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4. K-Function Analysis of Point Patterns 
 
In the Bodmin Tors example above, notice from Figure 3.14a (p.20) that the clustering 
structure is actually quite different from that of the Redwood Seedling example in Figure 
3.12a (p.12). Rather than small isolated clumps, there appear to be two large groups of 
points in the northwest and southwest, separated by a large empty region. Moreover, the 
points within each group are actually quite evenly spaced (locally dispersed). These 
observations suggest that the pattern of tors exhibits different structures at different 
scales. Hence the objective of the present section is to introduce a method of point pattern 
analysis that takes such scale effects into account, and in fact allows “scale” to become a 
fundamental variable in the analysis. 
 
4.1 Wolf-Pack Example 
 
To motivate the main ideas, we begin with a new example involving wolf packs. A map 
is shown in Figure 4.1a below representing the relative locations of wolf packs in a 
portion of the Central Arctic Region in 1998.1 The enlarged portion in Figure 4.1b is a 
schematic map depicting individual wolves in four of these packs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Fig.4.1a. Map of Wolf Packs                             Fig.4.1b. Enlarged Portion 
 
 
At the level of individual wolf locations in Figure 4.1b, there is a pattern of isolated 
clumps that bears a strong resemblance to that of the Redwood seedlings above.2 
Needless to say, this pattern would qualify as strongly clustered. But if one considers the 
larger map in Figure 4.1a, a different picture emerges. Here, the dominant feature is the 
remarkable dispersion of wolf packs. Each pack establishes a hunting territory large 
enough for its survival (roughly 15 to 20 km in diameter), and actively discourages other 

                                                 
1 This map is based on a more detailed map published in the Northwest Territories Wolf Notes, Winter 
1998/99. See the class file: ese502/extra_materials/wolf_packs.jpg. 
2 The spacing of individual wolves is of course exaggerated to allow a representation at this scale.  
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packs from invading its territory.3 Hence this pattern of wolf locations is very clustered at 
small scales, and yet very dispersed at large scales.   
 
But if one were to analyze this wolf-location pattern using any of the nearest-neighbor 
techniques above, it is clear that only the small-scale clustering would be detected. Since 
each wolf is necessarily close to other wolves in the same dens, the spacing between dens 
would never be observed. In this simple example one could of course redefine wolf dens 
to be aggregate “points”, and analyze the spacing between these aggregates at a larger 
scale. But there is no way to analyze multiple scales using nearest neighbors without 
some form of re-aggregation.4 
 
4.2 K-Function Representations 
 
To capture a range of scales in a more systematic way, we now consider what amounts to 
an extension of the quadrat (or cell-count) method discussed in section 1 above.  In 
particular, recall that the quadrat method was criticized for being too dependent on the 
scale of individual cells. Hence the key idea of K-functions is to turn this dependency 
into a virtue by explicitly incorporating “scale” as a variable in the analysis. Thus, rather 
than fixing the scale and locations of cell grids, we now consider randomly sampled cells 
of varying sizes. While many sampling schemes of this type can be defined, we shall 
focus on the single most basic scheme which is designed to answer the following 
question for a given point process with density  : What is the expected number of point 
events within distance h  from any randomly sampled point event? Note that this expected 
number is not very meaningful without specifying the point density,  , since it will of 
course increase with  . Hence if we divide by   in order to eliminate this obvious 
“density effect” then the quantities of interest take the form: 
 
(4.2.1)    1( ) (number of  events within distance, , of an arbitrary event)K h E additional h   

 
If we allow the distance or scale, h , to vary then expression (4.2.1) is seen to define a 
function of h , designated as a K-function.5 As with nn-distances, these values, ( )K h , 
yield information about clustering and dispersion. In the wolf-pack example above, if one 
were to define ( )K h  with respect to small distances, h , around each wolf in Figure 4.1b, 
then given the close proximity to other wolves in the same pack, these values would 
surely be too high to be consistent with CSR for the given density of wolves in this area. 
Similarly, if one were to define ( )K h  with respect to much larger distances, h , around 
each wolf in Figure 4.1a, then given the wide spacing between wolf packs (and the 
relative uniformity of wolf-pack sizes6), these values would surely be too low  to be 
                                                 
3 Since wolves are constantly on the move throughout their hunting territories, the actual locations shown in 
Figure 1a are roughly at the centers of these territories. 
4 One could also incorporate larger scales by using higher-order nearest neighbors [as discussed for 
example in Ripley (1996, sec.6.2)]. But these are not only more complex analytically, they are difficult to 
associate with specific scales of analysis. 
5 This concept was popularized by the work of Ripley (1976,1977). Note also that following standard 
convention, we now denote distance by h  to distinguish it from nn-distance, d . 
6 Wolf packs typically consist of six to eight wolves (see the references in footnote 1 above).  
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consistent with CSR for the given density of wolves. Hence if one can identify 
appropriate bench-mark values for ( )K h  under CSR, then these K-functions can be used 
to test for clustering and dispersion at various scales of analysis. We shall consider these 
questions in more detail in Section 4.4 below. 
 
But for the moment, there are several features of definition (4.2.1) that warrant further 
discussion. First, while the distance metric in (4.2.1) is not specified, we shall always 
refer to Euclidean distance, ( , )d s v  between pairs of points, as defined expression (3.2.1) 
above. Hence with respect to any given point event, s , the expected number of point 
events within distance h  of s  is simply the expected number of such events a circle of 
radius h  about s , as shown in Figure 4.2 below. 
 
 
 
 
 
 
 

 
 

Fig.4.2. Interpretation of K(h) 
 
This graphical image helps to clarify several additional assumptions implicit in the 
definition of ( )K h . First, since this value is taken to depend only on the size of the circle 
(i.e., the radius h ) and not its position (i.e., the coordinates of s ) there is an implicit 
assumption of spatial stationarity [as in expression (2.5.1) above]. In other words, it is 
assumed that the expected number of additional points in this circle is the same regardless 
of where s  is located. (This assumption will later be relaxed in our Monte Carlo 
applications of K-functions).  
 
Observe next that the circularity of this region implicitly assumes that direction is not 
important, and hence that the underlying point process is isotropic (as in Figure 2.2 
above). On the other hand, if the point process of interest were to exhibit some clear 
directionality, such as the vertical directionality in shown in Figure 2.3 above, then it 
might be more appropriate to use directional ellipses as defined by weighted Euclidean 
distances of the form: 
 

(4.2.2)   2 2
1 1 1 2 2 2( , ) ( ) ( )d s v w s v w s v       

 
where the weights 1w  and 2w  reflect relative sensitivities of point counts to movements 

in the horizontal or vertical direction, respectively.7 More generally, if the relevant point 

                                                 
7 One can also use appropriate quadratic forms to define anisotropic distances with any desired directional 
orientations. We shall consider such distances in more detail in the analysis of spatial variograms in Part II 
of this NOTEBOOK. 

 s  

h  
( )K h   Expected Number  

                    of Points in here 
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events occur in specific environments (such as the patterns of Philadelphia housing 
abandonments in Figures 1.4 and 1.5), then the relevant distances might be determined by 
these environments (such as travel distance on the Philadelphia street system).8  
 
Finally, it is important to emphasize that the expected value in (4.2.1) is a conditional 
expected value. In particular, given that there is a point event, s , at the center of the 
circle in Figure 4.2 above, this value gives the expected number of additional points in 
this circle. This can be clarified by rewriting ( )K h  in terms of conditional expectations. 
In particular if [as in Section 3.2.1 above] we now denote the circle in Figure 4.2 minus 
its center by  
 
(4.2.3)  { } { : 0 ( , ) }hC s v R d v s h      

 
then ( )K h  can be written more precisely as follows:  
 
(4.2.4)  1( ) [ ( { }) | ( ) 1]hK h E N C s N s    

 
To see the importance of this conditioning, recall from expression (2.3.4) that for any 
stationary process (not just CSR processes) it must be true that the expected number of 
points in { }hC s  is simply proportional to its area, i.e., that 

 
(4.2.5)  ( { }) ( { })h hE C s a C s    

 
But this is not true of the conditional expectation above. Recall from the wolf-pack case, 
for example, that for small circles around any given wolf, the expected number of 
additional wolves is much larger than what would be expected based on area alone [i.e., 
is larger than ( { })ha C s  ]. These ideas will be developed in more detail in Section 4.4, 

where it is shown that such deviations from simple area proportionality form the basis for 
all K-function tests of the CSR Hypothesis. 
 
4.3 Estimation of K-Functions 
 
Given this general definition of K-functions as (conditional) expected values, we now 
consider the important practical question of estimating these values. To do so, we 
introduce the following notation for analyzing point counts. For any given realized point 
pattern, ( : 1,.., )n iS s i n  , and pair of points ,i j ns s S  we now denote the Euclidean 

distance between them by 
 
(4.3.1)  ( , )ij i jd d s s  

 
and for any distance, h , define the indicator function, hI , for point pairs in nS  by 

                                                 
8 Here it should be noted that tools are available in the spatial analyst extension of ARCMAP for 
constructing cost-weighted and shortest-paths distances. However, we shall not do so in this NOTEBOOK. 
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(4.3.2)  
1 ,

( ) [ ( , )]
0 ,

ij

h ij h i j
ij

d h
I d I d s s

d h


   

 

 
From this definition it follows at once that for any given point i ns S , the total number of 

additional points js  within distance h  of is  is given by the sum ( )j i h ijI d . Hence, if i  

now refers to a randomly selected point generated by a point process on R, and if both the 
number and locations of points in R are treated as random variables, then in terms of 
(4.3.2) the K-function in (4.2.1) above can now be given the following equivalent 
definition: 
 

(4.3.3)   1( ) ( )h ijj i
K h E I d 

     

 
Observe also that for stationary point processes the value of ( )K h  must be independent 
of the particular point event i  chosen. So multiplying through by   in (4.3.3) and 
summing over all point events 1,..,i n  in region R, it follows that 
 

(4.3.4)        
1

( ) ( ) , 1,.., ( ) ( )
n

h ij h ijj i i j i
E I d K h i n E I d n K h 

  
             

 

            
1

1( ) ( )
n

h iji j inK h E I d  
       

 
This “pooled” version of ( )K h  motivates the following pooled estimate of ( )K h , 
designated as the sample K-function, 
 

(4.3.5)  
1

1
ˆ

ˆ ( ) ( )
n

h iji j in
K h I d

  
    

 
 

where again, ˆ / ( )n a R  .9 The advantage of this estimator is that it uses all points of the 

given realized point pattern nS  in R. To interpret  ˆ ( )K h , note that if we rewrite (4.3.5) as 

 

 (4.3.6)   1
1 1
ˆ

ˆ ( ) ( )
n

h iji j inK h I d
  
 
    

 
then the expression in brackets is seen to be simply an average of the relevant point 
counts for each of the pattern points, i ns S . Hence, if the underlying process were truly 

stationary (and edge effects were small) then this sample K-function would be 
                                                 
9 At this point it should be noted that our notation differs from [BG] where regions are denoted by a script 
 with area R. Here we use R for region, and make the area function, ( )a R , explicit. In these terms, (4.3.5) 

is seen to be identical to the estimate on the top of p. 93 in [BG], where 2ˆ1/( ) ( ) /n a R n  . 
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approximately unbiased (and reasonably efficient) as an estimator of the common 
expected point count [ ( )]j i h ijE I d  in (4.3.3).10 

 
However, since this idealization can never hold exactly in bounded regions R, it is 
necessary to take into account the edge effects created by the boundary of R. Unlike the 
case of nn-distances, where the expected values of nn-distances are increased for points 
near the boundary (as in Figure 3.16), the expected value of point counts are reduced for 
these points, as shown in Figure 4.3a below. 
 
 
 
 
 
 
 
 
 
 
 
 
           Fig.4.3a. Edge Effects for K(h)                     Fig.4.3b. Ripley’s Correction 
 
 
To counter this downward bias, Ripley (1976) proposed a “corrected” version of (4.3.5) 
that is quite effective in practice. His correction consists of weighting each point, js , in 

the count ( )j i h ijI d  in a manner that inflates counts for points near the boundary. If one 

considers the circle about is  passing through js  (as shown in Figure 4.3b) and defines 

ijw  to be the fraction of its circumference that lies inside R, then the appropriate 

reweighting of js  in the count for is  is simply to divide ( )h ijI d  by ijw , producing a new 

estimate known as Ripley’s correction: 
 
 

(4.3.7)  
1

1
ˆ

( )ˆ ( )
n h ij

i j i
ij

n

I d
K h

w  
    

 
 
One can gain some intuition here by observing in Figure 4.3b that weights will be unity 
unless circle about is  passing through js  actually leaves R. So only those point pairs will 

be involved that are close to the boundary of R, relative to distance h . Moreover, the 
closer that js  is to the edge of R, the more of this circumference is outside R, and a hence 

the smaller ijw  becomes. This means that values ( ) /h ij ijI d w  are largest for points closest 

                                                 
10 For further discussion of this approximate unbiasedness see Ripley (1977, Section 6). 
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to the edge, thus inflating ˆ ( )K h  to correct the bias. [An explicit derivation of Ripley’s 
correction in given in Section 6 of the Appendix to Part I.] 
 
It should be emphasized that while Ripley’s correction is very useful for estimating the 
true K-function for a given stationary processes, this is usually not the question of most 
interest. As we have seen above, the key questions relate to whether this process exhibits 
structure other than what would be expected under CSR, and how this structure may vary 
as the spatial scale of analysis is increased. Here it turns out that in most cases, Ripley’s 
correction is not actually needed. Hence this correction will not be used in the analysis to 
follow.11 
 
4.4 Testing the CSR Hypothesis 
 
To apply K-functions in testing the CSR Hypothesis, it is convenient to begin by ignoring 
edge effects, and considering the nature of K-functions under this hypothesis for points, 
s R  and distances, h , that are not influenced by edge effects. Hence, in contrast to 
Figure 4.3a above, we now assume that the set of locations, hC , within distance h  of s  is 

entirely contained in R , i.e., that 
 
(4.4.1)  { : ( , ) }hC v R d s v h R     

 
Next recall from the basic independence assumption about individual point locations in 
CSR processes (Section 2.2 above) that for such processes, the expected number of points 
in { }hC s  does not dependent on whether or not there is a point event at s , so that 

 
(4.4.2)  [ ( { }) | ( ) 1] [ ( { })]h hE N C s N s E N C s     

 
Hence from expression (4.2.3), together with the area formula for circles [and the fact 
that ( { }) ( )h ha C s a C  ], it follows that  

 
(4.4.3)  2[ ( { }) | ( ) 1] ( { }) ( )h h hE N C s N s a C s a C h                                                              

 
which together with expression (4.2.4) yields the following simple K-function values:  
 
(4.4.4)  2 21( ) ( )K h h h     

 
Thus by standardizing with respect to density,  , and ignoring edge effects as in (4.4.1), 
we see that the K-function reduces simply to area under the CSR Hypothesis. Note also 
that when 2( )K h h , this implies a mean point count higher than would be expected 
under CSR, and hence indicates some degree of clustering at scale h (as illustrated in 

                                                 
11 Readers interested in estimating the true K-function for a given process are referred to Section 8.4.3 in 
Cressie (1993), and to the additional references found therein. 
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Section 4.2 above). Similarly, a value 2( )K h h  implies a mean point count lower than 
would be expected under CSR, and hence indicates some degree of dispersion at scale h . 
Thus for any given 0h  , 
 
   2( )K h h  clustering at scale h 
(4.4.5) 
   2( )K h h  dispersion at scale h 
 
While these relations are adequate for testing purposes, area values are difficult to 
interpret directly. Hence it usually convenient to further standardize K-functions in a 
manner that eliminates the need for considering these values. If for each h  we let 
 

(4.4.6)  
( )

( )
K h

L h h


   

 
then under CSR, this L-function has the property that 
 

(4.4.7)  
2

( ) 0
h

L h h h h



      

 
for all 0h  . In other words, this associated L-function is identically zero under CSR. 
Moreover, since ( )L h  is an increasing function of ( )K h , it follows that ( )L h  is positive 

exactly when 2( )K h h , and is negative exactly when 2( )K h h . Hence the relations 
in (4.4.5) can be given the following simpler form in terms of L-functions: 
 
 
  ( ) 0L h   clustering at scale h 
(4.4.8) 
  ( ) 0L h   dispersion at scale h 
 

Given the estimate, ˆ ( )K h , in (4.3.7) above, one can estimate ( )L h  by 
 

(4.4.9)  
ˆ ( )ˆ( )

K h
L h h


   

 
and can in principle use (4.4.8) to test for clustering or dispersion. 
 
 
4.5  Bodmin Tors Example  
 
We can apply these testing ideas to Bodmin by using the MATLAB program, 
k_function.m. The first few lines of this program are shown below: 
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function C = k_function(loc,area,b,extent) 
 
% K_FUNCTION computes the k-Function for a point pattern 
%            and plots the normalized L-Function (without  
%            edge corrections) 
 
% Written by: TONY E. SMITH, 11/26/01 
 
% INPUTS: 
%     (i)   loc       = file of locations (xi,yi), i=1..m 
%     (ii)  area    = area of region 
%     (iii)  b         = number of bins to use in CDF (and plot) 
%     (iv) extent  = 1 if max h = half of max pairwise distance (typical case) 
%                        = 2 if max h = max pairwise distance to be considered 
% DATA OUTPUTS: C = (1:b) vector containing raw Point Count 
% SCREEN OUTPUTS:  Plot of L-Function over the specified extent. 

 
 
 
 
To apply this program, again open the data file, Bodmin.mat, and recall that the tor 
locations are given in the matrix, Bodmin. As seen above, the program first computes 
ˆ ( )K h  for a range of distance values, h , and then coverts this to ˆ( )L h  and plots these 

values against the reference value of zero. The maximum value of h  for this illustration 
is chosen to be the maximum pairwise distance between pattern points (tors), listed as 
option 2 in input (iv) above. The number of intermediate distance values (bins) to be used 
is specified by input (iii). Here we set b = 20. Hence to run this program, type: 
 
>> k_function(Bodmin,area,20,2); 
 
The resulting plot is shown in Figure 4.4 
to the right. Here the horizontal line 
indicates the “theoretical” values of ( )L h  
under the CSR Hypothesis. So it would 
appear that there is some degree of 
clustering at small scales, h . However, 
recall that the above analysis was 
predicated on the assumption of no edge 
effects. Since there are clearly strong edge 
effects in the Bodmin case, the real 
question here is how to incorporate these 
effects in a manner that will allow a 
meaningful test of CSR.  
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One approach is suggested by recalling that random point pattern for Bodmin was also 
generated in Figure 3.14b above. Hence if the L-function for such a random pattern is 
plotted, then this can serve as a natural benchmark against which to compare the L-
function for tors. This random pattern is contained in the matrix, Bod_rn2, of data file 
Bodmin.mat (and is also shown again in Figure 4.7 below). Hence the corresponding 
command, k_function(Bod_rn2,area,20,2), now yields a comparable plot of this 
benchmark L-function as shown in Figure 4.5 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here it is clear that the L-function for this random pattern is not flat, but rather is 
everywhere negative, and decreases at an increasing rate. Hence relative to zero, this 
pattern appears to exhibit more and more dispersion as the scale increases. 
 
The reason for this of course is that the theory 
above [and expression (4.4.1) in particular] 
ignores those points near the boundary of the 
Bodmin region, such as the point shown in 
Figure 4.7. Here it is clear that for sufficiently 

small scales, h , there is little effect on ˆ( )L h , 
so that values are close to zero for small h . 
But as this radius increases, it is also clear that 
most of the circle is eventually outside of R, 
and hence is mostly empty. Thus, given the 

estimated point density, ̂ , for Bodmin tors 
inside R, point counts for large h  start to look 
very small relative to the area 2h . This is 
precisely the effect that Ripley’s correction 
[expression (4.3.7)] attempts to eliminate.12 
 

                                                 
12 A nice comparison of Ripley’s correction with uncorrected L-functions (such as in Figure 4 above) is 
given in Figure 8.15 of Cressie (1993, p.617).  
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But if we now ignore the zero reference line and use this random L-function as a 
benchmark, then a perfectly meaningful comparison can be made by overlaying these two 
L-functions, as in Figure 4.6 above. Here one can see that the region of relative clustering 
is now considerably larger than in Figure 4.4, and occurs up to a scale of about 8h   (see 
the scale shown in Figure 3.14). But observe even these benchmark comparisons have 
little meaning at scales so large that circles of radius h  around all pattern points lie 
mostly outside the relevant region R. For this reason, the commonly accepted rule-of-
thumb is that for any given point pattern, nS , one should not consider h -values larger 

that half the maximum pairwise distance between pattern points. Hence if we now denote 
the maximum pairwise distance for nS  by, max max{ ( , ) : , }i j i j nh d s s s s S  , and use h  to 

indicate the largest value of h  to be considered in a given case, then the standard rule-of-
thumb is to set 
 
(4.5.1)  max / 2h h  

 
This corresponds to option 1 for input (iv) of k_function above, and option 2 correspond 
to maxh h . We shall have occasion to use (4.5.1) in many of our subsequent analyses, 

and in fact this will usually denote the “default” value of h . 
 
A more important limitation of this benchmark comparison is that (like the JMPIN 
version of the Clark-Evans test in Section 3.3.1 above) the results necessarily depend on 
the random point pattern that is chosen for a benchmark. Hence we now consider a much 
more powerful testing procedure using Monte Carlo methods. 
 
4.6 Monte Carlo Testing Procedures 
 
As we saw in Section 3.5 above, it is possible to use Monte Carlo methods to estimate the 
sampling distribution of nn-distances for any pattern size in a given region of interest. 
This same idea extends to the sampling distribution of any statistics derived from such 
patterns, and is of sufficient importance to be stated as a general principle: 
 
 

SIMULATION PRINCIPLE: To test the CSR Hypothesis for any point 
pattern, nS , of size n  in a given region, R, one can simulate a large 

number of random point patterns, ( ){ : 1,.., }i
nS i N , of the same size, and 

compare nS  with this statistical population. 

 
 
Essentially, this simulation procedure gives us a clear statistical picture of what realized 
patterns from a CSR process on R should look like. In the case of K-function tests of 
CSR, we first consider the standard application of these ideas in terms of “simulation 
envelopes”. This method is then refined in terms of a more explicit P-value 
representation. 
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4.6.1 Simulation Envelopes 
 
The essential idea here is to simulate N random patterns as above and to compare 

observed estimate ˆ( )L h  with the range of estimates ˆ ( ) , 1,..,iL h i N  obtained from this 

simulation. More formally, if one defines the lower-envelope and upper-envelope 
functions respectively by 
 

(4.6.1)  ˆ( ) min{ ( ) : 1,.., }N ih L h i N L  

 

(4.6.2)  ˆ( ) max{ ( ) : 1,.., }N ih L h i N U  

 

then ˆ( )L h  is compared with ( )N hL  and ( )N hU  for each h . So for a given observed 

pattern, nS , in region R the steps of this Monte Carlo testing procedure can be outlined as 

follows: 
 

(i)    Generate a number of random patterns, ( ){ : 1,.., }i
nS i N , of size n  in region 

R (say 99N  ). 

(ii)   Choose a selection of h -values, 1 2{ , ,.., }H h h h , and compute ˆ ( )iL h  for 

each h H  and 1,..,i N . 

(iii)  Form the lower- and upper-envelope functions, and ( )N hL  and ( )N hU  in 

(4.6.1) and (4.6.2). 

(iv)  Plot the L-values, ˆ( )L h , for the observed pattern nS  along with the upper 

and lower values, ( )N hU  and ( )N hL , for each h H . 

 
 
The result of this procedure is to yield 
a plot similar that shown in Figure 4.8 
to the right. Here the blue region 
indicates the area in which the 

observed L-function, ˆ( )L   is outside 
the range defined by the upper- and 
lower-envelope functions. In the case 
shown, this area is above the envelope, 
indicating that there is significant 
clustering relative to the simulated 
population under CSR.  
 
 
 
The key difference between this figure and Figure 4.6 above is that, rather than a single 
benchmark pattern, we now have a statistical population of patterns for gauging the 

L 

 

ˆ( )L   

( )N U  

( )N L  

0

0

h  

Fig.4.8. Simulation Envelope  
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significance of ˆ( )L  . This plot in fact summarizes a series of statistical tests at each 
scale of analysis, h H . In the case illustrated, if we consider any h  under the blue 

area in Figure 4.8, then by definition, ˆ( ) ( )NL h hU . But if pattern nS  were just 

another sample from this population of random patterns, then every sample value 

1
ˆ ˆ ˆ{ ( ), ( ),.., ( )}NL h L h L h  would have the same chance of being the biggest. So the chance 

that ˆ( )L h  is the biggest is only 1/( 1)N  . More formally, if pattern nS  is consistent 

with the CSR Hypothesis then: 
 

(4.6.3)    
1ˆPr[ ( ) ( )] ,

1NL h h h H
N

  


U  

 

(4.6.4)    
1ˆPr[ ( ) ( )] ,

1NL h h h H
N

  


L  

 
These probabilities are thus seen to be precisely the P-values for one-tailed tests of the 
CSR Hypothesis against clustering and dispersion, respectively. For example, if 

99N   [as in step (i) above] then the chance that ˆ( ) ( )NL h hU  is only 1/(99 1) .01  . 

Hence at scale, h , one can infer the presence of significant clustering at the .01-level. 

Similarly, if there were any h H  with ˆ( ) ( )NL h h L  in Figure 4.8, then at this scale 

one could infer the presence of significant dispersion at the .01-level. Moreover, higher 
levels of significance could easily be explored by simulating larger numbers of random 
patterns, say 999N  .  
 
This Monte Carlo test can be applied to the Bodmin example by using the MATLAB 
program, k_function_sim.m, shown below. 
 
 

function k_function_sim(loc,area,b,extent,sims,poly) 
 
%   K_FUNCTION_SIM computes the k-Function for a point  
%      pattern plus N random point patterns for a single polygon and  
%      plots the normalized L-Function plus Upper and Lower envelopes 
 
% INPUTS: 
%     (i)   loc        = file of locations (xi,yi), i=1..n 
%     (ii)  area     = area of region 
%     (iii)  b         = number of bins to use in CDF (and plot) 
%     (iv) extent  = 2 if max h = max pairwise distance to be considered 
%                        = 1 if max b = half of max pairwise distance (typical case) 
%     (v)   sims    = number of simulated random patterns 
%     (vi)  poly    = polygon boundary file 
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Note that the two key additional inputs are the numbers of simulations (here denoted by 
sims rather that N) and the boundary file, poly, for the region, R. As with the program, 
clust_sim, in Section 3.5 above, poly is needed in order to generate random points in R. 
 
To apply this program to Bodmin with sims = 99, be sure the data file, Bodmin.mat, in 
open in the Workspace, and write: 
 
>>  k_function_sim(Bodmin,area,20,1,99,Bod_poly); 
 
The results of this program are shown in 
Figure 4.9 to the right. Notice first that 
there is again some clustering, and that 
now it can be inferred that this clustering 
is significant at the .01-level ( 99N  ). 
Notice also that the range of significant 
clustering is considerably smaller that 
that depicted in Figure 4.6 above. This 
will almost always be the case, since 

here the ˆ( )L h  values must be bigger that 
99 other random values, rather than just 
one “benchmark” value. Notice also that 
this scale, roughly 1.5 4.5h  , appears 
to be more consistent with Figure 3.14a.  
 
However, this approach is still rather limited in the sense that it provides information 

only about the relation of ˆ( )L h  to the maximum and minimum simulated values  

( )N hU  and ( )N hL  for each h H . Hence the following refinement of this approach is 

designed to make fuller use of the information obtained from the above Monte Carlo 
procedure. 
 
4.6.2  Full P-Value Approach 
 
By focusing on the maximum and minimum values, ( )N hU  and ( )N hL  for each 

h H , the only P-values that can be obtained are those in (4.6.3) and (4.6.4) above. 

But it is clear for example that values of ˆ( )L h  that are just below ( )N hU  are probably 

still very significant. Hence a natural extension of the above procedure is to focus 
directly on P-values for clustering and dispersion, and attempt to estimate these values 
on the basis of the given samples. Turning first to clustering, the appropriate P-value is 
given by the answer to the following question: If the observed pattern were coming 
from a CSR process in region R, then how likely it would be to obtain a value as large 

as ˆ( )L h ? To answer this question let the observed L-value be denoted by 0
ˆ( )l L h , and 

let the random variable, ( )CSRL h , denote the L-value (at scale h ) obtained from a 

randomly sampled CSR pattern of size n  on R. Then the answer to the above question 

0 1 2 3 4 5 6 7 8 9
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Fig.4.9. Bodmin Envelope Test  
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is given formally by the probability that ( )CSRL h  is at least as large as 0l , which we 

designate as the clustering P-value, ( )clusteredP h , at scale h  for the observed pattern, nS : 

 
(4.6.5)    0( ) Pr[ ( ) ]clustered CSRP h L h l  .  

 
To estimate this probability, observe that our simulation has by construction produced a 

sample of N  realized values, ˆ ( ) , 1,..,i il L h i N  , of this random variable ( )CSRL h . 

Moreover, under the CSR Hypothesis the observed value, 0l , is just another sample, 

which for convenience we designate as sample 0i  . Hence the task is to estimate 
(4.6.5) on the basis of a random sample, 0 1( , .,.., )Nl l l  of size 1N  . The standard 

approach to estimating event probabilities is simply to count the number of times the 
event occurs, and then to estimate its probability by the relative frequency of these 
occurrences. In the present case, the relevant event is “ 0( )CSRL h l ”. Hence if we now 

define the indicator variables for this event by 
 

(4.6.6)   0
0

0

1 ,
( ) , 0,1,..,

0 ,
i

i
i

l l
l i N

l l



  

 

 

then the relative-frequency estimator, ˆ ( )clusteredP h , of the desired P-value is given by13 

 

(4.6.7) 0 00
1

1
ˆ ( ) Pr[ ( ) ] ( )

N

clustered CSR iiNP h L h l l
     

 
To simplify this expression, observe that if 0( )m l  denotes the number of simulated 

samples, 1,..,i N , that are at least as large as 0l  [i.e., with 0( ) 1il  ], then this 

estimated P-value reduces to14  
 

(4.6.8)   0( ) 1ˆ ( )
1clustered

m l
P h

N
 




  

 

Observe that expression (4.6.3) above is now the special case of (4.6.8) in which ˆ( )L h  
happens to be bigger than all of the N  simulated values. But (4.6.8) conveys a great 

deal more information. For example, suppose that 99N   and that ˆ( )L h  is only the 

fifth highest among these 1N   values. Then in Figure 4.9 this value of ˆ( )L h  would be 

inside the envelope [probably much closer to ( )N hU  than to ( )N hL ]. But no further 

information could be gained from this envelope analysis. However in (4.6.8) the 

estimated the chance of observing a value as large as ˆ( )L h  is 5 /(99 1) .05  , so that 

                                                 
13 This is also the maximum-likelihood estimator of ( )

cluster
P h . Such estimators will be considered in more 

detail in Part III of this NOTEBOOK. 
14 An alternative derivation of this P-value is given in Section 7 of the Appendix to Part I. 
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this L-value is still sufficiently large to imply some significant degree of clustering. 
Such examples show that the P-values in (4.6.8) are considerably more informative 
than the simple envelopes above. 
 
Turning next to dispersion, the appropriate P-value is now given by the answer to the 
following question: If the observed pattern were coming from a CSR process in region 

R, then how likely it would be to obtain a value as small as ˆ( )L h ? The answer to this 

question is given by the dispersion P-value, ( )dispersedP h , at scale h  for the observed 

pattern, nS : 

 
(4.6.9)    0( ) Pr[ ( ) ]dispersed CSRP h L h l    

 
Here, if we let 0( )m l  denote the number of simulated L-values that are no larger than 

0l , then exactly the same argument above [with respect to the event “ 0( )CSRL h l ”] now 

shows that the appropriate relative-frequency estimate of ( )dispersedP h , is given by 

 

(4.6.10)   0( ) 1ˆ ( )
1dispersed

m l
P h

N
 




  

 
 
To apply these concepts, observe first that (unless many il  values are the same as 0l )15 

it must be true that ˆ ˆ( ) 1 ( )dispersed clusteredP h P h  . So there is generally no need to compute 

both. Hence we now focus on clustering P-values, ˆ ( )clusteredP h  for a given point pattern, 

nS , in region R. Observe next that to determine ˆ ( )clusteredP h , there is no need to use L-

values at all. One can equally well order the K-values. In fact, there is no need to 

normalize by ̂  since this value is the same for both the observed and simulated 
patterns. Hence we need only compute “raw” K-function values, as given by the 
bracketed part of expression (4.3.6). Finally, to specify an appropriate range of scales to 
be considered, we take the appropriate maximum value of h  to be the default value 

max / 2h h  in (4.5.1), and specify a number b  of equal divisions of h . The values of 

ˆ ( )clusteredP h  are then computed for each of these h  values, and the result is plotted. 

 
This procedure is operationalized in the MATLAB program, k_count_plot.m. This 
program will be discussed in more detail in the next section. So for the present, we 
simply apply this program to Bodmin (with Bodmin.mat in the Workspace), by setting 

99N  ,  20b   and writing: 
 
>>  k_count_plot(Bodmin, 99,20,1,Bod_poly); 
 

                                                 
15 The question of how to handle such ties is treated more explicitly in Section 7 of the Appendix to Part I. 
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(Simply ignore the fourth input “1” for the present.) The screen output of k_count_plot 
gives the value of h  computed by the program, which in this case is Dmax/2 = 8.6859. 
The minimum pairwise distance between all pairs of points (Dmin = 0.5203) is also 
shown. This value is useful for interpreting P-values at small scales, since all values of 

h  less that this minimum must have ˆ ( ) 0K h   and hence must be “maximally 

dispersed” by definition [since no simulated pattern can have smaller values of ˆ ( )K h ].  
 
The cluster P-value plot for Bodmin is 
shown in Figure 4.10. With respect to 
significant clustering, there is seen to 
be general agreement with the results 
of the envelope approach above. Here 
we see significant clustering at the .05 
level (denoted by the lower dashed red 
line) for scale values in the range 
1.3 6.1h   (remember that one will 
obtain slightly different values for each 
simulation).16 But this figure clearly 
shows more. In particular, clustering at 
scales in the range 1.7 5.7h   is now 
seen to be significant at the .01 level, 
which by definition the highest level of 
significance possible for N = 99.  
 
Here it is also worth noticing that the clustering P-value at scale .5h   is so large (in 
fact .93 in the above simulation) that it shows weakly significant dispersion (where the 
upper dashed red line indicates significant dispersion at the .05 level). The statistical 
reason for this can be seen from the screen output that shows the minimum distance 
between any two tors to be .52. Hence at scale .5h   it must be true that no circle of 

radius .5 about any tor can contain other tors, so that we must have ˆ (.5) 0K  . But since 
random point patterns such as in Figure 3.14b often have at least one pair of points this 
close together, it becomes clear that there is indeed some genuine local dispersion here. 
Further reflection suggests that is probably due to the nature of rock outcroppings, 
which are often only the exposed portion of larger rock formations and thus cannot be 
too close together. So again we see that the P-value map adds information about this 
pattern that may well be missed by simply visual inspection.  
 
4.7 Nonhomogeneous CSR Hypotheses 
 
As mentioned in Section 2.4 above, it is possible to employ the Generalized Spatial 
Laplace Principle to extend CSR to the case of nonhomogeneous reference measures. 

                                                 
16 Simulations with N = 999 yield about the same results as Figure 4.10, so this appears to be a more 
accurate range than given by the envelope in Figure 4.9. 
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Fig.4.10. Bodmin Cluster P-Values  
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While no explicit applications are given in [BG], we can illustrate the main ideas with 
the following housing abandonment example. 
 
4.7.1  Housing Abandonment Example 
 
As in the Philadelphia example of Section 1.2 above, suppose that we are given the 
locations of n  currently abandoned houses in a given city, R, such as in Figure 4.11a 
below. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
In addition, suppose that data on the number of housing units, ( )i iH C , in each 

census tract, , 1,..,iC i m  within city R is also available, as in Figure 4.11b. If the 

number of total housing units in the city is denoted by  
 

(4.7.1) 
1 1

( ) ( )
m m

i ii i
H R C H 

 
     

 
then the probability that a randomly sampled housing unit will be located in tract i  is 
given by 
 

(4.7.2) 
( )

, 1,..,
( )

i i
i

H C
P i m

H R




    

 
Thus if these n  housing abandonments were completely random events (i.e., with no 
housing unit more likely to be abandoned than any other) then one would expect the 
distribution of abandoned houses across census tracts to be given by n  independent 
random samples from the distribution in (4.7.2).17 More formally, this is an example of 
a nonhomogeneous CSR hypothesis with respect to a given reference measure,  . 

                                                 
17 In particular, this would yield a marginal distribution of abandonments in each tract 

i
C  given by the 

binomial distribution in expression (2.4.3) above with 
i

C C . 

    City 
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    Fig.4.11a. Abandoned Houses     Fig.4.11b. Census Tract Data 
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4.7.2 Monte Carlo Tests of Hypotheses 
 
To test such hypotheses, we proceed exactly the same way as in the homogeneous case. 
The only real difference here is that the probability distributions corresponding to 
nonhomogeneous spatial hypotheses are somewhat more complex. Using the above 
example as an illustration, we can simulate samples of n  random abandonments from 
the appropriate distribution by the following two-stage sampling procedure:  
 
 (i)    Randomly sample a census tract, 1iC , from the distribution in (4.7.2).            

 
 (ii)   Randomly locate a point ( )

1
is  in 1iC . 

 
 (iii)  Repeat (i) and (ii) n  times to obtain a point pattern ( ) ( )( : 1,.., )i i

n jS s j n  . 

 
The resulting pattern ( )i

nS  corresponds to the above hypothesis in the sense that 

individual abandonment locations are independent, and the expected number of 
abandonments in each tract jC  is proportional to the reference measure, ( )j jH C . 

However, this reference measure   is only an approximation to the theoretical 
measure, since the actual locations of individual housing units are not known. [This is 
typical of situations where certain key spatial data is available only at some aggregate 
level.18] Hence in step (ii) the location of a housing units in iC  is taken to be uniformly 

(homogeneously) distributed throughout this subregion. The consequences of this 
“local uniformity” approximation to the ideal reference measure,  , will be noted in 
the numerical examples below.  
 
Given a point pattern, ( : 1,.., )n jS s j n  , such as the locations of n  abandonments 

above, together with N  simulated patterns ( ){ : 1,.., }i
nS i N  from the Monte Carlo 

procedure above, we are now ready to test the corresponding nonhomogeneous CSR 
hypothesis based on this reference measure  . To do so, we can proceed exactly as 

before by constructing K-counts, ˆ ( )K h , for the observed pattern, nS , over a selected 

range of scales, h , and then constructing the corresponding K-counts, ( )ˆ ( )iK h , for each 
simulated pattern, 1,..,i N .  
 
This procedure is operationalized in the same MATLAB program, k_count_plot 
(which is more general than the Bodmin application above).  Here the only new 
elements involve a partition of region R into subregions, { : 1,.., }iC i m , together with 

a specification of the appropriate reference measure,  , defined on this set of 
subregions.  
 

                                                 
18 Such aggregate data sets will be treated in more detail in Part III of this NOTEBOOK. 
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4.7.3 Lung Cancer Example 
 
To illustrate this testing procedure, the following example has been constructed from 
the Larynx and Lung Cancer example of Section 1.2 above. Here we focus only on 
Lung Cancer, and for simplicity consider only a random subsample of 100n   lung 
cases, as shown in Figures 4.12 below.   
 
 
 
 
 
 
 
 
 
 
 
          
         
 
Note from Figures 1.7 and 1.8 that this is fairly representative of the full data set (917 
lung cancers). To analyze this data set we begin by observing that in terms of area 
alone, the point pattern in Figure 4.12 is obviously quite clustered.  
 
One can see this by comparison with a 
typical random pattern of the same size in 
Figure 4.13. This can be verified 
statistically by using the program 
k_count_plot (as in the Bodmin case) to 
conduct a Monte Carlo test for the 
homogenous case developed above. The 
results are shown in Figure 4.14 to the 
right. Here it is evident that there is 
extreme clustering. In fact, note from the 
scale in Figure 4.12 above that there is 
highly significant clustering up to a radius 
of 20h km , which is large enough to 
encompass the entire region. Notice also 
that the significance levels here are as high 
as possible for the given number of simu- 
lations, which in this case was 999N  . This appears to be due to the fact that the 
overall pattern of points in Figure 4.12 is not only more clustered but is also more 
compact. So for the given common point density in these figures, cell counts centered 
at pattern points in Figure 4.12 tend to be uniformly higher than in Figure 4.13.  
 

Fig.4.12. Subsample of Lung Cases            Fig.4.13. Random Sample of Same Size       

   
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Fig.4.14. Test of Homogeneous Clustering    
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But the single most important factor contributing to this clustering (as observed in 
Section 2.4 above) is the conspicuous absence of an appropriate reference measure – 
namely population. In Figure 4.15 below, the given subsample of lung cases in Figure 
4.12 above is now depicted on the appropriate population backcloth of Figure 1.8.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Here it is clear that much of the clustering in Figure 4.12 can be explained by variations 
in population density. Notice also that the relative sparseness of points in the west and 
east are also explained by the lower population densities in these areas (especially in 
the east).  For comparison, a random pattern generated using the two-stage sampling 
procedure above is shown in Figure 4.16. Here there still appears to be somewhat less 
clustering than in Figure 4.15, but the difference is now far less dramatic than above. 
 
Using these parish population densities 
as the reference measure,  , a Monte 
Carlo test was run with 999N   
simulated patterns (including the one 
shown in Figure 4.16). The results of 
this test are plotted in Figure 4.17 to the 
right. Notice that the dramatic results of 
Figure 4.14 above have all but 
disappeared. There is now only 
significant clustering at the local scale 
(with 2h km ). Moreover, even this 
local clustering appears to be an artifact 
of the spatial aggregation inherent in the 
parish population density measure,  . 
As pointed out above, this aggregation 
leads  to  simulated  point  patterns under 
the nonhomogeneous CSR hypothesis that tend to be much too homogeneous at the 
parish level. This is particularly evident in the densely populated area of the south-
central portion of the region shown. Here the tighter clustering of lung cancer cases 
seen in Figure 4.15 more accurately reflects local variations in population density than 
does the relatively uniform scattering of points in Figure 4.16. So in fact, a more 

   
0 5 10 km 

Fig.4.15. Subsample of Lung Cases    Fig.4.16. Random Sample from Population    
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disaggregated representation of population density would probably show that there is 
no significant clustering of lung cancer cases whatsoever. 
    
4.8  Local K-Function Analysis 
 
Up to this point we have only considered global properties of point patterns, namely the 
overall clustering or dispersion of patterns at various scales. However, in many cases 
interest focuses on more local questions of where significant clustering or dispersion is 
occurring. Here we begin by constructing local versions of K-functions, and then apply 
them to several examples.  
 
4.8.1 Construction of Local K-Functions 
 
Recall from expression (4.3.3) that K-functions were defined in terms of expected point 
counts for a randomly selected point in a pattern. But exactly the same definitions can 
be applied to each individual point in the pattern by simply modifying the interpretation 
of (4.3.3) to be a given point, i , rather than a randomly sampled point, and rewriting 
this expression as a local K-function for each point, i : 
 

(4.8.1)   1( ) ( )i h ijj i
K h E I d 

     

  
Moreover, if we now relax the stationarity assumption used in (4.3.4) above, then these 
expected values may differ for each point, i . In this context, the pooled estimator 
(4.3.5) for the stationary case now reduces to the corresponding local estimator: 
 

(4.8.2) 1
ˆ

ˆ ( ) ( )i h ijj i
K h I d

 
   

 
Hence to determine whether there is significant clustering about point i  at scale h , one 
can develop local Monte Carlo testing procedures using these statistics.  
 
4.8.2 Local Tests of Homogeneous CSR Hypotheses 
 
In the case of homogenous CSR hypotheses, one can simply hold point i  fixed in 
region R  and generate N  random patterns of size 1n   in R  (corresponding to the 
locations of all other points in the pattern). Note that in the present case, (4.8.2) is 

simply a count of the number of points with distance h  of point i , scaled by ˆ1/ . But 
since this scaling has no effect on Monte Carlo tests of significance, one can focus 
solely on point counts (which may be thought of as a “raw” K-function). For each 
random pattern, one can then simply count the number of points within distance h  of 
point i . Finally, by comparing these counts with the observed point count, one can then 
generate p-values for each point 1,..,i n  and distance, h , [paralleling (4.6.8) above]: 
 

(4.8.3) 
( ) 1ˆ ( )

1
i

i

m h
P h

N





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where ( )im h  now denotes the number of simulated patterns with counts at distance h  

from i  at least as large as the observed count. This testing procedure is operationalized 
in the MATLAB program, k_count_loc.m, shown below: 
 
 

 
function [PVal,C0] = k_count_loc(loc,sims,D,M,poly)  
  
% K_COUNT_LOC computes the raw K-function at each point in the  
% pattern, loc, for a range of distances, D, and allows tests of non- 
% homogeneous CSR hypotheses by including a set of polygons, poly, with 
% reference measure, M.  
% 
% INPUTS: 
%     (i)      loc  = population location file [loc(i)=(Xi, Yi),i=1:N] 
%     (ii)   sims = number of simulations 
%     (iii)    D   = set of distance values (in ASCENDING order) 
%     (iv)    M   = k-vector of measure values for each of k polygons 
%     (v)    poly = matrix describing boundaries of k polygons 
 
 

 
Here the main output, Pval, is a matrix of P-values at each reference point and each 
distance value under the CSR Hypothesis. (The point counts for each point-distance 
pair are also in the output matrix, C0.) Notice that since homogeneity is simply a 
special case of heterogeneity, this program is designed to apply both to homogeneous 
and nonhomogeneous CSR hypotheses.  
 
Application to Bodmin Tors 
 
The homogeneous case can be illustrated by the following application to Bodmin tors. 
Recall that the location pattern of tors is given by the matrix, Bodmin, in the workspace 
Bodmin.mat. Here there is a single boundary polygon, Bod_poly. Hence the reference 
measure can be set to a constant value, say M = 1.  So the appropriate command for 
999 simulations in this case is given by: 
 
>> [Pval,C0] = k_count_loc(Bodmin,999,D,1,Bod_poly); 
 
In view of Figure 4.10 above, one expects that the most meaningful distance range for 
significant clustering will be somewhere between 1h   and 5h   kilometers. Hence 
the selected range of distances was chosen to be D = [1,2,3,4,5]. One key advantage of 
this type of local analysis is that since a p-value is now associated with each individual 
point, is now possible to map the results. In the present case, the results of this Monte 
Carlo analysis were imported to ARCMAP, and are displayed in Bodmin.mxd. In 
Figure 4.18 below, the p-value maps for selected radii of 2,3,5h   km are shown. As 
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seen in the legend (lower right corner of the figure), the darker red values correspond to 
lower p-values, and hence denote regions of more significant clustering. As expected, 
there are basically two regions of significant clustering corresponding to the two large 
groupings of tors in the Bodmin field.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice here that clustering is much more pronounced at a radius of 3 km than at smaller 
or larger radii. (The red circle in the figure shows the actual scale of a 3 km radius.) 
This figure well illustrates the ability of local K-function analyses to pick up sharper 
variations in scale than global analyses such as Figure 4.10 above (where there 
appeared to be equally significant clustering at all three scales, 2,3,5h   km). Hence it 
should be clear from this example that local analyses are often much more informative 
than their global counterparts. 
 
Local Analyses with Reference Grids 
 
The ability to map p-values in local analyses suggests one additional extension that is 
often more appropriate than direct testing of clustering at each individual point. By way 
of motivation, suppose that one is studying a type of tree disease by mapping the 
locations of infected trees in a given forest. Here it may be of more interest to 
distinguish diseased regions from healthy regions in the forest rather than to focus on 
individual trees. A simple way to do so is to establish a reference grid of locations in 
the forest, and then to estimate clustering p-values at each grid location rather than at 
each tree. (The construction of reference grids is detailed in Section 4.8.3 below.) Such 
a uniform grid of p-values can then be easily interpolated to produce a smoother visual 
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summary of disease clustering. An illustration of this reference-grid procedure is shown 
in Figure 4.19 below, where the red dots denote diseased trees in the section of forest 
shown, and where the white dots are part of a larger grid of reference points. In this 
illustration the diseased-tree count within distance h  of the grid point shown is thus 
equal to 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming that the forest itself is reasonably uniform with respect to the spatial 
distribution of trees, the homogeneous CSR hypothesis would again provide a natural 
benchmark for identifying significant clustering of diseased trees. In this case, one 
would simulate random patterns of diseased trees and compare disease counts with 
those observed within various distances h  of each grid point. Hence those grid points 
with low p-values at distance h  would denote locations where there is significant 
disease clustering at scale h .  
 
To develop the details of this procedure, it is convenient to construct a reference grid 
representation for Bodmin, so that the two approaches can more easily be compared. To 
do so, we start by constructing a reference grid for Bodmin. By inspecting the boundary 
of Bodmin in ARCMAP one can easily determine a box of coordinate values just large 
enough to contain all of Bodmin. In the present case, appropriate bounding X-values 
and Y-values are given by Xmin = -5.2, Xmax = 9.5, Ymin  = -11.5, and Ymax = 8.3. 
Next one needs to choose a cell size for the grid (as exemplified by the spacing between 
white dots in Figure 4.19). One should try to make the grid fine enough to obtain a 
good interpolation of the p-values at grid points. Here the value of .5 km was chosen for 
spacing in each direction, yielding square cells with dimensions, Xcell = .5 = Ycell. 
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Figure 4.19. Reference Grid for Local Clustering 
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The construction of the corresponding reference grid is operationalized in the program 
grid_form.m with the command: 
 
>> ref = grid_form(Xmin,Xmax,Xcell,Ymin,Ymax,Ycell); 
 
This produces a 2-column matrix, ref, of grid point coordinates. (The upper left corner 
of the grid is displayed on the screen for a consistency check.). A plot of the full grid, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ref, is shown on the left in Figure 4.20.19 (In Section 8 of the Appendix to Part I a 
procedure is developed for obtaining this full grid representation directly in MATLAB.) 
While all of these grid points are used in the calculation, those outside of the Bodmin 
boundary are only relevant for maintaining some degree of smoothness in the 
interpolation constructed below. On the right, these grid points have been masked out in 
order to display only those points inside the Bodmin boundary. (The construction of 
such visual masks is quite useful for many displays, and is discussed in detail in Section 
1.2.4 of Part IV in this NOTEBOOK.)  
 
Given this reference grid, ref, the extension of k_count_loc.m that utilizes ref is 
operationalized in the MATLAB program, k_count_loc_ref.m. This program is 
essentially identical to k_count_loc.m except that ref is a new input. Here one obtains 
p-values for Bodmin at each reference point in ref with the command: 

                                                 
19 Notice that the right side and top of the grid extend slightly further than the left and bottom. This is 
because the Xmax and Ymax values in the program are adjusted upward to yield an integral number of 
cells of the same size. 
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Figure 4.20.  Reference Grid for Bodmin 
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>> [Pval,C0] = k_count_loc_ref(Bodmin,ref,999,D,1,Bod_poly); 
 
where the matrix Pval now contains one p-value for each grid point in ref and distance 
radius in D. The results of this Monte Carlo simulation were exported to ARCMAP and 
the p-values at each grid point inside Bodmin are displayed for 3h   km on the left in 
Figure 4.21 below (again with a mask). By comparing this with the associated point  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
plot in the center of Figure 4.18, one can see that this is essentially a smoother version 
of the results depicted there. However, this representation can be considerably 
improved upon by interpolating these values using any of number of standard 
“smoothers” (discussed further in Part II). The interpolation shown on the right was 
obtained by the method known as ordinary kriging. This method of (stochastic) 
interpolation will be developed in detail in Section 6.3 of Part II in this NOTEBOOK.  
 
4.8.3 Local Tests of Nonhomogeneous CSR Hypotheses 
 
Next we extend these methods to the more general case of nonhomogeneous CSR 
hypotheses. As with all spatial Monte Carlo testing procedures, the key difference 
between the homogeneous and nonhomogeneous cases is the way in which random 
points are generated. As discussed in Section 4.7.2 above, this generation process for 
the nonhomogeneous case amounts to a two-stage sampling procedure in which a 
polygon is first sampled in a manner proportional to the given reference measure, M, 
and then a random location in this polygon is selected. Since this procedure is already 
incorporated into both the programs k_count_loc.m and k_count_loc_ref.m above, 
there is little need for further discussion at this point.   
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Figure 4.21.  Interpolated P-Values for Bodmin 
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By way of illustration, we now apply k_count_loc_ref.m to a Philadelphia data set, 
which includes 500 incidents involving inter-group conflict (IGC) situations (such as 
housing discrimination) that were reported to the Community Service Division of the 
Philadelphia Commission on Human Relations from 1995-1996.  
 
The locations of these 500 incidents are shown on the left in Figure 4.22 below, and are 
also displayed in the map document, Phil_igc.mxd, in ARCMAP. Here the natural null 
hypothesis would be that every individual has the same chance of reporting an 
“incident”. But as with the housing abandonment example in Figure 4.11 above, 
individual location data is not available. Hence census tract population levels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
will be used as an approximation to individual locations, so that the relevant reference 
measure is here taken to be population by census tract (with corresponding population 
densities shown in green in Figure 4.22). The relevant nonhomogeneous CSR 
hypothesis for this case is thus simply that the chance of any incident occurring in a 
given census tract is proportional to the population of that census tract. Under this 
hypothesis, a typical realization of 500 “random IGC incidents” is shown on the right. 
Here it is clear that incidents are more clustered in areas of high population density, 
such as in West Philadelphia and South Philadelphia. So clusters of actual data on the 
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Figure 4.22.  Comparison with IGC Random Incidents 
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left are only significant if they are more concentrated than would be expected under this 
hypothesis. Hence, even though there is clearly a cluster of cases in South Philadelphia, 
it is not clear that this is a significant cluster. Notice however that the Kensington area 
just Northeast of Center City does appear to be more concentrated than would be 
expected under the given hypothesis. But no conclusion can be reached on the basis of 
this visual comparison. Rather, we must simulate many realizations of random patterns 
and determine statistical significance on this basis. 
 
To do so, a reference grid for Philadelphia was constructed, and is shown (with 
masking) on the left in Figure 4.23 below, in a manner similar to Figure 4.20 above. 
Here a range of distances was tried, and clustering was most apparent at a radius of 500 
meters  (in a manner similar to the radius of 3 km in Figure 4.18 above for the Bodmin 
example).  The p-value results for this case are contained in the MATLAB workspace, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
phil_igc.mat, and were obtained using k_count_loc_ref.m with the command: 
 
>> [Pval,C0] = k_count_loc_ref(loc,ref,999,D,pop,bnd); 
 
Here loc contains the locations of the 500 IGC incidents, ref is the reference grid 
shown above, D contains a range of distances including the 500-meter case,20 and pop 

                                                 
20 The actual coordinates for this map were in decimal degrees, so that the value .005 corresponds roughly 
to 500 meters.  
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Figure 4.23.  P-Value Map for ICG Clustering 
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contains the populations of each census tract, with boundaries given by bnd. These 
results were imported to ARCMAP as a point file, and are displayed as P-val.shp in the 
data frame, “P-Values for Dist = .005”, of Phil_igc.mxd. Finally, these p-values were 
interpolated using a different smoothing procedure than that of Figure 4.21 above. Here 
the spline interpolator in Spatial Analyst was used, together with the contour option. 
The details of this procedure are described in Section 8 of the Appendix to Part I.21 
 
Here the red contours denote the most significant areas of clustering, which might be 
interpreted as IGC “hotspots”. Notice in particular that the dominant hotspot is 
precisely the Kensington area mentioned above. Notice also that the clustering in West 
Philadelphia, for example, is now seen to be explained by population density alone, and 
hence is not statistically significant. 
 
It is also worth noticing that there is a small “hotspot” just to the west of Kensington 
(toward the Delaware River) that appears hard to explain in terms of the actual IGC 
incidents in Figure 4.22. The presence of this hotspot is due to the fact that while there 
are only four incidents in this area, the population density is less than a quarter of that 
in the nearby Kensington area. So this incidence number is usually high given the low 
density. This raises the practical question of how many incidents are required to 
constitute a meaningful cluster. While there can be no definitive answer to this 
question, is important to emphasize that statistical analyses such as the present one 
should be viewed as providing only one type of useful information for cluster 
identification. 22 
 
 
 
 
 
 
 
 

                                                 
21 Notice also that this contour map of P-values is an updated version of that in the graphic header for the 
class web page. That version was based on only 99 simulations (run on a slower machine). 
22 This same issue arises in regression, where there is a need to distinguish between the statistical 
significance of coefficients (relative to zero) and the practical significance of their observed magnitudes in 
any given context. 


