
________________________________________________________________________ 
 ESE 502                                                     II.1-1                                                  Tony E. Smith 

CONTINUOUS SPATIAL DATA ANALYSIS 
 
 

1. Overview of Spatial Stochastic Processes 
 
The key difference between continuous spatial data and point patterns is that there is 
now assumed to be a meaningful value, ( )Y s , at every location, s , in the region of 
interest. For example, ( )Y s  might be the temperature at s  or the level of air pollution at 
s . We shall consider a number of illustrative examples in the next section. But before 
doing so, it is convenient to outline the basic analytical framework to be used throughout 
this part of the NOTEBOOK.   
 
If the region of interest is again denoted by R , and if the value, ( )Y s , at each location, 
s R  is treated as a random variable, then the collection of random variables 
 
(1.1)  { ( ) : }Y s s R  
 
is designated as a spatial stochastic process on R  (also called a random field on R ). It 
should be clear from the outset that such (uncountably) infinite collections of random 
variables cannot be analyzed in any meaningful way without making a number of strong 
assumptions. We shall make these assumptions explicit as we proceed. 
 
Observe next that there is a clear parallel between spatial stochastic processes and 
temporal stochastic processes, 
 
(1.2)  { ( ) : }Y t t T  
 
where the set, T , is some continuous (possibly unbounded) interval of time. In many 
respects, the only substantive difference between (1.1) and (1.2) is the dimension of the 
underlying domain. Hence it is not surprising that most of the assumptions and analytical 
methods to be employed here have their roots in time series analysis. One key difference 
that should be mentioned here is that time is naturally ordered (from “past” to “present” 
to “future”) whereas physical space generally has no preferred directions. This will have 
a number of important consequences that will be discussed as we proceed.    
 
1.1 Standard Notation 
 
The key to studying infinite collections of random 
variables such as (1.1) is of course to take finite samples 
of ( )Y s  values, and attempt to draw inferences on the 
basis of this information. To do so, we shall employ the 
following standard notation.  For any given set of sample 
locations, { : 1,.., }is i n R   (as in Figure 1.1), let the 

random vector: Fig.1.1. Sample Locations 
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represent the possible list of values that may be observed at these locations. Note that 
(following standard matrix conventions) we always take vectors to be column vectors 
unless otherwise stated. The second representation in (1.1.1) will usually be used when 
the specific locations of these samples are not relevant. Note also that it is often more 
convenient to write vectors in transpose form as 1( ,.., )nY Y Y  , thus yielding a more 

compact in-line representation. Each possible realization,  
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of the random vector, Y , then denotes a possible set of specific observations (such as the 
temperatures at each location 1,..,i n ).  
 
Most of our analysis will focus on the means and variances of these random variables, as 
well as the covariances between them. Again, following standard notation we shall 
usually denote the mean of each random variable,  iY s , by 

 
(1.1.3)   ( ) ( ) , 1,..,i i iE Y s s i n     

 
so that the corresponding mean vector for Y  is given by 
 
(1.1.4)  1 1( ) [ ( ),.., ( )] ( ,.., )n nE Y E Y E Y        

 
Similarly, the variance of random variable,  iY s , can be denoted in a number of 

alternative ways as:  
 
(1.1.5)  2 2 2var( ) [( ) ] ( )i i i i i iiY E Y s         

 
The last representation facilitates comparison with the covariance of two random 

variables,  iY s  and  jY s , as defined by 

 
(1.1.6)  cov[ ( ), ( )] [( )( )]i j i i j j ijY s Y s E Y Y       

 
The full matrix of variances and covariances for the components of Y  is then designated 
as the covariance matrix for Y , and is written alternatively as 
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where by definition, cov( , ) var( )i i iY Y Y .  

 
As we shall see below, spatial stochastic processes can be often be usefully studied in 
terms of these first and second moments (means and covariances). This is especially true 
for the important case of multivariate normally distributed random vectors that will be 
discussed in some detail below. For the present, it suffices to say that much of our effort 
to model spatial stochastic processes will focus on the structure of these means and 
covariances for finite samples. To do so, it is convenient to start with the following 
overall conceptual framework.  
 
 
1.2  Basic Modeling Framework 
 
Essentially all spatial statistical models that we shall consider start by decomposing the 
statistical variation of random variables, ( )Y s , into a deterministic trend term, ( )s , and 
a stochastic residual term, ( )s , as follows [see also Cressie (1993, p.113)]: 
 
 
(1.2.1)  ( ) ( ) ( ) ,Y s s s s R     
 
 
Here ( )s  is almost always take to be the mean of ( )Y s , so that by definition, 
 
(1.2.2)  ( ) ( ) ( ) [ ( )] [ ( )] ( )s Y s s E s E Y s s         
 
                                                        [ ( )] 0 ,E s s R    
 
 
Expressions (1.2.1) and (1.2.2) together constitute the basic modeling framework to be 
used throughout the analyses to follow. It should be emphasized that this framework is 
simply a convenient representation of ( )Y s , and involves no substantive assumptions 
whatsoever. But it is nonetheless very useful. In particular, since ( )   defines a 
deterministic function on R , it often most appropriate to think of ( )   as a spatial trend 
function representing the typical  values of the given spatial stochastic process over all 
R , i.e., the global structure of the Y -process. Similarly, since ( )   is by definition a 
spatial stochastic process on R  with mean identically zero, it is useful to think of ( )   as 
a spatial residual process representing local variations about ( )  , i.e., the local structure 
of the Y -process. 
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1.3  Spatial Modeling Strategy 
 
Within this framework, our basic modeling strategy will be to identify a spatial trend 
function, ( )  , that fits the Y -process so well that the resulting residual process, ( )  , is 
not statistically distinguishable from “random noise”. However, from a practical 
viewpoint, the usual statistical model of such random effects as a collection of 
independent random variables, { ( ) : }s s R  , is somewhat too restrictive. In particular, 
since most spatial variables tend to exhibit some degree of continuity over space (such as 
average temperature or rainfall), one can expect these variables to exhibit similar values 
at locations close together in space. Moreover, since spatial residuals ( )s  by definition 
consist of all unobserved spatial variables influencing ( )Y s  that are not captured by the 
global trend, ( )s , one can also expect these residuals to exhibit similar values at 
locations close together in space. In statistical terms, this means that for locations, s  and 
v , that are sufficiently close together, the associated residuals ( )s  and ( )v  will tend to 
exhibit positive statistical dependence. Thus, in constructing statistical models of spatial 
phenomena, it is essential to allow for such dependencies in the spatial residual process, 
{ ( ) : }s s R  . 
 
Before proceeding, it is important to emphasize that our basic measure of the degree of 
dependency between spatial residuals -- and indeed between any random variables X  
and Y -- is in terms of their covariance,  
 
(1.3.1)  cov( , ) [( )( )]X YX Y E X Y     

 
[as in expression (1.1.6) above]. To gain further insight into the meaning of covariance, 
observe that if cov( , )X Y is positive, then by definition, this means that the deviations 

XX   and YY   are expected to have the same sign (either positive or negative), so 

that typical scatter plots of ( , )x y  points will have a positive slope, as shown in the first 
panel of Figure 1.2 below. 
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Figure 1.2. Covariance Relations 
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Similarly, if cov( , )X Y  is negative, then deviations XX   and YY   are expected to 

have the opposite signs, so that typical scatter plots will have negative slopes, as in the 
middle panel of Figure 1.2.  Finally, if cov( , )X Y  is zero, then there is expected to be no 
relation between the signs of these deviations, so that typical scatter plots will exhibit no 
directional tendencies at all, as in the final panel of Figure 1.2. In particular, positive 
dependencies among spatial residuals will thus tend to be reflected by positive covariance 
among these residuals. 
 
Given these initial observations, our basic strategy will be to start in Section 3 below by 
constructing an appropriate notion of spatially-dependent random effects. While it may 
seem strange to begin by focusing on the residual process, { ( ) : }s s R  , which simply 
describes “everything left out” of the model of interest, this notion of spatially-dependent 
random noise will play a fundamental role in all spatial statistical models to be 
developed. In particular, this will form the basis for our construction of covariance 
matrices [as in expression (1.1.7) above], which will effectively summarize all spatial 
statistical relationships of interest. This will be followed in Section 4 with a development 
of a statistical tool for estimating covariance, known as a variogram. This will also 
provide a useful graphical device for summarizing spatially-dependent random effects.  
 
Finally in Section 5 we begin by applying these tools to full spatial models as in (1.2.1) 
above. In the simplest of these models, it will be assumed that the spatial trend is constant 
[i.e., ( )s  ] so that (1.2.1) reduces to1 
 
(1.3.2)  ( ) ( ) ,Y s s s R     
 
As will be shown, this simple model is useful for stochastic spatial prediction, or kriging. 
In Section 6 we then begin to consider models in which the spatial trend ( )s  varies over 

space, and in particular, dependents on possible explanatory variables, [ 1( ),..., ( )kx s x s ] 

associated with each location, s R . 
 
But before launching into these details, it is useful to begin with a number of motivating 
examples which serve to illustrate the types of spatial phenomena that can be modeled. 

                                                 
1 Note that the symbol “  ” means that ( )s  is identically equal to   for all s R . 


