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6.  Space-Time Point Processes 
 
Point events (such as crimes or disease cases) occur in time as well as space. If both time 
and location data are available for these events, then one can in principle model this data 
as the realization of a space-time point process. As a prime example, recall that the 
Burkitt’s Lymphoma data (examined in Assignment 1 of this class) contains both onset 
times and locations for 188 cases during the period 1961-1975. Moreover, the original 
study of this data by Williams et al. (1978)1, (here referred to as [W]) focused precisely 
on the question of identifying significant space-time clustering of these cases. Hence it is 
of interest to consider this data in more detail.  
 
The cases occurring in each five-year period of the study are displayed in Figure 6.1 
below (with green shading reflecting relative population density in West Nile), and 
correspond roughly to Figure 5 in [W].2 Here is does appear that cases in subsequent 
periods tend to be clustered near cases in previous periods. But the inclusion of 
population density in Figure 6.1 was done specifically to show that such casual 
observations can be deceptive. Much of the new clustering is seen to occur in more 
densely populated areas where one would expect new cases to be more likely based on 
chance alone.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The simple regression procedure used in Assignment 1 related times of cases to those of 
their nearest-neighbors. But since population density is ignored in this approach, the 
“clustering” result obtained by this procedure is questionable at best. Hence, one 

                                                 
1 This is Paper 1 in the Reference Materials on the class web page. 
2 These cases differ slightly from those in Figure 5 of [W]. The present approximation is based on the 
counting convention stated in [BG, p.81] that time is “measured in days elapsed since January 1st, 1960”. 
This rule does not quite agree with the actual dates in the Appendix of [W], but the difference is very slight.  
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Figure 6.1 Lymphoma Cases in each Five-Year Period 
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objective of the present section is to develop an alternative “random labeling” test that is 
more appropriate. But before doing so, we shall consider the general question of space-
time clustering more closely.  
 
6.1 Space-Time Clustering 
 
Event sequences exhibit space-time clustering if events that are close in space tend to be 
closer in time than would be expected by chance alone. The most classic examples of 
space-time clustering are spatial diffusion processes in which point events are propagated 
from locations to neighbors through some form of local interactions. Obvious examples 
include the spread of forest fires (where new trees are ignited by the heat from trees 
burning nearby), or the spread of contagious diseases (where individuals in direct contact 
with infected individuals also become infected). Here it is worth noting that cancers such 
as Burkitt’s Lymphoma are not directly contagious. However, as observed in [W,p.116], 
malaria infections may be a contributing factor leading to Burkitt’s Lymphoma, and the 
spread of malaria itself involves a diffusion process in which mosquitoes transmit this 
disease from existing victims to new victims.   
 
But even with genuine diffusion processes one must be careful in analyzing space-time 
clustering. Consider the onset of a new flu epidemic introduced into a region, R, by a 
single carrier, c, and suppose that the cases occurring during the first few days are those 
shown in Figure 6.2 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here there is a clear diffusion effect in which the initial cases involve contacts with c, and 
are in turn propagated to others by secondary contacts. But notice that even though the 
initial three cases shown are all close to c, this process spreads out quickly.  So while the 
six “second round” cases shown in the figure may all occur at roughly the same time, 
they are already quite dispersed in space. This example shows that cases occurring close 
in time need not occur close in space. However, this figure also suggests that cases 
occurring close in space may indeed have a tendency to occur close in time.3 So there 

                                                 
3 Here we assume that most contacts involve individuals living in close spatial proximity – which may not 
be the case. For example, some individuals have significant contact with co-workers at distant job sites. 
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appears to be some degree of asymmetry between space and time in such processes. We 
shall return to this issue below. 
 
While the early stages of this epidemic show clear propagation effects, this is not true at 
later stages. After the first few weeks, such an epidemic may well have spread throughout 
the region, so that the pattern of new cases occurring on each day may be very dispersed, 
as shown in Figure 6.3.  More importantly, this pattern will most likely be quite similar 
from day to day. At this stage, the diffusion process is said to have reached a steady state 
(or stationary state). In such a steady state it is clearly much harder to detect any space-
time clustering whatsoever. Diffusion is still at work, but the event pattern is no longer 
changing in detectable ways.4 However, it may still be possible to detect such space-time 
effects indirectly. For example, if one were to examine the distribution of cases on day t , 
and to identify the new cases on day 1t  , then it might still be possible to test whether 
these new cases are “significantly closer” to the population of cases on day t  than would 
be expected by chance alone. We shall not pursue such questions here. Rather the intent 
of this illustration is to show that space-time clustering can be subtle in even the clearest 
examples of spatial diffusion. 
 
 
6.2 Space-Time K-Functions 
 
With this preliminary discussion we turn now to the measurement of space-time 
clustering. Here we follow approach of [BG, Section 4.3] by constructing a space-time 
version of K-functions.5 Consider a space-time pattern of events, { ( , ) : 1,.., }i i ie s t i n  , 

in region, R, where is  again denotes the location of event ie  in R, and it  denotes the time 

at which event ie  occurs. If for a given event ie  we are interested in the numbers of 

events that are “close” to ie  in both space and time, then for each spatial distance, h , and 

time increment,  , it is natural to define the corresponding space-time neighborhood of 
event, ( , )i i ie s t , by the Cartesian product:  

 
(6.2.1)  ( , ) ( ) {( , ) : ,| | }h i i iC e s t s s h t t         

  
                                     { : } { :| | }i is s s h t t t        

 
Hence the circular neighborhoods, ( )h iC s , in two dimensions are now replaced by 

cylindrical neighborhoods, ( , ) ( )h iC e , in three dimensions, as shown in Figure 6.4 below. 

                                                 
 
4 A more extreme example is provided by change in temperature distribution within a room after someone 
has lit a match. While the match is burning, there is very sharp peak in the temperature distribution that 
spreads out from this point source of heat. After the match has gone out, this heat is not lost. Rather it 
continues to diffuse throughout the room until a new steady state is reached in which the temperature is 
everywhere slightly higher than before. 
5 For a more thorough treatment see Diggle, P., Chetwynd, A., Haggkvist, R. and Morris, S. (1995). 
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As in two dimensions, one can define a relevant space-time region as the Cartesian 
product, R T of the given spatial region, R, and a relevant time interval, T. For a given 
pattern of events, { ( , ) : 1,.., }i i ie s t i n  , the default time interval, T, for purposes of 

analysis is usually taken to be the smallest time interval containing all event times, i.e., 
 
(6.2.2)  max min max{ : 1,.., } min{ : 1,.., }i iT t t t i n t i n       

 
as illustrated in Figure 6.5 below:6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this context, the desired space-time extension of K-functions is completely 
straightforward. First, if for any two space-time events, ( , )i i ie s t  and ( , )j j je s t  we 

now let | |ij i jt t t   (and again let ij i jd s s  ) then as an extension of (4.3.2), we now 

have the following space-time indicator functions: 
                                                 
6 At this point it should be noted that, as with two dimensions, the cylindrical neighborhoods in (6.2.1) are 

subject to “edge effects” in R T , so that in general, one must replace  
( , )

( )
h i

C e


 by 
( , )

( ) ( )
h i

C e R T


  . 

Figure 6.4 Space-Time Neighborhoods 
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(6.2.3)  ( , )

1 , ( ) ( )
( , )

0 ,
ij ij

h ij ij

d h and t
I d t

otherwise

   


   

 
If for a given space-time point process we let st  denote the space-time (st) intensity of 

events, i.e., the expected number of events per unit of space-time volume, then the 
desired space-time K-function is again defined for each 0h   and 0   to be the 
expected number of additional events within space-time distance ( , )h   of a randomly 

selected event, ie , i.e., 

 

(6.2.4)  ( , )
1( , ) ( , )h ij ijj ist

K h E I d t 
       

 
So as in (4.3.4), for any given pattern size, n , the pooled form of this function 
 

(6.2.5)  ( , )1
1( , ) ( , )

n

h ij iji j istnK h E I d t          

 
implies that the natural estimator of ( , )K h   is given by sample space-time K-function: 
 

(6.2.6)  ( , )1
1
ˆ

ˆ ( , ) ( , )
n

h ij iji j istn
K h I d t

  
     

 

Here the sample estimate, ŝt , of the space-time intensity is given by  

 

(6.2.7)  
max min

ˆ
( ) ( )st

n

a R t t
 

 
 

 
where the denominator is now seen to be the volume of the space-time region, R T , in 
Figure 6.5 above. 
 
6.3 Temporal  Indistinguishability Hypothesis 
 
To test for the presence of space-time clustering, one requires the specification of an 
appropriate null hypothesis representing the complete absence of space-time clustering. 
Here the natural null hypothesis to adopt is simply that there is no relation between the 
locations and timing of events.  Hence in a manner completely paralleling the treatment 
of marked point processes in (5.6.1) it is convenient to separate space and time, and write 
the joint probability of space-time events as, 
 
(6.3.1) 1 1Pr[( , ) : 1,.., ] Pr[( ,.., ),( ,.., )]i i n ns t i n s s t t   

 
                                                    1 1 1Pr[( ,.., ) | ( ,.., )] Pr( ,.., )n n nt t s s s s   
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where 1Pr( ,.., )ns s  again denotes the marginal distribution of event locations, and where 

1 1Pr[( ,.., ) | ( ,.., )]n nt t s s  denotes the conditional distribution of event times given their 

locations.7 In this context, if the marginal distribution of event times is denoted by 

1Pr( ,.., )nt t , then as a parallel to (5.6.2), the relevant hypothesis of space-time 

independence for our present purposes can be stated as follows:  

 
(6.3.2) 1 1 1Pr[( ,.., ) | ( ,.., )] Pr( ,.., )n n nt t s s t t  

  
Here it should be noted (as in footnote 5 of Section 5) that from a formal viewpoint, this 
independence condition could equally well be stated by switching the roles of 
locations, 1( ,.., )ns s , and times, 1( ,.., )nt t , in (6.3.2). But as noted in Section 6.1 above, 

there is a subtle asymmetry between space and time that needs to be considered here. In 
particular, recall that event sequences are said to exhibit space-time clustering if events 
that are close in space tend to be closer in time than would be expected by chance alone. 
Hence it is somewhat more natural to condition on the spatial locations of events and 
look for time similarities among those events that are close in space. 
 
Note also that as with marked point processes, the indexing of events, ie , is completely 

arbitrary. Here it might be argued that the ordering of indices i should reflect the ordering 
of event occurrences. But this is precisely why event times have been listed as distinct 
attributes of space-time events. Hence in the present formulation, it is again most 
appropriate to treats space-time pairs, ( , )i is t  and ( , )j js t  as exchangeable events. In a 

manner paralleling condition (5.6.3), this implies that for all permutations 1( ,.., )n   of 

the subscripts (1,.., )n  the marginal distribution of event times should satisfy the 
exchangeability condition: 
 
(6.3.3) 

1 1Pr( ,.., ) Pr( ,.., )
n nt t t t    

 
These two conditions together constitute our null hypothesis that spatial events are 
completely indistinguishable in terms of their occurrence times.  Hence we now designate 
the combination of conditions, (5.6.2) and (5.6.3) as the temporal indistinguishability 
hypothesis.  
 
6.4 Random Labeling Test 
 
In this setting, we next extend the argument in Section 5.6.2 to obtain an exact sampling 
distribution for testing this temporal indistinguishability hypothesis. To do so, observe 
first that the argument in (5.6.4) now shows that conditional distribution in (6.3.2) 
inherits exchangeability from (6.3.3), i.e., that for all permutations 1( ,.., )n   of (1,.., )n , 
 

                                                 
7 Again for simplicity we take the number of space-time events, n, to be fixed. Alternatively, the 
distributions in (6.3.1) can all be conditioned on n. 
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(6.4.1) 
1 11Pr[( ,.., ) | ( ,.., )] Pr( ,.., )

n nnt t s s t t     
 

                                                         1 1 1Pr( ,.., ) Pr[( ,.., ) | ( ,.., )]n n nt t t t s s   
 

Hence the only question is how to condition these permutations to obtain a well-defined 
probability distribution. Recall that the appropriate conditional information shared by all 
permutations of population labels, 1( ,.., )nm m , was precisely the number of instances of 

each label, “1” and “2”, i.e., the population sizes, 1n  and 2n . Here the set of label 

frequencies, 1 2{ , }n n , is now replaced by the set of time frequencies, { : }tn t T , where tn  

is the number of times that t  occurs in the given set of event times, 1( ,.., )nt t , i.e.,8 

 
(6.4.2) { : , 1,.., }t in i t t i n    

 
It is precisely this frequency distribution which is shared by all permutations, 

1
( ,.., )

n
t t   

in (6.4.1). Indeed, it follows [as a parallel to (5.6.5)] that for every list of times 1( ,.., )nt t   

consistent with this distribution, there is some permutation 
1

( ,.., )
n

t t   of 1( ,.., )nt t  with: 

 
(6.4.3)  

11( ,.., ) ( ,.., )
nnt t t t     

 
Hence if the conditional distribution of such times given both 1( ,.., )ns s  and { : }tn t T  is 

denoted by 1Pr[ | ( ,.., ),{ : }]n ts s n t T  , then the same arguments in (5.6.6) through (5.6.8) 

now yield the following exact conditional distribution for all permutations 1( ,.., )n   of 

these occurrence times under the temporal indistinguishability hypothesis:  
 

(6.4.4) 
1 1

1
Pr[( ,.., ) | ( ,.., ),{ : }]

!n n tt t s s n t T
n     

 
As in Section 5.6.2, this sampling distribution again leads directly to a random-labeling 
test of this hypothesis. For completeness, we list the steps of this test, which closely 
parallels the random-labeling test of Section 5.6.2: 
 

(i)  Given observed  locations, 1( ,.., )ns s , and occurrence times, 1( ,.., )nt t , simulate N  

random permutations 1[ ( ),.., ( )]n    , 1,.., N   of (1,.., )n , and form the permuted 

labels 
1( ) ( )( ,.., )

n
t t    , 1,.., N   [which is now equivalent to taking a sample of size N 

from the distribution in (6.4.4)]. 

(ii)  If ˆ ( , )K h   denotes the sample space-time K-function resulting from joint 

realization, 
11 ( ) ( )[( ,.., ), ( ,.., )]

nns s t t    , then choose relevant sets of distance radii, 

                                                 
8 Note that in most cases these frequencies will either be zero or one. But the present general formulation 
allows for the possibility of simultaneous events, as for example Lymphoma cases reported on the same 
day (or even instantaneous events, such as multiple casualties in the same auto accident).  
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{ : 1,.., }w Rh w W , for R, and time intervals, { : 1,..,v Tv V  } for T, and calculate the 

sample space-time K-function values, ˆ{ ( , ) : 1,.., , 1,.., }w v R TK h w W v V     for each 

1,.., N  . 
 

(iii)  Finally, if the observed sample space-time K-function, 0ˆ ( , )K h  , is constructed 

from the observed event sequence, 1 1[( ,.., ), ( ,.., )]n ns s t t , then under the temporal 

indistinguishability hypothesis each observed value, 0ˆ ( , )w vK h  , should be a “typical” 

sample from the list of values ˆ[ ( , ) : 0,1,.., ]w vK h N   . Hence if 0M   denotes the 

number of simulated random relabelings, 1,.., N  , with 0ˆ ˆ( , ) ( , )w v w vK h K h    , 

then the probability of obtaining a value as large as 0ˆ ( , )w vK h   under this hypothesis 

is estimated by the space-time clustering p-value: 
 

(6.4.5)   
0 1ˆ ( , )

1st clustered w v

M
P h

N





 


 

 
(iv) Similarly, if 0M   denotes the number of simulated random relabelings, 

1,.., N  , with 0ˆ ˆ( , ) ( , )w v w vK h K h    , then the estimated probability of obtaining 

a value as small as 0ˆ ( , )w vK h   under this hypothesis is again given by the space-time 

dispersion  p-value: 
 

(6.4.6)   
0 1ˆ ( , )

1st dispersed w v

M
P h

N





 


 

 
Our primary interest here is of course in space-time clustering for relatively small values 
of  h  and  . But it is clear that a range of other questions could in principle be addressed 
within the more general framework outlined above. 

 

 
6.5 Application to the Lymphoma Example 
 
This testing procedure is implemented in the MATLAB program, space_time_plot.m, 
and can be applied to the Lymphoma example above as follows. In the MATLAB 
workspace, lymphoma.mat, the (188 x 3) matrix, LT, contains space-time data for the  
n =188 lymphoma cases, with rows ( , , )i i ix y t  denoting the location, ( , )i ix y , and onset 

time, it , of each case i . In this program, the maximum distance again set to max / 2h  as in 

(4.5.1) above, and similarly, the maximum temporal interval is set to half the maximum 
time interval, max / 2 , where max max mint t    in Figure 6.5 above. Given these 

maximum values, the user has the option of choosing subdivisions of max / 2h  into s  

equal increments, max( / )( / 2), 1,..,ih i s h i s  , and subdivisions of max / 2  into t  equal 
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increments, max( / )( / 2), 1,..,j j t j t    . So for example the following command uses 

999 random relabelings of times to test for space-time clustering of the Lymphoma data, 
LT, at each point on a grid of space-time neighborhoods ( , )i jh   with 20s t  : 

 
>> results = space_time_plot(LT,999,20,20); 
 
The results of these 400s t   tests is plotted on a grid and then interpolated in 
MATLAB to obtain a p-value contour map such as the one shown in Figure 6.6 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note first that each location in this region corresponds to the size of a space-time 
neighborhood.  Hence those areas with darker contours indicate space-time scales at 
which there are significantly more cases in neighborhoods of this size (about randomly 
selected cases) than would be expected under the temporal indistinguishability 
hypothesis. In particular, the dark contours in the lower left corner show that there is very 
significant concentration in small space-time neighborhoods, and hence significant space-
time clustering. This not only confirms the findings of the simple regression analysis 
done in Assignment 1, but also conveys a great deal more information. In fact the darkest 
contours show significance at the .001 level (which is the maximum significance 
achievable with 999 simulations).9 
Before discussing these results further, it is of interest to observe that while the direct plot 
in MATLAB above is useful for obtaining visual results quickly, these p-values can also 
be exported to ARCMAP and displayed in sharper and more vivid formats. For example, 

                                                 
9 Note also that these p-values can be retrieved in numerical form from the output structure, results, in the 
command above. 

Figure 6.6. P-value Map for Lymphoma Data 
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the above results were exported to ARCMAP and smoothed by ordinary kriging to obtain 
the sharper representation shown in Figure 6.7 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using this sharper image, notice first that the horizontal band of significance at the 
bottom of the figure indicates significant clustering of cases within 500 days of each 
other (  1.4 years) over a wide range of distances. This suggests the presence of short 
periods (about 1.4 years) with unusually high numbers of cases over a wide region, i.e., 
local peaks in the frequency of cases over time. This can be confirmed by Figure 6.8 
below, where a number of local peaks are seen, such as in years 7, 11, 13 and 15 (with 
year 1 corresponding to 1961) 
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Figure 6.7 Smoothed P-Value Map in ARCMAP 
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Next observe that there is a secondary mode of significance at about 1500 days (  4 
years) on the left edge of Figure 6.7. This indicates that many cases occurred close to one 
another over a time lag of about 4 years. Note in particular that the peak years 7,11, and 
15 are spaced at 4 years. This suggests that such peaks may represent new outbreaks of 
Lymphoma cases in the same areas at intervals of about 4 years.  Hence the p-value plots 
in Figures 6.6 and 6.7 above do indeed yield more information than simple space-time 
clustering of events. 
 
 
 
 
 
 
 
 
 
 
 
 
  


