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3. Spatially-Dependent Random Effects 
 
Observe that all regressions in the illustrations above [starting with expression (2.1.3) in 
the Sudan rainfall example] have relied on an implicit model of unobserved random 
effects (i.e., regression residuals) as a collection ( : 1,.., )i i n   of independently and 

identically distributed normal random variables [where for our purposes, individual 
sample points i  are taken to represent different spatial locations, is ].  But recall from the 

introductory discussion in Section 1.2 above that for more realistic spatial statistical 
models we must allow for possible spatial dependencies among these residuals. Hence 
the main objective of the present section is to extend this model to one that is sufficiently 
broad to cover the types of spatial dependencies we shall need. To do so, we begin in 
Section 3.1 by examining random effects at a single location, and show that normality 
can be motivated by the classical Central Limit Theorem. In Section 3.2 , these results 
will be extended to random effects at multiple locations by applying the Multivariate 
Central Limit Theorem to motivate multivariate normality of such joint random effects. 
This multi-normal model will form the statistical underpinning for all subsequent 
analyses. Finally in Section 3.3 we introduce the notion of spatial stationarity to model 
covariances among these spatial random effects ( : 1,.., )i i n  . 

 
3.1 Random Effects at a Single Location 
 
First recall that the unobserved random effects, i , at each location (or sample point), is , 

are assumed to fluctuate around zero, with ( ) 0iE   . Now imagine that this overall 

random effect, i , is composed of many independent factors, 

 

(3.1.1) 1 2 1

m

i i i im ikk
e e e e 


         , 

 
where in typical realizations some of these factors, ike , will be positive and others 

negative. Suppose moreover that each individual factor contributes only a very small part 
of total. Then no matter how these individual random factors are distributed, their 
cumulative effect, i , must eventually have a “bell shaped” distribution centered around 

zero. This can be illustrated by a simple example in which each random component, ike , 

assumes the values 1/ m  and 1/ m  with equal probability, so that ( ) 0ikE e   for all 

1,..,k m .  Then each is distributed as shown for the 1m   case in Figure 3.1(a) below. 
Now even though this distribution is clearly flat, if we consider the 2m   case 
 
(3.1.2) 1 2i i ie e    

 
then it is seen in Figure 3.1(b) that the distribution is already starting to be “bell shaped” 
around zero. In particular the value 0 is much more likely than either of the extremes, -1 
and 1. The reason of course is that this value can be achieved in two ways, namely 

1 1
2 21 2( , )i ie e    and 1 1

2 21 2( , )i ie e   , whereas the extreme values can each occur in 
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only one way. This simple observation reveals a fundamental fact about sums of 
independent random variables: intermediate values of sums can occur in more ways than 
extreme values, and hence tend to be more likely. It is this property of independent sums 
that gives rise to their “bell shaped” distributions, as can be seen in parts (c) and (d) of 
Figure 3.1. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But while this basic shape property is easily understood, the truly amazing fact is that the 
limiting form if this bell shape always corresponds to essentially the same distribution, 
namely the normal distribution.  To state this precisely, it is important to notice first that 

Figure 3.1 Cumulative Binary Errors 
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while the distributions in Figure 3.1 start to become bell shaped, they are also starting to 
concentrate around zero. Indeed, the limiting form of this particular distribution must 
necessarily be a unit point mass at zero,1 and is certainly not normally distributed. Here is 
turns out that the individual values of these factors, ( 1/ , 1/ )ik ike m or e m   , become 

“too small” as m increases, so that eventually even their sum, i , will almost certainly 

vanish. At the other extreme, suppose that these values are independent of m, say 
( 1, 1)ik ike or e   . Then while these individual values will eventually become small 

relative to their sum, i , the variance of i  itself will increase without bound.2 In a 

similar manner, observe that if the common means of these individual factors were not 
identically zero, then the limiting mean of i  would also be unbounded.3 So it should be 

clear that precise analysis of limiting random sums is rather delicate.  
 
3.1.1  Standardized Random Variables 
 
The time-honored solution to these difficulties is to rescale these random sums in a 
manner which ensures that both their mean and variance remain constant as m increases. 
To do so, we begin by observing that for any random variable, X  with mean, ( )E X  , 

and variance, 2 var( )X   the transformed random variable, 
 

(3.1.3 )  1X
Z X 

 





    

 
necessarily has zero mean since (by the linearity of expectations),  
 

(3.1.4 ) 1( ) ( ) 0E Z E X   
         

 
Moreover, Z  also has unit variance, since by (3.4), 
 

(3.1.5 ) 
2 2

2 2
2 2

1 [( ) ]
var( ) ( ) ( ) 1

X E X
Z E Z E E X

 
  

                 
 

                                                 
1 Simply observe that if 

ik
x  is a binary random variable with Pr( 1) .5 Pr( 1)

ik ik
x x      then by 

definition, /
ik ik

e x m , so that 1( ) /
i imix x m     is seen to be the average of m samples from this 

binary distribution. But by the Law of Large Numbers, such sample averages must eventually concentrate at 

the population mean, ( ) 0
ik

E x  . 

2 In particular since 2 2 2var( ) ( ) .5( 1) .5( 1) 1
ik ik

e E e       for all k, it would then follow from the 

independence of individual factors that
11

var( ) var( ) var( )
m

i ik kk
e m e m


    , and hence that 

var( )
i
    as m   . 

3  Since 
11

( ) ( ) ( )
m

i ik ik
E E e m E e


  implies 

1
| ( ) | | ( ) |

i i
E m E e   , it follows that if 

1
| ( ) | 0

i
E e   then 

| ( ) |iE     as m  . 
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This fundamental transformation procedure is called the standardization of X.  We shall 
use this device to study the limits of sums. But more generally, it is important to observe 
that if one wants to compare the distributional “shapes” of any two random variables, say, 
X and Y, it is much more convenient to compare their standardizations, XZ  and YZ . Since 

these new variables always have the same mean and variance, a comparison of XZ  and 

YZ  thus allows one to focus on qualitative differences in their shape.  

 
In particular, we can in principle use this standardization procedure to study the limiting 
distributional shape of any sum of random variables, say                     
 

(3.1.6)   1 1

m

m m kk
S X X X


       

 
As in our example, let us assume for the present that these variables are independently 
and identically distributed (iid), with common mean,  , and variance, 2  [so that 

1( ,.., )mX X  can be viewed as a random sample of size m from some common 

distribution]. Then the mean and variance of mS  are given respectively by 

 

(3.1.7) 
1 1

( ) ( )
m m

m kk k
E S E X m 

 
     

 

(3.1.8) 2 2

1 1
var( ) var( )

m m

m kk k
S X m 

 
     

 
So as above, we may construct the associated standardized sum, 
 

(3.1.9) 
2

( )

var( )
m m m

m

n

S E S S m
Z

S m




 
   

 
which by definition implies that ( ) 0mE Z   and var( ) 1mZ   for all m.  The key property 

of these standardized sums is that for large m the distribution of mZ  is approximately 

normally distributed.  
 
3.1.2  Normal Distribution 
 
To state this precisely, we must first define the normal distribution. A random variable, X, 
with mean   and variance 2  is said to be normally distributed, written, 2~ ( , )X N   , 
if and only if X  has probability density given by 
 
 

(3.1.10) 

22
1
22

( )

2
2
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( )
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[where the first version shows ( )f x  as an explicit function of 2( , )   and the second 
shows the more standard version of ( )f x  in terms of ( , )  ].  This is the classical “bell-
shaped” curve, centered on the mean, , as shown on the right. A key property of normal 
random variables (that we shall make use of many times) is that any linear function of a 
normal random variable is also normally distributed.  In particular, since the 
standardization procedure in (3.1.3) is seen to be a linear function, it follows that the 
standardization, Z, of any normal random variable must be normally distributed with 
mean, ( ) 0E Z  , variance, var( ) 1Z  , and with density 
 
 

(3.1.11)   
21

( )
22

z
z exp


 

  
 

      

 
For obvious reasons, this is called the standard normal distribution (or density), and is 
generally denoted by  . The importance of this particular distribution is that all 
probability questions about normal random variables can be essentially answered by 
standardizing them and applying the standard normal distribution (so that all normal 
tables are based entirely on this standardized form).  
 
Next, if the cumulative distribution function (cdf ) of any random variable, X, is denoted 
for all values, x, by ( ) ( )F x Prob X x  , then for any standard normal random variable, 

~ (0,1)Z N , the cdf  of Z  is denoted by 
 

(3.1.12)   ( ) ( ) ( )
z

z Prob Z z z dz


       

 
Again   is usually reserved for this important cdf (that forms the basis of all normal 
tables).   
 
3.1.3  Central Limit Theorems 
 
With these preliminaries, we can now give a precise statement of the limiting normal 
property of standardized sums stated above. To do so, it is important to note first that the 
distribution of any random variable is completely defined by its cdf. [For example, in the 
standard normal case above it should be clear that the standard normal distribution,   , is 
recovered by simply differentiating  .] Hence, letting the cdf of the standardized sum, 

mZ , in (3.1.9) be denoted by 
mZF , we now have the following classical form of the 

Central Limit Theorem (CLT): 
 

Central Limit Theorem (Classical). For any sequence of iid random variables 

1( ,.., )mX X  with standardized sum, mZ , in (3.1.9),  

 
(3.1.13) lim ( ) ( )

mm ZF z z      for all z. 

0  z   

( )z  
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In other words, the cdf of iid standardized sums, mZ , converges to the cdf of the standard 

normal distribution.  The advantage of this cdf formulation is that one obtains an exact 
limit result. But in practical terms, the implication of the CLT is that for “sufficiently 
large” m, the distribution of such standardized sums is approximately normally 
distributed.4 Even more to the point, since (3.1.3) implies that iid sums, mS , are linear 

functions of their standardizations, mZ , and since linear functions of normal random 

variables are again normal, it may also be concluded that these sums are approximately 
normal. If for convenience we now use the notation, 2( , )dX N    , to indicate that a 

random variable X is approximately distributed normal with mean,  , and variance, 2 , 

and if we recall from (3.1.7) and (3.1.8)  that the mean and variance of mS  are given  by 

m  and 2m , respectively , then we have the follows more useful form of the CLT : 
 
 
         Central Limit Theorem (Practical).  For all sums, mS , of iid random variables 

         with m sufficiently large,  
 
(3.1.14) 2( , )m dS N m m   

 
 
This result can in principle be used to motivate the fundamental normality assumption 
about random effects, i . In particular, if i  is a sum of iid random components as in 

(3.1.1), with zero means, then by (3.1.14) it follows that  i  will also be approximately 

normal with zero mean for sufficiently large m.  
 
However, it should be emphasized here that in practical examples (such as the one 
discussed in Section 3.2 below) the individual components, ike , of i  may not be fully 

independent, and are of course not likely to be identically distributed. Hence it is 
important to emphasize that the CLT is actually much more general that the classical 
assertion above for iid random variables.  While such generalizations require conditions 
that are too technical to even be stated in a precise manner here, 5  it is nonetheless useful 
to given a very rough statement of the general version as follows: 6 
 

 

                                                 
4 Recall from footnote 5 in Section 3.2.2 of Part I that “sufficiently large” is usually taken to mean 30m  , 

as long as the common distribution of the underlying random variables ( )kX in (3.1.6) is not “too 

skewed”.  
5 For further details about such generalizations, an excellent place to start is the Wikipedia discussion of the 
CLT at http://en.wikipedia.org/wiki/Central_limit_theorem. 
6 The following version of the Central Limit Theorem (and the multivariate version of this theorem in 
section 3.2.3 below) based on Theorem 8.11 in Brieman (1969). The advantage of the present version is 
that it directly extends the “iid” conditions of the classical CLT.  
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Central Limit Theorem (General). For any sum, 1m mS X X   , of random 

variables with means, 1,.., m  ,  and variances, 2 2
1 ,.., m  , if  ( )i  the distributions 

of these random variables are “not too different”, and ( )ii  the dependencies 
among these random variables is “not too strong”, then for sufficiently large m, 
the distribution of mS  is approximately normal, i.e., 

 
(3.1.15)      2( , )m dS N    

 
with 1 m      and 2 2 2

1 m     . 

 
So for random effects, 1i i ime e    , with total variance, 2 2 2

1 m     , it follows 

that as long as conditions (i) and (ii) are reasonable and m is sufficiently large, random 
effects, i , will be approximately normally distributed as 
 

(3.1.16) 2(0, )i d N   

 
 

3.1.4  CLT for the Sample Mean 
 
While the main application of the CLT for our present purposes is to motivate the 
normality assumption about residuals in a host of statistical models (including linear 
regression), it is important to add that perhaps the single most important application of 
the CLT is for inference about population means. In particular, if one draws a iid random 
sample, 1( ,.., )mX X  from a population with unknown mean,  , and constructs the 

associated sample mean: 
 

(3.1.17) 
1

1 1m

m k mkm mX X S


     , 
 

then by (3.1.7) the identity,  
 
(3.1.18)   1 1( ) ( ) ( )m mm mE X E S m     

 
implies that mX  is the natural unbiased estimator of  .  Moreover, by (3.1.8), the 

second identity, 
 
(3.1.19) 2 2

2 2
1 1var( ) var( ) ( ) /m mm m

X S m m     

 
implies that for large m this estimate has a small variance, and hence should be close to 
  (which is of course precisely the Law of Large Numbers). But one can say even more 
by the CLT. To do so, note first that the standardized sample mean, 
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(3.1.20) 
2

( )

( ) /m

m m m
X

m

X E X X
Z

X m


 
 

   

 
can equivalently be written as 
 

(3.1.21) 
1

2 2 2/ /m

m m m m
mX

S S m S m
Z Z

m m m m

  
  

  
     

 
and hence satisfies exactly the same limiting properties as the sample sum. In particular 
this yields the follows version of the practical CLT in (3.1.14) above for sample means: 
 
         Central Limit Theorem (Sample Means).  For sufficiently large iid random 
         samples, 1( ,.., )mX X , from any given statistical population with mean,  ,  

         and variance, 2 , the sample mean, mX , is approximately normal, i.e., 

 
(3.1.22) 2( , / )m dX N m   

 
Note in particular that random samples from the same population are by definition 
identically distributed. So as long as they are also independent, Corollary 2 is always 
applicable. But the Clark-Evans test in Section 3.2.2 of Part I provides a classic example 
where this latter assumption may fail to hold. More generally, the types of dependencies 
inherent in spatial (or temporal) data require more careful analysis when applying the 
CLT to sample means. 
 
 
3.2  Multi-Location Random Effects 
 
Given the above results for random effects, i  at individual locations, is , we now 

consider the vector,  , of such random effects for a given set of sample locations, 
{ : 1,.., }is i n R  , i.e., 

 
(3.2.1) ( : 1,.., ) [ ( ) : 1,.., ]i ii n s i n         

 
As a parallel to (3.1.1) we again assume that these random effects are the cumulative sum 
of independent factors, 
 

(3.2.2) 1 2 1

m

m kk
e e e e


       

 
where by definition each independent factor, ke , is itself a random vector over sample 

locations, i.e., 
 
(3.2.3) ( : 1,.., ) [ ( ) : 1,.., ]k ik k ie e i n e s i n      
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As one illustration, recall the California rainfall example in which annual precipitation, 

iY , at each of the 30n   sample locations in California was assumed to depend on four 

explanatory variables ( 1ix   “altitude”, 2ix   “latitude”, 2ix   “distance to coast”, and 

4ix   “rain shadow”, as follows 

 

(3.2.4) 
4

0 1
, 1,..,i j ij ij

Y x i n  


      

 
Here the unobserved residuals, i , are the random effects we wish to model. If we write 

(3.2.4) in vector form as 
 

(3.2.5) 
4

0 1
1n j jj

Y x  


    

 
[where 1 (1,..,1)n   is the unit column vector], then the residual vector,  , in (3.2.5) is an 

instance of (3.2.1) with 30n  . This random vector by definition contains all factors 
influencing precipitation other that the four “main” effects posited above. So the key 
assumption in (3.2.2) is that the influence of each unobserved factor is only a small 
additive part of the total residual effect,  , not accounted for by the four main effects 
above.  
 
For example, the first factor, 1e , might be a “cloud cover” effect. More specifically, the 

unobserved value, 1 1( )i ie e s  at each location, is , might represent fluctuations in cloud 

cover at is  [where higher (lower) levels of cloud cover tend to contribute positively 

(negatively) to precipitation at is ]. Similarly, factor 2e  might be an “atmospheric 

pressure” effect, where 2 2 ( )i ie e s  now represents fluctuations in barometric pressure 

levels at is  [and where in this case higher (lower) pressure levels tend to contribute 

negatively (positively) to precipitation levels].  
 
The key point to observe is that while fluctuations in factors like cloud cover or 
atmospheric pressure will surely exhibit strong spatial dependencies, the dependency 
between these factors at any given location is much weaker. In the present instance, while 
there may indeed be some degree of negative relation between fluctuations in pressure 
and cloudiness 1 2( , )i ie e  at any given location, is , this tends to be much weaker than the 

positive relations between either fluctuations in cloud cover 1 1( , )i je e , or atmospheric 

pressure 2 2( , )i je e , at locations, is and js , that are in close proximity. Hence while the 

random vectors, 1e  and 2e , can each exhibit strong internal spatial dependencies, it is not 

unreasonable to treat them as mutually independent. More generally, as a parallel to 
section (3.1.3) above, it will turn out that if (i) the individual distributions of the random 
component vectors, 1,.., me e , in (3.2.2) are not “too different”, and (ii) the statistical 

dependencies between these components are not “too strong”, then their sum,  , will be 
approximately “normal” for m sufficiently large.  
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But in order to make sense of this statement, we must first extend the normal distribution 
in (3.1.10) to its multivariate version. This is done in the next section, where we also 
develop its corresponding invariance property under linear transformations. This will be 
followed by a development of the multivariate version of the Central Limit Theorem that 
underscores the importance of this distribution. 
 
 
3.2.1  Multivariate Normal Distribution 
 
To motivate the multivariate normal (or multi-normal) distribution observe that there is 
one case in which we can determine the joint distribution of a random vector, 

1( ,.., )nX X X  , in terms of the marginal distributions of its component, 1,.., nX X , 

namely when these components are independently distributed. In particular, suppose that 
each iX  is independently normally distributed as in (3.1.10) with density 

 

(3.2.6) 

2

2

2

( )

21
2

( ) , 1,..,
i i

i

i

x

i if x e i n








   

 

Then letting, 2
ii i   and using the exponent notation, 1/2a a , it follows that the joint 

density, 1( ,.., )nf x x , of X  is given by the product of these marginals, i.e., 

 
(3.2.7) 1 1 1 2 2( ,.., ) ( ) ( ) ( )n n nf x x f x f x f x    
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   

 

  

2 2

11

( ) ( )

/2 1/2
11 22

1
2

(2 ) ( )
i i n n

nn

x x

n
nn e

 
    

  
   

    


  

 
 
where the last line uses the identity, 1 21 2( )( ) ( )n na a a aa ae e e e     . To write this in matrix 

form, observe first that if 1( ,.., )nx x x  now denotes a typical realization of random 

vector, 1( ,.., )nX X X  , then by (3.2.6) the associated mean vector of X  is given  by 

1( ,.., )n    [as in expression (1.1.4)]. Moreover, since independence implies that 

cov( , ) 0i j ijX X    for i j , it follows that the covariance matrix of X now takes the 

form [as in expression (1.1.7)], 
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(3.2.7) 

11

22cov( )

nn

X






 
 
   
 
 
 


 

 

But since the inverse of a diagonal matrix is simply the diagonal matrix of inverse values,  
 

(3.2.8) 1 

1
11

1
22

1
nn












 
 
 
 
  
 


 

 

it follows that 
 
(3.2.9) 1( ) ( )x x      

                              

1
1 111

1
2 222

1 1 2 2

1

( , ,.., )n n

n nnn

x

x
x x x

x




  









  
         
      


 

 

 

1 1 11

2 2 22
1 1 2 2

( ) /

( ) /
( , ,.., )

( ) /

n n

n n nn

x

x
x x x

x

 
 

  

 

 
     
 
  


 

 

 
2 2 2

1 1 2 2

11 22

( ) ( ) ( )n n

nn

x x x  
  
  

     

 
which is precisely the exponent sum in (3.2.7).  Finally, since the determinant, | | , of a 
diagonal matrix,  , is simply the product of its diagonal elements, i.e., 
 

(3.2.10) 

11

22
11 22| | nn

nn




  



   


 , 

 
we see from (3.2.9) and (3.2.10) that (3.2.7) can be rewritten in matrix form as 
 

(3.2.11)  
1( ) ( )/2 1/2

1
2( ) (2 ) | |

x xnf x e
 

       
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This is in fact an instance of the multi-normal density (or multivariate normal density). 
More generally, a  random vector, 1( ,.., )nX X X  , with associated mean vector, 

1( ,.., )n    , and covariance matrix, ( : , 1,.., )ij i j n   , is said to be multi-normally 

distributed if and only if its joint density is of the form (3.2.11) for this choice of   and 
 . As a generalization of the univariate case, this is denoted symbolically by 

~ ( , )X N   . 
 

While it is not possible to visualize this distribution in high dimensions, we can gain 
some insight by focusing on the 2-dimensional case, known as the bi-normal (or bivariate 
normal) distribution. If 1 2( , )X X X  is bi-normally distributed with mean vector, 

1 2( , )     and covariance matrix, 

 

(3.2.12) 11 12

21 22

 
 
 

   
 

 

 
then the basic shape of the density function in (3.2.11) is largely determined by the 
correlation  between 1X  and 2X , i.e., by 
 

(3.2.13) 1 2 12
1 2

1 2 11 22

cov( , )
( , )

( ) ( )

X X
X X

X X


   

   

 

 
This is most easily illustrated by setting 1 2 0    and 11 22 1    so that the only 

parameter of this distribution is covariance, 12 , which in this case is seen from (3.2.13) 

to be precisely the correlation,  , between  1X  and 2X .  The independence case 

( 0)   is shown in Figure 3.2 below, which is simply a 2-dimensional version of the 
standard normal distribution in (3.1.11) above. Indeed both of its marginal distributions 
are identical with (3.1.11). Figure 3.3 depicts a case with extreme positive correlation 
( .8)   to emphasize the role of correlation in shaping this distribution. In particular, 

this high correlation implies that value pairs 1 2( , )x x  that are similar in magnitude (close 

to the 45  line) are more likely to occur, and hence have higher probability density. Thus 
the density is more concentrated along the 45  line, as shown in the figure. 
 
These properties persist in higher dimensions as well. In particular, the “bell-shaped” 
concentration of density around the origin continues to hold in higher dimensions, and is 
more elongated in those directions where correlations between components are more 
extreme. 
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3.2.2  Linear Invariance Property 
 
For purposes of analysis, the single most useful feature of this distribution is that all 
linear transformations of multi-normal random vectors are again multi-normal. To state 
this precisely, we begin by calculating the mean and covariance matrix for general linear 
transformations of  random vectors. Given a random vector, 1( ,.., )nX X X  , with mean 

vector, 1( ) ( ,.., )nE X       and covariance matrix, cov( )X   , together with any 

compatible ( )m n  matrix, ( : 1,.., , 1,.., )ijA a i m j n   , and n -vector, 1( ,.., )nb b b   of 

coefficients,  consider the linear transformation of X  defined by 
 
(3.2.14) Y AX b   
 
Following standard conventions, if 1m   then the (1 )n  matrix, A , is usually written as 

the transpose of an n-vector, 1( ,.., )na a a  , so that (3.2.14) takes the form, 

 
(3.2.15) Y a X b   
 
where b is a scalar. If 0b   then the random variable, Y a X , is called a linear 
compound of X .  For example, each component of X  can be identified by such a linear 
compound as follows. If the columns of the n -square identity matrix, nI , are denoted by 

 

Figure 3.2. Bi-normal Distribution (ρ = 0) Figure 3.3. Bi-normal Distribution (ρ = .8) 

x1 x1 

x2 x2 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.3-14                                               Tony E. Smith 

(3.2.16) 1 2

1 1 0 0

1 0 1
, ,..., [ , ,..., ]

0

1 0 0 1

n nI e e e

        
       
         
       
       
         


  

 

 
then by setting ia e  and 0b   in (3.2.15), we see that 

 
(3.2.17) , 1,..,i iX e X i n   

 
So linear transformations provide a very flexible tool for analyzing random vectors.  
 
Next recall from the linearity of expectations that by taking expectations in (3.2.14) we 
obtain 
 
(3.2.18) ( ) ( ) ( )E Y E AX b AE X b A b       
 
By using this result, we can obtain the covariance matrix for Y as follows. First note that 
by definition the expected value of a matrix of random variable  is simply the matrix of 
their expectations, i.e., 
 

(3.2.19) 
11 1 11 1

1 1

( ) ( )

( ) ( )

n n

m mn m mn

Z Z E Z E Z

E

Z Z E Z Z

   
      
   
   

 
     

 
 

 
So the definition of cov( )Y  in (1.1.7) can equivalently be written in matrix terms as 
 

(3.2.20) cov( )Y 
1 1 1 1 1 1

1 1

[( )( )] [( )( )]

[( )( )] [( )( )]

n n

n n n n n n

E Y Y E Y Y

E Y Y E Y Y

   

   

    
 
 
     


  


 

 

             
1 1 1 1 1 1

1 1

( )( ) ( )( )

( )( ) ( )( )

n n

n n n n n n

Y Y Y Y

E

Y Y Y Y

   

   

    
   
     


  


 

 

              
1 1

1 1,..., n n

n n

Y

E Y Y

Y


 



 
    
    

   

 
             [( )( ) ]E Y Y      
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By applying this to (3.2.15) we obtain the following very useful result: 
 
(3.2.21) cov( ) [( )( ) ]Y E Y Y      
 

             {([ ] [ ])([ ] [ ]) }E AX b A b AX b A b          
 

                             [( )( ) ]E AX A AX A      
 

             [ ( )( ) ]E A X X A       
 

        [( )( ) ]AE X X A       
 

                             cov( )A X A  
 

             cov( )AX A A    
 
So both the mean and covariance matrix of AX b  are directly obtainable from those of 
X . We shall use these properties many times in analyzing the multivariate spatial models 
of subsequent sections. 
 
But for the moment, the key feature of these results is that the distribution of any linear 
transformation, AX b , of a multi-normal random vector, ~ ( , )X N   , is obtained by 
simply replacing the mean and covariance matrix of X  in (3.2.11) with those of AX b . 
The only requirement here is that the resulting covariance matrix, A A , be nonsingular 

so that the inverse covariance matrix, 1( )A A  , in (3.2.11) exists. This in turn is 
equivalent to the condition that the rows of A  be linearly independent vectors, so that A  
is said to be of full row rank. With this stipulation, we have the following result 
[established in Section A3.2.3 of the Appendix to Part III in this NOTEBOOK]:7 
  
 Linear Invariance Theorem. For any multi-normal random vector, 
 ~ ( , )X N    , and  linear transformation, Y AX b  , of X with A  
 of full row rank,  Y is also multi-normally distributed as 
 
 (3.2.22) ~ ( , )Y N A b A A      
 
What this means in practical terms is that if a given random vector, X , is known (or 
assumed) to be multi-normally distributed as ~ ( , )X N   , then we can immediately 
write down the exact distribution of essentially any linear function, AX b , of X . 
 
3.2.3  Multivariate Central Limit Theorem 
 
We are now ready to consider multivariate extensions of the univariate central limit 
theorems above. Our objective here is to develop only those aspects of the multivariate 

                                                 
7 For an alternative development of this important result, see for example Theorem 2.4.4 in Anderson 
(1958). 
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case that are relevant for our present purposes. The first objective is to show that the 
multivariate case relates to the univariate case in a remarkably simple way. To do so, 
recall first from (3.2.17) above that for any random vector, 1( ,.., )nX X X , each of its 

components, iX , can be represented as a linear transformation, i iX e X , of X . So each 

marginal distribution of X is automatically the distribution of this linear compound. 
More generally, each linear compound, a X , can be said to define a generalized 
marginal distribution of X .8 Now while the marginal distributions of X only determine 
its joint distribution in the case of independence [as in (3.2.7) above], it turns out that the 
joint distribution of X  is always completely determined by its generalized marginal 
distributions.9 To appreciate the power of this result, recall from the Linear Invariance 
Theorem above that if X  is multi-normal with mean vector,  , and covariance matrix, 
 , then all of its linear compounds, a X , are automatically univariate normally 
distributed with means, a  , and variances, a a . But since these marginals in turn 
uniquely determine the distribution of X , it must necessarily be multi-normal. Thus we 
are led to the following fundamental correspondence: 
 
 Univariate-Multivariate Correspondence. A random vector, X , with 
 mean vector,  , and covariance matrix,  , is multi-normally distributed as  
 
(3.2.23) ~ ( , )X N    
 
 if and only if every linear compound, a X , is univariate normal, i.e., 
 
(3.2.24) ~ ( , )a X N a a a    
 
In view of this correspondence, it is not surprising that there is an intimate relation 
between univariate and multivariate central limit theorems. In particular, if any of the 
univariate conditions in the central limit theorems above hold for all generalized marginal 
distributions of X , then X will automatically be asymptotically multivariate normal. For 
example, if as an extension of (3.1.15) one considers a sum of iid random vectors, 
 
(3.2.25) 1m mS X X    

 
then it follows at once that the terms in each linear compound, 
 
(3.2.26) 1m ma S a X a X      

 
must necessarily be iid as well. Hence we obtain an immediate extension of the 
“Practical” Central Limit Theorem in (3.1.14) above 

                                                 
8 Since each marginal compound, 

i
e X , has a coefficient vector of unit length, i.e., || || 1ie  , it is formally 

more appropriate to restrict generalized marginals to linear compounds, a , of unit length ( || || 1a  ). But 

for our present purposes we need not be concerned with such scaling effects.   
9 For a development of this idea (due to Cramer and Wold), see Theorem 29.4 in Billingsley (1979). 
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         Multivariate Central Limit Theorem (Practical).  For all sums of iid random 
         vectors, 1m mS X X   , with common mean vector,  , and covariance matrix, 

          , if m sufficiently large then  
 
(3.2.27) ( , )m dS N m m   

 
 
But since multivariate normality will almost always arise as a model assumption in our 
spatial applications, the most useful extension is the “General” Central Limit Theorem in 
(3.1.15), which may now be stated as follows:10 
 

Multivariate Central Limit Theorem (General).  For any sum, 

1m mS X X   , of random vectors with individual means, 1,.., m  , and 

covariance matrices, 1,.., m  , if  ( )i  the distributions of these random vectors 

are “not too different”, and ( )ii  the dependencies among these random vectors 

are “not too strong”, then for sufficiently large m, the distribution of mS  is 

approximately multi-normal, i.e., 
 
(3.2.28)      ( , )m dS N    

 
with 1 m      and 1 m      . 

 
Finally, it is appropriate to restate this result explicitly in terms of multi-location random 
effects, which form the central focus of this section. 
 

Spatial Random Effects Theorem.  For any random vector of multi-location  
effects, ( : 1,.., )i i n    , comprised of a sum of individual random factors, 

1 2 me e e     , with zero means and covariance matrices, 1,.., m  , if 

( )i  the distributions of these random factors are “not too different”, and  
( )ii  the dependencies among these random factors are “not too strong”,  
then for sufficiently large m, the distribution of   is approximately  
multi-normal, i.e., 

 
(3.2.29)      (0, )d N    

 
with 1 m      . 

 
It is this version of the Central Limit Theorem that will form the basis for essentially all 
random-effects models in the analyses to follow. 

                                                 
10 For a similar (informal) statement of this general version of the Multivariate Central Theorem, see 
Theorem 8.11 in Brieman (1969).  
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3.3 Spatial Stationarity  
 
Given the Spatial Random Effects Theorem above, the task remaining is to specify the 
unknown covariance matrix,  , for these random effects. Since   is in turn a sum of 
individual covariance matrices, k , for random factors 1,...,k m , it might seem better to 

specify these individual covariance structures. But rather than attempt to identify such 
factors, our strategy will be to focus on general spatial dependencies that should be 
common to all these covariance structures, and hence should be exhibited by  . In doing 
so, it is also important to emphasize that such statistical dependencies often have little 
substantive relation to the main phenomena of interest. In terms of our basic modeling 
framework, ( ) ( ) ( )Y s s s   , in (1.2.1) above, we are usually much more interested in 
the global structure of the spatial process, as represented by ( )s , than in the specific 

relations among unobserved residuals { ( ) : 1,.., }is i n   at sample locations { : 1,.., }is i n . 

Indeed, these relations are typically regarded as “second-order” effects in contrast to the 
“first-order” effects represented by ( )s . Hence it is desirable to model such second-
order effects in a manner that will allow the analysis to focus on the first-order effects, 
while at the same time taking these unobserved dependencies into account. This general 
strategy can be illustrated by the following example. 
 
3.3.1  Example: Measuring Ocean Depths 
 
Suppose that one is interested in mapping the depth of the sea floor over a given region. 
Typically this is done by taking echo soundings (sonar measurements) at regular intervals 
from a vessel traversing a system of paths over the ocean surface. This will yield a set of 
depth readings, { ( ) : 1,.., }i iD D s i n  , such as the set of measurements is shown in 

Figure 3.4 below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, the ocean is not a homogeneous medium. In particular, it is well known that 
such echo soundings can be influenced by the local concentration of zooplankton in the 
region of each sounding. These clouds of zooplankton (illustrated in Figure 3.5 below) 
create interference called “ocean volume reverberation”.  
 

Figure 3.4. Pattern of Depth Measurements 

1s  2s  ns  

1D  2D  nD  
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These interference patterns tend to vary from location to location, and even from day to 
day (much in the same way that sunlight is affected by cloud patterns).11 So actual 
readings are random variables of the form, 
 
(3.3.1)   ( ) ( ) ( ) , 1,..,i i iD s d s s i n    

 
where in this case the actual depth at location is  is represented by ( ) [ ( )]i id s E D s , and 

( )is  represents measurement error due to interference.12 Moreover these errors are 

statistically dependent, since plankton concentrations at nearby locations will tend to be 
more similar than at locations widely separated in space. Hence to obtain confidence 
bounds on the true depth at location is , it is necessary to postulate a statistical model of 

these joint interference levels, [ ( ) : 1,.., ]is i n  . Now one could in principle develop a 

detailed model of zooplankton behavior, including their patterns of individual movement 
and clustering behavior. However, such models are not only highly complex in nature, 
they are very far removed from the present target of interest, which is to obtain accurate 
depth measurements.13 
 

                                                 
11 Actual variations in the distribution of zooplankton are more diffuse than the “clouds” depicted in Figure 
3.5. Vertical movement of zooplankton in the water column is governed mainly by changes in sunlight, and 
horizontal movement by ocean currents. 
12 In actuality, such measurement errors include many different sources, such as the reflective properties of 
the sea floor. Moreover, depth measurements are actually made indirectly in terms of the transmission 

loss, ( )
i i

L L s , between the signal sent and the echo received.  The corresponding depth, iD , is obtained 

from iL  by a functional relation, ( , )
i i

D L  , where   is a vector of parameters that have been 

calibrated under “idealized” conditions. For further details, see Urick, R.J. (1983) Principles of Underwater 
Sound, 3rd ed., McGraw-Hill: New York, and in particular the discussion around p.413. 
13 Here it important to note that such detailed models can be of great interest in other contexts. For 
example, acoustic signals are also used to estimate the volume of zooplankton available as a food source 
for sea creatures higher in the food chain. To do so, it is essential to relate acoustic signals to the detailed 
behavior of such microscopic creatures. See for example, Stanton T.K. and D. Chu (2000) “Review and 
recommendations for the modeling of acoustic scattering by fluid-like elongated zooplankton: euphausiids 
and copepods”, ICES Journal of Marine Science, 57: 793–807. 

Figure 3.5. Zooplankton Interference 



  NOTEBOOK FOR SPATIAL DATA ANALYSIS                          Part II. Continuous Spatial Data Analysis 
______________________________________________________________________________________ 
 

________________________________________________________________________ 
 ESE 502                                                     II.3-20                                               Tony E. Smith 

So what is needed here is a statistical model of spatial residuals that allows for local 
spatial dependencies, but is simple enough to be estimated explicitly. To do so, we will 
adopt the following basic assumptions of spatial stationarity: 
 
 
       (3.3.2)  [Homogeneity] Residuals, ( )is , are identically distributed at all  

                    locations is . 
 

       (3.3.3)  [Isotropy] The joint distribution of distinct residuals, ( )is  and 

      ( )js  depends only on the distance between locations is  and js . 

 
 

These assumptions are loosely related to the notion of “isotropic stationarity” for point 
processes discussed in Section 2.5 of Part I. But here we focus on the joint distribution of 
random variables at selected locations in space rather than point counts in selected 
regions of space. To motivate the present assumptions in the context of our example, 
observe first that while zooplankton concentrations at any point of time may differ 
between locations, it can be expected that the range of possible concentration levels over 
time will be quite similar at each location. More generally, the Homogeneity assumption 
asserts that the marginal distributions of these concentration levels are the same at each 
location. To appreciate the need for such an assumption, observe first that while it is in 
principle possible to take many depth measurements at each location and employ these 
samples to estimate location-specific distributions of each random variable, this is 
generally very costly (or even infeasible). Moreover, the same is true of most spatial data 
sets, such as the set of total rainfall levels or peak daily temperatures reported by regional 
weather stations on a given day. So in terms of the present example, one typically has a 
single set of depth measurements [ ( ) : 1,.., ]iD s i n , and hence only a single  joint 

realization of the set of unobserved residuals [ ( ) : 1,.., ]is i n  . Thus, without further 

assumptions, it is impossible to say anything statistically about these residuals. From this 
viewpoint, the fundamental role of the Homogeneity assumption is to allow the joint 
realizations, [ ( ) : 1,.., ]is i n  , to be treated as multiple samples from a common 

population that can be used to estimate parameters of this population. 
 
The Isotropy assumption is very similar in spirit. But here the focus is on statistical 
dependencies between distinct random variables, ( )is  and ( )js . For even if their 

marginal distributions are known, one cannot hope to say anything further about their 
joint distribution on the basis of a single sample. But in the present example it is 
reasonable to assume that if a given cloud of zooplankton (in Figure 3.5) covers location, 

is , then it is very likely to cover locations js  which are sufficiently close to js . Similarly 

for locations that are very far apart, it is reasonable to suppose that clouds covering is  

have little to do with those covering js . Hence the Isotropy assumption asserts more 

generally that similarities between concentration levels at different locations depend only 
on the distance between them.  The practical implication of this assumption is that all 
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pairs of residuals, ( )is  and ( )js , separated by the same distance, i jh s s  , must 

exhibit the same degree of dependency. Thus a collection of such pairs can in principle 
provide multiple samples to estimate the degree of statistical dependency at any given 
distance, h . A second advantage of this Isotropy assumption is that it allows simple 
models of “local spatial dependency” to be formulated directly in terms of this single 
distance parameter. So it should be clear that these two assumptions of spatial stationarity 
do indeed provide a natural starting point for the desired statistical model of residuals. 
 
But before proceeding, it should also be emphasized that while these assumptions are 
conceptually appealing and analytically useful – they may of course be wrong. For 
example, it can be argued in the present illustration that locations in shallow depths 
(Figure 3.5) will tend to experience lower concentration levels than locations in deeper 
waters. If so, then the Homogeneity assumption will fail to hold. Hence more complex 
models involved “nonhomogeneous” residuals may be required in some cases.14 As a 
second example, suppose that the spatial movement of zooplankton is known to be 
largely governed by prevailing ocean currents, so that clouds of zooplankton tend to be 
more elongated in the direction of the current. If so, then spatial dependencies will 
depend on direction as well as distance, and the Isotropy assumption will fail to hold. 
Such cases may require more complex “anisotropic” models of spatial dependencies.15   
 
 
3.3.2. Covariance Stationarity 
 
In many cases the assumptions above are stronger than necessary. In particular, recall 
from the Spatial Random Effects Theorem (together with the introductory discussion in 
Section 3.3) that such random effects are already postulated to be multi-normally 
distributed with zero means. So all that is required for our purposes is that these 
homogeneity and isotropy assumptions be reflected by the matrix,  , of covariances 
among these random effects.   
 
To do so, it will be convenient for our later purposes to formulate such covariance 
properties in terms of more general spatial stochastic processes. A spatial stochastic 
process, { ( ) : }Y s s R , is said to be covariance stationary if and only if the following two 

conditions hold for all 1 2 1 2, , ,s s v v R : 

 
(3.3.4)  1 2[ ( )] [ ( )]E Y s E Y s  

 
(3.3.5)  1 2 1 2 1 2 1 2|| || || || cov[ ( ), ( )] cov[ ( ), ( )]s s v v Y s Y s Y v Y v      

 
These conditions can be stated more compactly by observing that (3.3.4) implies the 
existence of a common mean value,  , for all random variables. Moreover, (3.3.5) 

                                                 
14 For example, it might be postulated that the variance of ( )s  depends on the unknown true depth, ( )d s , 

at each location, s . Such nonstationary formulations are complex, and beyond the scope of these notes. 
15 Such models are discussed for example by Gotway and Waller (2004, Section 2.8.5).  
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implies that covariance depends only on distance, so that for each distance, h , and pair of  
locations ,s v R  with s v h   there exists a common covariance value, ( )C h , such 

that cov[ ( ), ( )] ( )Y s Y v C h . Hence, process { ( ) : }Y s s R  is covariance stationary if and 
only if (iff) the following two conditions hold for all ,s v R , 
 
(3.3.6)  [ ( )]E Y s   
 
(3.3.7)  || || cov[ ( ), ( )] ( )s v h Y s Y v C h     
 
Note in particular from (3.3.7) that since var[ ( )] cov[ ( ), ( )]Y s Y s Y s  by definition, and 
since || || 0s s  , it follows that these random variables must also have a common 

variance, 2  given by 
 
(3.3.8)  2var[ ( )] (0) ,Y s C s R    
 
While these definitions are in terms of general spatial stochastic processes, { ( ) : }Y s s R , 
our most important applications will be in terms of spatial residuals (random effects).  
With this in mind, notice that (3.3.6) together with (1.2.1) imply that every covariance 
stationary process can be written as 
 
(3.3.9)  ( ) ( )Y s s     
 
so that each such process is associated with a unique residual process, { ( ) : }s s R  . 
Moreover, since cov[ ( ), ( )] cov[ ( ), ( )] [ ( ) ( )] [ ( )] [ ( )]Y s Y v s v E s v E s E v          , we 
see that { ( ) : }s s R   must satisfy the following more specialized set of conditions for all 

,s v R : 
 
 
(3.3.10) [ ( )] 0E s    
 
(3.3.11) || || [ ( ) ( )] ( )s v h E s v C h         
 
 
These are the appropriate covariance stationarity conditions for residuals that correspond 
to the stronger Homogeneity (3.3.2) and Isotropy (3.3.3) conditions in Section 3.3.1 
above. 
 
Note finally that even these assumptions are too strong in many contexts. For example (as 
mentioned above) it is often convenient to relax the isotropy condition implicit in (3.3.7) 
and (3.3.11) to allow directional variations in covariances. This can be done by requiring 
that covariances dependent only on the difference between locations, i.e., that for all 

1 2( , )h h h , cov[ ( ), ( )] ( )s v h Y s Y v C h    . This weaker stationarity condition is 

often called intrinsic stationarity. See for example [BG] (p.162), Cressie (1993, Sections 
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2.2.1 and 2.3) and Waller and Gotway (2004, p.273). However, we shall treat only the 
isotropic case [(3.3.7),(3.3.11)], and shall use these assumptions throughout. 
 
3.3.3 Covariograms and Correlograms 
 
Note that since the above covariance values, ( )C h , are unique for each distance value, h , 
in region R , they define a function, C , of these distances which is designated as the 
covariogram for the given covariance stationary process.16 But as with all random 
variables, the values of this covariogram are only meaningful with respect to the 
particular units in which the variables are measured. Moreover, unlike mean values, the 
values of the covariogram are actually in squared units, which are difficult to interpret in 
any case. Hence it is often more convenient to analyze dependencies between random 
variables in terms of (dimensionless) correlation coefficients. For any stationary process, 
{ ( ) : }Y s s R , the (product moment) correlation between any ( )Y s  and ( )Y v  with 

s v h   is given by the ratio:  

 

(3.3.12) 
cov[ ( ), ( )] ( ) ( )

[ ( ), ( )]
(0)var[ ( ) var[ ( ) (0) (0)

Y s Y v C h C h
Y s Y v

CY s Y v C C
     

 
which is simply a normalized version of the covariogram. Hence the correlations at every 
distance, h , for a covariance stationary process are summarized by a function called the 
correlogram for the process: 
 
 

(3.3.13) 
( )

( ) ,
(0)

C h
h s R

C
    

 
 
Probably the most important application of correlograms is to allow comparisons 
between covariograms that happen to be in different units. One such application is 
illustrated in Section 7.3.5 below. 
 
 
 

                                                 
16 To be more precise, if the set of all distances associated with pairs of locations in region R  is denoted by 

( ) { :|| || for some , }h R h s v h s v R    , then the covariogram, C , is a numerical function on ( )h R . 

Note also that for the weaker form of intrinsic stationarity discussed above, the covariogram depends on 

the differences in both coordinates, 
1 2

( , )h h h , and hence is a two-dimensional function in this case. 


