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2. Examples of Continuous Spatial Data 
 
As with point patterns, it is useful to consider a number of explicit examples of 
continuous spatial data that will serve to motivate the types of analyses to follow. Each of 
these examples is a case study in Chapter 5 of [BG], and the data for each example has 
been reconstructed in ARCMAP.  
 
2.1  Rainfall in the Sudan 
 
Among the most common examples of continuous spatial data are environmental 
variables such as temperature and rainfall, which can in principle be measured at each 
location in space. The present example involves rainfall levels in central Sudan during 
1942, and can be found in the ARCMAP file, arcview\Projects\Sudan\Sudan.mxd. The 
Sudan population in 1942 was largely along the Nile River, as shown in Figure 2.1 
below. The largest city, Khartoum, is at the fork of the Nile (White Nile to the west and 
Blue Nile to the east). There is also a central band of cities extending to the west.1 
Northern Sudan is largely desert with very few population centers. Hence it should be 
clear that the information provided by rainfall measurements in the 31n   towns shown 
in the Figure will yield a somewhat limited picture of overall rainfall patterns in Sudan.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This implies that one must be careful in trying to predict temperatures outside this band 
of cities. For example, suppose that one tries a simple “smoother” like Inverse Distance 
Weighting (IDW) in ARCMAP (Spatial Analyst extension) [See Section 5.1 below for 
additional examples of “smoothers”] . Here, if the above rainfall data in each city, 

                                                 
1 The population concentrations to the west are partly explained by higher elevations (with cooler climate) 
and secondary river systems providing water.  
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Figure 2.1 Rainfall in Sudan 
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1,..,i n , is denoted by ( )iy s , then the predicted value, ˆ( )y s , at a point, s R , is given 

by a function of the form: 
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where ( )n s  is some specified number of points in { : 1,.., }is i n  that are closest to s , and 

where the inverse distance weights have the form, 
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for some exponent,   (which is typically either 1   or 2  ).2 An interpolation of the 
rainfall data above is shown in Figure 2.2 below, for the default values, ( ) 12n s   and 

2   in Spatial Analyst (Interpolate to Raster  Inverse Distance Weighted).3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is an “exact” interpolator in the sense that every data point, is , is assigned exactly 

the measured value, ˆ( ) ( )i iy s y s . But in spite of this, it should be evident that this 

interpolation exhibits considerably more variation in rainfall than is actually present. In 
particular, one can see that there are small “peaks” around the highest values and small 
“pits” around the lowest values. Mathematically, this is a clear example of what is called 
“overfitting”, i.e., finding a sufficiently curvilinear surface that it passes exactly through 
every data point.  

                                                 
2 See also Johnston et al. (2001, p.114).  
3 The results for IDW in the Geostatistical Analyst extension of ARCMAP are essentially identical. 
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Figure 2.2. IDW Interpolation of Rainfall 
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For sake of comparison, a more recent detailed map of rainfall in the same area for the 
six-month period from March to August in 2006 is shown in Figure 2.3 below. 4 Since 
these are not yearly rainfall totals, the legend is only shown in ordinal terms. Moreover, 
while there is a considerable difference in dates, it is not unreasonable to suppose that the 
overall pattern of rainfall in 1942 was quite similar to that shown in the figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here rainfall levels are seen to be qualitatively similar to Figure 2.2 in the sense that 
rainfall is heavier in the south than in the north. But it is equally clear that the actual 
variation in Figure 2.3 is much smoother that in Figure 2.2. More generally, without 
severe changes in elevation (as was seen for the California case in the Example 
Assignment) it is natural to expect that variations in rainfall levels will be gradual. 
 
This motivates a very different approach to interpolating the data in Figure 2.1. Rather 
than focusing on the specific values at each of these 31 towns, suppose we concentrate on 
the spatial trend in rainfall, corresponding to ( )   in expression (1.2.1) above. Without 
further information, one can attempt to fit trends as a simple function of location 
coordinates, 1 2( , )s s s . Given the prior knowledge that rainfall trends tend to be smooth, 

the most natural specification to start with is the smoothest possible (non-constant) 
function, namely a linear function of 1 2( , )s s : 

 
(2.1.3)  0 1 1 2 2( ) ( ) ( ) ( )Y s s s s s s            

 
This can of course be fitted by a linear regression, using the above data 1 2[ ( ), , ]i i iy s s s  for 

the 1,..,31i   towns above. This data was imported to JMPIN as Sudan.jmp, and the 

                                                 
4 The source file here is Sudan_Rainfall_map_source.pdf  in the class ArcMap directory, Sudan. 

Figure 2.3. Rainfall Pattern in 2006 
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1942 rainfall data (R-42) was regressed on the town coordinates (X,Y). The estimates 

0 1 2
ˆ ˆ ˆ( , , )    were then imported to MATLAB in the workspace, sudan.mat. Here a grid, 

G, of points covering the Sudan area was constructed using grid_form.m (as in Section 

4.8.2 of Part I) and the predicted value, 0 1 1 2 2
ˆ ˆ ˆˆg g gy s s     , at each grid point, g , 

was calculated. These results were then imported to Sudan.mxd in ARCMAP and were 
interpolated using the spline interpolator in Spatial Analyst (Interpolate to Raster  
Spline).5 The results of this procedure are shown in Figure 2.4 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A visual comparison of Figure 2.4 with Figure 2.3 shows that this simple linear trend 
model is qualitatively much more in agreement with actual rainfall patterns than the IDW 
fit in Figure 2.2.6 The results of this linear regression are shown in Table 2.1 below.  
 
 
 
 
 
 
 
 
 
Notice in particular that the Y-coordinate ( 2s  above) is very significant while the X-

coordinate ( 1s  above) is not. This indicates that most temperature variation is from north 

                                                 
5 See section 5.5 below for further discussion of spline interpolations. 
6 It should be emphasized here that we have only used the “default” settings in the IDW interpolator to 
make a point about “over fitting”. One can in fact construct more reasonable IDW fits by using the many 
options available in the Geostatistical Analyst version of this interpolator. 
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Figure 2.4. Linear Trend Model of Rainfall 
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RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

 0.59831
0.569618
1098.022
3692.323

31

Intercept
X
Y

Term
12786.213
7.1438789
-81.47974

Estimate
2031.626
5.934012
12.89805

Std Error
  6.29
  1.20
 -6.32

t Ratio
<.0001
0.2387
<.0001

Prob>|t|

Table 2.1. Linear Regression Results 
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to south, as is clear from Figures 2.3 and 2.4.  However, the adjusted R-square shows that 
only about 57% of the variation in rainfall levels is being accounted by this linear trend 
model, so that there is still considerable room for improvement. With additional data 
about other key factors (such as elevations) one could of course do much better. But even 
without additional information, it is possible to consider more complex specifications of 
coordinate functions to obtain a better fit. As stressed above, there is always a danger of 
over fitting this data. But if adjusted R-square is used as a guide, then it is possible to 
seek better polynomial fits within the context of linear regression. To do so, it is natural 
to begin by examining the regression residuals, as shown in Figure 2.5 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While these residuals show nothing out of the ordinary, a plot of the residuals against the 
X-coordinate is much more revealing. As seen in Figure 2.6 there appears to be a clear 
nonlinearity here, suggesting that perhaps a quadratic specification of X would yield a 
better fit than the linear specification in (2.1.3) above. This can also be seen by plotting 
the residuals spatially, as in Figure 2.7 below: 
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Figure 2.5.  Residual Plot Figure 2.6.  Residuals vs X  
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Figure 2.7. Plot of Spatial Residuals 
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If we focus on the heavy linear contour in the figure, then the residuals near the middle of 
this line are seen to be negative (blue), indicating that observed rainfall is smaller than 
predicted rainfall. Hence, recalling that higher rainfall values are to the south, these 
predictions could be reduced by pulling this contour line further south in the middle. 
Similarly, since the residuals near both ends of this line tend to be positive (red), a similar 
correction could be made by moving the ends north, yielding a curved contour such as the 
dashed curve shown in the figure.  
 
Hence this visual analysis of spatial residuals again suggests that a quadratic specification 
of the X-coordinate should yield a better fit. Thus, as an alternative model, we now 
consider the following quadratic form:7 
 

 
(2.1.4)  2

0 1 1 2 1 3 2( ) ( )Y s s s s s          

 
 

The results of this quadratic regression are shown in Table 2.2 below, and confirm that 
this new specification does indeed yield a significantly better overall fit, with adjusted R-
square showing that an additional 10% of rainfall variation has been accounted for. In 
addition, it is clear that both the linear and quadratic terms in X are very significant, 
indicating that each is important.8  
 
 
 
 
 
 
 
 
 
 
 
 
By employing exactly the same procedure outlined for the linear regression above, the 
results of this regression can be used to predict values on a grid and then interpolated in 
ARCMAP (again using a spline interpolator) to yield a plot similar to Figure 2.4 above. 
The results of this procedure are shown in Figure 2.8 below. Here a comparison of Figure 
2.8 with the more accurate rain map from 2006 in Figure 2.3 shows that in spite of its 
mathematical simplicity, this quadratic trend surface gives a fairly reasonable picture of 
the overall pattern of rainfall in Sudan. 
 
 

                                                 
7 Here one can also start with a general quadratic form including terms for 2

2
s  and 

1 2
s s . But this more 

general regression shows that neither of these coefficients is significant.  
8 It is of interest to notice that over short ranges, the variables X and X^2 are necessarily highly correlated. 
So the significance of both adds further confirmation to the appropriateness of this regression. 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response

0.727274
0.696971
921.3522
3692.323

Intercept
X
Y
X^2

Term
52409.813
-258.7088
-94.47108
0.4573417

Estimate
11219.48
74.56896
11.41716
0.127993

Std Error
  4.67
 -3.47
 -8.27
  3.57

t Ratio
<.0001
0.0018
<.0001
0.0014

Prob>|t|

Table 2.2. Quadratic Regression Results 
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Finally a plot of the spatial residuals for this quadratic model, as in Figure 2.9 below, 
shows that much of the structure in the residuals for the linear model in Figure 2.7 has 
now been removed. 
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Figure 2.8. Quadratic Trend Model of Rainfall 
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Figure 2.9. Plot of Quadratic Residuals 
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2.2  Spatial Concentration of PCBs near Pontypool in Southern Wales 
 
Among the most toxic industrial soil pollutants are the class of PCBs (polychlorinated 
biphenyls). The following data set from [BG] consists of 70 PCB soil measurements from 
the area surrounding an industrial site near the town of Pontypool, Wales, in 1991. The 
location and PCB levels for these 70 sites can be found in the JMPIN file, Pcbs.jmp. It is 
clear from Figure 2.10 below, that there is a significant concentration of PCB levels on 
the eastern edge of this site. The task here is to characterize the spatial pattern of 
variability in these levels surrounding the plant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A visual inspection suggests that the concentration falls off with distance from this area 
of high concentration. To model this in a simple way, a representative location in this 
site, designated as the “Center” in Figure 2.11 below,9 was chosen and distance from this 
location to each measurement site was recorded (in the DIST column of Pcbs.jmp). Here 
the simplest possible model is to assume that these PCB levels fall off linearly with 
distance from this center. A plot of this regression is shown in Figure 2.11 below, and 

                                                 
9 The coordinates of this center location are given by ( , ) (330064,198822)x y  . 

Figure 2.10 Spatial PCB Measurements 
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look quite “reasonable” in terms of the concentric rings of decreasing PCB levels from 
this center point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However an examination of the regression diagnostics in Figure 2.12 below tell a 
different story. Notice in particular that while distance is significant, the R-Square 
indicates that less than 6% of the variation in PCB levels is actually accounted for by 
such distances.  
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 2.11 First Regression Estimate 
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Figure 2.12. Linear Regression Results 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.2-10                                                Tony E. Smith 

 
The reason for this is evident from an examination of the scatter plot on the left side of 
this figure, which reveals the presence of two dramatic outliers, circled in red. One could 
of course remove these outliers and produce a much better linear fit. But an examination 
of their distance shows that both are close to the center point in Figure 2.11, and hence 
are extremely important data points. So removing them would defeat the whole purpose 
of the analysis.  
 
An alternative approach would be to attempt to transform the data to accommodate this 
extreme nonlinearity. One possibility would be to take logs of the variables. But even this 
is not sufficient in the present case. However a slight modification involving quadratic 
functions of logged variables works reasonably well. In particular, if we perform the 
following “translog” regression: 10 
 
(2.2.1)  2

0 1 2ln ln (ln ) , 1,..,i i i iPCB DIST DIST i n         

 
then we obtain a vastly improved fit as well as more significant coefficients.11 (Note that 
the positive coefficient on the quadratic term reflects the slight bowl shape seen in Figure 
2.12 above.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moreover, the two outliers (again shown by red circles in Figure 2.13) have been 
dramatically reduced by this data transformation. But while this transformed model of 
PCBs seems to capture the spatial distribution in a more reasonable way, we cannot draw 
sharp conclusions without an adequate statistical model of the residuals ( : 1,.., )i i n   in 

(2.2.1). This is the task to which we now turn. 

                                                 
10 This is closely related to the translog specifications of commodity production functions often used in 
economics. See for example http://www.egwald.ca/economics/cesdatatranslog.php.  
11 The estimated intercept term has been omitted to save space.  

Figure 2.13. Transformed Residuals 
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