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APPENDIX TO PART I 
 
In this Appendix, designated as A1 (appendices A2 and A3 are for Parts II and III, 
respectively), we shall again refer to equations in the text by section and equation 
number, so that (2.4.3) refers to expression (3) in section 2.4 of Part I. Also, references to 
previous expressions in this Appendix (A1), will be written the same way, so that 
(A1.1.3) refers to expression (3) of section 1 in Appendix A1. 
 
A1.1. Poisson Approximation of the Binomial 
 
This standard result appears in many elementary probability texts [such as Larsen and 
Marx (2001, p.247)]. Here one starts with the fundamental limit identity 
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that defines the exponential function. Given this relation, observe that since  
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it follows that expression (2.2.3) can be written as 
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But if we now evaluate expression (A1.1.3) at the sequence in (2.3.2) and recall that 

/ ( ) 0m mn a R   , then in the limit we can replace / ( )m mn a R  by   in the second factor. 

Moreover, since ( ) / 1m mn h n   for all 0,1,.., 1h k  , it also follows that the first factor 

in (A1.1.3) goes to one. In addition, the last factor also goes to one since 
( ) ( ) / ( ) 0m ma R a C a R  . Hence by taking limits we see that 
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A1.2. Distributional Properties of Nearest-Neighbor Distances under CSR  
 
Given that the nn-distance, D , for a randomly selected point has cdf 
 

(A1.2.1) 
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By differentiating (A1.2.1) we obtain the probability density Df  of D  as 

 

(A1.2.2) 
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This distribution is thus seen to be an instance of the Rayleigh distribution (as for 
example in Johnson and Kotz, 1970, p.197). This distribution is closely related to the 
normal distribution, which can be used to calculate its moments. To do so, recall first that 
since ( ) 0E X   for any normal random variable, 2~ (0, )X N  , it follows that the 
variance of X is simply its second moment, i.e., 
 
(A1.2.3) 2 2 2 2var( ) ( ) ( ) ( )X E X E X E X      
 

But since this normal density 2 2( ) exp( ) / 2x x      is symmetric about zero, we 

then see that 
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Hence by setting 2 1/(2 )    so that 21/(2 )   , we obtain the identity 
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22
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So to obtain the mean, ( )E D , of D  observe from (A1.2.2) and (A1.2.5) that 
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To obtain the variance, var( )D , of D  we first calculate the second moment, 2( )E D . To 
do so, observe first from the integration-by-parts identity (as for example in Bartle, 1975, 
Section 22) that for any differentiable functions, ( )f x  and ( )g x  on [0, ) , 
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whenever these integrals and limits exist. Hence letting 2( )f x x  and 
2

( ) xg x e , it 
follows that 
 

(A1.2.8) 
2 2 22 2

0 0
( 2 ) (2 )( ) (0) lim 0x x x

xx xe dx x e dx x e
   

         

 
But by (A1.2.2) we have, 
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which together with (A1.2.8) now shows that 
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Finally, by combining (A1.2.6) and (A1.2.10) we obtain1 
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1 I am indebted to Christopher Jodice for pointing out several errors in my original posted derivations of 
these moments. 
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A1.3. Distribution of Skellam’s Statistic under CSR 
 
Given these distributional properties of D , we next derive the distribution of Skellam’s 
statistic in (3.2.6). To do so, we first observe from expression (A1.2.1) above that since 
the cdf of the exponential distribution with mean 1/  is given by ( ; ) 1 xF x e   , it 

follows at once that 2D  is exponentially distributed with mean 1/ . But since sums of 
m  independent and identically distributed exponentials with means  1/  is well known 
to be Gamma distributed, ( , )m  , (as for example in Johnson and Kotz, 1970, Chapter 
17), it then follows that under CSR, the distribution of m  independent nn-distance 
samples 1( ,.., )nD D , is given by, 
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For practical testing purposes, this is usually rescaled. Given that the gamma density for 

mW  has the explicit form, 
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the change of variables 
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yields a new density 
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which is precisely the chi-square distribution with 2m  degrees of freedom. Hence 
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A1.4. Effects of Positively Dependent Nearest-Neighbor Samples 
 
In this section it is shown that positive dependencies among nearest neighbors have the 
effect of increasing the variance of the test statistic, nZ , thus making outlier values more 

likely than they would otherwise be. To show this, suppose first that the sample nn-
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distance values 1( ,.., )nD D  are identically distributed with mean, ( )iE D  , and 

variance, 2 2var( ) [( ) ]i iD E D    . Then as a generalization of expression (3.2.11) in 

the text, we have 
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Hence if there are some positive dependencies (i.e., positive covariances) among the 
nearest-neighbor values 1( ,.., )nD D  , then the second term of the last line will be positive, 

so that in this case 2var( ) /nD n . Hence we must have 
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where the last line follows from the fact that ( ) 0nE Z   regardless of any dependencies 

among the nn-distances. But since one should have var( ) 1nZ   under independent 

random sampling, it then follows that realized values of nZ  will tend to be farther away 

from zero than would be expected under independence. Thus even those clustering or 
uniformity effects due to pure chance will tend to look more significant than they actually 
are. 
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A1.5.  The Point-in-Polygon Procedure 
 
The determination whether a point, s , lies in a given polygon or not depends on certain 
basic trigonometric facts. In the Figure 1 below the (hollow) point s  is seen to lie inside 
the polygon, R, determined by three boundary points {1,2,3}.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the angles (in radians) between successive points i  and j  are denoted by ij , then it 

should be clear that for any point s  inside R these angles constitute a full clockwise 
rotation through 2  radians, and hence that we must have 12 23 31 2      . The 

situation can be more complex when the given polygon is not convex. But nonetheless, it 
can easily be seen that if counterclockwise rotations are given negative values, then any 
counterclockwise rotations are canceled out by additional clockwise rotations to yield the 
same total, 2 . So if the polygon boundary points are numbered {1,2,.., }N  proceeding 
in a clockwise direction from any initial boundary point, then we must always have:2 
 

(A1.5.1) 
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On the other hand, if point s  is outside of the polygon, R, then by cumulating angles 
from s  between each successive pair of points, the sum of clockwise and 
counterclockwise rotations must cancel, leaving a total of  zero radians, i.e.,  
 

(A1.5.2) 
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In the case of the simple polygon, {1,2,3}R  , above, this is illustrated by the three 
diagrams shown in Figure 2 below.  
 
 
 
 

                                                 
2 Certain additional complications are discussed at the end of this section. 
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Fig.A1.1. Point Inside Polygon 
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Here the first two angles 12  and 23  are positive, and the angle 31  is precisely the 

negative sum of  12  and 23 . By extending this idea, it is easy to see that a similar 

argument holds for larger polygons. 
 

 

 

 

 

1 

2 

3 

12

 

 

 

 

1 

2 

3 

31

 

 

 

 

1 

2 

3 

23

Fig.A1.2. Point Outside Polygon 
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However, it is important to add here that this argument assumes that the polygon R is 
connected, and has no holes. Unfortunately, these conditions can sometimes fail to hold 
when analyzing general map regions. For example offshore islands are often included as 
part of larger mainland regions, creating disconnected polygons. Also certain small 
regions are sometimes nested in larger regions, creating holes in these regions. For 
example, military bases or Indian reservations within states are often given separate 
regional designations. There are other examples, such as the lake in Figure 2.4 of Part I, 
where one may wish to treat treat certain subregions as “holes”.  
 
So when using standard point-in-polygon routines in practice, one must be careful to 
watch for these situations. Islands are usually best handled by redefining them as separate 
regions. Then by applying a point-in-polygon procedure to each region separately, one 
can determine whether a given point is one of them, or none of them. Holes can be 
handled similarly. For example if 1 2R R  so that the relevant region, 2R , is given by the 

set-theoretic difference, 2 1R R . So for this region, one can apply point-in-polygon 

routines to 1R  and 2R  separately, and then accept only points that are in 2R  but not in 1R .  

 
A1.6. A Derivation of Ripley’s Correction 
 
First observe that the circular cell, C , of radius h  about point is  can be partitioned into a 

set of concentric rings, kC  about is , each of thickness k , so that kk
C C . One such 

ring is shown in Figure 3 below.  
 
 
 
 
 
 
 
 
 
 
 
 
                                  
 
Since these rings are disjoint, it follows that the number of points in C  is identically 
equal to the sum of the numbers of points in each ring kC , so that (in terms of the 

notation in Section 2.2 in the text), 
 
(A1.6.1)    ( ) ( )kk

E N C E N C   

 
But by stationarity, it follows from expression (2.3.4) that 
 

Fig.A1.3.  Partition of Circular Cell, C 
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(A1.6.2) 
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Where ( )ka C R  is by definition the area of the observable portion of kC  inside R . 

Now when the ring thickness, k , becomes small, it should be clear from Figure A1.3 

that the ratio of ( )ka C R  to ( )ka C  is approximately equal to the fraction of the circum-

ference of kC  that is inside region R . So if this ratio is now denoted by ikw  then, 
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Hence, when the ring partition in Figure A1.3 becomes very fine, so that the 'k s  

become small, one has the approximation 
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Putting these results together, we see that for fine partitions of C , 
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Note also that for sufficiently fine partitions it can be assumed that each ring contains at 
most one of the observed points, js C R  , so that the point-count estimators 

ˆ[ ( )]kE N C R  for [ ( )]kE N C R  will have value one for those rings kC  containing a 

point and zero otherwise. Hence, observing by definition that ( ) 1h ijI d   for all such 

points, it follows that 
 

(A1.6.6) 
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If we again estimate   by ˆ / ( )n a R  , and relabel the ring containing each point 

js C R   as jC , then (A1.6.6) is seen to yield the following estimate of ( )K h  in 

(A1.6.5) based on point counts in the set C R  centered at is , 
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Finally, by averaging these estimates over all points is R  as in the text, we obtain the 

pooled estimate, 
 

(A1.6.8) 
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which is seen to be precisely Ripley’s correction in expression (4.3.7). 
 
 
A1.7. An Alternative Derivation of P-Values for K-functions 
 
The text derivation of the P-values in expressions (4.6.8) and (4.6.10) is appealing from a 
conceptual viewpoint in that it focused directly on the distribution of the test statistic, 
ˆ ( )K h , under the CSR Hypothesis. But there is an alternative derivation of this expression 

that has certain practical advantages discussed below. This approach is actually much 
closer in spirit to the argument used in deriving the “envelope” P-values of expressions 
(4.6.3) and (4.6.4), which we now make more precise as follows. Observe that if 0l  is 

consistent with CSR then by construction 0 1( , ,.., )Nl l l  must be independently and 

identically distributed (iid) samples from a common distribution. In the envelope case it 
was then argued from the symmetry of iid samples that none is more likely to be the 
highest (or lowest) than any other. More generally, suppose we now ask how likely it is 
for the observed sample value, 0l , to be the thk  largest among the 1N   samples 

0 1( , ,.., )Nl l l , i.e., to have rank, k , in the ordering of these values. Here it is important to 

note that ranks are not well defined in the case of ties. So for the moment we avoid this 
complication by assuming that there are no ties. In this case, observe that there must be 
( 1)!N   possible orderings of these iid samples, and again by symmetry, that each of 

these orderings must be equally likely. But since exactly !N  of these orderings have 0l  in 

the thk  position (where !N  is simple the number of ways of ranking the other values), it 
follows that if the random variable, 0R , denotes the rank of 0l , then under 0H  we must 

have: 
 

(A17.1) 0

! ! 1
Pr( ) , 1,.., 1

( 1)! ( 1) ! 1

N N
R k k N

N N N N
     

   
 

 
which in turn implies that the chance of a rank as high as k  is given by, 3 
 

                                                 
3 Remember that “high” ranks mean low values of k . 
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(A1.7.2) 0 01 1
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So rather than using the distribution of ˆ ( )K h  under CSR to test this null hypothesis, we 

can use the distribution of its rank 0R  in (A1.7.1) and (A1.7.2).  But if we again let 

0( )m l  denote the number of simulated samples at least as large as 0l , then the observed 

rank of  0l  (assuming no ties) is precisely 0( ) 1m l  . So to test the CSR Hypothesis we 

now ask: How likely would it be to obtain an observed rank as high as 0( ) 1m l   if CSR 

were true? Here the answer is given from (A1.7.2) by the clustering P-value: 
 

(A1.7.3) 0
0 0

( ) 1
( ) Pr[ ( ) 1]

1cluster

m l
P h R m l

N





   


 

 
which is seen to be precisely the same as expression (4.6.8). However there is one 
important difference here, namely that we are no longer attempting to estimate a P-value. 
The distribution in (A1.7.1) and (A1.7.2) is exact, so that there is no need for a “hat” on 

clusterP .  

 
Another important advantage of this approach is that it is directly extendable to include 
possible ties among values. In particular, suppose that whenever two values are tied, we 
flip a fair coin to order them. More generally, suppose we use any tie-breaking procedure 
under which the rankings 0 1( , ,.., )NR R R  are exchangeable random variables (i.e., under 

which their joint distribution in invariant under any permutation of the indices, 0,1,.., N ).  
Then it again follows that all ( 1)!N   orderings resulting from this procedure must be 
equally likely, and hence that (A1.7.1) and (A1.7.2) above continue to hold. Hence the 
key difference here is that in the presence of one or more ties, the ranking of 0l  is not 

uniquely determined by its value. There must be some additional tie-breaking procedure. 
So if 0l  is tied with exactly q  of the simulated values, then there must be some additional 

information about the ranking, say 0( )R q , among these 1q   equal values. Hence all that 

can be said is that if 0( )m l  again has the same meaning then the final rank of 0l  will be 

0 0( ) ( )m l q R q   . For example, if 0l  were ranked last among the ties, so that 

0 ( ) 1R q q  , then 0l  would again have rank 0 0( ) ( 1) ( ) 1m l q q m l      , since all tied 

values would be ranked ahead of 0l  (i.e., would be closer to rank 1 than 0l ). Similarly, if 

0l  were ranked ahead of all other ties, so that 0 ( ) 1R q  , then 0l  would have rank 

0( ) 1m l q   . Hence if we are given 0 ( )R q , then a conditional cluster P-value could be 

defined in terms of expression (A1.7.2) as follows: 
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But since the above exchangeability property also implies that 
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it follows that we can obtain an unconditional clustering P-value (depending only on q ) 
by simply taking summing out these conditioning effects as follows: 
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Hence this generalized cluster P-value amounts to replacing the rank, 0( ) 1m l  , of 0l  in 

(A1.7.2) for the case of no ties with its average rank, 0( ) 1 / 2m l q   , for cases where q  

values are tied with 0l . So for example, if 3N   and 0 1 2 3( , , , ) (5,2,5,6)l l l l  , so that 

0( ) 2m l  , 1q   and the possible ranks of 0l  are {2,3} , then its average rank is 2.5 and  

 

(A1.7.7) 
(2 1) 1/ 2 2.5

( )
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Note finally that the special case in (A1.7.3) above is now simply the special case of “no 
ties”, so that ( ) ( | 0)cluster clusterP h P h . 

 
The argument for uniform P-values is of course identical. Thus the corresponding 
generalized uniform P-value in the presence of q  ties is given by:  
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where 0( )m l  is again the number of simulated values il  no larger than 0l . Here it is 

important to note that these P-values are “almost complements” in the sense that for all q  
and h , 
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To see this, note simply that if we let , ,N N N    denote the number of simulated 

samples that are less, equal, or greater than 0l , then it follows by definition that q N , 

so that  
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Thus for even fairly small N  it must be true that  
 
(A1.7.13) ( | ) ( | ) 1cluster uniformP h q P h q   

 
so that we can essentially plot both P-values on one diagram. Hence all plots in K-
function programs such as k_function_plot focus on cluster P-values, ( | )clusterP h q , 

where ( | )uniformP h q  is implicitly taken to be 1 ( | )clusterP h q .  

 
 
A1.8. A Grid Plot Procedure in MATLAB 
 
While the full grid, ref, can be represented in ARCMAP by exporting this grid from 
MATLAB and displaying it as a point file, it is often more useful to construct this display 
directly in MATLAB to obtain a quick check of whether or not the extent and grid size 
are appropriate. Assuming that the boundary file exists in the MATLAB workspace, this 
can be accomplished with the program poly_plot.m, which was written for this kind of 
application. In the present case the boundary file, Bod_poly (shown on page 3-23 of Part 
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I), is the desired input. Hence to plot the grid, ref, with respect to this boundary, use the 
command: 
 
>> poly_plot(Bod_poly,ref); 
 
Notice that the size of the dots in the 
Figure may be too large or too small, 
depending on the size of the boundary 
being used. These attributes (and 
others, such as the thickness of the 
boundary) can be altered. To do so, 
click on Edit and select Current 
Object Properties. Then to edit the 
size of the grid points, click on any of 
these points. You will then see that a 
few diagonal points are selected, and 
that a window has opened containing 
the attributes of these points. Observe 
that under “Marker” there is a point-
type window and a numerical Marker 
size. If you increase or decrease this 
size, you will see that the point size in 
the display above has changed. In a 
similar manner, you can edit the 
boundary thickness by repeating the 
above Edit procedure, this time 
clicking on any exposed portion of the 
boundary, rather than on one of the 
grid points. 
 
 
A1.9. A Procedure for Interpolating P-Values 
 

 
To duplicate the results in the text, open  
Spatial Analyst and then select: 
   
 
Interpolate to Raster  Spline.  
 

 
In the Spline window that opens set: 
 
 

Input points = “P-val.shp” 
Z value field = “P_005” 
Weight = “5” 

 

Fig.A1.4.  Screen Output from poly_plot 
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and leave all other values as defaults. The value-field, P_005, contains the desired p-
values in the file, P-val.shp. The weight 5 adds a degree of “stiffness” to the spline 
which yields a somewhat smoother result than the default .01 value. Now click OK and 
a new layer appears called “Spline of P-val.shp”. Right click on this layer and select 
“Make Permanent”. Save it to your home directory as say, spline_pvals. This will not 
change the layer, but will give it an editable form. You can alter the display by right 
clicking on the layer, “Spline of P-val.shp”, selecting “Classified” (rather than 
“Stretched”), and editing its properties. [Notice that the values are mostly negative, and 
that the relevant range from 0 to 1 is only a very small portion of the values. This is due 
to the extreme nonlinearity of the spline fit.] 
 
To obtain the display in Figure 4.23 above, 
this spline surface can be converted to contour 
lines as follows. First open Spatial Analyst 
again and this time select 
 

 
Surface Analysis  Contour 
 

 
In the “Contour” window that opens set: 
 

 
Input Surface = “Spline of PVals” 
Contour Interval = “.08” 
Base Contour = “.005” 
 
 

Click OK and a new layer called “ctour” appears that shows the desired contours. This 
file is stored as a temporary file. You can edit its properties. So select “Classify” and 
choose the “Manual” option with settings (.01,.05,0.1,0.2) and appropriate colors. This 
should yield roughly the representation in Figure 4.23 above. This file is stored as a 
temporary file only. So you can keep trying different interval and base contour values 
until you find values that capture the desired regions of significance. Then use Data  
Export to save a permanent copy in your home directory and edit as desired. 
 
 


