the lab indices 1 , . . . , n and choosing the

rst n j of these (as is also done in DO). With respect to clustering,

ne can then compare ˆ K (d) values for the observed pattern of

abs in industry j with those for a set of N such randomly sam-

led patterns and derive both p -values, P j ( d ) and z -scores, z j ( d )

omparable with those in expressions ( 2 ) and ( 3 ), respectively. If

 j ( d ) is sufficiently low [or z j ( d ) is sufficiently high], then it can

e concluded that there is significantly more clustering at scale

 for labs in industry j than would be expected under the null

ypothesis that the probability of finding a randomly selected R&D

ab associated with a particular industry is proportional to the

otal number of R&D labs in that area. 

This approach has two benefits. First, it sets a much higher bar

n our tests of spatial concentration. Second, we can implement

hese tests with very high precision at even the smallest of spatial

cales. Using this counterfactual method, we find the strongest

vidence for the spatial concentration of R&D labs occurring at

ery small spatial scales (such as within a two- to three-block

rea). Before reporting the results of these (random permutation)

ests, it must be stressed that such results are only meaningful

elative to the population of all R&D labs, and, in particular, allow

s to say nothing about clustering of R&D labs in general. But the

enefits of this approach are two-fold. First, since the pattern of all

&D labs has already been shown to exhibit significant clustering

elative to manufacturing employment (at all scales tested), the

resent results help to sharpen these general findings. Moreover,

hile this sharpening could in principle be accomplished by sim-

ly repeating the global tests above for each industry, the present

pproach avoids all issues of location feasibility at small scales.

n particular, since the exact locations of all labs are known, we

an use this information to compare relative clustering among

ndustries at all scales. 

Turning now to the test results, the p -values for each of the 19

wo-digit SIC industries in the Northeast Corridor are reported in

able 2 a for selected distances. As stated previously, we are able

o analyze relative clustering at all scales, regardless of how small.

n particular, at the quarter-mile scale, we find that seven of these

9 industries (37 percent) are significantly more localized (at the
18 We assign labs to an industry based on information contained in the Directory 

f American Research and Technology (1999) . In the Northeast Corridor, there are 19 

ndustrial groupings corresponding to SICs 10, 13, 20–23, 26–30, 32–39, and 73. In 

alifornia, there are 16 industrial groupings corresponding to SICs 13, 16, 20, 26, 

8–30, 32–39, and 73. The industry names of these SICs are included in Tables 2 a 

nd 2 b. 
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Fig. 2. (a) z -Scores for Northeast Corridor dotted line Z = 1.65. (b) z -Scores for California dotted line Z = 1.65. 
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0.05 percent level) than are R&D labs in general. 19 Moreover, none

are significantly more dispersed. 20 Table 2 b reports the p -values

for each of the 16 two-digit SIC industries in California for selected

distances. We find that, at a distance of a quarter-mile, eight of

these 16 industries (50 percent) are significantly more localized

(at the 0.05 percent level) than are R&D labs in general. 21 Again,

none are significantly more dispersed. 
19 The seven industries are Textile Mill Products; Stone, Clay, Glass and Concrete; 

Fabricated Metals; Chemicals and Allied Products (this category includes drugs); 

Measuring, Analyzing and Controlling Instruments; Miscellaneous Manufacturing 

Industries; and Business Services. 
20 With respect to dispersion, two of the 19 industries are found to be significantly 

more dispersed starting at a distance of five miles, and a third industry exhibits 

some degree of relative dispersion at 50 miles. 
21 The eight industries are Chemicals and Allied Products; Rubber Products; Pri- 

mary Metal Products; Industrial and Commercial Machinery; Electronics; Trans- 

o  

i  

m  

p

n

s

1

A graphical representation of these results is presented in

ig. 3 , where the z -scores for each of the seven industries in the

ortheast with most significant clustering is shown in Fig. 3 (a),

nd those for seven of the eight most significant California indus-

ries are shown in Fig. 3 (b). 22 Because we are especially interested

n the attenuation of z -scores at small scales, these z -scores are

alculated in increments of 0.25 miles up to five miles. For all but

ne of these industries in the Northeast, the clustering of R&D labs

s by far most significant at very small spatial scales — a quarter

ile or less. The lone exception is Miscellaneous Manufacturing
ortation Equipment; Measuring, Analyzing, and Controlling Equipment; and Busi- 

ess Services. 
22 To conserve on space, the graph of the z -scores for the Rubber Products is not 

hown in Fig. 3 (b) since the labs doing R&D in this industry accounted for less than 

 percent of all labs in California. 
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Table 2a 

Concentration of labs by industry in Northeast Corridor ( p-values ) † . 

Industry Miles 

SIC LABS 0.25 0.5 0.75 1 5 20 50 

Metal mining 10 4 0.5021 0.5029 0.5044 0.5052 0.5227 0.1674 0.4149 

Oil and gas extraction 13 3 0.5011 0.5019 0.5026 0.5034 0.5137 0.0906 0.2286 

Food 20 25 0.5825 0.6278 0.6750 0.7081 0.0984 0.2097 0.0480 

Textile mill 22 14 0.0267 0.0465 0.0690 0.0859 0.3468 0.7839 0.6446 

Apparel 23 5 0.5036 0.5063 0.5082 0.5101 0.5399 0.7230 0.9088 

Paper 26 28 0.6029 0.6596 0.7103 0.7460 0.4685 0.2833 0.3058 

Printing and publishing 27 3 0.5009 0.5012 0.5019 0.5024 0.5111 0.5837 0.7040 

Chemicals 28 420 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 01 0.0020 0.0 0 01 

Petroleum refining 29 24 0.0844 0.1380 0.1980 0.2425 0.3012 0.0079 0.0358 

Rubber products 30 38 0.6728 0.7493 0.8135 0.8544 0.5710 0.7974 0.9965 

Stone, clay, glass, and concrete products 32 36 0.0 0 02 0.0 0 08 0.0032 0.0011 0.1041 0.7385 0.6886 

Primary metal industries 33 36 0.6555 0.7284 0.7921 0.8327 0.7848 0.2592 0.4881 

Fabricated metal products 34 44 0.0 0 04 0.0026 0.0101 0.0200 0.0911 0.6985 0.8571 

Industrial and commercial machinery 35 140 0.6024 0.7659 0.4192 0.4052 0.9910 0.9898 0.9867 

Electronics 36 242 0.1958 0.5789 0.5825 0.7329 0.7058 0.8030 0.7423 

Transportation equipment 37 40 0.2277 0.3575 0.4867 0.5711 0.9594 0.9989 0.9744 

Measuring, analyzing, and controlling instruments 38 243 0.0334 0.1509 0.3838 0.3983 0.8171 0.8937 0.8778 

Miscellaneous manufacturing Industries 39 18 0.0468 0.0789 0.1126 0.1380 0.0378 0.1672 0.1093 

Business services 73 137 0.0 0 04 0.0052 0.0166 0.0055 0.0 0 04 0.0 0 01 0.0022 

Source: Author’s calculations using the 1998 editions of the Directory of American Research and Technology (1999). 
† Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated than overall labs at the 5 

percent level of significance. Light gray indicates significantly more dispersed than overall labs at the 5 percent level of significance. 

Table 2b 

Concentration of labs by Industry in California ( p-values ) † . 

Industry Miles 

SIC LABS 0.25 0.5 0.75 1 5 20 50 

Oil and gas extraction 13 2 0.5015 0.5025 0.5040 0.5060 0.5455 0.6275 0.7010 

Heavy construction 16 2 0.5010 0.5015 0.5035 0.5055 0.5330 0.6210 0.1910 

Food 20 3 0.5055 0.5100 0.5150 0.5185 0.5990 0.7700 0.4925 

Paper 26 2 0.5020 0.5035 0.5045 0.5080 0.5340 0.6175 0.1970 

Chemicals 28 129 0.0025 0.0100 0.0170 0.0705 0.9670 0.9920 0.9480 

Petroleum refining 29 2 0.5005 0.5025 0.5040 0.5065 0.5385 0.6105 0.6875 

Rubber products 30 8 0.0235 0.0535 0.0980 0.1320 0.4020 0.3660 0.1630 

Stone, clay, glass, and concrete products 32 6 0.5125 0.5290 0.5515 0.5695 0.7950 0.7075 0.4215 

Primary metal industries 33 11 0.0435 0.1130 0.1780 0.2455 0.8770 0.7235 0.2865 

Fabricated metal products 34 16 0.5925 0.6840 0.7670 0.8235 0.9890 0.4555 0.1765 

Industrial and commercial machinery 35 99 0.0140 0.0100 0.0105 0.0120 0.0020 0.0010 0.0205 

Electronics 36 211 0.0450 0.0030 0.0075 0.0030 0.0010 0.0030 0.1040 

Transportation equipment 37 36 0.0010 0.0030 0.0030 0.0030 0.4635 0.2635 0.1570 

Measuring, analyzing, and controlling equipment 38 134 0.0010 0.0480 0.2165 0.4610 0.8845 0.9960 1.0 0 0 0 

Miscellaneous manufacturing industries 39 8 0.5285 0.5620 0.5980 0.6280 0.90 0 0 0.7310 0.7205 

Business services 73 147 0.0300 0.0150 0.0105 0.0045 0.0020 0.0010 0.0010 

Source: Author’s calculations using the 1998 editions of the Directory of American Research and Technology (1999). 
† Concentration is conditional on the location of overall R&D labs. Bold indicates significantly more concentrated than overall labs at the 5 

percent level of significance. Light gray indicates significantly more dispersed than overall labs at the 5 percent level of significance. 
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ndustries (SIC 39), where the highest z -score occurs at a distance

f just under two miles. In California, the clustering of R&D labs

s most significant at very small spatial scales for four of the

even industries shown in Table 3b. Two of the other industries,

lectronics and Business Services have local peaks at one-half mile

nd at one mile, respectively. 

In addition, Fig. 3 (a) shows rapid attenuation of z -scores at

mall scales for all seven industries in the Northeast. Moreover, for

ost of these industries, there is essentially a monotonic decline

n z -scores at all scales shown. While degrees of significance at

arger scales vary among industries, the relative clustering of labs

n both the Chemicals and Business Services industries continues

o be significant at all scales shown. (For Business Services in

articular, all but one these labs are associated with firms engaged

n the computer programming or data processing subcategories.)

urning to California, Fig. 3 (b) shows rapid attenuation of z -scores

t small scales for four of these seven industries. The other three

ndustries, Industrial and Commercial Machinery, Electronics, and

usiness Services (mostly in the subcategory, Computers and Data
rocessing) exhibit an opposite trend in which relative clusters

ecomes more significant at larger scales. 

Finally, it is of interest to note that three industries are among

he most significantly clustered industries in both the Northeast

nd California, namely Chemicals, Business Services, and the Man-

facturing, Analyzing, and Controlling Equipment industry. The

hemical industry (SIC 28) merits some special attention, if for no

ther reason than this category includes labs engaged in pharma-

eutical R&D, a very important segment of the U.S. economy. In

ur data, this category of labs accounts for about 40 percent of

ll labs in the Northeast, a share more than twice as large as any

ther two-digit SIC industry. In California, the Chemicals industry

ccounts for about 16 percent of the labs we study. Thus, at least

ithin the geographic area under study, this industry is seen to be

 major contributor to the overall clustering pattern of R&D shown

n Fig. 2 (a) and (b). But it should be equally clear from Fig. 3 (a)

nd (b) that significant clustering occurs in many other industries

s well. So, clustering of R&D labs is by no means specific to drugs

nd chemicals. 
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Fig. 3. (a) Northeast Corridor industry z -scores. (b) California Industry z -scores. 
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4. Local cluster analysis 

While the above global analysis can identify spatial scales at

which clustering is most significant, it does not tell us where clus-

tering occurs. In this section, we use a variation of our techniques

to identify clustering in the neighborhood of specific R&D labs.

The main tool for accomplishing this is the local version of sample

K -functions for individual pattern points (first introduced by Getis,

1984 ). 23 This local version at each point i in the observed pattern

is simply the count of all additional pattern points within distance

d of i . In terms of the notation in expression ( 1 ) above, the local

K-function , ˆ K i , at point i is given for each distance, d , by 

ˆ K i (d) = C i (d) . (4)

Hence, the global K -function, ˆ K , in expression ( 1 ) is simply the

average of these local functions. 

It should be noted that the original form proposed by Getis

(1984) involves both an “edge correction” based on Ripley
23 The interpretation of the population local K-function, K i ( d ), for any given point 

i is simply the expected number of additional pattern points within distance d of 

point i. Hence, ˆ K i (d) is basically a single-sample (maximum likelihood) estimate of 

K i ( d ). For a range of alternative measures of local spatial association, see Anselin 

(1995) . 

P  

w

1976) and a normalization based on stationarity assumptions

or the underlying point process. However, in the present Monte

arlo framework, these refinements have little effect on tests for

lustering. Hence, we choose to focus on the simpler and more

asily interpreted “point count” version in Eq. (4 ). 

.1. Local testing procedure 

For the local testing procedure, we use Hypothesis 1 from

ection 3 : R&D labs are distributed in a manner proportional to

anufacturing employment at the zip code level and proportional

o total employment at the block level. 24 The only substantive

ifference from the procedure used in that section is that the

ocation, x i , of point i is held fixed. The appropriate simulated val-

es, ˆ K 

s 
i 
(d) , s = 1 , . . . , N, under H 0 are obtained by generating point

atterns, X s = ( x s j : j = 1 , . . . , n − 1) , s = 1 , . . . , N, representing all

 − 1 points other than i . The resulting p- values for a one-sided

est of Hypothesis 1 with respect to point i then take the form, 

 i (d) = 

N i 
0 (d) 

N + 1 

, i = 1 , . . . , n, (5)
24 We replace manufacturing employment with STEM workers in Section 5.1 and 

ith manufacturing establishments in Appendix A as robustness checks. 
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Fig. 4. (a) Northeast Corridor p -values at d = 5 miles. (b) California p -values at d = 5 miles. 
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25 Two exceptions are the small but significant agglomerations identified in the 

analysis – one in Pittsburgh and one in Buffalo. 
26 This sequential approach is designed specifically to overcome the problem of 

“multiple testing,” as discussed further in Appendix B. 
here N i 
0 ( d ) is again the number of these N + 1 draws that

roduce values at least as large as ˆ K 

0 
i 
(d) . 

An attractive feature of these local tests is that the resulting

- values for each point i in the observed pattern can be mapped as

n Fig. 4 (a) and (b). This allows one to check visually for regions of

ignificant clustering. In particular, groupings of very low p- values

erve to indicate not only the location but also the approximate size

f possible clusters. Such groupings based on p- values necessarily

uffer from “multiple testing” problems, which we address in later

ections and more systematically in Appendix B. 

.2. Test results for local clustering 

For our local cluster analyses, simulations were again per-

ormed using N = 999 test patterns of size n − 1 for each

f the n ( = 1035 in the Northeast Corridor and 645 in Cal-

fornia) R&D locations in the observed pattern, X 

0 . The set

f radial distances (in miles) used for the local tests was

 = { 0 . 25 , 0 . 5 , 0 . 75 , 1 , 2 , . . . , 99 , 100 } . But, unlike the global

nalyses previously in which clustering was significant at all

cales, there is considerable variation in significance levels across

abs located at different points in space. For example, it is not

urprising to find that many isolated R&D locations exhibit no

ocal clustering whatsoever. Moreover, there is also considerable

ariation in significance at different spatial scales. At very large

cales (perhaps, 50 miles), one tends to find a few large clusters

ssociated with those mega regions containing most of the labs

within the Washington–Boston corridor or the San Francisco Bay

rea). At very small scales (say 0.25 miles), one tends to find a

ide scattering of small clusters, mostly associated with locations

ontaining multiple labs (such as industrial parks). In our present

etting, the most meaningful patterns of clustering appear to be

ssociated with intermediate scales between these two extremes. 

A visual inspection of the p -value maps generated by our test

esults showed that the clearest patterns of distinct clustering can

e captured by the three representative distances, D = { 1 , 5 , 10 } .
f these three, the single best distance for revealing the overall

lustering pattern in the entire data set appears to be five miles,
s illustrated for the Northeast Corridor and California in Fig. 4 (a)

nd (b), respectively. As seen in the legend, those R&D locations,

 , exhibiting maximally significant clustering [ P i (5) = 0 . 001 ] are

hown in black, and those with p- values not exceeding 0.005 are

hown as dark gray. Here, it is evident that essentially all of the

ost significant locations occur in four distinct groups in the

ortheast Corridor, which can be roughly described (from north

o south) as the “Boston,” “New York City,” “Philadelphia,” and

Washington, D.C.,” agglomerations. 25 In California, there are again

hree distinct groups, roughly described (from north to south) as

San Francisco Bay Area,” “Los Angeles area (mainly Irvine),” and

San Diego.” While these patterns are visually compelling, it is

mportant to establish such results more formally. 

. Identifying spatial clusters: the multiscale core cluster 

pproach 

The global cluster analysis in Section 3 identified the scales

t which clustering is most significant (relative to manufacturing

mployment). The local cluster analysis in Section 4 provided

nformation about where clustering is most significant at each

patial scale. But neither of these methods formally identifies

r defines specific “clusters” of labs. In this section, we apply

ome additional techniques to identify clusters, which we call the

ultiscale core-cluster approach. 

As discussed in Appendix B, a number of cluster-identification

echniques have been developed to identify sequences of clusters

hat are individually “most significant” in an appropriate sense. 26 

he present approach is based more directly on the K -function

ethods previously, and in particular, focuses on the multiscale

ature of local K -functions. More specifically, this clustering proce-

ure starts with the local point-wise clustering results in Section

.1 and seeks to identify subsets of points that can serve as “core”
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Fig. 5. Multiscale core clusters in the San Francisco Bay Area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) Multiscale core clusters in Boston. (b) Proximity to major routes in 

Boston. 
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27 For visual clarity, only core cluster points (and not their associated buffers) are 

shown in Fig. 6 (b). 
28 The area of 5-mile clusters in the Northeast is on average 277 square miles, 

while the area of 10-mile clusters in the Northeast is on average 2498. In California, 

the corresponding areas for 5- and 10-miles clusters are 319 and 1326 square miles, 

respectively. 
cluster points at a given selection of relevant scales, d . Here, we

again focus on the three scales, D = { 1 , 5 , 10 } , used in Section 4.1 .

At each scale, d ∈ D , we define a core point to be a maximally

significant R&D lab, i.e., with a local K -function p -value of 0.001

(using the 999 simulations of K at distance d in Section 4 ). In

order to exclude “isolated” points that simply happen to be in

areas with little or no manufacturing, we also require that there

be at least four other R&D labs within this d -mile radius. Finally, to

identify distinct clusters of such points, we create a d -mile-radius

buffer around each core point (in ArcMap). We designate the set of

points (labs) in each connected component of these buffer zones

as a core cluster of points at scale d . Hence, each such cluster con-

tains a given set of “connected” core points along with all other

points that contributed to their maximal statistical significance at

scale d . These concepts are best illustrated by examples. 

We begin with the single most striking example of multiscale

clustering in our data set, namely the San Francisco Bay Area in

California shown in Fig. 5 . Starting at the 10-mile level, we see one

large cluster (represented by dashed gray curve), that essentially

covers the entire Bay Area. At the five-mile level (represented by

solid gray curves), the dominant core cluster is seen to be perfectly

nested in its 10-mile counterpart, corresponding almost exactly to

what is typically regarded as Silicon Valley. The smaller secondary

cluster of labs is approximately centered around the Lawrence

Livermore National Laboratory complex. Finally, at the one-mile

level (represented by black curves), the heaviest concentration of

core clusters essentially defines the traditional “heart” of Silicon

Valley, stretching south from the Stanford Research Park area to

San Jose. In short, this statistical hierarchy of clusters is in strong

agreement with the most well-known R&D concentrations in the

San Francisco Bay Area. 

A second example, from the Northeast Corridor, is provided by

the hierarchical complex of R&D clusters in the Boston area, shown

in Fig. 6 (a). Here again, the entire Boston area is itself a single 10-

mile cluster. Moreover, within this area, there is again a dominant

five-mile core cluster containing the five major one-mile clusters

in the Boston area. The largest of these is concentrated around the

university complex in Cambridge, while the others are centered

at points along Route 128 surrounding Boston. This is seen more
learly in Fig. 6 (b), 27 which also shows that most R&D labs in the

oston area are located in close proximity to major transportation

outes, including Interstate Routes 90, 93, 95, and 495. 

Note, finally, that while the clusters in both Figs. 5 and 6 (a)

end to be nested by scale, this is not always the case. 28 For

xample, the five-mile “Li vermore Lab” cluster in Fig. 5 is seen

o be mostly outside the major 10-mile cluster. Here, there is a

oncentration of six R&D labs within two miles of each other,

lthough Livermore is relatively far from the Bay Area. So, while

his concentration is picked up at the five-mile scale, it is too

mall by itself to be picked up at the 10-mile scale. 

These examples illustrate the attractive features of the mul-

iscale core-cluster approach. First and foremost, this approach

dds a scale dimension not present in other clustering methods. In

ssence, it extends the multiscale feature of local K -functions from

ndividual points to clusters of points. Moreover, this approach
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Fig. 7. (a) Northeast corridor core clusters d = 5, 10. (b) California Core Clusters d = 5, 10. 
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1  
elps to overcome the particular limitations of significance-

aximizing approaches mentioned previously. First, the shapes

f individual core clusters are seen to be more sensitive to the

ctual configuration of points than those found in significance-

aximizing methods. 29 In addition, since all core clusters are

etermined simultaneously, the path-dependency problem of

equential methods does not arise. 

In summary, an overall depiction of core clusters for both the

ortheast Corridor and California (at scales, d = 5 , 10 ) is shown in

ig. 7 (a) and (b), respectively. Fig. 7 (a) shows the four major clus-

ers identified for the Northeast Corridor (one each in Boston, New

ork/Northern New Jersey, Philadelphia/Wilmington, and Wash-

ngton, D.C.), while Fig. 7 (b) shows the three major clusters in

alifornia (one each in the Bay Area, Los Angeles, and San Diego). 

It should be stressed that this multiscale approach is not a

ubstitute for more standard approaches such as significance-

aximizing. While it does yield a meaningful hierarchy of

tatistically significant clusters, it provides no explicit method

or rank ordering clusters in terms of statistical significance. In

articular, this approach by itself cannot be used to gauge the

elative statistical significance of clusters (such as determining

hether clustering in Boston is more significant than in New

ork). Moreover, such representational schemes presently offer no

ormal criteria for choosing the key parameter values by which

hey are defined (the d -scales to be represented, the p -value

hresholds and d -neighbor thresholds for core points, and even

he connected-buffer approach to identifying distinct clusters). 30 

hus, the primary objective of this more heuristic procedure is to

roduce explicit representations of clusters that capture both their

elative shapes and concentrations in a natural way. 

Finally, in Buzard et al. (2016) , we document that patent

itations are more highly geographically localized within these

lusters of R&D labs than outside them. We argue that this
29 This point is demonstrated in Appendix B. 
30 It should be noted that certain, more systematic procedures may be possible. 

or example, the selection of “best representative” d -scales could be in principle 

ccomplished by versions of k -means procedures in which the within-group versus 

etween-group variations in patterns are minimized. 
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f  
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t  
emonstrates that these clusters are associated with economically

eaningful outcomes. 

.1. Alternate cluster boundaries: employment in STEM industries as 

enchmark 

Firms’ desire to take advantage of knowledge spillovers is one

echanism that could explain spatial clustering of innovative ac-

ivity and the specific clusters identified in this paper are consis-

ent with a knowledge spillover explanation. It is also possible that

&D activity is geographically concentrated to take advantage of la-

or market pooling. As we have shown, one important concentra-

ion of R&D labs is found in Cambridge, MA, and another important

lustering is found in Silicon Valley. These labs are close to large

ools of STEM graduates and workers, the very workers R&D activ-

ty requires. Manufacturing activity tends to employ a more gen-

ral workforce than does innovative activity and may therefore be

ore geographically dispersed compared with innovative activity. 

To address this concern, we first develop a measure of STEM

orkers by location. For our backcloth, we replace the number of

anufacturing employees in each zip code area with an estimate

f the number of STEM workers. This is constructed using the pro-

ortion of STEM jobs in each four-digit NAICs industry multiplied

y the number of jobs in each industry reported in the zip code

usiness patterns data. Hypothesis 1 becomes: 

ypothesis 3. Lab locations are no more concentrated than STEM

orker employment at the zip code level and then no more concen-

rated than total employment within each zip code. 

We report the results of this alternative test for five- and

0-mile clusters in the Northeast Corridor ( Fig. 8 (a)) and in Cali-

ornia ( Fig. 8 (b)). The clusters identified using STEM workers as a

eference are in remarkable agreement with the clusters obtained

hen using manufacturing employment as the backcloth. The

our major clusters in the Northeast Corridor (Boston, New York,

hiladelphia and Washington, D.C.) previously identified in Fig.

 (a) resurface when using the STEM worker backcloth. Similarly,

he three major clusters identified in Fig. 7 (b) for California (one
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(a) (b)

Fig. 8. (a) Northeast corridor core clusters d = 5, 10 (STEM workers). (b) California core clusters d = 5, 10 (STEM workers). 
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each in the Bay Area, Los Angeles, and San Diego) reemerge using

the STEM worker backcloth. 

However, there are certain differences between the results

using the different backcloths. Notice first that the STEM worker

clusters appear to be larger than those found when using the

manufacturing employment backcloth. This is true for the clusters

in the Northeast Corridor and in California. In addition, a number

of additional smaller cluster emerge under the STEM worker back-

cloth. Five additional ten mile cluster are found in the Northeast

Corridor (one each in Lancaster, PA, Hagerstown, MD, Binghamton,

NY, Syracuse, NY, Rochester, NY, and in Richmond, VA). Three

additional ten mile clusters are found in California (one each in

Santa Rosa, Santa Barbara, and Malibu). 

6. Concluding remarks 

In this paper, we use a new data set on the location of R&D labs

and several distance-based point pattern techniques to analyze

the spatial concentration of the locations of more than 1700 R&D

labs in California and in a 10-state area in the Northeast Corridor

of the United States. Rather than using a fixed spatial scale, we

describe the spatial concentration of labs more precisely, by exam-

ining spatial structure at different scales using Monte Carlo tests

based on Ripley’s K -function. Geographic clusters at each scale are

identified in terms of statistically significant departures from ran-

dom locations reflecting the underlying distribution of economic

activity. We present robust evidence that private R&D labs are

indeed highly concentrated over a wide range of spatial scales. 

We introduce a novel way to identify the spatial clustering of

labs called the multiscale core-cluster approach. The analysis iden-

tifies four major clusters in the Northeast Corridor (one each in

Boston, New York–Northern New Jersey, Philadelphia–Wilmington,

and Washington, D.C.,) and three major clusters in California (one

each in the Bay Area, Los Angeles, and San Diego). Work by Buzard

et al. (2016) demonstrates that these clusters are associated with

economically meaningful outcomes such as patenting. 

Supplementary materials 

Supplementary material associated with this article can be

found, in the online version, at doi:10.1016/j.jue.2017.05.007 . 
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