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ABSTRACT. An empirical regularity designated as the Number-Average Size (NAS) Rule was first
identified for the case of Japan by Mori, Nishikimi, and Smith, and subsequently extended to the United
States by Hsu. This rule asserts a negative log-linear relation between the number and average popu-
lation size of cities where a given industry is present. In this paper, we utilize the cluster-identification
methodology developed by Mori and Smith to sharpen this notion of “industrial presence” by focusing
only on cities that constitute at least part of a significant spatial agglomeration for the given industry.
Our key result is to show that the NAS rule continues to hold (even more strongly) under this sharper
definition.

1. INTRODUCTION

A remarkable empirical regularity between the (population) size and industrial struc-
ture of cities in Japan was reported in our previous paper, Mori, Nishikimi, and Smith
(2008). This regularity, designated as the Number-Average Size (NAS) Rule, showed that
for a given set of Japanese industrial data1 there is a strong negative log-linear relation-
ship between the number and average size of industry-choice cities in which establish-
ments of each given industry operate.2 Subsequently, the same regularity was reported
by Hsu (2010) for the United States, using comparable definitions of both industries and
cities.

The validity of this rule, however, depends critically on how “industry-choice cities”
are defined. In both of the above-mentioned papers, such cities for a given industry were
taken to be those with a positive share of the industry employment. Hence, there remains
the question of whether such an industrial presence could simply have occurred by chance.
Indeed, if cities with only a single establishment of the industry are included, then such
chance occurrences would seem to be quite likely.
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constructive comments. This research has been partially supported by the Kikawada Foundation, the
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1In particular, these data were for two time points, 1980 and 2000 (where 1981 establishment

location data were associated with the 1980 population data, and, similarly, 1999 establishment location
data were associated with the 2000 population data).

2Our present notion of a “city” is taken to be an “urban employment area” as discussed in the section
Data for Analysis.
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Hence the central purpose of the present paper is to develop a more meaningful
definition of industry-choice cities, and to re-examine the validity of the NAS Rule for
Japan in these terms. In particular, we seek to identify for each industry those cities with
a substantial presence of that industry. While it is possible to simply strengthen the above
definition in terms of some minimal threshold share of establishments or employment
(say 5 percent of national totals),3 the choice of such a threshold is necessarily ad hoc.
Hence, the approach adopted here is to characterize substantial presence in terms of
“significant industrial agglomerations.” This approach draws on the statistical procedure
recently developed by Mori and Smith (2009b) to identify spatially explicit patterns of
significant clustering (agglomeration)4 for any given industry. In this context, the desired
choice cities for an industry are taken to be those which share at least part of a significant
cluster for that industry, and are here designated as cluster-based choice cities.

The key empirical result of this paper is to show that the NAS Rule not only continues
to hold under this new definition, but in some respects is even stronger. In particular, the
few outlier industries found for Japan in Mori, Nishikimi, and Smith (2008) turn out to be
precisely those industries for which no significant agglomeration can be identified. Hence,
this finding serves to suggest that there may indeed be a strong underlying connection
between this NAS Rule and phenomenon of industrial agglomeration itself.

As was also shown in Mori, Nishikimi and Smith (2008, Section 5), there is a strong
connection between this Rule and two classical regularities: the Rank-Size Rule for cities,
and the Hierarchy Principle for industries. The former asserts a log-linear relationship
between the (population) size and the rank in terms of size of cities. The latter, which
is an essential feature of the Central Place Theory of Christaller (1966), asserts that
industries found in a city of a given size should also be found in all cities at least as
large. In particular, it was shown that in the presence of the Hierarchy Principle, the
NAS Rule and Rank-Size Rule are in certain respects equivalent. So evidence for the NAS
Rule should in principle have consequences for both of these additional types of empirical
regularities. Hence a final objective of this paper is to show that the empirical support
for both the Rank-Size Rule and Hierarchy Principle found by Mori, Nishikimi and Smith
(2008, Section 5) for Japan continues to hold in terms of cluster-based choice cities.

To establish these results, we begin in Section 2 with an overview of the cluster-
detection procedure developed in Mori and Smith (2009b). This forms the basis for our
subsequent definition of cluster-based choice cities in Section 3. The natural converse of
this concept is the notion of cluster-based choice industries for each city, as defined in
the same section. This concept in turn provides natural extensions of the tests of the
Hierarchy Principle in Mori, Nishikimi and Smith (2008, Section 5). Such extensions are
developed in Section 4, and include newly developed tests of both the locational diversity
of an industry as determined by the number of its cluster-based choice cities, and the
industrial diversity of a city as determined by the number of its cluster-based choice
industries. Finally, similar extensions with respect to the NAS Rule are presented in
Section 5. The paper concludes in Section 6 with a brief discussion of some directions for
further research.

2. INDUSTRIAL CLUSTER ANALYSIS

As mentioned above, the present paper draws heavily on the cluster-detection pro-
cedure developed in Mori and Smith (2009b). This approach to identifying clusters of

3Such an approach was investigated in Mori, Nishikimi, and Smith (2008), where it was found that
the NAS rule for Japan (2001) is indeed robust up to thresholds of around 5 percent.

4We shall use the terms “cluster” and “agglomeration” interchangeably. See however the discussion
by Mori and Smith (2009b, Section 8.1) for a possible distinction between these concepts.
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regions (municipalities) for a given industry is closely related to the statistical clustering
procedures proposed by Besag and Newell (1991), Kulldorff and Nagarwalla (1995), and
Kulldorff (1997). To test for the presence of clusters, these procedures start by postulating
an appropriate null hypothesis of “no clustering.” In the present case, this hypothesis is
characterized by a uniform distribution of industrial locations across regions (as discussed
further in the section Cluster-detection Procedure below). Such clustering procedures then
seek to determine the single “most significant” cluster of regions with respect to this
hypothesis. Candidate clusters are typically defined to be approximately circular areas
containing all regions having centroids within some specified distance of a given reference
point (such as the centroid of a “central” region).

The approach developed in Mori and Smith (2009b) extends these procedures in two
ways. First, the notion of a “circular” cluster of regions is extended to the (metric-based)
notion of convex solids which is meaningful for more general distance structures such
as road networks. Second, individual (convex solid) clusters are extended to the more
global concept of cluster schemes. Hence, it is appropriate to begin by sketching these
basic concepts below. This is followed by a brief outline of the cluster-detection procedure
developed on the basis of these concepts. The significance test for evaluating these cluster
schemes is also reviewed. Finally, we briefly describe the industrial and city data sets
used for the present analysis.

Clusters

We begin with a set, R, of relevant regions (municipalities), r, within which each
industry can locate. An industrial cluster is then taken roughly to be a spatially coherent
subset of regions within which the density of industrial establishments is unusually high.
Since the explicit construction of such clusters will have consequences for our present
definition of cluster-based cities, it is appropriate to outline this construct more explicitly.
Here, we begin by noting that “spatial coherence” is taken to include the requirement that
such regions be contiguous, and as close to one another as possible—where “closeness” is
defined with respect to the relevant underlying road network. Using network distances
between regional centers, we define shortest paths between each pair of regions, ri and
rj, to be sequences of intermediate regions, (ri, r1 , . . . , rk, rj) reflecting minimum travel
distances with respect to the road network.5 Hence, the key requirement here is that a
cluster of regions be convex in the sense that it includes all shortest paths between its
member regions. But unlike the usual notion of planar convexity with respect to Euclidean
distance, the convex clusters may have “holes” in them. An illustrative example is given
in the first two panels of Figure 1.

Here, a stylized system of regions, R, is represented by a grid of square regions. The
portion shown in Figure 1 is taken to be a small part of R. The set, S, of four black regions
in Figure 1(a) depicts a grouping of regions where industry density is unusually high
(as discussed further below). But while these four regions are close enough to each other
to be considered as a single “cluster,” they are not contiguous. Hence one would like to
“convexify” this set to obtain a more coherent cluster. Here, it is assumed that the road
network in R has a system of major roads, part of which is shown by the four heavy lines in
Figure 1(b). Hence, the industry concentrations in Figure 1(a) are seen to be at crossroads
of the major network (possibly to minimize shipping costs). In addition, there is also a
finer network of minor roads indicated schematically by the dashed lines in Figure 1(b).

5Technically, these shortest paths may in many cases be longer than actual shortest routes on the
network. For additional details see Mori and Smith (2009b, Section 4.1).
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FIGURE 1: Formation of Clusters.

But these local roads are in fact more circuitous in nature, and hence are effectively much
longer. Hence, if the travel distance, t, between adjacent regions on the major network is
set as t = 1, then it is assumed that travel distance between adjacent regions on minor
(i.e., more circuitous) roads is t = 3.6 With respect to this network it is easily seen that
all the shortest paths between the members of S consist of the regions on major roads
connecting them, as shown by gray in Figure 1(c). But, in fact, this ring of regions also
contains all the shortest paths between each pair of its regions. For example, the shortest
path in the ring between regions r1 and r2 shown in Figure 1(c) is seen to be t = 7, while
the straight-line path between them on minor roads has distance t = 9. Hence, this ring
constitutes the desired convexification of S.7

But since the six regions inside the ring are not on any shortest path, this convex
set contains a large “hole.” Hence to obtain a more coherent cluster, one would like to
“fill in” this hole. The only complication here is defining the “inside” versus the “outside”
of a set, so that holes can be identified and eliminated. The details of this procedure
(which defines “outside” with respect to the boundary of the full regional system, R)
are given in Mori and Smith (2009b, Section 4.3). This process of “solidifying” a convex
set is called convex solidification, and is detailed more fully in Mori and Smith (2009b,

6This differences may also be interpreted in terms of effective travel times.
7More generally, convexification is an iterative process that requires successively adding the minimal

paths of new points until no further new points are added (see Mori and Smith, 2009b; Section 4.2).

C© 2011, Wiley Periodicals, Inc.



698 JOURNAL OF REGIONAL SCIENCE, VOL. 51, NO. 4, 2011

Section 4.4). The resulting convex solids then constitute the desired class of candidate
clusters for our purposes. A particular set of cluster examples are illustrated and discussed
in the section Cluster-detection Procedure below.

Cluster Schemes

Industrial agglomeration patterns generally consist of multiple clusters that are
necessarily related to one another. In fact, the spacing between such clusters is a topic of
considerable economic interest.8 Hence it is essential to model such patterns as explicit
spatial arrangements of multiple clusters. The simple model proposed in Mori and Smith
(2009b, Section 2) is that of a cluster scheme, C = (R0, C1, . . . , CkC ), that partitions R into
one or more disjoint clusters (convex solids), C1, . . . , CkC , together with the residual set,
R0, of all non-cluster regions in R. The individual clusters are implicitly taken to be areas
in R where industry density is unusually high. But within each cluster, Cj, all that is
assumed for modeling purposes is that the location probabilities for randomly sampled
industrial establishments is uniform across the feasible locations in Cj. More precisely, if
feasible area9 for locations in each region, r ∈ R, is denoted by ar, so that the total area of
Cj is aCj = ∑

r∈Cj
ar , then location probabilities in Cj are taken to be uniform over aCj . In

particular, this implies that the conditional probability of an establishment locating in r ∈
Cj given that it is located in Cj is simply ar/aCj . With this assumption, the only unknown
probabilities are the marginal location probabilities, pC( j), for clusters Cj in C. Hence
each cluster scheme, C, generates a candidate cluster probability model, pC = [pC( j): j =
1 , . . . , kC ], of establishment locations for the industry.10 These cluster probability models,
pC, thus amount formally to multinomial sampling models on their underlying cluster
schemes, C, with respect to the n establishments for a given industry.11 Finally, since the
observed relative frequencies, f C = [ fC( j) = nj/n: j = 1 , . . . , kC ], of establishments in each
cluster are natural maximum-likelihood estimates of these (multinomial) probabilities,
these estimates yield a family of well-defined candidate probability models for describing
the agglomeration patterns of each industry.12

Cluster-detection Procedure

The only question remaining is how to compare these models to find a “best” repre-
sentative model. While many goodness-of-fit criteria are possible, it is argued in Mori and
Smith (2009b, Section 3) that the Bayes Information Criterion (BIC) offers a number of
distinct advantages. If the (multinomial) log-likelihood of each cluster scheme, C, given
f C is denoted by LC( f C), then the BIC value for C is given by

BICC = LC( fC) − kC

2
ln(n).

Hence BIC is essentially a penalized goodness-of-fit measure. Here “goodness-of-fit” is
identified with the log-likelihood, LC( f C), which will assign higher values to those cluster

8See, for example, the discussion in Mori and Smith (2009b, Section 8.2).
9Feasible area is here taken to be economic area as defined in the Spatial Data section below.
10This probability model is completed by the condition that pC(R0) = 1 − �j pC( j).
11See Mori and Smith (2009b, footnote 12) for related model-based clustering approaches.
12It is possible to consider the location behavior of workers rather than establishments. But selected

experiments show that the resulting cluster patterns are quite similar either way. Moreover, tests of
spuriousness are usually much more time consuming for the former since workers (or even “bundles”
of workers) tend to be far more numerous than establishments. See the section A Test of Significant
Clustering below.
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schemes, C, in which the relative frequencies in f C are indeed “unusually high” relative
to those in other cluster schemes. The second term then penalizes those cluster schemes,
C, with higher numbers of clusters (kC) relative to the total number of establishments, n
(to avoid “over fitting” the data).

Given this criterion function, the cluster-detection procedure developed in Mori and
Smith (2009b, Section 5) amounts to a systematic way of searching the space of possible
cluster probability models above to find a cluster scheme, C∗, with a maximum value
of BICC∗ .13 While the details of this search procedure will play no role in the present
analysis, the results of this procedure for Japanese industries will play a crucial role.
Hence it is appropriate to illustrate these results in terms of the “livestock products”
industry in Japan, shown in Figure 2.

Here, Figure 2(a) shows the relative density of “livestock products” establishments
in each municipality of Japan,14 where darker patches correspond to higher densities.
Figure 2(b) shows the cluster scheme, C∗, that was produced for the “livestock products”
industry by this cluster-detection procedure. Here, it is seen that not all isolated patches
of density are clusters. But the highest density areas do indeed yield significant clusters.
Notice also that while these clusters are by no means circular, the convex solidification
procedure above has produced easily recognizable clusters that do seem to reflect the
shapes of these high-density areas.

A Test of Significant Clustering

Finally, it should be emphasized that even random locational patterns are not per-
fectly uniform, and hence will tend to exhibit some degree of clustering. So there remains
the statistical question of whether the “locally best” cluster scheme, C∗, found for an in-
dustry by the above procedure is significantly better (in terms of BIC values) than would
be expected in a random location pattern. This can be tested in a straightforward way
by (i) generating N random location patterns for the establishments of a given industry,
(ii) determining the locally optimal values, say BIC∗

s , for each simulated pattern, s =
1 , . . . , N, and (iii) comparing the value, BICC∗ , with this sampling distribution of BIC
values. If BICC∗ is sufficiently large (say in the top 5 percent of these values), then one
may conclude that the clustering captured by C∗ is highly significant, and different from
what would be expected under randomness. Otherwise, C∗ is said to involve spurious
clustering. For additional details, see Mori and Smith (2009b, Section 5.3).15

Data for Analysis

In this section, we describe the data sets to be used in this paper. The regional data,
industrial data, and spatial network data are the same as those used in Mori and Smith
(2009b), and are summarized below in sections Basic Regions, Industry Data, and Spatial
Data, respectively. The new element here is data for cities, which is summarized in the
City Data section below (and which in part overlaps that used in Mori and Smith, 2009a).

13However, it should be emphasized that this space of probability models is very large, and hence
that one can only expect to find local maxima (with respect to the particular perturbations defined by the
search procedure itself).

14These municipalities are mapped in Figure 3.
15The concept of spurious agglomeration is shared by other current measures of agglomeration (see,

e.g., Ellison and Glaeser, 1997; Mori, Nishikimi and Smith, 2005).
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FIGURE 2: Spatial Pattern of “Livestock Products” Industry (JSIC121).

Basic Regions. The basic regions, r ∈ R, in the present study are taken to be mu-
nicipalities in Japan16 (including cities,17 wards, towns, and villages) as of October 1,
2001.18 While there are a total of 3,363 municipalities in Japan, we take R to include only
3,207 of these (as shown in Figure 3), namely those that are geographically connected
to the major islands of Japan (Honshu, Hokkaido, Kyushu, and Shikoku). This is conve-
nient for the identification of clusters, as discussed further in Mori and Smith (2009b,
Section 7.1.1).

16In Japan, the “municipality” category is designated as shi-ku-cho-son.
17It is important to note here that “cities” in this municipality category are defined in terms of

political boundaries, and are not to be confused with “cities” as Urban Employment Areas in the City Data
section given below.

18The data source for the definition of “municipalities” is the Statistical Information Institute for
Consulting and Analysis (2002, 2003).

C© 2011, Wiley Periodicals, Inc.
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FIGURE 3: The Regional System of Japan.

City Data. In terms of these basic regional units, an (economic) city is formally de-
fined to be an Urban Employment Area (UEA), as proposed originally by Kanemoto
and Tokuoka (2002). Each UEA is designed to be an urban area of Japan that is com-
parable to a Core Based Statistical Area (CBSA) in the United States.19 Hence each
UEA consists of a core set of municipalities designated as its business district (BD)
together with a set of suburban municipalities from which workers commute toward
the BD. Following Kanemoto and Tokuoka (2002), UEAs are constructed as aggrega-
tions of municipalities by a recursive procedure that is detailed in Mori, Nishikimi, and
Smith (2008).20

Using the municipality population and commuting data from the Population Census
of Japan in 2000 (Japan Statistics Bureau, 2000), 258 cities are identified (see Figure 4)
which account for 92 percent of the national population, 92 percent of total employment,
and 55 percent of total area in 2000. As is typically the case, the population distribution
among these cities is quite skewed, with city populations ranging from 31.8 million in
Tokyo down to 19,689 in Kucchan (while the average population size is 445,088). Here
it should be noted that the present set of cities is larger than that used in the original
NAS analysis of Mori, Nishikimi, and Smith (2008). In particular, we here include all
UEAs as defined by Kanemoto and Tokuoka (2002), i.e., those with a central municipality
population of at least 10,000.21

Industry Data. The industry and establishments data used for this analysis are based
on the Japanese Standard Industrial Classification (JSIC) in 2001. In particular, we focus

19See the U.S. Office of Management and Budget (2000) for the definition of a CBSA.
20Basically, this construction starts with a large “seed” municipality, designated as the central mu-

nicipality of the UEA. This in turn is extended to a BD and an appropriate set of suburban municipalities.
21Mori, Nishikimi, and Smith (2008) used only Metropolitan Employment Areas (MEA), i.e., UEAs

with central municipality populations of at least 50,000.
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FIGURE 4: Cities in Japan.

on three-digit manufacturing industries, of which 163 industrial types are present in the
set of basic regions chosen for this analysis.22 The establishment counts across these
163 industries are taken from the Establishment and Enterprise Census of Japan in
2001. Such counts range from 1 to 38,643 within the present regional system, R (with a
mean and median of 3,958 and 1,825, respectively).23 Here it should be noted that the
original NAS analysis of Mori, Nishikimi, and Smith (2008) used a much larger set of 264
industries, including services, wholesale, and retail, as well as manufacturing. However,
since manufacturing exhibits a wider and more interesting variety of location patterns at
the three-digit level, we choose to focus on these industries.24

In this context, the test of cluster significance above revealed that the clustering
found in nine of these industries was in fact spurious (at the 5 percent level). The main
reason for rejection in these cases [which include seven arms-related industries (JSIC331-
337), together with “tobacco manufactures” (JSIC135) and “coke” (JSIC213)] appears to
be the small size of these industries.25 But these industries are special in other ways. For
example, both tobacco manufactures and arms-related industries are highly regulated in
Japan, with location patterns influenced by many non-economic factors. Further discus-
sion of these “outlier” industries is given in Section 5 (where these industries are labeled
explicitly in Figure 19).26 Hence, for the present, it suffices to say that all subsequent
analyses in this paper are based on the 154 industries which exhibit some significant
degree of clustering.

22More precisely, out of total 164 industrial types in the data, all but one has establishments in R.
23In addition, 147 (90 percent) of these industries have more than 100 establishments, and 125 (77

percent) have more than 500 establishments.
24See further discussions in Mori and Smith (2009a, pp. 179–180).
25The average number of establishments for these industries is 7.89 (in contrast to an average of

4,189 establishments for all other industries).
26See also discussions in Mori and Smith (2009a, p. 108).
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Spatial Data. The notion of “feasible area,” ar, for each basic region (municipality), r ∈
R, employed in the section Cluster Scheme is here taken to be the economic area of r, as
defined by the Statistical Information Institute for Consulting and Analysis (2002, 2003).
This definition of area essentially excludes forests, lakes, marshes, and undeveloped areas
in r.27

In addition, recall from the discussion of shortest-path distances in the section
Clusters above that such distances are derived from an underlying road network. In
the present application, distances between adjacent municipalities, r1, r2 ∈ R, are de-
fined in terms of the shortest-route distance between their municipality offices on the
public road network in Japan. The relevant road-network data are taken from Hokkaido
Chizu, Co. Lit. (2002). From the computed shortest-route distances between neighboring
municipalities, the corresponding shortest-path distances and shortest-path sequences of
municipalities between each pair of municipalities are then obtained.28

3. CLUSTER-BASED CHOICE CITIES AND INDUSTRIES

In this section we use the clusters identified by the detection procedure above to
strengthen the notion of industry-choice cities utilized in Mori, Nishikimi, and Smith
(2008). Moreover, the parallel city-oriented notion of cluster-based choice industries is
developed.

Cluster-based Choice Cities

Here we start by reviewing the original concept of the (presence-based) industry-
choice cities used in Mori, Nishikimi, and Smith (2008). The extended cluster-based ver-
sion is then developed. Finally, these two definitions are compared empirically with respect
to their relative industrial concentrations.

Pb-choice Cities. As mentioned in the Introduction, an industry-choice city was defined
in Mori, Nishikimi, and Smith (2008) to be any city with a positive share of the employment
in that industry. To be more precise, we now denote the set of all cities (UEAs) in the
regional system R by U , and denote the set of all relevant industries by I. Then if the total
number of establishments in each industry, i ∈ I, in city U ∈ U is denoted by niU , the set
of cities with positive i-employment is given by

U+
i = {U ∈ U : niU > 0}.

Equivalently, U+
i is the set of cities where i is present.29 Hence in this context, it is

convenient to designate each city U ∈ U+
i as a presence-based (pb) choice city for i. A

possible shortcoming of this concept (also noted in the Introduction) is that the presence
of a few establishments in a city isolated from the rest of the industry may have little
significance in terms of the overall spatial structure of that industry. While it is difficult
to be precise here, this shortcoming can nonetheless be illustrated by examples. For this

27The economic area of Japan as a whole is 120,205 km2, which amounts to 31.8 percent of the total
area in Japan. Among individual municipalities the proportions of total area that constitute economic
area range from 2.1 to 100 percent, with a mean of 48.5 percent. For a detailed justification of the use of
economic area here, see the discussion in Mori and Smith (2009b, Section 7.1.2).

28Based on these data, the resulting shortest-path distances between (non-adjacent) pairs of mu-
nicipalities appear to approximate their corresponding shortest-route distances quite well. See Mori and
Smith (2009b, Section 7.1.3) for further details.

29Our notational conventions are as follows. Sets are expressed by capital letters, and their elements
by small letters (e.g., each metro area, U, is a set of basic regions, r ∈ R). Families of sets are in turn denoted
by capital script letters, such as the family, U , of metro areas, U).

C© 2011, Wiley Periodicals, Inc.
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FIGURE 5: Choice Cities for “Livestock Products” Industry.

purpose, we again use the “livestock products” industry in Figure 2 and now show an
enlargement of the northern island of Hokkaido in Figure 5.

Here the enclosed gray areas in the figure again correspond to the Hokkaido clusters
for this industry in Figure 2(b). In addition we have now included those pb-choice cities for
Hokkaido that do not coincide with clusters as enclosed dotted areas (the hatched areas
can be ignored for the moment). Notice again from a comparison of Figures 2(a) and 5 that
the major concentrations of livestock production include the largest city, Sapporo, together
with the cities of Asahikawa, Tomakomai, Obihiro, and Hakodate. Moreover, it is also clear
(from the gray areas in Figure 5) that these concentrations have all been identified as
significant “livestock products” clusters. But while there are some pb-choice cities near
the edges of these clusters, there are also others which are far away from these major
concentrations. For example, there are evidently a small number of “livestock products”
establishments in the northern tip of Hokkaido around the city of Wakkanai, and also
in the eastern tip of Hokkaido around Nemuro. But relative to the concentrations above,
these are clearly “outlier” areas. A less clear example is provided by the ring of four small
cities around Lake Saroma. But since there are not sufficiently many establishments
here to constitute even a small cluster, the significance of this grouping is nonetheless
questionable.

Cb-choice Cities. In view of these shortcomings of pb-choice cities, the main objective
of this paper is to strengthen this concept in a way that does indeed reflect the essential
spatial structure of each industry. In particular, we focus on those cities that share at
least part of a significant cluster for that industry. To do so, observe first that cities are
by definition collections of basic regions (municipalities) in R, so that each city, U ∈ U, is
formally a subset, U ⊂ R. Hence if the cluster scheme identified for each industry i ∈ I is
now denoted by Ci = (Ri0, Ci1, . . . , CikCi ,), then it would seem appropriate to focus on those
cities, U, that share at least one basic region with some cluster in Ci, i.e., which satisfy

U ∩ Cij �= ∅,(1)

C© 2011, Wiley Periodicals, Inc.
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FIGURE 6: Cb-Choice Cities.

for some j = 1, . . . , kCi . However, recall that our construction of clusters in terms of convex
solidification will often include “empty spaces,” i.e., basic regions with no establishments
in the given industry. This can be illustrated by the schematic cluster constructed in
Figure 1(d). This cluster is reproduced in Figure 6, where two specific cities, U1 and U2,
have also been added, where each consists of five basic regions (shown as hatched, with
the central region partially hidden by the city label).

Here both cities are seen to intersect this cluster. But while the black regions in
Figure 1 were assumed to contain industry establishments, it may well be that the gray
regions do not. In particular, the gray region shared with city U1 may in fact contain no
establishments of this industry whatsoever.30 While this will usually not be the case, condi-
tion (1) formally allows this possibility.31 Hence to ensure that the desired industry-choice
cities actually share establishments with the given industry cluster, it is appropriate to
strengthen condition (1) as follows. If nir denotes the number of i-establishments in region
r ∈ R, and if for each cluster, Cij ∈ Ci, we now let

C+
i j = {r ∈ Cij : nir > 0}

denote the set of i-employment regions in cluster Cij, i.e., basic regions with at least one
i-establishment, then we now designate a city, U ∈ U , as a cluster-based (cb) choice city for
industry i iff

U ∩ C+
i j �= ∅,(2)

for some Cij ∈ Ci, i.e., if and only if U shares an i-employment region with some cluster in
Ci.32 In addition, if we let

30Note that U1 is not a pb-choice city for industry i.
31For the case of Japan, where the overall density of industry establishments is very high, there

were actually no such cities with respect to the cluster schemes constructed in Mori and Smith (2009b).
But since the present framework is intended for general use, it is important to exclude such cities explicitly
[as in condition (2)].

32Here, it should be noted that this definition differs slightly from that in Mori and Smith (2009a)
where cities were required to satisfy condition (1) and to have a positive employment share. In the present
paper this is strengthened to require that the intersection in condition (1) itself has a positive employment
share. These two definitions are equivalent in the case of our present Japanese data, but are not so in
general.

C© 2011, Wiley Periodicals, Inc.



706 JOURNAL OF REGIONAL SCIENCE, VOL. 51, NO. 4, 2011

FIGURE 7: Number of Industry-Choice Cities under Two Approaches.

Ui = {U ∈ U : U ∩ C+
i j �= ∅ for some Cij ∈ Ci}(3)

denote the set of cb-choice cities for industry i, then by definition we must have Ui ⊆ U+
i ,

so that cb-choice cities are seen to be a formal strengthening of pb-choice cities.
This stronger definition can be illustrated schematically by city U2 in Figure 6, which

is in fact centered on one of the original (crossroad) regions of establishment concentra-
tions. Hence U2 constitutes an integral part of this cluster, and is clearly a cb-choice city
for the industry. Empirical examples of cb-choice cities for the “livestock products” indus-
try are provided by the five Hokkaido cities mentioned above. The boundaries defined
by these cities are denoted by the enclosed hatched areas in Figure 5, and in all cases
actually contain at least one significant “livestock products” cluster.

A comparison of the numbers of cb-choice cities versus pb-choice cities for each of
the 154 industries in I is shown in Figure 7. Notice in particular that for industries with
smaller numbers of cb-choice cities, many are on the 45-degree line. For these industries
(42 in number) every pb-choice city is also a cb-choice city. So the latter concept is seen to
be more important for more ubiquitous industries.

Finally, we note that these numbers of cb-choice cities for industries have spatial
consequences, and, in particular, reflect the spatial diversity of their location patterns.
Hence for each industry, i ∈ I, we now designate this number33 as the (cluster-based)
locational diversity34

33We shall denote the cardinality of each set A by |A|.
34This essentially replaces the term “degree of localization” used in Mori, Nishikimi, and Smith

(2008) for numbers of pb-choice cities. Our present terminology is designed to reflect the parallel between
locational diversity of industries and industrial diversity of cites, as seen more clearly in expressions (10)
and (11).

C© 2011, Wiley Periodicals, Inc.



MORI AND SMITH: AN INDUSTRIAL AGGLOMERATION APPROACH 707

di = |Ui| ,(4)

of industry i with respect to city system, U . A more general definition with respect to
arbitrary locational patterns of industries is given in expression (10).

Relative Industrial Concentration. Next recall that the primary motivation for intro-
ducing cb-choice cities was to capture the notion of substantial industry presence in a
city. Hence, it is important to ask whether industries are indeed more concentrated in
cb-choice cities than in pb-choice cities. Concentration can of course be defined in terms
of either establishment numbers or total employment. But as we shall see for the Japan
data, industries exhibit higher concentrations in their cb-choice cities than pb-choice cities
regardless of how concentration is defined.

If we first let the employment of industry i in city U be denoted by eiU , then we may
define the employment-concentration ratio, Remp

i , of average i-employment in cb-choice
cities (Ui) relative to all other pb-choice cities (U+

i − Ui) by:

Remp
i ≡

1
|Ui|

∑
U∈Ui

eiU

1∣∣U+
i

∣∣ − |Ui|
∑

U∈U+
i −Ui

eiU

, i ∈ I+,(5)

where I+ = {i ∈ I : |U+
i | > |Ui|}. As pointed out in the discussion of Figure 7, U+

i = Ui for
42 of the 154 industries with significant clustering. Hence in the present case, this set I+
consists of the remaining 112 industries for which the employment-concentration ratio
is meaningful. For these industries, the values of this ratio range from 2.37 to 120.97
(with an average value of 16.13). In particular, since all values are above 1, this shows
that all industries in I+ are relatively more concentrated in their cb-choice cities than in
their other pb-choice cities.35 The full histogram of such values is displayed in Figure 8(a),
where the vertical dashed line denotes the critical unit ratio value.

In a similar manner, recalling that niU denotes the number of i-establishment in U,
one can define the corresponding establishment-concentration ratio, Rest

i , by:

Rest
i ≡

1
|Ui|

∑
U∈Ui

niU

1∣∣U+
i

∣∣ − |Ui|
∑

U∈U+
i −Ui

niU

, i ∈ I+,(6)

where I+ has the same meaning as above. For the 112 industries in I+, these values range
from 2.52 to 71.74 (with an average value of 15.05), and hence are again all above unity,
as shown in Figure 8(b).

So regardless of how industry concentration is measured, it should be clear that
the restriction to cb-choice cities versus pb-choice cities does indeed capture “substantial
industry presence” in a structural manner, without imposing ad hoc conditions such as
industry-share thresholds.

35Here it should be noted that similar ratios are calculated in Mori and Smith (2009a). However,
the set of industries used for that analysis were required to be compatible across two time periods (1981
and 2001), and hence are somewhat different.
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FIGURE 8: Average Concentration in Cb- versus Pb-Choice Cities.

Cb-choice Industries

As a parallel to cb-choice cities, Ui, for each industry, i ∈ I, one can also identify for
each city, U ∈ U , the set of industries in I for which U is a cb-choice city. More formally, it
is natural to designate each industry in the set
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FIGURE 9: Number of Choice Industries in Cities under Two Approaches.

IU = {i ∈ I : U ∈ Ui},(7)

as a cluster-based (cb) choice industry for city U ∈ U . Similarly, as a parallel to pb-choice
cities, we may designate each industry in

I+
U = {i ∈ I : niU > 0},

as a presence-based (pb) choice industry for city U ∈ U .
In a manner similar to Figure 7, the numbers of cb-choice industries and pb-choice

industries are plotted in Figure 9 for each of the 258 cities in U .
Notice that in contrast to Figure 7, all cities have more pb-choice industries than

cb-choice industries, except for a few at the very highest end. But since this high end is
seen to involve nearly all 154 industries, these numbers are necessarily almost the same.
In the three largest cities (Tokyo, Osaka, and Nagoya) they are in fact identical.

While this alternative “slice” through the data is of course closely related to cb-
choice cities, the emphasis here is slightly different. For example, the notion of locational
diversity for industries in the Cb-choice Cities section above now has a clear parallel
with respect to cities. In particular, the number of cb-choice industries for each city is a
clear reflection of its industrial diversity. Hence, as a parallel to expression (4), we now
designate the number of cb-choice industries for each city, U ∈ U , as its (cluster-based)
industrial diversity,

dU = |IU| ,(8)

with respect to the family of industries in I. A more general definition in terms of arbitrary
spatial patterns of industries will be given in expression (11). This concept will play a
central role in our analysis of the Hierarchy Principle in the section A Test of the Hierarchy
Principle, below.
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In addition to this parallel between diversity measures, we can now construct concen-
tration ratios for cities paralleling those of industries in expressions (5) and (6). To do so,
it is important to note that while the employment levels, eiU , and establishment numbers,
niU , for a given industry i are directly comparable across cities, they are not comparable
across industries for a given city U. In particular, these values are only meaningful rel-
ative to the size of each industry. Hence to develop comparable concentration ratios for
cities, it seems more appropriate to use shares rather than counts. Hence, if we now let ei

denote the total employment in each industry i ∈ I, so that its employment share in city
U is given by eiU/ei, then an employment-concentration ratio, Remp

U , for city U paralleling
Remp

i above can be defined as

Remp
U ≡

1
|IU|

∑
U∈Ui

(eiU/ei)

1∣∣I+
U

∣∣ − |IU|
∑

U∈U+
i −Ui

(eiU/ei)
, U ∈ U+,

where U+ = {U ∈ U :
∣∣I+

U

∣∣ > |IU|}. As mentioned in the discussion of Figure 9, I+
U = IU

for the three largest cities in Japan. Hence, for our present data, U+ consists of the
remaining 255 cities for which this employment-concentration ratio is meaningful. For
these industries, the values of this ratio range from 0.35 to 37.58 (with an average value
of 6.51). The full histogram of values is given in Figure 10(a).

In particular, there are six (out of 255) cities for which this value is less than one, as
reflected by the position of the unit-ratio line in this figure. These few outliers are small
cities with clusters mainly in ubiquitous industries. Since employment in such industries
tends to be proportional to population, the industrial employment shares in these towns
are very small.

Turning finally to establishment concentrations for cities, if we now let ni denote the
total number of establishments in industry i, so that its establishment share in each city
U is given by niU/ni, then an establishment-concentration ratio, Rest

U , for city U paralleling
Remp

U above can be defined as

Rest
U ≡

1
|IU|

∑
U∈Ui

(niU/ni)

1∣∣I+
U

∣∣ − |IU|
∑

U∈U+
i −Ui

(niU/ni)
, U ∈ U+ .

Here the range of Rest
U is from 1.06 to 65.36 (with a mean of 5.10). Hence, in contrast

to Remp
U , this ratio is everywhere above one, as shown by the position of the unit-ratio

line in Figure 10(b). In particular, the six outliers for employment concentration above
now all have establishment-concentration ratios above 1. Here it is of interest to note
that if our cluster-detection procedure were based on employment densities (rather than
establishment densities), then these six cities would be likely to exhibit no significant
clustering at all.

4. HIERARCHY PRINCIPLE

The central purpose of this section is to reformulate the Hierarchy Principle of
Christaller (1966) in terms of our present notion of industrial diversity, and to develop
a test of this Principle. Recall that the original version of the Hierarchy Principle as-
serted that industries found in a city with a given population should also be found in all
cities with populations at least as large. In Mori, Nishikimi, and Smith (2008), it was
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FIGURE 10: Average Concentration of Cb- versus Pb-Choice Industries.

argued that rather than population, a more appropriate measure of “city size” would be
to use levels of industrial diversity. The notion of industrial diversity used there was
defined in terms of pb-choice industries for cities. With respect to our present notation,
this (presence-based) Hierarchy Principle asserted formally that for any cities, U, V ∈ U
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with |I+
U | ≤ |I+

V | and any industry, i ∈ I, if i ∈ I+
U then i ∈ I+

V . Hence our main objective is
to replace this definition with industrial diversity based on cb-choice industries for cities.
Again in terms of our present notation, this amounts to replacing the set of pb-choice in-
dustries, I+

U , for each city U with the corresponding set of cb-choice industries, IU(⊆ I+
U).

More formally, this (cluster-based) Hierarchy Principle now asserts that for any cities,
U, V ∈ U and industry, i ∈ I,

(i ∈ IU) & (|IU| ≤ |IV |) ⇒ i ∈ IV .(9)

As in Mori, Nishikimi, and Smith (2008), it should be emphasized that while this
modification has certain advantages, in terms of both interpretation and testing, it is
nonetheless very similar in the spirit to the original Hierarchy Principle. In particular,
the rankings of Japanese cities in terms of their populations and cluster-based industrial
diversities are quite similar [with a (highly significant) Spearman’s rank correlation of
0.742].

To reformulate the Hierarchy Principle, we begin by reformulating both industrial
diversity and locational diversity [expressions (4) and (8)] within a common framework
that is more useful for testing purposes. This will yield tests of these two diversity concepts
in the sections Test of Industrial Diversity and A Test of Locational Diversity, respectively.
The parallel test of the Hierarchy Principle is then developed in the section A Test of the
Hierarchy Principle. Finally, the relation between this Principle and the notion of “spe-
cialized cities” popularized by Henderson (1974) is developed in the section Specialization
and Agglomeration.

Industrial and Locational Diversity

To develop a common framework for industrial and locational diversity, it is conve-
nient to begin by defining a family of indicator functions, xiU : I × U → {0, 1}, for each
industry, i ∈ I, and city, U ∈ U , as follows36

xiU =
{

1, U ∈ Ui

0, otherwise .

The resulting vector of indicator values,

x = (xiU : i ∈ I,U ∈ U) ∈ {0, 1}I×U ≡ X,

then constitutes an industrial location pattern identifying both the cb-choice cities for
each industry, i ∈ I, and the cb-choice industries for each city, U ∈ U . In particular, for
each location pattern, x ∈ X, we now denote the set of cb-choice cities for industry i in x by

Ui(x) = {U ∈ U : xiU = 1},
and, similarly, denote the set of pb-choice industries for city U in x by

IU(x) = {i ∈ I : xiU = 1}.

36Here, it should be noted that the following framework is closely related to that in Mori, Nishikimi,
and Smith (2008) (starting on p. 185). The key difference is with respect to these indicator functions. In
Mori, Nishikimi, and Smith (2008) the set R consisted not of a partition of basic regions, but rather a set
of municipalities corresponding to Metropolitan Employments Areas (MEAs) (as mentioned in footnote
21). In the present paper we distinguish between basic regions (used for cluster identification) and cities,
U ∈ U , here defined to be Urban Employment Areas (UEAs), as in City Data section. More importantly, the
notion of pb-choice cities used to define indicator functions in Mori, Nishikimi, and Smith (2008) is here
replaced by cb-choice cities. Hence to avoid confusion, it is convenient to restate this formal framework
explicitly in terms of the present definitions.
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If the given set of industrial location data is now represented by the observed industrial
location pattern,

x0 = (
x0

iU : i ∈ I,U ∈ U)
,

then expressions (3) and (7) are related to the present framework by Ui ≡ Ui(x0) and IU ≡
IU(x0), respectively.

Within this more general setting, the locational diversity of industry, i ∈ I, in each
location pattern, x ∈ X, is now defined by

di(x) =
∑
U∈U

xiU = |Ui(x)|.(10)

The associated vector, dI(x) = [di(x): i ∈ I], then summarizes the locational diversity
structure for all industries with respect to x. Similarly, the industrial diversity of each
city, U ∈ U , in pattern x is defined by

dU(x) =
∑
i∈I

xiU = |IU(x)|,(11)

with associated vector, dU (x) = [dU(x) : U ∈ U], summarizing the industrial diversity struc-
ture for all cities with respect to x.

In particular, the observed locational diversity structure of industries is given by d0
I

= (d0
i : i ∈ I), where

d0
i = di(x0) =

∑
U∈U

x0
iU, i ∈ I.

Similarly, the observed industrial diversity structure of cities is given by d0
U = (d0

U :
U ∈ U), where

d0
U = dU(x0) =

∑
i∈I

x0
iU , U ∈ U .(12)

Finally, it should be noted that expressions (4) and (8) in the section Cluster-based
Industries above are related to the present definitions by |Ui| = di ≡ d0

i and |IU| = dU ≡ d0
U,

respectively.

A Test of Industrial Diversity

Before proceeding to the Hierarchy Principle itself, we begin by noting that the above
concepts of industrial and locational diversity structures are of interest in their own right.
In the present section, we consider the industrial diversity of cities in more detail, and
develop a test for the presence of significant diversity. A parallel analysis of the locational
diversity of industries is also developed below. Following Mori, Nishikimi, and Smith
(2008), we start by taking the observed structure of locational diversity among industries
as given, and identify the set of all industrial location patterns consistent with these data.
More precisely, for any given observed locational diversity structure, d0

I = (d0
i :i ∈ I), the

set of feasible location patterns, X0
I , consistent with d0

I is given by

X0
I =

{
x = (xiU : i ∈ I,U ∈ U) :

∑
U∈U

xiU = d0
i , i ∈ I

}
⊂ X .

By restricting industrial location patterns to those consistent with d0
I , one is preserving

as much of the actual locational diversity structure as possible. For example, ubiquitous
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industries with high levels of locational diversity will continue to be ubiquitous in all
location patterns, x ∈ X0

I .
In this context, one may then ask what the industrial diversity structure for cities

would look like if for these given levels of locational diversity for industries, the locational
pattern of industries was otherwise random. This may be formalized by treating location
patterns, x = (xiU : i ∈ I,U ∈ U), as possible realizations of a random vector, X = (XiU : i ∈
I,U ∈ U), and considering the null hypothesis:

H0
I : X is uniformly distributed on X0

I .(13)

In particular, to test whether the observed industrial diversity structure, d0
U , in (12) is more

heterogeneous than would be expected under H0
I , one may construct some appropriate

statistic, say S(x), reflecting the heterogeneity of industrial diversities among cities and
ask whether the observed value, S(x0), is higher (more heterogeneous) than would be
expected under H0

I . One simple choice for S(x) here is given by the range, �dU (x), of
industrial diversity levels in dU (x), as defined for each x ∈ X0

I by

�dU (x) ≡ max
U,V∈U

∣∣dU(x) − dV(x)
∣∣ .

Given this specification, the desired test can be carried out by simply generating a set
of Monte Carlo samples (xs : s = 1 , . . . , N) of X, and calculating the fraction of simulated
range values, [�dU (xs); s = 1, . . . , N], that are at least as large as the observed value,
�dU (x0). In the present case, such calculations are in fact unnecessary since the observed
value is literally “off the chart,” as shown by the vertical dashed line to the right of the
histogram of simulated range values with N = 1000 in Figure 11(a).

Here the observed value, �dU (x0) = 153, is vastly higher than the maximum simu-
lated value of �dU (x) = 43. Note that since there are only 154 industries in I, the observed
range is almost as large as possible (with an industrial diversity of 154 for Tokyo and an in-
dustrial diversity of 1 for the two cities in U with smallest populations, namely Ashibetsu
and Kucchan37). Hence it should be clear that even for simulated samples much larger
than N = 1000, the same results would obtain. So with respect to this range measure,
the observed pattern of industrial diversity in Japan is vastly larger than what would be
expected under randomness.

One alternative to the range would be to focus simply on the largest industrial
diversity among cities, namely to replace the range of values in dU (x) with the maximum
value:

dmax
U (x) ≡ max

U∈U
dU(x).

Exactly the same testing procedure with respect to this statistic (and N = 1000) yields
the results shown in Figure 11(b). Here (as mentioned above) the highest observed value
of 154 corresponds to Tokyo, while the highest simulated maximum value is only 89. So
these results again confirm the dramatic departure of the observed structure, dU (x0), of
industrial diversity from those simulated under the randomness hypothesis in (13).

To interpret these results, note that heterogeneity of industrial diversity suggests
that many cities tend to exhibit higher levels of industrial diversity than would be expected
under randomness. But since the number of cb-choice cities for each industry is being

37The single cb-choice industry for Ashibetsu (population = 21,026) is “newspaper industries”
(JSIC191) and that for Kucchan (population = 19,689) is “sugar processing” (JSIC125). Note also that
the number of cb-choice cities for “newspaper industries” and “sugar processing” are 153 and 49, respec-
tively. The former is a typical ubiquitous industry which is found in most cities, while the latter is relatively
localized industry. Thus, Kucchan can be considered as a typical instance of a “specialized-industry” town.
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FIGURE 11: Industrial Diversity of a City in Random Samples.

held constant (by the construction of X0
I ) this in turn implies that more of these locational

choices are coincident with other industries than would be expected. Hence these results
suggest that there is significant spatial coordination of agglomerations across industries,
as implied by the work of Christaller (1966) (together with more recent formalizations
of this work by Fujita, Krugman and Mori, 1999; Tabuchi and Thisse, 2009; Hsu, 2010).
Indeed, the test of Christaller’s Hierarchy Principle developed below will provide an even
more direct test of this spatial coordination among industries.
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FIGURE 12: Location Diversities of Industries in Random Samples.

A Test of Locational Diversity

In a manner completely paralleling the procedure in the section A Test of Industrial
Diversity above, one may also test for the presence of significant locational diversity among
industries given the observed level of industrial diversity among cities, as summarized
by the observed industrial diversity structure, d0

U = (d0
U : U ∈ U), defined by (12). Here we

simply sketch the main elements of this test. First, let the set of feasible location patterns
consistent with d0

U be denoted by

X0
U =

{
x = (xiU : i ∈ I,U ∈ U) :

∑
i∈I

xiU = d0
U,U ∈ U

}
⊂ X.(14)

Next, as a parallel to (13), consider the null hypothesis:

H0
U : X is uniformly distributed on X0

U(15)

which asserts that except for consistency with d0
U , industrial location patterns are oth-

erwise random. Here, the restriction to industrial diversity patterns consistent with d0
U

ensures the preservation of as much of the actual city structure as possible. For example,
Tokyo will continue to be a cb-choice city for every industry, and all smaller cities will
continue to have the same number of cb-choice industries as observed in actuality. To
measure the heterogeneity of locational diversity levels among industries, we shall here
only consider the range of such diversity levels, as defined for each locational pattern, x ∈
X0

U , by

�dI(x) ≡ max
i, j∈I

|di(x) − dj(x)|.

In these terms, we now wish to test whether the range of observed locational diversity
levels, �dI(x0), is significantly larger than would be expected under H0

U . The results of a
Monte Carlo test (again with N = 1,000 simulated samples of �dI(x) under H0

U ) are shown
in Figure 12.

Here the results are in some ways even more dramatic than those in Figure 11(a).
Out of the 258 possible cities in U , the observed range is 212 while the maximum range
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of the 1,000 random location patterns simulated is only 53. Here the most ubiquitous
industry (with 224 cb-choice cities out of 258) happens to be the industry manufacturing
“printing plates” (JSIC194). More generally, printing-related activities often require direct
interaction with customers, and are very market oriented. At the other extreme, the most
localized industries (each with only 12 cb-choice cities) are the “leather glove and mittens”
industry (JSIC245) and the “briquettes and briquette balls” industry (JSIC214). The
former is an example of a highly specialized industry that is concentrated almost entirely
in a group of three small villages accounting for over 90 percent of the national market
share (see the section Specialization and Agglomeration below for further discussion
of this industry).38 The latter is a good example of a resource-oriented (“first-nature”)
industry with establishments located primarily in the vicinity of briquette mines. Given
the locations of such mines in Japan, this industry turns out to be highly localized as well.

Two final points here relate to the interpretation of these results. First, it should be
clear that industries with high locational diversity must by definition have many estab-
lishments, and correspondingly large levels of employment. Hence, it can be argued that
such test results essentially reflect a diversity in the size of industries. Moreover, from an
economic viewpoint, such results in part reflect underlying variations in scale economies
among industries (as analyzed, e.g., in the city-system models of Fujita, Krugman and
Mori, 1999, and Hsu, 2010).

A Test of the Hierarchy Principle

Given these initial results, we now turn to the Hierarchy Principle itself. In a man-
ner similar to the diversity measures above, it is convenient to restate this Principle in
terms of industrial location patterns. As an extension of the definition in (9), we now say
that an industrial location pattern, x = (xiU : i ∈ I,U ∈ U) ∈ X, satisfies the (cluster-based)
Hierarchy Principle if and only if for each pair of cities, U, V ∈ U and industry, i ∈ I,

[i ∈ IU(x) & dU(x) ≤ dV(x)] ⇒ i ∈ IV(x).(16)

To test this Principle, we follow the basic approach developed in Mori, Nishikimi,
and Smith (2008). In particular, we start by representing the observed industrial location
pattern, x0 = (x0

iU : i ∈ I,U ∈ U), as in Figure 13.
Here cities, U ∈ U , are ordered on the horizontal axis from lowest to highest in terms

of their observed industrial diversities, d0
U . Similarly, industries, i ∈ I, are ordered in

terms of their observed locational diversities, d0
i . With respect to this coordinate system,

a “plus” symbol (+) in position (U, i) indicates that U is a cb-choice city for industry i (and
equivalently, that i is a cb-choice industry for city U). If we distinguish such positions as
positive, then the Hierarchy Principle asserts that for each positive position (U, i) there
must also be a (+) in every row position (·, i) to the right of (U, i), indicating that all
cities with industrial diversities greater than or equal to city U are also cb-choice cities
for industry i. It is evident from the figure that while the Hierarchy Principle does not
hold perfectly, the row density of (+) values increases from left to right in virtually every
row.39 Hence these data are seen to exhibit a strong level of agreement with the Hierarchy
Principle that could not have occurred by chance.40

38More generally, it is of interest to note that most leather/fur-related industries tend to be similarly
specialized with small locational diversities. In fact, five of the ten industries with smallest locational
diversities in Japan are in this category.

39It should also be noted that the SIC classification system for industries is by no means exact.
Hence some level of disagreement in such hierarchical relations is unavoidable.

40Note that this figure bares a strong resemblance to Figure 7 in Mori, Nishikimi, and Smith (2008),
as well as Figure 9 in Mori and Smith (2009a). The key difference from Mori, Nishikimi, and Smith (2008)
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FIGURE 13: Industry-Location Events.

In this context, one may regard each occurrence of a full row of (+) values to the
right of a positive position (U, i) as a “full hierarchy event” in the sense that it is fully
consistent with the Hierarchy Principle. However, if only small fraction of (+) values are
missing, then it is natural to consider such cases as being “closer” to a full hierarchy
event than if all (+) values were missing. To formalize these ideas for arbitrary industrial
location patterns, x, we first observe that such hierarchy events are only meaningful for
the positive positions in x (i.e., the pairs, iU, for which U is a cb-choice city for industry i
in x). Hence if for each industrial location pattern, x ∈ X, we now denote this set of positive
pairs by

Px = {iU ∈ I × U : xiU = 1}, x ∈ X

and for each city, U ∈ U , let

SU(x) = {V ∈ U : dV(x) ≥ dU(x)}.
denote the set of cities with industrial diversities in x at least as large as that of U, then
the desired fractional hierarchy event for each positive pair, iU ∈ Px, is defined to be41

is our present definition of cb-choice cities versus pb-choice cities. In addition, a larger set of cities is used
here (as described in City data section). The difference from Mori and Smith (2009a) is mainly in terms
of industries. In that paper, industries were required to be consistently defined over a 20-year span, thus
resulting in a smaller set of 139 industries. But in spite of these differences, the resulting figures are seen
to be qualitatively very similar.

41Note that U ∈ SU(x) ⇒ |SU(x)| > 0 for all U.
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FIGURE 14: Hierarchy Shares of Random Samples.

HiU(x) = 1
|SU(x)|

∑
V∈SU(x)

xiV .

By definition, 0 < HiU(x) ≤ 1,42 with the extreme case, HiU(x) = 1, constituting a full
hierarchy event at iU ∈ Px.

In these terms, a simple summary measure of the overall consistency of pattern, x ∈
X, with the Hierarchy Principle is given by the mean of these fractional hierarchy events,
which we now designate as the hierarchy share,

H(x) = 1
|Px|

∑
iU∈Px

HiU(x),

for pattern x. As a parallel to the underlying fractional hierarchy events, these hierarchy
shares must also satisfy 0 < H(x) ≤ 1.43 Moreover, the full equality condition, H(x) = 1,
implies that all fractional hierarchy events must be full, and hence from (16) that x must
satisfy the Hierarchy Principle. Thus, these hierarchy shares are seen to provide a natural
test statistic for the Hierarchy Principle itself.

In this context, it was argued in Mori, Nishikimi, and Smith (2008) that the most
appropriate null hypothesis for testing this Principle is precisely H0

U in (15), namely that
except for consistency with the given industrial diversity structure, d0

U = (d0
U : U ∈ U),

industrial locations are otherwise random. The advantage of this approach is that it
allows industrial location patterns to be “as random as possible” while maintaining the

42Note that iU ∈ Px implies xiU = 1, so that HiU(x) ≥ 1/|SU(x)| > 0.
43Note that from a technical viewpoint, H(x) is not defined for null pattern, xnull ∈ X, with xnull

iU = 0
for all iU. Indeed, the Hierarchy Principle is satisfied vacuously for this pattern since Pxnull = ∅. Hence,
for convenience, we simply ignore this degenerate case in all subsequent analyses.
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underlying city structure in terms of industrial diversity. So, for example, major cities like
Tokyo and Osaka will continue to have high levels of industrial diversity under H0

U .44

Given this null hypothesis, our test of the Hierarchy Principle is thus very similar to
that of locational diversity above. In particular, the observed industrial location pattern,
x0, is again hypothesized to be a typical realization of a uniform random variable, X, on
the set of feasible patterns, X0

U , in (14). The only difference here is that the relevant test
statistic is now taken to be the random hierarchy share variable, H(X). Hence, under H0

U ,
the observed hierarchy share, H(x0) (based on the data represented in Figure 13), should
be a typical realization of H(X). To test this, we again simulate N = 1,000 draws {xs : s =
1 , . . . , N} from X0

U and calculate their associated hierarchy shares, {H(xs) : s = 1 , . . . , N}.
Using these simulated data, one may estimate (as in Mori, Nishikimi, and Smith, 2008)
the cumulative frequency distribution, F(h) = Pr(H < h), of H under H0

U by

F̂(h) = 1
N

|{s : H(xs) < h}|,

and hence estimate the associated P-value for a one-sided test of H0
U by

P̂r[H ≥ H(x0)] = 1 − F̂[H(x0)].

For example, if H(x0) were larger than 99 percent of the simulated H(xs) values [so
that F̂[H(x0)] > 0.99] then P̂r[H ≥ H(x0)] < 0.01 would imply that the (estimated) chance
of observing a value as large as H(x0) under H0

U is less than 0.01, and thus that this null
hypothesis could be rejected at the 0.01 level.45

In fact, the evidence against H0
U is far stronger than this, as can be seen in Figure 12.

Here, the realized values are plotted (in a manner similar to Figure 12) as a histogram,
with the observed value, H(x0) = 0.771, again represented by a vertical dashed line. As
in Figure 12, this value is again well above the range of simulated values [0.634, 0.636],
and here provides strong evidence for the Hierarchy Principle.

In summary, these results serve to reconfirm the findings of Mori, Nishikimi, and
Smith (2008) under the present more stringent definition of industrial diversity in terms of
cb-choice cities. In particular, they show that even after controlling for relative industrial
diversities among cities, the location pattern of Japanese (three-digit) manufacturing
industries in 2001 shows very significant hierarchical structure.

Specialization and Agglomeration

It should be noted, however, that in spite of its statistical significance, the observed
hierarchy share, H(x0) = 0.771, is still well below unity. Moreover, since H(x0) is only an
average value over all industries, it should be clear that certain industries may in fact
exhibit large deviations from the Hierarchy Principle. To examine this question further,
we now let

Hi = 1
|Ui|

∑
U∈Ui

HiU(x0)

denote the (observed) hierarchy share for each industry i ∈ I. The histogram of these
values over the 154 industries in I is shown in Figure 15.

44Recall from the introductory discussion to Section 4 that these levels of industrial diversity are
indeed highly correlated with their city sizes.

45It should be noted that since H(x0) is formally postulated to be an additional sample of H(X) under
H0

U , one could also estimate F(h) using the larger sample, {H(xs):s = 0, 1 , . . . , N}, of size N + 1. But for
large N this will make little difference in the results.
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FIGURE 15: Hierarchy Share for Individual Industries.

TABLE 1: Industries Deviating from the Hierarchy Principle

JSIC Industries with the smallest hierarchy shares

248 Fur skins 0.213
262 Iron smelting, without blast furnaces 0.252
214 Briquettes and briquette balls 0.270
211 Petroleum refining 0.315
245 Leather gloves and mittens 0.318
261 Iron industries, with blast furnaces 0.364
326 Ophthalmic goods, including frames 0.406
346 Lacquer ware 0.417
147 Rope and netting 0.434
244 Leather footware 0.441

While the mean value, 0.697, is very close to that of the overall hierarchy share,
0.771,46 the individual values range from 0.213 to 0.969. Of particular interest for our
present purposes are those industries on the low end, that deviate quite dramatically
from the Hierarchy Principle. The 10 industries with smallest hierarchy shares, Hi, are
listed in Table 1.

These industries can be roughly classified into three groups. The first group of in-
dustries [“fur skins” (JSIC248), “leather gloves and mittens” (JSIC245), “leather tanning
and finishing” (JSIC241), and “ophthalmic goods, including frames” (JSIC326)] are all
examples of industries that are subject to industry-specific localization economies. When
production externalities are industry specific (such as those related to knowledge shared
among workers with specialized skills), the specific locations of industrial concentrations
may be largely determined by historical circumstances. For instance (as mentioned in
the section A Test of Locational Diversity), the “leather glove and mittens” industry is

46These two mean values are only guaranteed to be the same when the number of choice industries,
|Ui |, is the same for each industry i ∈ I.
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almost entirely concentrated in a cluster of three remote municipalities (Hikita, Shiratori
and Ohuchi) on Shikoku island (refer to Figure 3). While these municipalities have a
total population of only 38,000, they account for more than 90 percent of all leather glove
manufacturing in Japan. Similarly, the “opthalmic goods, including frames” industry is
highly concentrated in the small town of Sabae (population 65,000) on the northern coast
of Honshu (refer to Figure 3). This town also accounts for more than 90 percent of all eye
glass frames manufactured in Japan (and, in fact, 20 percent of all eye glass manufactur-
ing in the world). In both of these cases, there are no strong reasons other than historic
why such dramatic concentrations should be found at these locations.

The second group of industries [“iron smelting, without blast furnaces” (JSIC262),
“petroleum refining” (JSIC211), and “iron industries, with blast furnaces” (JSIC261)] is all
subject to large plant-level scale economies in production. Since their production processes
are relatively self-contained, these industries have little incentive to co-locate with other
industries. In particular, since most of their (weight/bulk intensive) inputs are imported
by sea, such industries must often compete for suitable coastal locations.

The final group of industries [“briquettes and briquette balls” (JSIC214) and “lacquer
ware” (JSIC346)] are examples of resource-oriented (“first-nature”) industries constrained
by their input-supply locations. For example (as mentioned in the section A Test of Loca-
tional Diversity) the “briquettes and briquette balls” industry is primarily located in the
vicinity of briquette mines.

What all of these groups have in common is a high degree of specialization in some
aspect of their production processes. This suggests that the degree of specialization among
industries may in fact help to explain deviations from the Hierarchy Principle. To test
this idea, one must construct some appropriate measure of “specialization.” Here, it is of
interest to note that while our present version of the Hierarchy Principle focuses on “sub-
stantial presence” of industries in given cities, there is no explicit consideration of their
actual employment shares in these cities. So one way to measure the “degree of specializa-
tion” for industry i is to focus on its employment shares across cities, and to quantify the
deviations of these shares from those of the manufacturing sector as a whole. To be more
precise, we first recall from the section Relative Industrial Concentration that eiU denotes
the total employment of industry, i ∈ I, in city, U ∈ U . With this notation, it follows that for
any given industry, i ∈ I, the within-industry employment share of i in city U is given by

sU|i = eiU∑
V∈U

eiV

.

Similarly, by letting eU = ∑
i∈IeiU denote total manufacturing employment in city U, it

follows that the corresponding total employment share, sU , in city U of all manufacturing
is given by

sU = eU∑
V∈U

eV

.

In this context, it is natural to regard equality between these two distributions as rep-
resenting the extreme case of “no specialization” for industry i. If this is formalized as a
null hypothesis:

Hi
0 : (sU|i = sU : U ∈ U),(17)

for industry i, then an appropriate statistic for testing this hypothesis is the Kullback-
Leibler (KL) divergence of distribution (sU|i : U ∈ U) from (sU : U ∈ U), as defined by (see
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FIGURE 16: Hierarchy Share and Specialization Index.

Kullback, 1959)

Di =
∑
U∈U

sU|i ln
(

sU|i
sU

)
.

As is well known, Di ≥ 0, and Di = 0 if and only if Hi
0 in (17) is satisfied. Hence, larger

values represent greater “deviations” from the distribution of total employment shares,
which in our present context suggests that Di can be interpreted as the degree of special-
ization for each industry, i ∈ I.47

Given this measure, the above observations suggest that those industries, i, with
greater deviations from the Hierarchy Principle (i.e., with lower hierarchy shares, Hi)
might in fact be those with higher degrees of specialization, as measured by Di. A plot of
Di against Hi for the 154 industries in I is given in Figure 16 (where the 10 industries in
Table 1 are labeled explicitly), and shows that there is indeed a strong negative relation
between these values. In particular, the Spearman’s rank correlation between the two is
−0.850, and is of course highly significant.

For completeness, the associated histogram of Di values is given in Figure 17. As
expected from the inverse relation between the two, this histogram is essentially the
reverse of that for Hi in Figure 15.

Given this inverse relationship, it is of interest to observe that from a theoretical
viewpoint, perhaps the most prominent competitor to the Hierarchy Principle in the eco-
nomic geography literature is the “system of cities model” (first introduced by Henderson,
1974) in which each city is specialized in a single industry (due to industry-specific exter-
nalities/scale economies). In this model, cities that are more specialized in a given industry

47For a similar application of KL-divergence to measure the degree of localization of industries, see
Mori, Nishikimi, and Smith (2005).
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FIGURE 17: Specialization Indices for Individual Industries.

are expected to exhibit a larger presence of that industry than other cities. More precisely, if
for any given city, U ∈ U , the within-city employment share of industry i in U is defined by

si|U = eiU∑
j∈I

e jU

= eiU

eU
,

then those cities U that are more specialized in industry i are expected to exhibit
higher within-industry employment shares, sU|i, than other cities. This specialization-
concentration hypothesis is indeed supported by our Japanese data. In particular, if for
each industry i ∈ I one calculates the Spearman’s rank correlation between these within-
city employment shares, (si|U : U ∈ U), and the corresponding within-industry employment
shares, (sU|i : U ∈ U), across cities, then the mean of these correlations is 0.697. Moreover,
there is a strong concentration around this mean, as shown by the histogram of rank cor-
relation values for all industries in Figure 18. Hence, while these correlations are by no
means perfect, they do suggest that elements of this “system of cities model” are exhibited
by manufacturing industries in Japan.

As a possible synthesis of these ideas, we note first that our present Hierarchy Prin-
ciple makes no assertion whatsoever about this specialization-concentration hypothesis.
For example, consider the extreme case in which a city system, U , satisfies the Hierar-
chy Principle for all industries, but that for each industry, i ∈ I, (i) all cb-choice cities,
U ∈ Ui, have the same within-city employment shares, si|U ≡ si > 0, and (ii) all other cities
have zero i-employment.48 Then, assuming that some cities are more specialized than
others (i.e., that hypothesis Hi

0 does not hold identically for all industries i), it is clear
that there can be no correlation between specialization and within-industry employment
shares. Hence such relationships are formally independent of the presence or absence of
industrial hierarchies.

48Note that in this extreme case, U also satisfies the presence-based Hierarchy Principle.
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FIGURE 18: Correlation between Employment Shares within a City (Si |U) versus
within an Industry (SU | i).

In view of this independence, the inverse relationship in Figure 16 suggests that
the structure of manufacturing in Japan exhibits both hierarchical and specialization-
concentration structure. Moreover, these two concepts appear to be complementary in that
specialization-concentration tends to be strongest in those industries where hierarchies
are the weakest. This suggests that perhaps a more satisfactory theory of urban industrial
structure should involve a synthesis of these two ideas.

5. NAS RULE

In addition to the Hierarchy Principle itself, it was also shown in Mori, Nishikimi and
Smith (2008, Theorems 1 and 2) that this Principle has consequences for both the NAS
Rule for industries and the Rank-Size Rule for cities. In particular, it was shown that in
the presence of the Hierarchy Principle, these two rules are essentially equivalent. While
these analytical results require that the classical (population based) Hierarchy Principle
hold exactly, they still suggest that in the presence of a strong hierarchical industrial
structure, these two rules should continue to exhibit a close relationship. In this regard, it
was shown empirically in Mori, Nishikimi, and Smith (2008) that for the presence-based
version of the Hierarchy Principle, both of these rules indeed exhibit strong statistical
significance. For the present cluster-based version of this Principle, it was also shown
in Mori and Smith (2009a) that both of these rules not only exhibit strong statistical
significance, but also remarkable stability over a 20-year time span.

With respect to the Rank-Size Rule in particular, the regression for 2000/2001 in
expression (13) of Mori and Smith (2009a) confirms the significance of this relation for
our present set of city data.49 However, since the NAS Rule involves both industry and city
data, and since our combined industry-city data differ from both these previous papers

49See Mori and Smith (2009a, pp. 197–202) for a complete discussion.
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(as discussed in the City Data section), it is of interest to reconsider the NAS Rule within
the present setting. Hence the main objective of this section is to reconfirm the NAS Rule
using the cluster-based choice cities generated by our present sets of industries, I, and
cities, U .

To do so, we start by recalling that the NAS Rule formulated in Mori, Nishikimi,
and Smith (2008) asserts that there is a log-linear relationship between the number and
average size of pb-choice cities for industries. This rule was motivated by a remarkably
strong log-linear regression obtained between these variables. In particular, if we let U∗

denote the set of 113 Metropolitan Employment Areas (MEAs) for Japan in 2000, and let
I∗ denote the larger set of 261 Japanese industries in 2000 including services, wholesale,
and retail, together with manufacturing,50 then this regression was based on the pb-choice
cities in U∗ for all industries in I∗.51 For these data sets, if we now denote the average
size of pb-choice cities in U∗ for a generic industry in I∗ by SIZE, and, similarly, denote
the number of such cities for this industry by #CITY, then the regression obtained was
as follows (where standard deviations of estimates are in parentheses):52

ln(SIZE) = 17.101
(0.0097)

− 0.712
(0.0022)

ln(#CITY), R2 = 0.998.(18)

As noted in that paper (and elsewhere) the usual independent-random-sampling assump-
tions underlying linear regression are questionable here. But the goodness-of-fit in terms
of R2 is so strong that this relation in fact appears to be almost deterministic. It was this
observation that inspired the NAS Rule.

To extend this analysis to the present setting, we now employ the larger set, U , of all
258 UEAs in Japan and the (more comparable) set, I, of 154 manufacturing industries in
Japan exhibiting significant clustering. For the sake of comparability with (18), we again
denote the average size of pb-choice cities in U for a generic industry in I by SIZE, and,
similarly, denote the number of such cities for this industry by #CITY. In these terms,
the results of the new regression yield:

ln(SIZE) = 17.030
(0.0200)

− 0.718
(0.0042)

ln(#CITY), R2 = 0.995.(19)

The similarity between (18) and (19) is apparent. Of special importance are the slope
and goodness-of-fit, which are essentially the same. Hence, the inclusion of all UEAs on
the city side, and the restriction to clustered manufacturing on the industry side, has not
altered the nature of this NAS regularity.

But as emphasized above, when industries are restricted to those exhibiting signif-
icant clustering, it is more appropriate to examine this NAS relationship in terms of

50The full set of such industries is 264 in number. But to maintain a parallel with the regression
in expression (2) of Mori, Nishikimi, and Smith (2008), the three obvious outliers in figure 1 of Mori,
Nishikimi, and Smith (2008), namely “coke” (JSIC213), “small arms (rifles)” (JSIC331), and “small arms
ammunition (bullets)” (JSIC333), are excluded from the regression (18). Here it should be noted that
these three industries are among the nine with spurious clustering, and hence are also excluded from the
regressions in (19) and (20). Finally, it should also be noted that the “rifles” industry (JSIC331) no longer
appears to be an outlier in Figure 19. This is a consequence of the addition of new establishments in this
(very small) industry between the 1999 establishment-location data used in Mori, Nishikimi, and Smith
(2008) and the 2001 establishment-location data used here.

51Similar results were reported for 1980 data. But for purposes of comparability with the present
data, we consider only the results for 2000.

52Note also that the intercept, 7.427, in expression (2) of Mori, Nishikimi, and Smith (2008) was
based on a regression using logs to the base 10, whereas the present results use natural logs. This affects
the intercept but not the slope. Hence the intercept (and standard error) reported here have been rescaled
to natural logs [i.e., multiplied by ln (10)].
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cluster-based choice cities. Hence, if this regression is re-run using the smaller set of
cb-choice cities for each industry, and if again for the sake of comparison we denote the
average size of cb-choice cities in U for a generic industry in I by SIZE, and denote the
number of such cities for this industry by #CITY, then the results of this new regression
yield:

ln(SIZE) = 17.011
(0.0278)

− 0.717
(0.0062)

ln(#CITY), R2 = 0.989.(20)

It is the relation between (19) and (20) which is of primary interest for our present
purposes. Here, again it is clear that these results are almost indistinguishable. So even
when all noncluster-based pb-choice cities are eliminated (such as those illustrated for the
“livestock products” industry in Figure 5), this NAS relationship remains strong. Indeed
it is our belief that this relationship among the choice cities for each industry is most
meaningful when restricted to those cities exhibiting a substantial industry presence in
terms of clustering.

A visual comparison of (19) and (20) can also be made by examining panels (a) and
(b) of Figure 19, respectively, where these regressions correspond to the solid lines in
each panel. It should also be noted that the data points for the 154 industries in I are
represented by the (+) symbols in both panels. The additional points shown by (�) symbols
correspond to the remaining nine industries with spurious clustering (as discussed in the
Industry Data section). Given this distinction, notice first that the five dramatic outliers in
these regressions are all among the nine industries with spurious clustering. In our view,
this adds further credence to the hypothesis that industrial clustering plays a significant
role in the NAS Rule itself.

The two dashed curves in each panel represent the upper and lower bounds for
the average size of any given number of choice cities. In particular, for each number, n,
the upper [resp., lower] bound of the average population size of n choice cities is given
by that of the n largest [resp., smallest] cities. Recall that under original (population
based) Hierarchy Principle (defined in Section 4), the average size of choice cities for each
industry should achieve these upper bounds exactly. Hence, in the presence of a strong
hierarchical structure of industries, it is reasonable to expect that these average sizes of
choice cities will be close to their upper bounds. As seen in both panels of Figure 19, this
is indeed the case.

Notice also that the upper-bound curve is nearly log linear. It is shown by Mori,
Nishikimi and Smith (2008, Theorem 2) that the log linearity of this upper bound is
essentially equivalent to that of the rank size distribution for a large number of cities.

Next, observe that all industries with less than about 30 choice cities are identical in
these two scatter plots. The reason for this can be seen in Figure 7 where these industries
all appear on the 45◦ line, indicating that every pb-choice city for these industries is also
a cb-choice city. Indeed, when the number of pb-choice cities for an industry is small, it is
reasonable to expect that even cities with only a few of its establishments will constitute
a substantial contribution to BIC (in our cluster-detection algorithm presented in the
section Cluster-detection Procedure), and hence will qualify as cb-choice cities. Additional
evidence for this is provided by the fact that the number of clusters per establishment
is strongly negatively correlated with the number of establishments across industries
(Spearman’s rank correlation = −0.971).

Note finally that this NAS relation appears to be the strongest among those indus-
tries with large numbers of choice cities. This suggests that there may indeed be some

C© 2011, Wiley Periodicals, Inc.



728 JOURNAL OF REGIONAL SCIENCE, VOL. 51, NO. 4, 2011

FIGURE 19: The Number-Average Size Rule.
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“threshold” level of locational diversity required for industries to exhibit this type of
regularity.53

6. CONCLUDING REMARKS

In this paper, we have introduced the concept of cluster-based choice cities for an
industry as a means of identifying those cities with a substantial industry presence.
This concept was in turn used to develop modified forms of both the classical Hierarchy
Principle of Christaller (1966) and the NAS Rule of Mori, Nishikimi, and Smith (2008).
Finally, these modified regularities were shown to exhibit a significant presence with
respect to Japanese manufacturing and city data from 2000/2001.

But this industrial agglomeration approach to central place and city-size regulari-
ties also raises a number of additional issues that are appropriate to touch on in these
concluding remarks.54

Level of Industrial Aggregation

It should be clear that the notion of industrial clustering itself depends critically on
the level of industrial aggregation employed. Indeed, for the completely disaggregated
case in which each establishment constitutes a single industry category, there can be
no meaningful notion of clustering at all. This is equally true for the notion of cluster-
based choice cities. Even at intermediate levels of aggregation, the set of choice cities for
industrial categories may change drastically. For example, recall from Figure 2 that at
the JSIC three-digit level used in this paper, the “livestock products” industry in Japan
consists of a large number of small clusters spread throughout the nation. But, it is not
clear that all types of livestock (e.g., poultry, cattle, hogs) are equally represented by each
cluster. In particular, some types of livestock may be confined to specific sub-regions of
the nation.

These aggregation effects in turn have consequences for the validity of both the
Hierarchy Principle and the NAS Rule. Indeed neither regularity is even meaningful
for completely disaggregated (or completely aggregated) industries. Hence it is clearly of
interest to examine the sensitivity of these regularities to alternative levels of aggregation,
and, in particular, to identify the level of aggregation (industrial classification) at which
these regularities are most pronounced.

To obtain data at a finer level of disaggregation, observe that since the present analy-
sis requires only the number of industry establishments in each municipality, it is possible
to extract such data from the telephone directory. For Japan, we have recently been able to
obtain industrial location data for municipalities in 2006 based on the four-digit Nippon
Telegraph and Telephone Business Classification System (NTTBCS). This more detailed
data contain 557 manufacturing categories with positive employment, versus the 163 cat-
egories at the JSIC three-digit level used in the present analysis. By applying the present
analysis at the NTTBCS four-digit level, we should at least be able to identify differences
between these regularities for two important levels of aggregation. Such comparisons will
be reported in subsequent work.

53This is somewhat analogous to the Rank-Size Rule presented in Mori and Smith (2009a, Figure 10),
where large cities seem to exhibit special “outlier” features. Hence for the case of the NAS Rule, it would
appear that industries with small numbers of choice cities (either pb or cb) play a similar role.

54See the companion papers, Mori, Nishikimi and Smith (2008, Section 6) and Mori and Smith
(2009a, pp. 202–204) for further discussions of our research agenda.
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Comparison with the US City System

While this cluster-based approach to central place and city-size regularities has been
shown to be successful for the case of Japan, it is important to ask whether such regu-
larities hold more generally. For the US case, Hsu (2010) has shown that the NAS Rule
(defined with respect to pb-choice cities) exhibits a significant presence in both the three-
and four-digit industry classifications based on the North American Industry Classifica-
tion System (NAICS).55 This suggests that such regularities should continue to hold for
definitions based on cb-choice cities, and will be examined in subsequent work.

In addition, County Business Pattern Data for the United States provide establish-
ment locations (at the county level) for industries up to the six-digit level going back as
far as 1998. In particular, this data set includes 473 manufacturing categories with pos-
itive employment in 2007, which is roughly comparable to the four-digit NTTBCS data
for Japan mentioned above. Hence by using these two data sets, it should be possible to
conduct comparative studies of the United States and Japan – at a level of aggregation
that is much finer than that used in the present paper.

The Role of Spatial Structure

Finally, while the success of these cluster-based formulations suggest that both the
Hierarchy Principle and NAS Rule reflect underlying spatial coordinations between pop-
ulation and industrial agglomerations, there is no explicit mention of spatial structure
whatsoever. However, the theoretical models of urban hierarchies mentioned above (Fu-
jita, Krugman and Mori, 1999; Tabuchi and Thisse, 2006, 2009; and Hsu, 2010) indicate
that transport costs, scale economies and externalities may influence the spacing of ag-
glomerations within each industry, and thus implicitly determine the spacing of their
cb-choice cities. If so, then by studying the spatial relationships of cb-choice cities both
within and between industries, one may hope to gain further insight into the underlying
causes of these regularities. Initial efforts to quantify both the spacing of clusters within
industries and the spatial coordination of clusters between industries were reported in
Mori and Smith (2009b, Sections 8.2 and 8.3). Such tools will be employed in subsequent
work to examine these spatial questions.
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