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5. Comparative Analyses of Point Patterns 
 
Up to this point, our analysis of point patterns has focused on single point patterns, such 
as the locations of redwood seedlings or lung cancer cases. But often the relevant 
questions of interest involve relationships between more than one pattern. For example if 
one considers a forest in which redwoods are found, there will invariably be other species 
competing with redwoods for nourishment and sunlight. Hence this competition between 
species may be of primary interest. In the case of lung cancers, recall from Section 1.2 
that the lung cancer data for Lancashire was primarily of interest as a reference 
population for studying the smaller pattern of larynx cancers. We shall return to this 
example in Section 5.8 below. But for the moment we start with a simple forest example 
involving two species. 
 
5.1 Forest Example 
 
The 600 foot square section of forest shown in Figure 5.1 below contains only two types 
of trees. The large dots represent the locations of oak trees, and the small dots represent 
locations of maple trees. Although this is a fairly small section of forest, it seems clear 
that the pattern of oaks is much more clustered than that of maples. This is not surprising, 
given the very different seed-dispersal patterns of these two types of trees.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in  Figure 5.2, oaks produce large acorns that fall directly from the tree, and are 
only partially dispersed by squirrels. Maples on the other hand produce seeds with 
individual “wings” that can transport each seed a considerable distance with even the 
slightest breeze. Hence there are clear biological reasons why the distribution of oaks 
might be more clustered than that of maples. So how might we test this hypothesis 
statistically? 
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Figure 5.1. Section of Forest Figure 5.2. Patterns of Seed Dispersal 
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5.2 Cross K-Functions 
 
As one approach to this question, observe that if oaks tend to occur in clusters, then one 
should expect to find that the neighbors of oak trees tend to be other oaks, rather than 
maples. Alternatively put, one should expect to find fewer maples near oak locations than 
other locations. While one could in principle test these ideas in terms of nearest neighbor 
statistics, we have already seen in the Bodmin tors example that this does not allow any 
analysis of relationships between point patterns at different scales. Hence a more flexible 
approach is to extend the above K-function analysis for single populations to a similar 
method for comparing two populations.1  
 
The idea is simple. Rather than looking at the expected number of oak trees within 
distance h  of a given oak, we look at the expected number of maple trees within distance 
h  of the oak. More generally, if we now consider two point populations, 1 and 2, with 
respective intensities, 1  and 2 , and denote the members of these two populations by i  

and j , respectively, then the cross K-function, 12 ( )K h , for population 1 with respect to 

population 2 is given for each distance h  by the following extension of expression (4.2.1) 
above: 

 
(5.2.1)    12 2

1( ) (number of -  within distance  of an arbitrary - )K h E j events h i event  

 
Notice that there is an asymmetry in this definition, and that in general, 12 21( ) ( )K h K h . 

Notice also that the word “additional” in (4.2.1) is no longer meaningful, since 
populations 1 and 2 are assumed to be distinct. This definition can be formalized in a 
manner paralleling the single population case as follows. First for any realized point 
patterns, 1 1( : 1,.., )iS s i n   and 2 2( : 1,.., )iS s i n  , from populations 1 and 2 in region 

R , let ( , )ij i jd d s s  denote the distance between member i  of population 1 and j  of 

population 2 in R . Then for each distance h  the indicator function 

 

(5.2.2)  
1 ,

( ) [ ( , )]
0 ,

ij
h ij h i j

ij

d h
I d I d s s

d h


   
 

 
now indicates whether or member j  of population 2 is within distance h  of a given 
member i  of population 1. In terms of this indicator, the cross K-function in (5.2.1) can 
be formalized [in a manner paralleling (4.3.3)] as  

 
(5.2.3) 2

12 12

1( ) ( )
n

h ijj
K h E I d 

     

                                                 
1 Note that while our present focus is on two populations, analyses of more than two populations are 
usually formulated either as (i) pairwise comparisons between these populations (as with correlation 
analyses), or (ii) comparisons between each population and the aggregate of all other populations. Hence 
the two-population case is the natural paradigm for both these approaches. 
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where both the size, 2n , of population 2 and the distances 2( : 1,.., )ijd j n  are here 

regarded as random variables.2 This function plays a fundamental role in our subsequent 
comparative analyses of populations.  
 
5.3 Estimation of Cross K-Functions 
 
Given the definition in (5.2.3) it is immediately apparent that cross K-functions can be 
estimated in precisely the same way as K-functions. First, since the expectation in (5.2.3) 
does not depend on which random reference point i  is selected from population 1, the 
same argument as in (4.3.4) now shows that for any given size, 1n , of population 1, 

 

(5.3.1) 2

2 12 11
( ) ( ) , 1,..,

n

h ijj
E I d K h i n


      

  

                                            1 2

1 2 121 1
( ) ( )

n n

h iji j
E I d n K h

 
      

             
so that for each 1n , 12 ( )K h  can be written as3 

 

(5.3.2)     1 2

2 1
12 1 1

1( ) ( )
n n

h iji jnK h E I d  
      

 
In this form, it is again apparent that for any given realized patterns, 1 1 1( : 1,.., )iS s i n   

and 2 2 2( : 1,.., )jS s j n  , the expected counts in (5.3.2) are naturally estimated by their 

corresponding observed counts, and that the intensities, 1  and 2 , are again estimated by 

the observed intensities, 
 

(5.3.3) ˆ , 1,2
( )

k
k

n
k

a R
    

 
Thus the natural (maximum likelihood) estimate of 12 ( )K h  is given by the sample cross 

K-function: 
 

(5.3.4) 1 2

2 1
12 1 1

1
ˆ

ˆ ( ) ( )
n n

h iji jn
K h I d

  
    

 

                                                 
2 To be more precise, 

2
n  is a random integer (count), and for any given value of 

2
n , the conditional 

distribution of 
2

[ ( , ) : 1,.., ]
ij i j

d d s s j n   is then determined by the conditional distribution of the 

locations, 
2

[ , ( : 1,.., )]
i j

s s j n  in R, where 
i

s  is implicitly taken to be the location of a randomly sampled 

member of population 1. 
3 Technically this should be written as a conditional expectation given 

1
n  [and (4.3.4) should be a 

conditional expectation given n ]. But for simplicity, we ignore this additional layer of notation. 
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5.4 Spatial Independence Hypothesis 
 
We next use these sample cross K-functions as test statistics for comparing populations 1 
and 2. Recall that in the single population case, the fundamental question of interest was 
whether or not the given population was more clustered (or more dispersed) than would 
be expected if the population locations were completely random. This led to the CSR 
hypothesis as a natural null hypothesis for testing purposes. However, when one 
compares two populations of random events, the key question is usually whether or not 
these events influence one another in some way. So here the natural null hypothesis takes 
the form of statistical independence rather than randomness. In terms of cross K-
functions, if there are significantly more j -events close to i -events than would be 
expected under independence, then one may infer that there is some “attraction” between 
populations 1 and 2. Conversely, if there are significantly fewer j -events close to i -
event than expected, then one may infer that there is some “repulsion” between these 
populations. These basic distinctions between the one-population and two-population 
cases can be summarized as in Table 5.1 below: 
 
 
 
 
 
 
 
 
 
 
 
 
Next we observe that from a testing viewpoint, the particular appeal of the CSR 
hypothesis is that one can easily simulate location patterns under this hypothesis. Hence 
Monte Carlo testing is completely straightforward. But the two-population hypothesis of 
spatial independence is far more complex. In principle this would not be a problem if one 
were able to observe many replications of these sets of events, i.e., many replications of 
joint patterns from populations 1 and 2. But this is almost never the case. Typically we 
are given a single joint pattern (such as the patterns of oaks and maples in Figure 5.1 
above) and must somehow detect “departures from independence” using only this single 
realization. Hence it is necessary to make further assumptions, and in particular, to define 
“spatial independence” in a manner that allows the distribution of sample cross K-
functions to be simulated under this hypothesis. Here we consider two approaches, 
designated respectively as the random-shift approach and the random-permutation 
approach.   
 
5.5 Random-Shift Approach to Spatial Independence 
 
This approach starts by postulating that each individual population 1,2k   is generated 
by a stationary process on the plane. If region R  is viewed as a window on this process 
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Attraction Repulsion 

Dispersion Spatial Randomness 
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Figure 5.3.  Comparison of Hypothesis Frameworks 
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(as in Section 2) and we again represent each process by the collection of cell counts in 
R , say { ( ) : } , 1,2k kN C C R k   , then it follows in particular from (2.5.1) that the 

marginal cell-count distribution, Pr[ ( )]k hN C  for population k  in any circular cell, hC , of 

radius h  must be the same for all locations.4  Hence if we now focus on population 2 and 
imagine a two-stage process in which (i) a point pattern for population 2 is generated, and 
(ii) this pattern is then shifted by adding some constant vector, a , to each point,

j js s a  , then the expected number of points in hC  would be the same for both stage 

(i) and stage (ii). Indeed this shift simply changes the location of hC  relative to the 

pattern (as in Figure 5.5 below) so that by stationarity the expected point count must stay 
the same.  

5.5.1 Spatial Independence Hypothesis for Random Shifts 

In this context, the appropriate spatial independence hypothesis simply asserts that cell 
counts for population 2 are not influenced by the locations of population 1, i.e., that for 
all cells, C R , 

(5.5.1) 2 1 2Pr[ ( ) | ] Pr[ ( ) ] , 0N C n N C n n     

where 2 1Pr[ ( ) | ]N C n   is the conditional probability that 2 ( )N C n  given all cell 

counts, 1 , for population 1.5 Under this hypothesis it then follows that the conditional 

distribution on the left must also exhibit stationarity, so that if the circular cell, hC , is 

centered at the location of a point is  in population 1, this will make no difference. To 

illustrate the substantive meaning of this hypothesis in the presence of stationarity, 
suppose that populations 1 and 2 are plant species in which the root system of species 1 is 
toxic to species 2, so that no plant of species 2 can survive within two feet of any species 
1 plant. Then consider a two stage process in which the plant locations of species 1 and 2 
are first generated at random, and then all species 2 plants within two feet of any species 
1 plant are removed.6  Then it is not hard to see that the marginal process for population 
2 will still exhibit stationarity (since locations of population 1 are equally likely to be 
anywhere). But the conditional process for population 2 given the locations of population 
1 is highly non-stationary, and indeed must have zero cell counts for all two-foot cells 
around population 1 sites.  

Now returning to the two-stage “shift” process described above, this process suggests a 
natural way of testing the independence hypothesis in (5.5.1) using sample cross K-
functions. In particular, if the given realization of population 1 is randomly shifted in any 
way, then this should not affect the expected counts,  

4 For the present, we implicitly assume that region R is “sufficiently large” that edge effects can be ignored. 
5 Note that while there is an apparent asymmetry in this definition between populations 1 and 2, the 
definition of conditional probability implies that (5.5.1) must also hold with labels 1 and 2 reversed. 
6 This is an instance of what is called a “hard-core” process in the literature (as for example in Ripley, 
1977, section 3.2 and Cressie, 1995, section 8.5.4).  
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(5.5.2) 2

1 1
{ [ ( )]} ( )

n

h i h ijj
E N C s E I d


     

 
of population 2 events within distance h  of any population 1 event, is . This in turn 

implies from (5.3.2) that the cross K-function should remain the same for all such shifts 
(remember that cross K-functions are expected values).  Hence if one were to randomly 
sample shifted versions of the given pattern and construct the corresponding statistical 
population of sample cross K-functions, then this population could be used to test for 
spatial independence in exactly the same way that the CSR hypothesis was tested using 
K-functions. This testing scheme is in principle very appealing since it provides a direct 
test of the spatial independence hypothesis that preserves the marginal distribution of 
both populations.  
 
5.5.2 Problem of Edge Effects 
 
But in its present form, such a test it is not practically possible since we are only able to 
observe these processes in a bounded region, R. Thus any attempt to “shift” the pattern 
for population 2 will require knowledge of the pattern outside this window, as shown in 
Figures 5.4 and 5.5 below. Here the black dots represent unknown sites of population 2 
events. Hence any shift of the pattern relative to region R will allow the possible entry of 
unknown population 2 events into the window defined by region R.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, it turns out that under certain conditions one can construct a reasonable 
approximation to this ideal testing scheme. In particular, if the given region R is 
rectangular, then there is indeed a way of approximating stationary point processes 
outside the observable rectangular window. To see this, suppose we start with the two 
point patterns in a rectangular boundary, R, as shown in Figure 5.6 below (with pattern 1 
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= white dots and pattern 2 = black dots).7 If these patterns are in fact generated by 
stationary point processes on the plane, then in particular, the realized pattern, 

0 0
2 2 2( : 1,.., )jS s j n  , for population 2 (shown separately in Figure 5.7 below) could 

equally well have occurred in any shifted version of region R.  
 
 
 
 
 
 
 
 
 
 
 
 
But since the rectangularity of R implies that the entire plane can be filled by a “tiling” of 
disjoint copies of region R (also called a “lattice” of translations of R) and since this same 
point pattern can be treated as a typical realization in each copy of R, we can in principle 
extend the given pattern in region R to the entire plane by simply reproducing this pattern 
in each copy of R [as shown partially in Figure 5.8 below].8 We designate this infinite 

version of pattern 0
2S  by 0

2S .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
7 This example is taken from Smith (2004). 
8 Such replications are also called “rectangular patterns with periodic boundary conditions” (see for 
example Ripley, 1977 and Diggle, 1983, section 1.3). 

R 

Figure 5.6. Rectangular Region Figure 5.7.  Population 2 

Figure 5.8. Partial Tiling Figure 5.9. Random Shifts 
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In this way, we can effectively remove the “edge effects” illustrated in Figure 5.5 above. 

Moreover, while the “replication process” that generates 0
2S  must of course exhibit 

stronger symmetry properties than the original process for population 2, it can be shown 
that this process shares the same mean and covariance structure as the original process. 
Moreover, it can also be shown that under the spatial independence hypothesis, the cross 
K-function yielded by this process must be the same as for the original process.9 Hence 
for the case of rectangular regions, R, it is possible to carry this replicated version of the 
“ideal” testing procedure described above.  
 
5.5.3  Random Shift Test 
 
To make this test explicit, we start by observing that it suffices to consider only local 
random shifts. To see this, note first that if point pattern 1 in Figure 5.6 is designated by 

0 0
1 1( : 1,.., )i iS s i n  , then shifting 0

2S  relative to 0
1S  on the plane is completely equivalent 

to shifting 0
1S  relative to 0

2S . Hence we need only consider shifts of 0
1S . Next observe by 

symmetry that every distinct rectangular portion 0
2S  that can occur in shifted versions of 

R (such as the pattern inside the blue box of Figure 5.8) can be obtained at some position 
of R inside the red dotted boundary shown Figure 5.8. Hence we need only consider 
random shifts of 0

1S  within this boundary. Again, the blue box in Figure 5.8 represents 

one such shift (where the white dots for population 1 have been omitted for sake of visual 
clarity). Hence to construct the desired random-shift test, we can use the following 
procedure: 
 

(i)  Simulate N  random shifts that will keep rectangle R inside the feasible region in 
Figure 5.9. Then shift all coordinates in 0

1S  by this same amount. 

 
(ii) If 2 2 2( : 1,.., )m m m

jS s j n   denotes the pattern for population 2 occurring in random 

shift 1,..,m N  of rectangle R (which will usually be of a slightly different size than 
0
2S ), then a sample cross K-function, 12

ˆ ( )mK h , can be constructed from 0
1S  and 2

mS . In 

particular if the relevant set of distance radii is chosen to be { : 1,.., }wD h w W  , 

then the actual values constructed are 12
ˆ{ ( ) : 1,.., }m

wK h w W . 

 

(iii)  Finally, if the observed sample cross K-function, 0
12

ˆ ( )K h , is constructed in the 

same way from 0
1S  and 0

2S  (where the latter pattern is equivalent to the “zero shift” 

denoted by the central box in Figure 5.8), then under the spatial independence 

hypothesis, (5.5.1), each observed value, 0
12

ˆ ( )wK h , should be a “typical” sample from 

the list of values 12
ˆ[ ( ) : 0,1,.., ]m

wK h m N . Hence (in a manner completely analogous 

to the single-population tests of CSR), if we now let 0M   denote the number of 

                                                 
9 See the original paper by Lotwick and Silverman (1982) for proofs of these facts. 
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simulated random shifts, 1,..,m N , with 0
12 12

ˆ ˆ( ) ( )m
w wK h K h , then the estimated 

probability of obtaining a value as large as 0
12

ˆ ( )wK h  under this spatial independence 

hypothesis is given by the attraction p-value, 
 

(5.5.3) 
0 1ˆ ( )

1attraction w

M
P h

N
 


 

 

where small values of ˆ ( )attraction wP h  can be interpreted as implying significant 

attraction between populations 1 and 2 at scale wh . 

 
(iv) Similarly, if 0M   denotes the number of simulated random shifts, 1,..,m N , 

with 0
12 12

ˆ ˆ( ) ( )m
w wK h K h , then the estimated probability of obtaining a value as small 

as 0
12

ˆ ( )wK h  under this  spatial independence hypothesis is given by the repulsion  

p-value, 
 

(5.5.4) 
0 1ˆ ( )

1repulsion w

M
P h

N
 


 

 

where small values of ˆ ( )repulsion wP h  can be interpreted as implying significant 

repulsion between populations 1 and 2 at scale wh . 

 
 

5.5.4  Application to the Forest Example 
 
This testing procedure is implemented in the MATLAB program, k12_shift_plot.m, and 
can be applied to the Forest example above as follows. The forest data appears in the 
ARCMAP file, Forest.mxd, and was exported to the MATLAB workspace, forest.mat. 
The coordinate locations of the 1 21n   oaks and 2 43n   maples are given in matrices, 

L1 and L2, respectively. An examination of these locations in ARCMAP (or in Figure 
5.1 above) suggested that a reasonable range of radial distances to consider is from 10 to 
330 feet, and the set of (14) distance values, D = [10:20:270],10 was chosen for analysis. 
The rectangular region, R, in Figure 5.1 is seen in ARCMAP to be defined by the 
bounding values, (xmin = -10, xmax = 589, ymin = 20, ymax = 577). Using these 
parameters, the command; 
 
>> PVal = k12_shift_plot(L1,L2,xmin,xmax,ymin,ymax,999,D); 
 
yields a vector of attraction p-values (5.5.3) at each radial distance in D based on 999 
simulated random shifts of the maples relative to the oaks. Recall that in this example, an 
inspection of Figure 5.1 suggested that there are “island clusters” of oaks in a “sea” of 

                                                 
10 In MATLAB this yields a list D of values from 10 to 270 in increments of 20. (See also p.5-23 below.) 
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maples. Hence, in terms of attraction versus repulsion, this suggests that there is some 
degree of repulsion between oaks and maples. Thus one must be careful when 
interpreting the p-value output, PVal, of this program.  
 
Recall that as with clustering versus dispersion, unless there are many simulated cross K-

function values exactly equal to 0
12

ˆ ( )kK h , we will have ˆ ˆ( ) 1 ( )replusion k attraction kP h P h  . 

Hence one can identify significant repulsion by plotting ˆ ( )attraction kP h  for 1,..,k K  and 

looking for large p-values. This plot is given as screen output for k12_shift_plot.m, and 
is illustrated in Figure 5.10 below for a simulation with 999N  : 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here the red dashed line on the bottom corresponds to a attraction p-value of .05, so that 
values below this level denote significant attraction at the .05 level. Similarly the red 
dashed line at the top corresponds to an attraction p-value of .95, so that values above this 
line denote significant repulsion at the .05 level. Hence there appears to be significant 
repulsion between oaks and maples at scales 30 150h  . This is seen to be in 
reasonable agreement with a visual inspection of Figure 5.1 above. 
 
But while this test is reasonable in the present case, this 
is in large part due to the presence of a rectangular 
region, R. More generally, in the cases such as large 
forests where analyses of “typical” rectangular regions 
usually suffice, this is not much of a restriction. But for 
point patterns in regions, R, such as the elongated island 
shown in Figure 5.10, it is clear from the figure that any 
attempt to reduce R to a rectangle might remove most 
of the relevant pattern data. Figure 5.10 Island Example 
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This island example also raises another important limitation of the random-shift approach 
when comparing point patterns. Recall that this approach treats the given region, R, as a 
sample “window” from a much larger realization of point patterns, so that the hypothesis 
of stationarity is at least meaningful in principle. But the shoreline of an island is physical 
barrier between very different ecological systems. So if the point patterns were trees (as 
in the oak-maple example) then the shoreline is not simply an “edge effect”. Indeed the 
very concept of stationarity is at best artificial in such applications. 
 
5.6. Random-Labeling Approach to Spatial Independence 
 
An approach which overcomes many of these problems is based on an alternative 
characterization of multiple-population processes. Rather than focusing on the individual 
processes generating patterns 1 1 1( : 1,.., )iS s i n   and 2 2 2( : 1,.., )jS s j n   above, one 

can characterize this realized joint pattern in an entirely different way. Suppose we let 

1 2n n n   denote the total number of events generated, and associate with each event, 

1,..,i n , a pair ( , )i is m  where is R  is the location of event i  in R, and {1,2}im   is a 

marker (or label) denoting whether event i  is of type 1 or 2. Stochastic processes 
generating such pairings of joint locations and labels for each event are called marked 
point processes.11 The Forest example above can be regarded as the realization of a 
marked point process where the number of events is 21 43 64n    , and the possible 
labels for each event are “oak” and “maple”. Clearly each realized set of values, 
[( , ) : 1,.., ]i is m i n , yields a complete description of a joint pattern pair 1 2( , )S S  above. 

The key advantage of this particular characterization is that it allows the location process 
to be separated from the distribution of event types.  
 
This is particularly relevant in situations where 
the location process is complex, or where the set 
of feasible locations may involve a host of 
unobserved restrictions. As a simple illustration, 
suppose that in the Forest example there were in 
fact a number of subsurface rock formations, 
denoted by the gray regions in Figure 5.11, that 
prevented the growth of any large trees in these 
areas. Then even if these rock formations are 
not observed (and thus impossible to model), the 
observed locations of trees must surely avoid 
these areas. Hence if one were to condition on 
these observed locations, then it would still 
possible to analyze certain relations between 
oaks and maples without the need to model all 
feasible locations. 

                                                 
11 The following development is based on the treatment in Cox and Isham (1980). For a nice overview 
discussion, see Diggle (2003.pp.82-83), and for a deeper analysis of marked spatial point processes, see 
Cressie (1993, section 8.7). 
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Figure 5.10 Location Restrictions 
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More generally, by conditioning on the observed set of locations, one can compare a wide 
variety of point populations without the need to identify alternative locations at all. Not 
only does this circumvent all problems related to the shape of region, R, but it also avoids 
the need to identify specific land-use constraints (such street networks or zoning 
restrictions) that may influence the locations of relevant point events (like housing sales 
or traffic accidents). 
 
5.6.1 Spatial Indistinguishability Hypothesis 
 
To formalize an appropriate notion of spatial independence for population comparisons in 
the context of marked point processes, we start by considering the joint distribution of a 
set of n  marked events, 
 
(5.6.1) 1 1Pr[( , ) : 1,.., ] Pr[( ,.., ), ( ,.., )]i i n ns m i n s s m m   

 
                                                    1 1 1Pr[( ,.., ) | ( ,.., )] Pr( ,.., )n n nm m s s s s   

 
where 1Pr( ,.., )ns s  denotes the marginal distribution of event locations, and where 

1 1Pr[( ,.., ) | ( ,.., )]n nm m s s  denotes the conditional distribution of event labels given their 

locations.12 If 1Pr( ,.., )nm m  denotes the corresponding marginal distribution of event 

labels, then the relevant hypothesis of spatial independence for our present purposes 
asserts simply that event labels are not influenced by their locations. i.e., that 

 
(5.6.2) 1 1 1Pr[( ,.., ) | ( ,.., )] Pr( ,.., )n n nm m s s m m  

  
for all locations 1,.., ns s R  and labels 1,.., {1,2}nm m  . In the Forest example above, for 

instance, the hypothesis that there is no spatial relationship between oaks and maples is 
here taken to mean that the given set of tree locations, 1( ,.., )ns s , tell us nothing about 

whether these locations are occupied by oaks or maples. Hence the only locational 
assumption implicit in this hypothesis is that any observed tree location could be 
occupied by either an oak or a maple. Note also that this doesn’t mean that oaks and 
maples are equally likely events. Indeed if there are many more maples than oaks, then 
all of this information is captured in the distribution of labels, 1Pr( ,.., )nm m .  

 
As with the random shift approach (where the marginal distributions of each population 
were required to be stationary), we do require one additional assumption about the 
marginal distribution of labels, 1Pr( ,.., )nm m . Note in particular that the indexing of 

events, 1,2,..,n , only serves to distinguish them, and that their particular ordering has no 

                                                 
12 For simplicity we take the number of events, n, to be fixed. Alternatively, the distributions in (5.6.1) can 
all be viewed as being conditioned on n. 
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relevance whatsoever.13 Hence the likelihood of labeling events, 1( ,.., )nm m , should not 

depend on which event is called “1”, and so on. This exchangeability condition can be 
formalized by requiring that for all permutations 1( ,.., )n   of the subscripts (1,.., )n ,14 

 
(5.6.3) 

1 1Pr( ,.., ) Pr( ,.., )
n nm m m m    

 
These two conditions together imply that the point processes generating populations 1 
and 2 are essentially indistinguishable. Hence we now designate the combination of 
conditions, (5.6.2) and (5.6.3) as the spatial indistinguishability hypothesis for 
populations 1 and 2. This hypothesis will form the basis for many of the tests to follow. 
 
5.6.2 Random Labeling Test 
 
To test the spatial indistinguishability hypothesis, [(5.6.2),(5.6.3)], our objective is to 
show that for any observed set of locations 1( ,.., )ns s  and population sizes 1n  and 2n  with 

1 2n n n  , all possible labelings of events must be equally likely under this hypothesis. 

This in turn will give us an exact sampling distribution that will allow us to construct 
Monte Carlo tests of (5.6.2).  
 
To do so, we begin by observing that in the same way that stationarity of marginal 
distributions was inherited by conditional distributions in (5.5.1) above, it now follows 
that exchangeability of labeling events in (5.6.3) is inherited by the corresponding 
conditional events in (5.6.2). To see this, observe simply that for any given set of 
locations 1( ,.., )ns s  and subscript permutation 1( ,.., )n   it follows at once from (5.6.2) 

and (5.6.3) that 
 
(5.6.4) 

1 11Pr[( ,.., ) | ( ,.., )] Pr( ,.., )
n nnm m s s m m     

 
                                                            1 1 1Pr( ,.., ) Pr[( ,.., ) | ( ,.., )]n n nm m m m s s   

 
To complete the desired task, it is enough to observe that for any two labelings, 

1( ,.., )nm m  and 1( ,.., )nm m   consistent with 1n  and 2n  we must have  

 
(5.6.5) 

11( ,.., ) ( ,.., )
nnm m m m     

 
for some permutation, 1( ,.., )n  . Hence if the conditional distribution of such labels 

given both 1( ,.., )ns s  and 1 2( , )n n  is denoted by 1 1 2Pr[ | ( ,.., ), , ]ns s n n , then it follows that:  

 
(5.6.6) 

11 1 1 2 1 1 2Pr[( ,.., ) | ( ,.., ), , ] Pr[( ,.., ) | ( ,.., ), , ]
nn n nm m s s n n m m s s n n     

                                                 
13 However, if one were to model the immergence of new events (such as new disease victims or new 
housing sales), then this ordering would indeed play a significant role. 
14 For example, possible permutations of (1, 2,3)  include 

1 2 3
( , , ) (2,1,3)     and 

1 2 3
( , , ) (3, 2,1)    . 
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                                                                   1 1 1 2Pr[( ,.., ) | ( ,.., ), , ]n nm m s s n n  

 
Moreover, since these conditional labeling events are mutually exclusive and collectively 
exhaustive, it also follows that this set of permutations must yield a well-defined 
conditional probability distribution, i.e. that: 
  
(5.6.7) 

11
1 1 2( ,.., )

Pr[( ,.., ) | ( ,.., ), , ] 1
nn

nm m s s n n  
   

 
Finally, recalling that the number of permutations of (1,.., )n  is given by !n , we may 

conclude from (5.6.6) and (5.6.7) that for any observed event locations, 1( ,.., )ns s , and 

event labels, 1( ,.., )nm m , with corresponding population sizes, 1n  and 2n , we have the 

following exact conditional distribution for all permutations 1( ,.., )n   of these labels 

under the spatial indistinguishability hypothesis:15 
 

(5.6.8) 
1 1 1 2

1
Pr[( ,.., ) | ( ,.., ), , ]

!n nm m s s n n
n    

 
This provides us with the desired sampling distribution for testing this hypothesis. In 
particular, the following procedure yields a random-labeling test of (5.6.2) that closely 
parallels the random-shift test above: 
 

(i)  Given observed  locations, 1( ,.., )ns s , and labels 1( ,.., )nm m  with corresponding 

population sizes, 1n  and 2n , simulate N  random permutations 1[ ( ),.., ( )]n    , 

1,.., N   of (1,.., )n ,16 and form the permuted labels 
1( ) ( )( ,.., )

n
m m    , 1,.., N   

[which is equivalent to taking a sample of size N from the distribution in (5.6.8)]. 
 

(ii)  If 1 1 1( : 1,.., )iS s i n    and 2 2 2( : 1,.., )jS s j n    denote the patterns for popu-

lations 1 and 2 obtained from the joint realization, 
11 ( ) ( )[( ,.., ),( ,.., )]

nns s m m    , and if 

12
ˆ ( )K h  denotes the sample cross K-function resulting from 1 2( , )S S  , then choose a 

relevant set of distance radii, { : 1,.., }wD h w W  , and calculate the sample cross K-

function values, 12
ˆ{ ( ) : 1,.., }wK h w W   for each 1,.., N  . 

 

(iii)  Finally, if the observed sample cross K-function, 0
12

ˆ ( )K h , is constructed from the 

observed patterns, 0
1S  and 0

2S , then under the spatial indistinguishability hypothesis 

                                                 
15  It should be noted that since {1, 2}

i
m   for each 1,..,i n , many permutations 

1

( , .., )
n

m m   will in fact 

be identical. Hence the probability of each distinct realization is 
1 2
! !/ !n n n . But since it is easier to sample 

random permutations (as discussed in the next footnote) we choose to treat each permutation as realization. 
16  This is in fact a standard procedure in most software. In MATLAB, a random permutation of the 
integers (1,.., )n  is obtained with the command randperm(n). 
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each observed value, 0
12

ˆ ( )wK h , should be a “typical” sample from the list of values 

12
ˆ[ ( ) : 0,1,.., ]wK h N   . Hence if we now let 0M   denote the number of simulated 

random relabelings, 1,.., N  , with 0
12 12

ˆ ˆ( ) ( )w wK h K h  , then the estimated 

probability of obtaining a value as large as 0
12

ˆ ( )wK h  under this hypothesis is again 

given by the attraction p-value in (5.5.3) above. 
 

(iv) Similarly, if 0M   denotes the number of simulated random relabelings, 

1,.., N  , with 0
12 12

ˆ ˆ( ) ( )w wK h K h  , then the estimated probability of obtaining a 

value as small as 0
12

ˆ ( )wK h  under this hypothesis is again given by the repulsion p-

value in (5.5.4) above. 
 

Before applying this test it is of interest to ask why simulation is required at all. Since the 
distribution in (5.6.8) is constant, why not simply calculate the values, 

0
12 12

ˆ ˆPr[ ( ) ( )]w wK h K h   for each 1,..,w W ? The difficulty here is that since there is no 

simple analytical expression for these probabilities, one must essentially enumerate the 
sample space of relabelings and check these inequalities case by case. But even for 
patterns as small as 1 210n n   the number of distinct relabelings to be checked is seen 

to be 20!/(10! 10!) 184,756  . So even for small patterns, there are sufficiently many 
distinct relabelings to make Monte Carlo simulation the most efficient procedure for 
testing purposes. 
 
Finally it is important to stress that while this random-labeling approach is clearly more 
flexible than the random-shift approach above, this flexibility is not achieved without 
some costs. In particular, the most appealing feature of the random shift test was its 
ability to preserve many key properties of the marginal distributions for populations 1 
and 2. In the present approach, where the joint distribution is recast in terms of a location 
and labeling process, all properties of these marginal distributions are lost. So (as 
observed by Diggle, 2003, p.83) the present marked-point-process approach is most 
applicable in cases where there is a natural separation between location and labeling of 
population types. In the context of the Forest example above, a simple illustration would 
be the analysis of a disease affecting say maples. Here the two populations might be 
“healthy” and “diseased” maples. So in this case there is a single location process 
involving all maple trees, followed by a labeling process which represents the spread of 
disease among these trees.17 
 
 
 
 
 
 
 
                                                 
17 An example of precisely this type involving “Myrtle Wilt”, a disease specific to myrtle trees, is part of 
Assignment 2 in this course. 
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5.6.3 Application to the Forest Example 
 

In a manner paralleling the random-shift test, this random-relabeling test is implemented 
in the MATLAB program, k12_perm_plot.m. If the observed locations of populations 1 
and 2 are again denoted by L1 and L2, and if D again denotes the set of selected radial 
distances, then a screen plot of attraction p-values for 999 simulations is now obtained by 
the command (where the final argument, “1”, specifies that a random seed is to be used): 
 

>> k12_perm_plot(L1,L2,999,D,1); 
 

If this test is applied to the Forest example with the somewhat larger set of radial distance 
values, D = [10:20:330], then a typical result is shown in Figure 5.11 below: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we see that the results are qualitatively similar to the random-shift test for short 
distances, but that repulsion is dramatically more extreme for long distances. Indeed 
significant repulsion now persists up to the largest possible relevant scale of 330 feet (= 
Dmax/2). Part of the reason for this can be seen in Figure 5.12 below, where a partial 
tiling of the maple pattern in Figure 5.1 is shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.11 Random Relabeling P-Values 
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Figure 5.12 New Maple Structure 
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Even this small portion of the tiling reveals an additional hidden problem with the 
random-shift approach. For while this replication process statistically preserves the 
means of sample cross K-functions, the variance of these functions tends to increase. The 
reason for this is that tiling by its very nature tends to create new structure near the 
boundaries of the rectangle region, R.18 In the present case, the red ellipses in Figure 5.11 
represent larger areas devoid of maples than those in R itself (created mainly by the 
combination of empty areas in the lower left and upper right corners of R).  Similarly the 
blue ellipses represent new clusters of maples larger that those in R. The result of this 

new structure in the present case is to make the tiled pattern, 0
2S , of maples appear 

somewhat more clustered at larger scales. This in turn yields higher levels of repulsion 

between oaks 0
1( )S , and maples 0

2( )S  at these larger scales for most simulated shifts. The 

result of this is to make the observed level of repulsion between 0
1S  and 0

2S  appear 

relatively less significant at these larger scales, as reflected in the plot of Figure 5.10.19   
 
5.7. Analysis of Spatial Similarity  
 
The two procedures above allowed us to test whether there was significant “attraction” or 
“repulsion” between two patterns. This focuses on their joint distribution. Alternatively, 
we might simply compare their marginal distributions by asking: How similar are the 
spatial point patterns 1S  and 2S ? For instance, in the Forest example of Figure 5.1 we 

started off with the observation that the oaks appear to be much more clustered than the 
maples. Hence rather than characterizing this relative clustering as repulsion between the 
two populations, we might simply ask whether the pattern of oaks, 1S , is more clustered 

than the pattern of maples, 2S . 

 

But while the original (univariate) sample K-functions, 1
ˆ ( )K h  and 2

ˆ ( )K h , provide 

natural measures of individual population clustering, it is not clear how to compare these 
two values statistically. Note that since the population values, 1( )K h  and 2( )K h , are 

simply mean values (for any given h ), one might be tempted to conduct a standard 
difference-between-means test. But this could be very misleading, since such tests 
assume that the two underlying populations (in this case 1S  and 2S ) are independently 

distributed. As we have seen above, this is generally false. Hence the key task here is to 
characterize “complete similarity” in a way that will allow deviations from this 
hypothesis to be tested statistically.  
 
Here the basic strategy is to interpret “complete similarity” to mean that both point 
patterns are generated by the same spatial point process. Hence if the sizes of 1S  and 2S  

are given respectively by 1n  and 2n , then our null hypothesis is simply that the 

                                                 
18 For additional discussion of this point see Diggle (2003, p.6).  
19 Lotwick and Silverman noted this same phenomenon in their original paper (1982, p.410), where they 
concluded that such added structure will tend to “show less discrepancy from independence” and thus yield 
a relatively conservative testing procedure. 
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combination of these two patterns, 1 1 2 2[( : 1,.., ), ( : 1,.., )]i jS s i n s j n   , is in fact a single 

population realization of size 1 2n n n  , i.e., 
1 11 1( ,.., , ,.., )n n nS s s s s . If this were true, 

then it would not matter which subset of 1n  samples was labeled as “population 1”. It 

should be clear from the above discussion that a natural way to formulate this hypothesis 
is to treat the combined process as a marked point process.20 In this framework, the 
relevant null hypothesis is simply that given observed locations, 1( ,.., )ns s  and labels 

1( ,.., )nm m  with 1n  occurrences of “1” and 2n  occurrences of “2”, each permutation of  

these labels is equally likely. But this is precisely the assertion in expression (5.6.8) 
above. Hence in the context of marked point processes, the joint distribution of labels 

1( ,.., )nm m  given locations 1( ,.., )ns s  and population sizes, 1n  and 2n , is here seen to be 

precisely the spatial indistinguishability hypothesis.  
 
However, the present focus is on the marginal distributions of populations 1 and 2 rather 
than the dependency properties of their joint distribution. Hence the natural test statistics 

are the sample K-functions, 1
ˆ ( )K h  and 2

ˆ ( )K h , for each marginal distribution rather than 

the sample cross K-function. Note moreover that if both samples are indeed coming from 

the same population, then 1
ˆ ( )K h  and 2

ˆ ( )K h  should be estimating the same K-function, 

say ( )K h , for this common population. Hence if these sample K-functions were unbiased 

estimates, then by definition the individual K-functions, ˆ( ) [ ( )], 1,2i iK h E K h i  , would 

be the same. In this context, “complete similarity” would thus reduce to the simple null 
hypothesis: 0 1 2: ( ) ( )H K h K h . However, as noted in section 4.3, this simplification is 

only appropriate for stationary isotropic processes with Ripley corrections. Thus, in view 
of the fact that hypothesis (5.6.2) is perfectly meaningful for any point process, we 
choose to adopt a more flexible approach. 
 
To do so, we first note that even in the absence of stationarity, the sample K-functions, 

1
ˆ ( )K h  and 2

ˆ ( )K h , continue to be reasonable measures of clustering (or dispersion) 

within populations. Hence to test for relative clustering (or dispersion) it is still natural to 
focus on the difference between these sample measures,21 which we now define to be 
 

(5.7.1) 1 2
ˆ ˆ( ) ( ) ( )h K h K h    

 
Hence the relevant spatial similarity hypothesis for our present purposes is that the 
observed difference obtained from (5.7.1) is not statistically distinguishable from the 
random differences obtained from realizations of the conditional distribution of labels 
under the spatial indistinguishability hypothesis [(5.6.2),(5.6.3)]. 
 
 

                                                 
20 Indeed this is the reason why the analysis of joint distributions above was developed before considering 
the present comparison of marginal distributions. 
21 Note that one could equally well consider the ratio of these measures, or equivalently, the difference.of 
their logs. 
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5.7.1 Spatial Similarity Test 
 
If we simulate random relabelings in (5.6.8) to obtain a sampling distribution of ( )h  
under this spatial similarity hypothesis, then the observed difference can simply be 
compared with this distribution. In particular, if the observed difference is unusually large 
(small) relative to this distribution, then it can reasonably be inferred that subpopulation 1 
is significantly more clustered (dispersed) than subpopulation 2. This procedure can now 
be formalized by the following simple variation of the random relabeling test, which we 
designate as the spatial similarity test:  
 

(i)  Given observed  locations, 1( ,.., )ns s , and labels 1( ,.., )nm m  with corresponding 

population sizes, 1n  and 2n , simulate N  random permutations 1[ ( ),.., ( )]n    , 

1,.., N   of (1,.., )n , and construct the corresponding the label permutations 

1( ) ( )( ,.., )
n

m m    , 1,.., N    
 

(ii)  If 1 1 1( : 1,.., )iS s i n    and 2 2 2( : 1,.., )jS s j n    denote the population patterns 

obtained from the joint realization, 
11 ( ) ( )[( ,.., ),( ,.., )]

nns s m m    , 1,.., N  , and if the 

corresponding sample difference function is denoted by 1 2
ˆ ˆ( ) ( ) ( )h K h K h     , then 

for the given set of relevant radial distances, { : 1,.., }wD h w W  , calculate the 

sample difference values, { ( ) : 1,.., }wh w W   for each 1,.., N  . 
 

(iii)  Finally, if the observed sample difference function, 0 0 0
1 2

ˆ ˆ( ) ( ) ( )h K h K h   , is 

constructed from the observed patterns, 0
1S  and 0

2S , then under the spatial similarity 

hypothesis, each observed value, 0 ( )wh , should be a “typical” sample from the list 

of values [ ( ) : 0,1,.., ]wh N   . Hence if we now let 0m  denote the number of 

simulated random relabelings, 1,.., N  , with 0( ) ( )w wh h   , then the probability 

of obtaining a value as large as 0 ( )wh  under this hypothesis is estimated by the 

following relative clustering p-value for population 1 versus population 2:  
 

(5.7.2)  
0

12
-

1ˆ ( )
1r clustered

m
P h

N
 


 

 

(iv) Similarly, if 0m  denotes the number of simulated random relabelings, 1,.., N  , 

with 0( ) ( )w wh h   , then the probability of obtaining a value as small as 0 ( )wh  

under this hypothesis is estimated by the following relative dispersion p-value for 
population 1 versus population 2: 
 

(5.7.3)  
0

12
-

1ˆ ( )
1r dispersed

m
P h

N
 

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5.7.2 Application to the Forest Example 
 
This spatial similarity test is implemented in the MATLAB program, k2_diff_plot.m. 
Here it is convenient to adopt the marked-point-process format by defining a single list of 
locations, loc, in which the first n1 locations correspond to population 1 and all 
remaining locations correspond to population 2. Hence both of these populations are 
identified by simply specifying n1. If D again denotes the set of selected radial distances 
used for the Forest example above, then a screen plot of relative clustering p-values for 
999 simulations is now obtained by the command: 
 
>> k2_diff_plot(loc,n1,sims,D,1); 

 
The output of a typical run is shown in Figure 5.13 below: 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This confirms the informal observation above that oaks are indeed more clustered than 
maples, for scales consistent with a visual inspection of Figure 5.1.   
 
5.8 Larynx and Lung Cancer Example 
 
While the simple Forest example above was convenient for developing a wide range of  
techniques for analyzing bivariate point populations, the comparison of Larynx and  Lung 
cancer cases in Lancashire discussed in Section 1 is a much richer example. Hence we 
now explore this example in some detail. First we analyze the overall relation between 
these two patterns, using a variation of the spatial similarity analysis above. Next we 
restrict this analysis to the area most relevant for the Incinerator in Figure 1.9. Finally, we 
attempt to isolate the cluster near this Incinerator by a new method of local K-function 
analysis that provides a set of exact local clustering p-values.  
 

0  50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r-clustered 

r-dispersed 

P
-V

al
u

e 

Radius 

Figure 5.13. Relative Clustering of Oaks 
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5.8.1 Overall Comparison of the Larynx and Lung Cancer Populations 
 
Given the Larynx Cancer population of 1 57n   cases, and Lung Cancer population of 

2 917n   cases, we could in principle use k2_diff_plot to compare these populations. But 

the great difference in size between these populations makes this somewhat impractical. 
Moreover, it is clear that the Larynx cancer population in Figure 1.7 above is of primary 
interest in the present example, and that Lung cancers serve mainly as an appropriate 
reference population for testing purposes. Hence we now develop an alternative testing 
procedure that is designed precisely for this type of analysis. 
 
Subsample Similarity Hypothesis 
 
To do so, we again start with the hypothesis that Larynx and Lung cancer cases are 
samples from the same statistical population. But rather than directly compare the small 
Larynx population with the much larger Lung population, we simply observe that if the 
Larynx cases could equally well be any subsample of size 1n  from the larger joint 

population, 1 2n n n  , then the observed sample K-function, 1
ˆ ( )K h , should be typical of 

the sample K-functions obtained in this way. Hence, in the context of marked point 
processes, the present subsample similarity hypothesis asserts that for any given 

realization 1 1[( ,.., ), ( ,.., )]n ns s m m , the value 1
ˆ ( )K h  obtained from the 1n  locations with 

1im   is statistically indistinguishable from the same sample K-function obtained by 

randomly permuting these labels.  
 
Test of the Subsample Similarity Hypothesis 
 
The corresponding test of this subsample similarity hypothesis can be formalized as 
follows variation of the spatial similarity test procedure above: 
 

(i)  Same as for the spatial similarity test.  
 

(ii)  If 1 1 1( : 1,.., )iS s i n    denotes the population pattern obtained from the joint 

realization, 
11 ( ) ( )[( ,.., ), ( ,.., )]

nns s m m    , and if the corresponding sample K-function is 

1
ˆ ( )K h , then for the given set of relevant radial distances, { : 1,.., }wD h w W  , 

calculate the sample K-function values, 1
ˆ{ ( ) : 1,.., }wK h w W   for each 1,.., N  . 

 

(iii)  Finally, if the observed sample K-function, 0
1

ˆ ( )K h , is constructed from the 

observed patterns, 0
1S  and 0

2S , then under the subsample similarity hypothesis, each 

observed value, 0
1

ˆ ( )wK h , should be a “typical” sample from the list of values 

ˆ[ ( ) : 0,1,.., ]wK h N   . Hence if we now let 0m  denote the number of simulated 

random relabelings, 1,.., N  , with 0
1 1

ˆ ˆ( ) ( )w wK h K h  , then the probability of 
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obtaining a value as large as 0
1

ˆ ( )wK h  under this hypothesis is estimated by the 

following  clustering p-value for population 1: 
 

(5.8.1)  
0

1 1ˆ ( )
1clustered

m
P h

N
 


 

 

(iv) In a similar manner, if 0m  denotes the number of simulated random relabelings, 

1,.., N  , with 0
1 1

ˆ ˆ( ) ( )w wK h K h  , then the probability of obtaining a value as small 

as 0
1

ˆ ( )wK h  under this hypothesis is estimated by the following dispersion p-value for 

population 1: 
 

(5.8.2)  
0

1 1ˆ ( )
1dispersed

m
P h

N
 


 

 
 
Hence under this testing procedure, significant clustering (dispersion) for population 1 
means that the observed pattern of size 1n  is more clustered (dispersed) than would be 

expected if it were a typical subsample from the larger pattern of size n . Note that while 
this test is in principle possible for subpopulations of any size less than n , it only makes 
statistical sense when 1n  is sufficiently small relative to n  to allow a meaningful sample 

of alternative subpopulations. Moreover, when 1n  is much smaller than n , the present 

Monte Carlo test is considerably more efficient in terms of computing time then the full 
spatial similarity test above 
 
Application to Larynx and Lung Cancers 
 
This testing procedure is implemented in the MATLAB program, k2_global_plot.m. 
(Here “global” refers to the global nature of this pattern analysis. We consider a local 
version later.) Before carrying out the analysis, it is instructive to construct a sample 
subpopulation pattern, 1S , for visual comparison with the observed pattern, 0

1S , of 

Larynx cancers. The MATLAB workspace, Larynx.mat, contains the full set of 
57 917 974n     locations in the matrix, loc, where the 1 57n   Layrnx cancer cases 

are at the top. A random subpopulation of size 1n  can be constructed in MATLAB by the 

following command sequence: 
 
>> list = randperm(974); 
 

>> sublist = list(1:57); 
 

>> sub_loc = loc(sublist,:); 
 
The first command produces a random permutation, list, of the indices (1,...,974) and the 
second command selects the first 57 values of list and calls them sublist. Finally, the last 
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command creates a matrix, sub_loc, of the corresponding locations in loc. While this 
procedure is a basic component of the program, k2_global_plot.m, it is useful to perform 
these commands manually in order to see an explicit example. This coordinate data can 
then be imported to ARCMAP and compared visually with the given Larynx pattern as 
shown in Figures 5.14 and 5.15 below:22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This visual comparison suggests that there may not be much difference between the 
overall pattern of observed Larynx cancers and typical subsamples of the same size from 
the combined population of Larynx and Lung cancers.  
 
To confirm this by a statistical test, it remains only to construct an appropriate set of 
radial distances, D, for testing purposes. Here it is instructive to carry out this procedure 
explicitly by using the following command sequence: 
 
>> Dist = dist_vec(loc); 
 

>> Dmax = max(Dist); 
 

>> d = Dmax/2; 
 

>> D = [d/20:d/20:d]; 
 
The first command uses the program, dist_vec, to calculate the vector of ( 1) / 2n n   
distinct pairwise distances among the n  locations. The second command identifies the 
maximum, Dmax, of all these distances, and the third command used the “Dmax/2” rule 
of thumb in expression (4.5.1) above to calculate the maximum radial distance for the 
test. Finally, some experimentation with the test results suggests that the p-value plot 
should include 20 equally spaced distance values up to Dmax/2. This can be obtained by 
the last command, which constructs a list of numbers starting at the value, d/20, and 
proceeding in increments of size d/20 until the number d is reached. 

                                                 
22 Note also that these subpopulations can be constructed directly in MATLAB. The relevant boundary file 
is stored in the matrix, larynx_bd, so that subpopulation, sub_loc, can be displayed with the command, 
poly_plot(larynx_bd,sub_loc). See Section 9 of the Appendix to Part I for further details. 
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Given this set of distances, D, a statistical test of the subsample similarity hypothesis for 
this example can be carried out with the command: 
 
>> k2_global_plot(loc,n1,999,D,1); 
 
A typical result is shown in Figure 5.16 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here we can see that, except at small distances, there is no significant difference between 
the observed pattern of Larynx cases and random samples of the same size from the 
combined population. Moreover, since the default p-values calculated in this program are 
the clustering p-values in (5.8.1), the portion of the plot above .95 shows that Larynx 
cases are actually significantly more dispersed at small distances than would be expected 
from random subsamples. An examination of Figures 1.7 and 1.8 suggests that, unlike 
Lung cancer cases which (as we have seen in Section 4.7.3) are distributed in a manner 
roughly proportional to population, there appear to be somewhat more Larynx cases in 
less populated outlying areas than would be expected for Lung cancers. This is 
particularly true in the southern area, which contains the Incinerator. Hence we now 
focus on this area more closely. 
 
5.8.2 Local Comparison in the Vicinity of the Incinerator 
 
To focus in on the area closer to the Incinerator itself, we start with the observation that 
heavier exhaust particles are more likely to affect the larynx (which is high in the throat). 
Hence while little is actually known about either the exact composition of exhaust fumes 
from this Incinerator or the exact coverage of the exhaust plume, it seems reasonable to 
suppose that heavier exhaust particles are mostly concentrated within a few kilometers of 
the source. Hence for purposes of the present analysis, a maximum range of 4000 meters 
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Figure 5.16. P-Values for Larynx Cases       



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                Part I. Spatial Point Pattern Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     I.5-25                                                  Tony E. Smith 

( 2.5  miles) was chosen.23 This region is shown in Figure 5.17 below as a circle of 
radius 4000 meters about the Incinerator (which is again denoted by a red cross as in 
Figure 1.9): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the coordinate position of the Incinerator is denoted by Incin,24 then one can identify 
those cases that are within 4000 meters of Incin by means of the customized MATLAB 
program, Radius_4000.m. Open the workspace, layrnx.mat, and use the command: 
 
>> OUT = Radius_4000(Incin,Lung,Larynx); 
 
Here Lung and Larynx denote the locations of the Lung and Larynx cases, respectively.  
The output structure, OUT, includes the locations of Lung and Larynx cases within 4000 
meters of Incin, along with their respective distances from Incin. Here it can be seen by 
inspection that the number of Larynx cases is n1 = 7. The total number of cases in this 
area is n = 75. The appropriate inputs for k2_global_plot above can be obtained from 
OUT as follows:  
 
>> loc_4000 = OUT.LOC; 
 

>> n1_4000 = length(OUT.L1);  
 
Hence choosing D_4000 = [400:200:4000] to be an appropriate set of radial distances, a 
test of the subsample similarity hypothesis for this subpopulation can be run for 999 
simulations with the command: 
 

                                                 
23 This is in rough agreement with the distance influence function, ( )f d , estimated by Diggle, Gatrell and 

Lovett (1990, Figure 7), which is essentially flat for 4d  kilometers. 
24 This position is given in the ARCMAP layer, incin_loc.shp, as Incin = (354850,413550) in meters. 
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Figure 5.17. Vacinity of the Incinerator      
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>> k2_global_plot(loc_4000,n1_4000,999,D_4000,1); 
 
Here a typical result is shown in Figure 5.18 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This plot is seen to be quite different from the global plot of Figure 5.16 above. In 
particular, there is now some weakly significant clustering at scales below 500 meters. 
This suggests that while the global pattern of Larynx cases exhibits no significant 
clustering relative to the combined population of Larynx and Lung cases, the picture is 
quite different when cases are restricted to the vicinity of the Incinerator. In particular, 
the strong cluster of three Larynx cases nearest to the Incinerator in Figure 5.17 would 
appear to be a contributing factor here. 
 
5.8.3 Local Cluster Analysis of Larynx Cases 
 
This leads to the third and final phase of our analysis of this problem. Here we consider a 
local analysis of clustering which is a variation of the local K-function analysis in Section 
4.8 above. We again adopt the spatial indistinguishability hypothesis that Larynx and 
Lung cases are coming from the same point process, but now focus on each individual 
Larynx case by considering the conditional distribution of all other labels given this 
Larynx case.  
 
To motivate this approach, we start by considering an enlargement of Figure 5.17 in 
Figure 5.19 below that focuses on the cluster of three Larynx cases closest to the 
Incinerator. Here we choose upper most case, labeled 1is  in the figure, and consider a 

circular region of radius 400h   meters about this case. There are seen to be six other 
cases within distance h  of 1is , of which two are also Larynx cases. Hence it is of interest 

to ask how likely it is to find at least two other Larynx cases within this small set of cases 
near 1is .  
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Figure 5.18. P-Values for Incinerator Vicinity       



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                                Part I. Spatial Point Pattern Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     I.5-27                                                  Tony E. Smith 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To determine the probability of this event, we start by removing the 4000-meter 
restriction and return to the full population of cancer cases,  1 2 974n n n    with 

1 57n  . If we again adopt the null hypothesis of subsample similarity (so that Larynx 

cases could equally well be any subsample of size 1n  from the full population of n  

cases), then under this hypothesis one can calculate the exact probability of this event. To 
start with, if there are c  other cases within distance h  of case, 1is , and 1c  of these belong 

to population 1, then under the subsample similarity hypothesis, this event can be 
regarded as a random sample of size c  from the population of 1n   other cases which 
contains exactly 1c  of the 1 1n   other population 1 cases. Hence the probability of this 

event is given by the general hypergeometric probability: 
 

(5.8.3)      

! ( )!
!( )! ( )!( )!

( | , , )
!

!( )!

K M K K M K
k m k k K k m k M K m k
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                

   
     

 

 

where in the present case, 1 1, 1, ,k c K n m c     and 1M n  . Finally, to construct the 

desired event probability as stated above, observe that if we let the random variable, 1C , 

denote the number of population 1 cases within distance h  of 1is , then the chance of 

observing at least 1c  cases from population 1 is given by the sum: 

(5.8.4)   
1

1 1 1 1 1 1( | , , ) Prob( | , , ) ( | , 1, 1)
c

k c
P c c n n C c c n n p k c n n


      

 
It is this cumulative probability, 1 1( | , , )P c c n n , that yields the desired event probability. 

In the specific case above where 1 12, 6, 57,c c n    and 974n  , we see that this 

probability is given by 

Figure 5.19. Neighborhood of Larynx Case 
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(5.8.5)  (2 | 6,57,974) .042P   
 

Hence if the subsample similarity hypothesis were true, then it would be quite surprising 
to find at least two Larynx cases with this subpopulation of six cases. In other words, for 
the given pattern of Larynx and Lung cases, there appears to be significant clustering of 
Larynx cases near 1is  at the 400h   meter scale.  

 
Thus to construct a general testing procedure for local clustering (or dispersion) of 
Larynx cases, it suffices to calculate the event probabilities in (5.8.4) for every observed 
Larynx location, 1is , at every relevant radial distance, h . This procedure is implemented 

in the MATLAB program, k2_local_exact.m.25 In the present case, if we consider only 
the single radial distance, D = 400, and again use the location matrix, loc, then the set of 
clustering p-values at each of the n1 = 57 Larynx locations is obtained with the 
command:    
 
>> [P,C,C1] = k2_local_exact(loc,n1,400); 
 
Here P is the vector of p-values at each location, and C and C1 are the corresponding 
vectors of total counts, c , and population 1 counts, 1c , at each location.   

 
To gain further perspective on the significance of the cluster in Figure 5.19 above, one 
can compare distances of cases to the Incinerator with the corresponding p-values as 
follows: 
 
>> L = [Incin;Larynx]; 
 

>> dist_L = dist_vec(L); 
 

>> dist = dist_L(1:57); 
 

>> COMP = [P,dist]; 
 

>> COMP = sortrows(COMP,1); 
 

>> COMP(1:7,:) 
 
 
The first command stacks the Incinerator location on top of the Larynx locations in a 
matrix, L. The second and third commands then identify the relevant distances (i.e., from 
Incin to all locations in Larynx ) as the first 57 distances, dist, produced by dist_vec(L). 
The fourth and fifth commands combine P with dist in the matrix, COMP, and then sort 
rows of COMP by P from low to high. Finally the last command displays the first seven 
rows of this sorted version of COMP, as shown in the box on the right.  
 
                                                 
25 In the MATLAB directory for the class, there is also a Monte Carlo version of this program, k2_local.m. 
By running these two programs for the same data set (say with 999 simulations) you can see that exact 
calculations tend to be orders of magnitude faster than simulations – when they are possible. 

           P                  dist 
 

     0.0094077        693.80 
     0.029091          910.34 
     0.042038        1002.90 
     0.29995        12512.00 
     0.34049        14858.00 
     0.41478        13744.00 
     0.48083        14982.00 
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The first three rows (in red) are the three closest Larynx cases to the Incinerator, as can 
be verified in ARCMAP (and can also be seen in Figure 5.17 above).26  Moreover, the 
ordering of p-values shows that these are the only three locations that exhibit significant 
clustering. Hence this result suggests that there may indeed be some relation between the 
Incinerator and nearby Larynx cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
26 Note that the case just below these three is almost as close to the Incinerator as one of these three. But 
this case has only a single Lung case within 400 meters, and hence exhibits no clustering at this scale. 


